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The study of people’s ability to engage in causal probabilistic reasoning has typically
used fixed-point estimates for key figures. For example, in the classic taxi-cab problem,
where a witness provides evidence on which of two cab companies (the more common
‘green’/less common ‘blue’) were responsible for a hit and run incident, solvers are
told the witness’s ability to judge cab color is 80%. In reality, there is likely to be some
uncertainty around this estimate (perhaps we tested the witness and they were correct
4/5 times), known as second-order uncertainty, producing a distribution rather than a
fixed probability. While generally more closely matching real world reasoning, a further
important ramification of this is that our best estimate of the witness’ accuracy can and
should change when the witness makes the claim that the cab was blue. We present
a Bayesian Network model of this problem, and show that, while the witness’s report
does increase our probability of the cab being blue, it simultaneously decreases our
estimate of their future accuracy (because blue cabs are less common). We presented
this version of the problem to 131 participants, requiring them to update their estimates
of both the probability the cab involved was blue, as well as the witness’s accuracy,
after they claim it was blue. We also required participants to explain their reasoning
process and provided follow up questions to probe various aspects of their reasoning.
While some participants responded normatively, the majority self-reported ‘assuming’
one of the probabilities was a certainty. Around a quarter assumed the cab was green,
and thus the witness was wrong, decreasing their estimate of their accuracy. Another
quarter assumed the witness was correct and actually increased their estimate of their
accuracy, showing a circular logic similar to that seen in the confirmation bias/belief
polarization literature. Around half of participants refused to make any change, with
convergent evidence suggesting that these participants do not see the relevance of the
witness’s report to their accuracy before we know for certain whether they are correct
or incorrect.
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INTRODUCTION

While causal Bayesian reasoning, and reasoning under
uncertainty in general are major research programs within
the judgment and decision-making literature, problems
presented to participants have typically only studied this under
first order uncertainty (also known as ‘risk’ in the economics
literature). For example, the participant might be given a betting
choice between a sure win of £25 or a 33% chance of £100 (e.g.,
Kahneman and Tversky, 1979). Here, while in the latter option
it is uncertain whether we will get the £100, we can quantify
this uncertainty precisely, and the problem thus yields simply to
an expected utility calculation. But what if we did not know for
certain what the chance of getting the £100 was? For example,
suppose the probability was based on the outcome of some exotic
asymmetrical die. Suppose also that we don’t understand the
mechanics of the die, but we have observed 3 rolls, with only 1
leading to a win. While 33% might still be our best guess, with
such a small sample size to estimate this, a substantial range
of other probabilities are possible. How would this affect our
decision over which bet to take? This uncertainty about our first
order uncertainty is known as second order uncertainty (e.g.,
Kleiter, 2018), and we currently know little about how classic
findings in the judgment and decision-making literature apply
under such conditions.

Kahneman and Varey (1990) divided uncertainty along
another dimension: internal uncertainty and external uncertainty
(see also Juanchich et al., 2017). While internal uncertainty comes
from our own ignorance about the world (e.g., the mechanics of
the above die), external uncertainty comes from the propensity
for an external causal system (such as the exotic die) to produce
various outcomes or effects (e.g., a ‘win’). However, much we
reduce our internal uncertainty about the mechanics of the die,
we will only ever be able to predict what face will land up
according to those propensities and never be able to guarantee
a given outcome. This example illustrates an interaction between
these two types of uncertainty which was not discussed in that
paper. In this situation we have internal uncertainty about the
propensity (external uncertainty) of the die to produce a ‘win.’
This is an extremely common situation – in fact, outside of
contrived situations such as (standard) die rolls and coin flips,
our estimates of the propensities for external causal systems to
produce a given effect often comes with some internal (second
order) uncertainty. Consider the propensity for a prisoner to
reoffend or a patient to relapse or suffer complications. In
each case the individual presumably has some true propensity
(although this may fluctuate in a complex manner over time
and context) but we only have limited information from which
to estimate it. We are principally interested here in individuals’
ability to update propensity estimates in light of new information,
i.e., update first order uncertainty estimates under conditions of
second order uncertainty.

Approaches used to solve first order probability problems
typically cannot be applied to second order problems. Knight
(1921) gave the example of a picnic as a situation where first
order techniques (e.g., expected utility calculations) were not
workable. However, a true investment scenario, as opposed to

the example we began the paper with is also insightful. When
deciding whether to invest, one may use current and historical
stock market figures, one’s feelings about and trust in the CEO
and other bits of information such as a tip from an insider
and other known markers of health. Under such conditions the
probability of a positive return on investment cannot be reduced
to a first order point estimate with no variance. Indeed, Mousavi
and Gigerenzer (2014, 2017) have lamented the fact that while the
vast majority of the experimental economics literature has aimed
to study a higher order uncertainty problem (reasoning about
business and economics), it has used experimental materials
featuring only first order uncertainty. If we want to understand
real world human reasoning outside of casino gambling, we
must incorporate higher order uncertainty into the problems we
use to study this.

Similarly, while second order uncertainty has been written
about in the context of causal Bayesian reasoning within
the judgment and decision-making literature (e.g., Gigerenzer
and Hoffrage, 1995; Welsh and Navarro, 2012; Kleiter, 2018),
reasoning under these conditions has rarely been studied,
and experiments aiming to study real world reasoning have
also typically done this using problems with only first order
uncertainty. For example, in the classic taxi cab problem (Tversky
and Kahneman, 1974; Bar-Hillel, 1980), solvers are asked to
reason about whether a cab involved in a hit and run accident
was from the ‘blue’ company (as opposed to the ‘green’) in light
of a population base rate (which suggests green cabs are more
common) and an eye witness report (which claims a blue cab was
involved). Solvers are told that the witness was tested for their
ability to judge cab color, and that their ability was found to be
80%. A version of this can be seen below:

A cab was involved in a hit-and-run accident at night. Two cab
companies, the Green and the Blue, operate in the city.
You are given the following data: 90% of the cabs in the city are
Green and 10% are Blue.

A witness identified the cab as Blue. The court tested the reliability
of the witness under the circumstances that existed on the night
of the accident and concluded that the witness correctly identified
each of the two colors 80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident was
Blue rather than Green?

In order to solve the problem, participants have to integrate
the figure regarding the proportion of blue cabs in the city (not
many: 10%) with the contradictory evidence of the witness’s claim
that the cab was blue and their accuracy (quite good: 80%) to
arrive at a final probability that the cab involved in the incident
was blue. A major finding of the original paper was that many
participants neglected the population base rate data entirely in
their final estimate, simply giving the witness’s accuracy (80%) as
their answer. Subsequent work has found that base rates more
specific to the incident [e.g., in the area of the incident rather
than in the city as a whole (Bar-Hillel, 1980)] and more causally
related [e.g., where green cab drivers are known to get into more
accidents, rather than just being more prevalent (e.g., Ajzen,
1977)] reduce base rate neglect.
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In the similar medical diagnosis problem (e.g., Casscells et al.,
1978; Gigerenzer and Hoffrage, 1995), solvers are asked to reason
about whether a patient has cancer, given a population base rate
(suggesting cancer is unlikely) combined with a positive test
result. The solver is told that the false positive error rate of the
mammogram test is 5%. In reality of course, there is likely to be
some uncertainty around the probability estimates of both the
witness’s accuracy in the taxi cab problem and the false positive
rate of the medical test. Our estimates therefore should look
more like a distribution than a single point. While 80%/5% might
provide the mean, or our best guess, there will also be some
variance around this, due to our ignorance (internal uncertainty).
The degree of variance depends upon the quality and amount
of information we have available. These two examples prove
useful in demonstrating this. While it may seem plausible that
the mammogram machine has been tested a great many times,
perhaps thousands of times, and thus, variance in our estimate
might be very small, this seems less plausible for the single witness
in the taxi cab problem, where time and resources would heavily
limit the number of tests possible. Furthermore, it seems unlikely
that the exact circumstances of the crash could be replicated
for testing purposes, further increasing our uncertainty in the
estimate. While we may therefore be justified in approximating
the 5% false positive rate as a fixed-point estimate with no
variance to simplify the problem, this is unlikely to be reasonable
for the taxi-cab problem.

For example, suppose the witness has been tested 5 times,
getting 4 correct. This produces a distribution with a classical
statistical mean of 80% and a standard deviation of 16.3%.
We created such a distribution in the ‘AgenaRisk’ Bayesian
network program, which can be seen in Figure 1. We use a beta
distribution (Kleiter, 2018) based upon the two nodes above it:

FIGURE 1 | A beta distribution with mean 80.0% and standard deviation
16.3% created using the Agenarisk software.

No. trials (5) on the left, and No. correct (4) on the right. The
mean and other statistics associated with the distribution can be
seen in the yellow summary box.

Now that we know the initial distribution of our estimate
of the witness’s accuracy, in order to model the full problem,
we need to be able to update this distribution depending on
whether the witness gets future reports correct or incorrect. We
model this by expanding Figure 1 into a larger Bayesian network
(BN: Figure 2). A BN is a directed graph whose nodes represent
uncertain variables, and where an arc (or arrow) between two
nodes depicts a causal or influential relationship [see Fenton
and Neil (2018) for full details of BN’s]. In addition to the
graph structure, each node has an associated probability table
which defines the prior probability distribution for the associated
variable, conditioned (where a node has parents) on its parent
variables. When the state of a node is observed (e.g., the witness
reports that the cab is blue) the known value is entered into the
BN via an ‘observation’ and a propagation algorithm updates the
probability distributions for all unobserved nodes. The ‘Bayesian’
in BN’s is due to the use of Bayes’ theorem in the underlying
propagation algorithm.

In this diagram, our estimate for the witness’s accuracy has
been connected to a node (‘Witness says cab is blue’) depicting
whether the witness reports that the current cab is blue. The
‘b_trick’ node is simply a pragmatic software requirement to
convert the witness’s accuracy distribution into a binary variable.
The probability that the witness says the cab is blue is causally
dependent upon both their accuracy, and the base rate, depicted
in the above node ‘Cab really is blue.’ The current diagram
depicts the situation before the witness makes their report. The
best estimate that the cab is really blue at this point is just the
base rate, 10%. Combining this and the witness’s accuracy, the
model predicts a 74.0% chance that the witness will report that
the cab is green.

To demonstrate the workings of the model, in Figure 3 we add
two observations to the model. Firstly, in the lower right, we set
an ‘observation’ on the ‘Witness says cab is blue’ node that the
witness has said the cab is blue (note that this now has a yellow
label saying ‘True’). We have also set an observation on the ‘Cab
really is blue’ node to make this ‘False’ i.e., as if we knew the cab
really was green (and therefore the witness was incorrect). As
would be expected in this scenario, our estimate of the witness’s
accuracy goes down to 66.7% (see yellow summary box mean),
as we would expect given that they now have 4 correct out of 6
(4/6 = 0.666. . ..). Similarly, if the witness reports that the cab is
blue, and we model that the cab really was blue (i.e., the witness
is correct) by setting ‘Cab really is blue’ to ‘True’ (not depicted),
the model provides an estimate of the witness’s accuracy of 83.3%,
equivalent to getting 5 out of 6 correct (5/6 = 0.833). Of present
interest however, is how the witness’s accuracy should change
outside of these ‘certain’ bounds: when the witness reports that
the cab is blue, but we don’t know for certain if they are correct
or not (Figure 4).

In Figure 4 we have modeled the problem to include the
witness’s report that the cab was blue, but without knowing the
truth for certain (no ‘observation’ on the ‘Cab really is blue’
node). Not only, as expected, has the probability that the cab is
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FIGURE 2 | A Bayesian network depicting the modified taxi cab problem prior to the witness reporting the cab is blue.

FIGURE 3 | A Bayesian network model depicting the situation where the witness is incorrect about the cab being blue.
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FIGURE 4 | A Bayesian network model depicting the situation where the witness has reported the cab is blue but we are uncertain if they are correct or incorrect.

blue increased (to 30.7% from 10.0%), but simultaneously, our
estimate of the witness’s accuracy has reduced, to 71.9%, below
the initial estimate (80.0%, i.e., 4/5) but not as low as the estimate
if we knew for certain the witness was incorrect (66.7%, i.e., 4/6).
The reason for this reduction is that the witness has made a claim
which goes against the only other evidence we have (the base rate,
which suggests that the cab is green with considerable strength).
If the witness had instead claimed that the cab was green, our
estimate of their accuracy would increase (to 82.9%), again less
than if we knew for certain they were correct (83.3%).

This addition of second order uncertainty therefore gives the
problem a more dynamic character than the original problem.
Furthermore, it cannot be solved with a simple application
of Bayes’ theorem, unlike the original taxi cab problem. It
also has a potentially unintuitive dynamic: while we have
enough trust in the witness to ‘use’ the information they
provide as evidence that the cab was blue, we simultaneously
reduce our trust in the witness’s ability to make this very
judgment in future. To keep things initially simple, as
can be seen, we do not model the prior for the cab
being blue as having second-order uncertainty. As will be
discussed later, the version of the problem we use justifies
a fixed estimate for this (we have complete knowledge),
however, versions with second order uncertainty here may
also be interesting.

Our primary aim is to examine participant responses to
this novel problem and their ability to reason about causal

relationships under second order uncertainty, and particularly
through that unintuitive dynamic which is typical of such
problems. Lacking the assistance of software like the above,
the precise normative answer will not be achievable by our
participants. For this reason, and because we believe such
numerical precision is unlikely to characterize real world
reasoning, we are not interested in participants’ ability to do
the mathematics, or the magnitude of their adjustments when
they find out the witness reports the cab was blue. Instead we
are interested only in the direction of their adjustments for
the two main estimates (the witness’ true accuracy level and
the probability the cab is blue) and particularly whether they
recognize that the witness’s accuracy should be reduced. We
will also request participants to explain their reason for their
responses and provide several follow up questions to probe
their representation and processing of the problem, in line with
recent calls for more process-oriented work within this literature
(Johnson and Tubau, 2015; McNair, 2015).

MATERIALS AND METHODS

Participants
One hundred and thirty-one participants (43.5% female),
recruited from Prolific Academic (paid £9 per hour), took part in
the study, with an average age of 27.8 (SD = 9.8). No participants
were removed from the statistical analyses.
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Design
All 131 participants saw the same version of the study.
Participants were sub-divided in the analysis based upon their
response to the key question of interest, and we used a range of
numerical, and open and closed qualitative data to uncover the
cognitive processes behind these different response types.

Materials and Procedure
All materials and data can be found in a public repository
at https://osf.io/q68cu/. Participants were firstly presented with
the information sheet and once clicking ‘Next’ to indicate
their consent, were presented with the hit and run scenario.
Participants were only able to move forward in the experiment,
and could not go back and check previous pages. They were
first told that a CCTV camera had made a ‘partial read’
on a taxi cab’s license plate fleeing the scene, and that only
10 cabs matched: 1 belonging to the blue company, 9 to
the green company (giving a first order probability with no
second order uncertainty, assuming it is trusted). They were
then asked to give a percentage estimate using a slider that
the cab was blue based only on this information. On a new
page, they were then told a witness had come forward, and
were given information on the witness’s accuracy. Participants
were told the police had tested the witness five times, and
the witness was correct four times. They were then asked to
estimate the witness’s true accuracy from this. To encourage
participants not to see the initial accuracy value as fixed (i.e.,
overly subscribe to the law of small numbers), we included the
following text to emphasize that we have only a limited estimate
of their true accuracy.

However, we only have 5 trials to estimate this. It’s possible they
got lucky once or twice during the test. If we ran 100 trials we would
have a more reliable estimate. Perhaps they would get 70 correct, or
even 90.

Participants were then asked to use two sliders to give an
estimate of the witness’s ‘true’ accuracy (0–100%), and separately,
provide a (0–100%) confidence that that estimate “would be the
witness’s true accuracy level if we ran a lot more trials.” Only after
providing these two prior estimates, participants were told on a
new page that the witness had claimed the cab was blue.

Following this, participants were first asked to update their
estimate that the cab was blue and then on a separate page,
update their estimate of the witness’s accuracy. In both cases
key information was re-summarized. Instead of being asked to
give a numerical value at this point, participants indicated on
a sliding scale (Figure 5) whether they wanted to stick with
their original value or increase their estimate. Participants were
forced to answer all questions in the survey and were not able
to proceed with the experiment if they simply left the slider in
place. If they wished to make no change and keep their original
estimate they first had to move the slider to activate it, then move
it back to the center.

The degree to which participants moved the slider was not
of importance, and was only included to allow participants to
express themselves and to reduce the chance of participants
who wanted to make a very small change choosing to make no

change. This approach was used to discourage participants from
attempting a mathematical treatment of the problem, which we
strongly believe cannot be the way people solve real life problems
of this type. Instead, we wanted to capture intuitive feelings of
whether the two variables both go up, both go down, stay the
same, or (as predicted by the normative model) the probability of
the cab being blue goes up, while the accuracy of the witness goes
down. It is at this coarser level at which participants responses
were judged. For both estimates, on the same page, participants
were asked to explain their reasoning in an open text box.

After making posterior estimates, participants were asked in
a multiple-choice format whether, when reasoning through the
problem they had (A) Assumed the cab was green, (B) Assumed
the witness was correct or (C) Neither/Other. The order of these
options was randomized.

Participants were finally told on a separate page that after
the investigation had concluded it turned out the cab really
was green and so we now know the witness was incorrect this
time. Participants were then asked again whether they wished to
adjust the witness’s accuracy using the same slider and were again
provided with an open text box to explain their reasoning.

RESULTS

Manipulation Checks/Priors
After being provided with the prior for the cab being blue,
participants were asked to indicate on a sliding scale the
probability the cab was blue and 82.4% chose 9, 10, or 11%,
suggesting a high level of ‘acceptance’ of the prior figure
(Mean = 15.6%, SD = 16.2%). Participants were also asked to do
the same for the witness’s accuracy, after being given the figures
on the court’s testing of them and 45.8% chose 79, 80, or 81%
(Mean = 73.5%, SD = 15.5%). The distribution of responses for
both can be seen in Figure 6. Participants were also asked to
express their confidence that this figure represented the witness’s
true accuracy, which produced a mean of 68.6% (SD = 20.7%).

Posteriors
Once the witness reports that the cab was blue, participants
were firstly asked to adjust their estimate that the cab was blue,
and then the witness’s accuracy. Out of all participants, 64.9%
increased the probability that the cab was blue. Our primary
interest, however, was what change they made to their estimate
of the witness’s accuracy. Only 21.4% reduced this, while 55.7%
made no change, and 22.9% increased it. In the following we
analyze these three sub-groups according to their responses to
a range of questions to attempt to understand their cognitive
processes. Figures to support these analyses can be seen in Table 1
and will be referred to throughout.

Statistical Comparisons
We proceed in the following from top to bottom. In the second
row of Table 1 [(Mean) Cab blue %] we can see the average
estimate that the cab was blue made by each of the three response
types before the witness’s report. A univariate analysis was run
to test the effect of ‘Response type’ on ‘(Mean) Cab blue %’
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FIGURE 5 | Image of the slider mechanism used for participants to adjust their estimate for the witness.

FIGURE 6 | A histogram representing participant prior estimates of the probability the cab is blue (blue) and witness accuracy (orange).

[F(2,128) = 2.6, p = 0.08]. Pairwise comparisons compared ‘No
Change’ to ‘Reduce’ (p = 0.04) and ‘No Change’ to ‘Increase’
(p = 0.70) and ‘Reduce’ to ‘Increase’ (p = 0.04). Univariate analyses
were also run to test the effect of ‘Response type’ on the third
row, their estimate of the witness’s accuracy before the witness’s
report [(Mean) Witness accuracy] [F(2,128) = 0.6, p = 0.55] and
separately on row four, their confidence that this estimate was
equal to the witness’s true accuracy, [(Mean) Witness confidence]
[F(2,128) = 0.13, p = 0.88].

Moving to row five, only a single individual reduced their
estimate of the cab being blue after the witness’ report. The
remainder either made no change, or increased their estimate.
A binary logistic regression was run to test the effect of
‘Response type’ on the proportion of individuals increasing their
estimate of the cab being blue [Wald X2 (2) = 6.6, p = 0.04].
Pairwise comparisons were then run to compare ‘No Change’ and
‘Increase’ [Wald X2 (1) = 6.3, p = 0.01], ‘No Change’ and ‘Reduce’

[Wald X2 (1) = 1.1, p = 0.29], and ‘Reduce’ and ‘Increase’ [Wald
X2 (1) = 1.8, p = 0.18].

We now move to rows six, seven, and eight, representing the
proportion of each response type who chose either ‘Assumed
the witness was correct,’ ‘Assumed the cab was green,’ or
‘Neither/other’ when faced with this question. Binary logistic
regressions were run to test the effect of ‘Response type’
on assuming the witness was correct [Wald X2 (2) = 16.2,
p < 0.001], on assuming the cab was green [Wald X2 (2) = 14.9,
p < 0.001] and on ‘Neither/other’ [Wald X2 (2) = 1.2, p = 0.55].
Examining the assumption that the witness was correct, pairwise
comparisons were run to compare ‘No Change’ to ‘Increase’
[Wald X2 (1) = 3.5, p = 0.06], ‘No Change’ to ‘Reduce’ [Wald
X2 (1) = 9.3, p = 0.002], and ‘Reduce’ to ‘Increase’ [Wald X2

(1) = 15.5, p < 0.001]. Examining the assumption that the cab was
green, pairwise comparisons were run to compare ‘No Change’ to
‘Increase’ [Wald X2 (1) = 2.4, p = 0.13], ‘No Change’ to ‘Reduce’
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TABLE 1 | Participant responses to a range of questions sub-divided by their initial
response to altering the witness’s accuracy.

Reduce No change Increase

Total N 28 (21.4%) 73 (55.7%) 30 (22.9%)

Cab/witness statistics provided

(Mean) Cab blue estimate 9.5% (0.3%) 16.8% (2.0%) 18.2% (3.6%)

(Mean) Witness accuracy
estimate

76.0% (1.9%) 73.3% (2.1%) 71.6% (2.6%)

(Mean) Confidence 67.1% (2.9%) 68.8% (2.7%) 69.9% (3.3%)

Witness reports cab is blue

(Proportion) Increasing estimate
cab blue

67.9% (9.0%) 56.2% (5.8%) 83.3% (6.9%)

(Proportion self-reported assuming):

Witness correct 25.0% (8.3%) 60.3% (5.8%) 80.0% (7.4%)

Cab green 46.4% (9.6%) 15.1% (4.2%) 3.3% (3.3%)

Neither/other 28.6% (8.7%) 24.7% (5.1%) 16.7% (6.9%)

Told cab actually green

(Proportion) Reducing witness
accuracy

78.6% (7.9%) 52.1% (5.9%) 73.3% (8.2%)

In brackets on the left it is indicated whether the figure provides the mean response,
or the proportion providing a particular response (in the case of non-continuous
outcomes). Questions are in chronological order and the delivery of key pieces of
information is indicated. Standard errors for estimates are included in brackets.

[Wald X2 (1) = 10.0, p = 0.002] and ‘Reduce’ and to ‘Increase’
[Wald X2 (1) = 8.8, p = 0.003].

Moving to the final row, where individuals were asked to
update their estimate of the witness’s accuracy again after being
told that subsequent investigations had found the cab really was
green, only seven individuals increased their estimate of the
witness’s accuracy. All others either reduced or made no change
to their estimate. A binary logistic regression was run to test
the effect of ‘Response type’ on the proportion reducing their
estimate [Wald X2 (2) = 7.7, p = 0.02]. Pairwise comparisons were
run to compare ‘No Change’ to ‘Increase’ [Wald X2 (1) = 3.8,
p = 0.05], ‘No Change’ to ‘Reduce’ [Wald X2 (1) = 5.5, p = 0.02]
and ‘Reduce’ to ‘Increase’ [Wald X2 (1) = 0.22, p = 0.64].

Qualitative Data
Participants were asked to explain their reasoning after providing
their posterior change estimate for the Witness’s accuracy. These
were coded blind to response type by the first author. Four
major codes were identified, but around half of all responses
were also coded as ‘Unclassified’ where an understanding of the
participants’ response could not be confidently attained. The first
author gave their codebook containing these five codes (Table 2)
to the third author. The third author then assigned these codes,
blind to both response type and to the first author’s assignments.

Inter-rater agreement was 78.6%, with disagreements generally
being whether a response should be ‘unclassified’ or not. For
the discrepant responses (28 total), if one coder had chosen
‘unclassified’ we assigned this code in order to be conservative –
22/28 of these were therefore classified that way. The remaining
six were resolved through discussion. The proportion of each
response type assigned each code post-agreement can be seen
below in Table 2. Among responses that could be classified,
one modal code stands out for each, however, for ‘No Change,’
a substantial amount were also coded as ‘Witness probably
correct,’ similar to the ‘Increase’ responders. These will be
discussed below.

Increase
The modal code assigned among ‘Increase’ responders was
‘Witness probably correct.’ This was assigned where the
participant indicated that they thought the witness was likely to
be correct or showed confidence in the witness. A selection of
these responses can be seen in Table 3.

No Change
The modal code among ‘No Change’ responders (30.8%) was
‘Irrelevant.’ This was assigned where the participant stated that
the report by the witness has no bearing on their accuracy level.
A selection of these responses can be seen in Table 4.

When told at the end of the experiment that the cab really was
green, and the witness was incorrect, we can see that half of ‘No
change’ participants still made no change to their estimate of the
witness’s accuracy. A selection of these participants’ explanations
of those responses can be seen in Table 5.

Reduce
The most prominent code among ‘Reduce’ responders was
‘Witness probably incorrect.’ This was assigned when the
participants stated that the witness was probably incorrect on this
occasion, or expressed low confidence in them. Some of these also
referenced the low base rate for blue cabs. A selection of these
responses can be seen in Table 6.

DISCUSSION

In this paper we aimed to examine responses to a modified
version of the classic taxi cab problem including second
order uncertainty. Through mixed methods, we aimed to
uncover participants’ approaches to handling the new dynamics
introduced in the modified version. Of principal interest was
how participants altered their estimate of the witness’s accuracy
after the witness reported that the cab was blue. We found
that around half made no change, with around a quarter

TABLE 2 | Percentages of each response type assigned each code type (modal code excluding ‘unclassified’ is highlighted for each response).

Witness probably correct Irrelevant Witness probably Incorrect Requires Certainty Unclassified

Increase 33.3 3.3 6.7 – 56.7

No change 17.8 32.9 8.2 2.7 38.4

Reduce 3.6 – 50.0 – 46.4
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each reducing/increasing their estimate of the witness’ accuracy.
Through convergent evidence, combining quantitative and
qualitative responses we present below a general picture of the
cognitive processes involved in each response type, however,
we do not assume each represents a single coherent population
(multiple cognitive processes may lead to the same response) and
in some cases suggest this might be the case.

Increase
‘Increase’ responders appear to be the most homogeneous of
the three response types, with 80% self-reporting as having
assumed the witness was correct, and, outside of the large
proportion ‘unclassified,’ the majority of their open text data
being coded as ‘Witness probably correct.’ Interestingly, none
of these responders explicitly say they are ignoring the base
rate data, or that they trust the witness more than the base
rate data. They generally just only refer to the witness data in
their responses, expressing confidence in them or belief they are
correct, and typically not mentioning the base rate data at all.
These responders cognitive process may therefore represent a
form of base rate neglect (e.g., Tversky and Kahneman, 1974;
Bar-Hillel, 1980). However, as can be seen in Figure 6 and
Table 1, these participants certainly saw the base rate data as
relevant before the witness made their report, suggesting a simple
disregard for the relevance of that information is not a good
explanation. However, Bar-Hillel (1980) proposed a ‘dominance’
theory of base rate neglect in such problems, where the piece of
information seen as least relevant would be entirely disregarded,
presumably for reasons of computational simplification. It is
possible that our participants, once the witness report is provided,
find the prospect of integrating these two figures too daunting.
From there, finding the witness report more compelling than
the base rate data for whatever reason, they may disregard
the base rate, leading to an 80% estimate that the cab is blue
based solely on the witness’s accuracy. However, this cannot
provide a full explanation of the present results. Even if these
participants do believe there is an 80% chance that the cab is blue,
how does this justify increasing their estimate of the witness’s
accuracy?

A similar response was also detected in other papers by the
authors on reasoning with propensities (Dewitt et al., 2018, 2020).
In the scenario presented in both those papers, two nations
are testing their missile detonation capabilities. Nation X has
so far had only 1 success out of 6 attempts while Y has had 4

TABLE 3 | A selection of ‘Increase’ responders open-text explanations of their
reasoning assigned the code ‘Witness probably correct’.

“Because he got another car right so it is 5/6.”

“. . . Now with 80% accuracy of the witness, stating that it is from the blue one,
I am sure that the cab is from the blue company.”

“The witness has said they saw a blue cab.”

“I believe the witness would have seen correctly even under pressure.”

“They did do the trial 5 times and out of the 5 times they got it correct 4 times,
had this been lower then I would have questioned the accuracy but 4 out of 5 is

quite good.”

TABLE 4 | A selection of ‘No Change’ responders open text explanations of their
reasoning assigned the code ‘Irrelevant’.

“Still 90% because the facts are still the same.”

“I don’t think the probability of what they saw regarding colors will affect the
accuracy of their statement.”

“The report doesn’t change their estimated accuracy.”

“For me nothing changed because we have no new viable information.”

“Because the probability of it being a blue car and then the witness identifying it
as a blue car are separate, so even if it’s a low probability, it wouldn’t affect their

perception unless they were told beforehand that [it was] low probability.”

“The result of the test (blue or green) doesn’t change the level of accuracy of
the witness.”

“They still got 4/5 trials right, so I’m still confident in them.”

TABLE 5 | A selection of ‘No Change’ responders open text explanations of their
reasoning after being told the witness was incorrect and still making no change to
their estimate of the witness’s accuracy.

“The witness managed to get the correct color 4/5 based on the test. 1/5 times
the witness fails and this was one of the situations where they failed.”

“I don’t feel that I can judge their accuracy based on this as this result could
have been in the 20%”

“No remains 80%. The 20% percent would be them getting the color wrong.”

“I believe their accuracy is still not in question, they still had a 1 in 5 chance to
get it wrong.”

“The previous test measured that the witness had a 4/5 chance to get the color
correct. The accuracy still stands.”

“It fits 20% of not getting the right color.”

“There was still 20% chance he was wrong.”

“He has 4/5 so the car could be the 1/5.”

TABLE 6 | A selection of ‘Reduce’ responders open text explanations of their
reasoning assigned the code ‘Witness probably incorrect.’

“Based on the potential cab colors, it’s more likely than not that the cab was
green, so I’m slightly more inclined to doubt the witness.”

“Very unlikely that it was a blue cab, since only one out of 10 plates were blue.”

“Because people can think they saw a thing and can be another completely
different.”

“From a statistical point of view it is likely that the witness was wrong.”

“It was considerably less likely to be blue than green; this coupled with the one
incorrect trial result, makes me less confident that the witness is correct.

However, they still actually could be.”

“If was dark, how he/she can know whether car blue or green?”

“I think the accuracy of the witness became less than 80% because the
probability that was a green cab is higher than her accuracy.”

“It’s hard to identify the color of a moving car at night, besides blue and green
at high speed are easy to mistook for each other.”

successes out of 6. Another missile then successfully detonates
on the border between the two nations but we’re unable to
detect the source. The key question, instead of who launched this
missile (equivalent to whether the cab is blue), is what the new
proficiency estimate for each nation is (equivalent to updating the
witness’s accuracy). In both papers we found a similar approach
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to the present paper, where, when updating proficiencies, 1/3 of
participants increased their estimate of Y ’s proficiency, making
no change to X. Because X and Y represent exhaustive and
exclusive causes of the latest explosion, unlike in the present
scenario, we were able to infer that they have treated Y launching
the latest missile as a certainty (i.e., they have ‘given’ the whole
responsibility for the detonation to Y, and none to X). In Dewitt
et al. (2018) we also saw similar open text reasoning, with the
majority of these participants simply stating that they believed
Y was probably responsible. We labeled these participants as
‘categorical’ responders as we found that while they rated the
probability that Y was responsible as 77.7% on average, they all
treated it as a 100% certainty when updating their estimate. This
treatment of a probabilistic variable (e.g., 80% estimate that the
cab is blue based on the witness’s report) as a certainty may also
be occurring in the present experiment. Evidence for this comes
from the vast majority of ‘Increase’ responders who self-report as
having ‘assumed’ the witness was correct.

Importantly, in both scenarios, this response has a circularity
to its logic. In the missiles experiment, Y is assumed to have
launched the missile based upon their previous success with
missiles. Their success with missiles is then updated based
upon the assumption that Y launched the missile (which, to
reiterate the circularity, is based upon their past success with
missiles). Similarly, in the present scenario, the only evidence
that participants have that the witness might be correct this time
is their previous accuracy. But just like in the missiles scenario,
this is the very thing we want them to update. So, when this
approach is adopted, it appears that once a witness gets to a
certain level of trust, they will not only be assumed to be correct
based only on this historical accuracy, but also, based on that
assumption, they will be seen as even more accurate afterward,
even when the only other evidence available actually strongly
suggests they are incorrect. This has the same circularity as
has been observed in confirmation bias and belief polarization
literature (Lord et al., 1979; Plous, 1991; Nickerson, 1998; Cook,
2016; Fryer et al., 2019).

The treatment of probabilistic variables as categorical variables
has also been previously reported under the names of ‘as if ’
reasoning (Gettys et al., 1973) and ‘digitization’ (Johnson et al.,
2018). Both sets of authors have found that in multi-step
reasoning, where the output of one probabilistic calculation is
used in a second calculation, the first output is often digitized
(or, turned into categorical form) for the second calculation.
For example, if one has to calculate the chance of rain, and
then use that probability to estimate the chance that a party will
be canceled, they will treat the chance of rain in that second
calculation as either 0 or 1. In our missile launching scenario,
this ‘multi step’ explanation for categorization was considered
plausible, as the categorical response involved multiple steps
(one first had to normalize a 66.6:16.6 ratio to get to the 80:20
probability of who launched the missile before using this latter
value to update propensities). However, the present problem
does not involve multiple steps as the participants are directly
provided with the probabilities of, e.g., the cab being green and
the witness being correct. While these are admittedly estimated
from frequencies (9/10 and 4/5) this is not a true ‘first’ calculation

in the sense meant by those authors (e.g., if participants had to
first multiply two figures together to get the witness’s accuracy).
Therefore, despite this problem not fitting the ‘multi-step’ format,
we still saw large numbers of participants taking what appears
to be a similar categorical approach. This may suggest that this
phenomenon of digitization or categorization is a more general
strategy to simplify a difficult problem (with multiple steps being
just one source of difficulty). The current scenario unfortunately
presents a situation (with two diagnostically opposite pieces
of data) where such a strategy is at its most inappropriate
(unlike, e.g., if one of the figures was close to 50:50), and so
it is interesting that we still see such a strategy employed. It
may be valuable to determine in future work if individuals are
sensitive to the ‘appropriateness’ of this strategy when choosing
to employ it, by varying the figures in the problem. It should
also be noted that, even if participants are aware that it is not
an ideal approach to the scenario, they may feel that they lack
an alternative approach. Indeed, in Dewitt et al. (2020) we found
that 1/3 of categorical responders endorsed the statement ‘I
approximated that Y was entirely responsible for the launch in
order to make the problem simpler but know this is not strictly
accurate,’ suggesting some awareness that their approach was not
fully normative.

Reduce
‘Reduce’ responders appear to be more mixed than ‘Increase’
responders in their choices on the ‘assumption’ question. Around
half self-report as assuming the cab is green, but around a
quarter actually report they assumed the witness was correct, and
another quarter report ‘Neither/other.’ However, almost all of
those whose open text responses could be classified were coded as
‘Witness probably incorrect.’ Unlike ‘Increase’ responders, many
of these did cite the base rate as a reason for this belief, saying
either that the cab was very unlikely to be blue, or very likely to
be green. Others stated low confidence or disbelief in the witness’s
ability to make the judgment.

We think it is possible that there are two sub response
types here. First, would be the mirror image of the ‘Increase’
responders, who may be committing ‘base rate conservatism,’
neglecting the relevance or value of the witness’s claim, and
entirely focusing on the base rate and treating that as a certainty.
This would correspond to those 46.4% who self-reported as
assuming the cab was green.

Second would be those who dealt with the problem
normatively/probabilistically, integrating both variables together
(even if not fully mathematically). As the base rate is stronger
than the witness’s report (90% vs. 80%), this leads to the
conclusion that the witness is more likely to be incorrect than
correct. There is no equivalent process to this that would lead to
‘increase,’ which is another reason to suppose a single cognitive
process for that response. This process may correspond to those
28.6% who selected ‘Neither/other’ (i.e., didn’t ‘assume’ either
way). These participants may have, rather than neglecting one
piece of information or the other (either the base rate or the
witness information), have integrated both, concluding that the
witness is more likely to be incorrect but still maintaining
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a probabilistic representation of the problem, rather than
collapsing into assumption-based thinking.

No Change
Participants who made no change are also less obviously
homogenous than the ‘Increase’ responders. Interestingly, quite a
large proportion state that they assumed the witness was correct,
despite not increasing their estimate of the witness’s accuracy.
Similar to ‘Reduce’ responders, around a quarter self-reported
assuming ‘Neither/other.’

While the main qualitative code for ‘No change’ responders
was ‘Irrelevant,’ and only a few were coded as ‘Requires
uncertainty,’ it is still very possible that uncertainty is a major
reason for this response. These participants tended to be quite
unforthcoming in their reason for why they think the new
information is irrelevant, simply stating that they don’t see the
connection. The reason for the new information being irrelevant
could therefore very well be that we don’t yet know whether
the cab really is green or blue – they may consider uncertain
information irrelevant for updating the witness’s accuracy. This
would fit with the ‘missiles’ experiments mentioned above
(Dewitt et al., 2018, 2020) where ‘No change’ was also a dominant
response (about 1/3 both samples). In Dewitt et al. (2020),
when asked to pick from a set of statements as to which most
closely matched their reasoning, around two thirds of these
responders chose ‘The evidence states it’s uncertain who launched
the successful missile so you cannot change the proficiencies
based on uncertainty.’

Another reason to think that uncertainty may be an important
underlying reason for the ‘No change’ response is that half of
these participants, when told that the cab really was green at
the end of the experiment (and therefore that the witness was
incorrect), reduced their estimate of the witness’s accuracy. This
suggests that they do see the connection between the witness’s
report that the cab was blue and their accuracy, but only once they
know for certain that that report really is wrong. Indeed, while
under uncertainty, participants may prefer to err on the side of
avoiding updating incorrectly (Anderson, 2003).

However, a much larger percentage of ‘No change’ responders
than either ‘Reduce’ or ‘Increase’ continue to make no change
even when told that the witness was incorrect. A selection
of responses which may indicate these participants’ thought
processes can be seen in Table 5. There is a strong theme
here of these participants seeing the latest failure of the witness
as ‘fitting within’ the original accuracy estimate of 80%. In
some cases, they seem to suggest that this could be ‘the one’
they got wrong (out of 5), which seems obviously incorrect
given that previous information told them they already got
one wrong during the tests. It is difficult to tell therefore
whether this represents a simple misunderstanding of that, or
whether there is a deeper and more interesting process occurring.
Indeed, another interpretation is that these participants see one
additional data point (even if that data point is now certain) as
not enough to change a propensity based on five data points,
when that propensity allows for some failure (i.e., the 20%). These
participants may be seeing this latest claim as the first data point
in another ‘run’ of 5, and while this first one failed, the next
four may be successes, matching the original ‘80%.’ If true, there

therefore seems here to be an over-sanctification of the original
run of data, and furthermore, a similar tendency to ‘wait for more
data before updating’ as with the single no change response.

CONCLUSION

Overall, these findings seem to represent a general unwillingness
or inability by at least 3/4 of our participants to deal with
the problem probabilistically when answering second order
questions, either converting those variables into categorical
form (those ‘Increase’ and ‘Reduce’ responders who ‘assumed’
either way), or withholding judgment until they are certain
(‘No change’ responders). This appears to represent a major
departure from a Bayesian treatment of the problem, where
any information about the state of one variable (i.e., the
witness’s report), even if probabilistic, can be used to update
our estimates for other causally related variables (i.e., the
witness’s accuracy).

Generally therefore, in studying responses to this modified
taxi cab problem, we have corroborated findings in previous
work. The present work and the missiles work probe participants
reasoning in different ways, and the problems have slightly
different dynamics, and yet both point toward a substantial
majority of participants adopting a categorical representation
when updating propensities. Two approaches seem to stem
from this. Some participants refuse to update entirely, until
the state of the event is known. Other participants seem to
convert the event into a certainty one way or the other, and
update propensities based upon that assumption. While the
issue with the former approach is to make no use of valuable
information, the latter may be more damaging. We have already
spoken about the circularity of the ‘assume witness correct’
approach. Before even knowing whether the witness is correct,
the mere fact that the witness has shown themselves to be
fairly reliable in the past, seems to lead these individuals to
increase their trust in them following their claim, as if they
knew the witness was correct this time. This suggests that
once a person or system reaches a certain level of trust, they
may be able to make claims, and even without the truth of
these being determined, are not only trusted in the individual
situation (which may be reasonable), but even have trust in
them increased for the future on the assumption they probably
were correct this time. This is perhaps all the more troubling
given that the previous accuracy estimate in this experiment
was based upon a very small number of tests of the witness.
With such a small number of trials, it is highly possible that
the witness just got lucky on a couple of occasions. With only
two options to guess from, it is quite possible that they are at
chance level for judging cab colors under the given conditions.
Therefore, in combination, this seems to suggest that if an
individual gets lucky with a few accurate claims early on, and
they pass the ‘safe to assume they are correct’ threshold, their
early luck can take on a self-reinforcing dynamic, where trust
in them is further enhanced even without further verification of
their claims. This dynamic was also discussed in Dewitt et al.
(2020) in the context of prejudice toward an individual or group
of producing some negative outcome. Indeed, it may be that
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this ‘assumption’ approach lends any situation where we are
estimating a propensity (whether for a ‘good’ or ‘bad’ outcome)
a positive feedback dynamic similar to that seen in confirmation
bias/belief polarization literature.
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