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Abstract

Background: Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early
stages of Alzheimer’s disease (AD). The impact of biological factors on their plasma concentrations in individuals
with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex,
age, APOE ε4 allele, comorbidities, brain amyloid-β (Aβ) burden, and cognitive scores on plasma NFL and t-Tau
concentrations in cognitively healthy individuals with SMC, a condition associated with AD development.

Methods: Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments
(at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an
ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study).

Results: We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau
concentrations compared to men, over time. The APOE ε4 allele does not affect the biomarker concentrations while
plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are
correlated and increase over time. Baseline NFL is related to the rate of Aβ deposition at 2-year follow-up in the
left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau
are inversely associated with cognitive score.

Conclusion: We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex,
respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their
clinical validation in blood.

Keywords: Neurofilament light chain, Tau, Alzheimer’s disease, Subjective memory complainers, Mild cognitive
impairment, Biomarkers

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: filippo.baldacci@unipi.it
1Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP,
Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013 Paris, France
2Department of Clinical and Experimental Medicine, University of Pisa, Via
Roma 67, 56125 Pisa, Italy
Full list of author information is available at the end of the article

Baldacci et al. Alzheimer's Research & Therapy          (2020) 12:147 
https://doi.org/10.1186/s13195-020-00704-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-020-00704-4&domain=pdf
http://orcid.org/0000-0002-8752-0556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:filippo.baldacci@unipi.it


Introduction
Plasma neurofilament light (NFL) chain and total Tau (t-
Tau) proteins are promising biomarkers of Alzheimer’s dis-
ease (AD). They show good/fair diagnostic accuracy to dis-
tinguish cognitively healthy individuals from AD patients,
when ultrasensitive technologies of measurement are used
[1–7]. Both proteins are involved in the physiological pro-
cesses of neuronal integrity [8, 9]. Both plasma t-Tau and
NFL are associated with worsening rate of cognitive per-
formance [3, 10–13], cerebral atrophy [2, 3, 12–14], and
hypometabolism [2, 3, 12] in prodromal and dementia
phases of AD. Only a few studies investigated these bio-
markers, either separately [15–18] or in combination [3],
during the preclinical stages of sporadic AD. Even less data
are available on the effect of key biological factors—such as
age, sex, and APOE ε4 allele—on plasma NFL and t-Tau
concentrations. At our knowledge, there are no studies in-
vestigating the potential contribution of comorbidities in af-
fecting either plasma NFL or t-Tau concentrations, and no
evidence on the impact of these key biological factors on
plasma NFL and t-Tau concentrations in populations with
SMC, a condition associated with AD development.
Our primary aims are to investigate, in a cohort of

cognitively intact individuals with subjective memory
complaints (SMC), the dynamic trajectories of plasma
NFL and t-Tau concentrations and the impact of sex,
age, and APOE genotype. Secondary aims are (1) to
identify, at baseline, the variables maximally contributing
to group separation of individuals above or below the
third quartile for baseline NFL and t-Tau concentra-
tions, respectively; (2) to investigate the association of
the two plasma biomarkers, at baseline, with baseline
global and regional brain amyloid-β (Aβ) deposition, Aβ
changes deposition, baseline Mini-Mental State Examin-
ation (MMSE) score, Free and Cued Selective Rating
Test (FCSRT), the concentrations of the corresponding
cerebrospinal fluid (CSF) biomarkers (CSF NFL and CSF
t-Tau), and between each other; and (3) to explore the
association of NFL and t-Tau changes with MMSE and
FCSRT modifications.

Materials and methods
We performed a longitudinal investigation in 316 SMC
participants of the French monocentric “INveStIGation
of AlzHeimer’s PredicTors in Subjective Memory Com-
plainers” (INSIGHT-preAD) cohort (Pitié-Salpêtrière
University Hospital, Paris) [19]. All participants under-
went two Aβ-positron emission tomography (Aβ-PET)
scans, at baseline and at 2-year follow-up. A subset of 40
individuals received a baseline lumbar puncture. The
concentrations of plasma NFL and t-Tau were measured
at three time points using an ultrasensitive technology
(N = 79 at baseline, 1-year, and 3-year follow-up).

Study participants
We designed a large-scale mono-centric research pro-
gram using a cohort of SMC recruited from the INSI
GHT-preAD study, a French academic university-based
cohort [19] which is part of the Alzheimer Precision
Medicine Initiative (APMI) and its Cohort Program
(APMI-CP) [20–23]. Participants were enrolled between
May 25, 2013, and January 20, 2015, at the Institute of
Memory and Alzheimer’s disease (Institut de la Mémoire
et de la Maladie d’Alzheimer, IM2A) at the Pitié-Salpê-
trière University Hospital in Paris, France [19]. The
study was conducted in accordance with the tenets of
the Declaration of Helsinki of 1975 and approved by the
local Institutional Review Board at the participating cen-
ter. All participants gave written informed consent for
use of their clinical data for research purposes.

PET data acquisition and processing
All Florbetapir-PET scans were acquired in a single ses-
sion on a Philips Gemini GXL CT-PET scanner 50 (±
5) min after injection of approximately 370MBq (333–
407MBq) of Florbetapir. Images acquisition, reconstruc-
tion including correction algorithms and reallination,
averaging, and quality check were performed by the
CATI team (Centre d’Acquisition et Traitement des Im-
ages) (http://cati-neuroimaging.com) [19, 24, 25] and
were calculated for each of 12 cortical regions of interest
(right and left posterior cingulate, right and left anterior
cingulate, right and left superior frontal, right and left
inferior parietal, right and left precuneus, right and left
middle temporal cortices), as well as the global average
standard uptake value ratio (SUVR).

CSF sampling and biomarkers assessment
CSF sampling was performed by lumbar puncture in a
subsample of 40 individuals. All CSF samples were col-
lected in polypropylene tubes, centrifuged at 1000 g for
10 min at + 4 °C. The collected supernatant was stored
at − 80 °C for pending biochemical analysis. The immu-
noassays for CSF core biomarkers are reported in previ-
ous studies [26, 27].

Blood sampling and collection tube storage
Ten (10) mL of venous blood were collected in one BD
Vacutainer® spray-coated K2 tube, which was employed
for all subsequent immunological analyses. Blood sam-
ples were taken in the morning, after a 12-h fast, han-
dled in a standardized way, and centrifuged for 15 min
at 2000 G-force at + 4 °C. Per sample, plasma fraction
was collected, homogenized, aliquoted into multiple 0.5
mL cryovial-sterilized tubes, and finally stored at −
80°Cwithin 2 h from collection.
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Immunoassays for plasma biomarkers
All analyses of plasma t-Tau and NFL concentrations
were performed at the Clinical Neurochemistry Labora-
tory, Sahlgrenska University Hospital, Sweden [28–30].
In particular, a volume of 0.5 mL of plasma for each in-
dividual was required for performing the analyses.
Plasma t-Tau concentrations were measured using the

Human Total Tau 2.0 kit on the ultrasensitive single
molecule arrays (Simoa) platform (Quanterix, Lexington,
MA), according to the manufacturer instructions.
For plasma t-Tau, both repeatability and intermediate

precision were 12.2% for an internal QC plasma sample
with a concentration of 1.9 pg/mL [2, 30]. The t-Tau assay
was originally developed in a collaboration between the
Clinical Neurochemistry Laboratory and Quanterix [31].
However, the commercially available assay was built on
this work but with another set of antibodies.
Plasma NFL concentrations were measured using the

ultrasensitive Simoa technology, according to the manu-
facturer instructions. Repeatability was 9.6% and 10.6%
and intermediate precision was 14.6% and 11.6% for two
internal QC plasma samples with concentrations of 12.9
pg/mL and 107 pg/mL [28–30]. The NFL assay was ori-
ginally developed by the Clinical Neurochemistry La-
boratory and then commercialized by Quanterix [32].
All samples were analyzed on one occasion using one

batch of reagents by board-certified laboratory techni-
cians who were blinded to clinical data.

Statistical analysis
Statistical analysis was performed using IBM-SPSS® Sta-
tistics, Version 20, and Addinsoft, XLSTAT Statistical
and Data Analysis Solution (2019), Long Island, NY,
USA, statistical packages for Mac OS X.
Kolmogorov-Smirnov test was applied to check for

normality. Gaussian distributed values were expressed as
mean and standard deviation (SD) or standard error
(SE); otherwise, median and interquartile range (IR) were
used for quantitative variables, while categorical data
were expressed as frequency.
To evaluate the impact of age, sex, and APOE ε4 car-

rier status on NFL and t-Tau evolution in a 3-year
follow-up, respectively, we conducted two independent
linear mixed-effects models (LMM) on the whole sample
[33]. Age, sex, and APOE ε4 carrier status were included
as fixed effects in the model and each individual as ran-
dom effect. We also included interaction between age
and sex, age and APOE ε4 carrier status, and sex and
APOE ε4 carrier status. Type III likelihood ratio tests
were used to test each fixed effect and interaction. The
statistical models used were verified for normal distribu-
tion of residuals, random effects, and homoscedasticity
of residuals. Subsequently, the analysis was repeated

after stratifying the sample into amyloid-PET-negative
and positive individuals.
On the whole sample, cross-sectional data were also

elaborated to identify the variables maximally contribut-
ing to group separation of individuals, based on the fol-
lowing outcome variables Y: baseline plasma NFL and
baseline plasma t-Tau. To this end, two partial least
square (PLS) models were generated, and the variables
with Variable Importance in Projection (VIPs, expressing
a measure of a variable’s relevance in the model) greater
than 1.50 were considered significant for separation of
the sample [34, 35]. In the first model, Y was defined by
placing NFL = 1 whether NFL concentrations were above
or below the third quartile, and 0 if below. Input vari-
ables were sex, age, APOE ε4 carrier status, arterial
hypertension, (HTA), atrial fibrillation, heart disease,
dyslipidemia, diabetes, obstructive sleep apnea syndrome
(OSAS), head trauma, mood disorders, vitamin B12 defi-
ciency, body mass index (BMI), global SUVR, MMSE
and FCSRT at baseline, and baseline plasma t-Tau. In
the second model, input variables were the same, as pre-
viously described, but the outcome variable Y was t-Tau,
categorized as 1 if t-Tau concentrations were upper than
the third quartile, and 0 otherwise.
The associations of the two plasma biomarkers at

baseline with baseline global and regional brain Aβ de-
position, Δ Aβ deposition, baseline MMSE score, FCSR
T, the corresponding CSF biomarkers, and between each
other were evaluated by Spearman correlation testing. If
the relationship was significant, a subsequent stepwise
forward regression was performed. Spearman test was
used to explore the association of Δ NFL and Δ t-Tau
with Δ MMSE and Δ FCSRT (cognitive measures). Δ
value has been defined as the difference between the
baseline and the 3-year follow-up value, excluding for
Aβ deposition where we considered 2-year follow-up
value, because we had the baseline data available and
after 2 years.
Variables with skewed distribution were log-

transformed for use in all parametric analyses. P values
< 0.05 were considered significant in all statistical
elaboration.

Results
The clinical and demographic baseline characteristics of
the 316 participants also stratified by sex are reported in
Table 1. Seventy-nine individuals had all time point
plasma samples (at baseline, 1-year, and 3-year follow-up).
In these individuals, NFL and t-Tau longitudinal data
(Figs. 1a and 2a), also stratified by sex (Figs. 1b and 2b),
using within person trajectories (Figs. 1c and 2c), are
shown. After a 3-year follow-up, six SMC individuals (~
2%) clinically progressed to mild cognitive impairment
(MCI) or dementia (Table 1S).
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Plasma NFL, t-Tau biomarkers and biological variables
The impact of biological factors on plasma biomarkers
concentration over time
Table 2 summarizes the main effects investigated for
NFL and t-Tau, respectively. For the whole sample, we
found a significant effect of age on plasma NFL concen-
trations (P < 0.001), but not of sex and of age*sex inter-
action. When we performed a post hoc analysis, after
dividing the sample into groups of less than and above
76 years of age (value corresponding to average, median
and mode), the individuals over 76 years of age showed
higher NFL values in all time points considered (mean
and SE at baseline: 32.5 ± 1.1 and 27.0 ± 0.9 pg/mL, re-
spectively, P < 0.001; at 1-year follow-up: 34.8 ± 1.4 and
27.6 ± 1.2 pg/mL, respectively, P < 0.001; at 3-year
follow-up: 58.2 ± 3.5 and 49.9 ± 2.7 pg/mL, respectively,
P = 0.049). When we repeated the analysis, after stratify-
ing by cerebral amyloid-PET-negative and amyloid-PET-
positive individuals, we have obtained comparable re-
sults. In the amyloid-PET-negative subgroup, the post
hoc analysis, after dividing the sample into subsets of less
than and above 76 years of age, the individuals over 76 years
of age showed higher NFL values in all time points consid-
ered (mean and SE at baseline: 31.3 ± 1.3 and 26.2 ± 1.0 pg/
mL, respectively, P= 0.002; at 1 year: 33.6 ± 1.8 and 28.1 ±

1.5 pg/mL, respectively, P= 0.019; at 3 years: 53.8 ± 2.5 and
47.2 ± 2.3 pg/mL, respectively, P= 0.050). Again, in amyloid-
PET-positive individuals, those over 76 years of age reported
higher NFL values (mean and SE at baseline: 35.1 ± 2.1 and
30.4 ± 2.4 pg/mL, respectively, P= 0.050; at 1 year: 38.0 ± 2.6
and 27.3 ± 2.7 pg/mL, respectively, P= 0.006; at 3 years:
67.8 ± 3.9 and 57.6 ± 3.9 pg/mL, respectively, P = 0.049).
APOE ε4 allele had no effect on the total sample and

amyloid-PET-negative individuals. However, on
amyloid-PET-positive individuals, at 3 years of follow-
up, NFL was significantly higher in ε4+ individuals com-
pared to ε4- (mean and SE: 64.1 ± 7.3 and 46.2 ± 3.3 pg/
mL, respectively, P = 0.040). No interaction with APOE
ε4 carrier status was found in any group.
In the total sample, a significant effect of sex on plasma t-

Tau concentrations was reported, displaying higher means
in female than in male individuals (P = 0.001) (Table 2).
The significant sex*age interaction (P = 0.038) indicated
that this effect was not the same among the different ages.
In particular, at 3 years of follow-up, t-Tau concentrations
were higher in male individuals aged more than 76 years
than in those younger (mean and SE = 6.2 ± 0.8 and 4.5 ±
0.3 pg/mL, respectively, P = 0.040) but not in women (mean
and SE = 5.2 ± 0.3 and 5.7 ± 0.4 pg/mL, respectively, P =
0.359). No significant differences in male or female

Table 1 Participant demographics and clinical characteristics at baseline

SMC tot. (n = 316) SMC females (n = 200) SMC males (n = 116) p

Age, mean (SD) 76.1 (3.5) 76.1 (3.3) 76.1 (3.9) NS

Plasma NFL, mean (SD), pg/mL 30.0 (13.0) 29.9 (11.8) 30.2 (14.8) NS

Plasma t-Tau, mean (SD), pg/mL 4.5 (2.6) 4.7 (2.4) 4.3 (2.9) NS

Amyloid PET SUVR, mean (SD) 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) NS

APOE ɛ4−, No. (%) 254 (80) 159 (79) 95 (82)

APOE ɛ4+, No. (%) 62 (20) 41 (21) 21 (18)

Cognitive score

MMSE, mean (SD) 28.7 (1.0) 28.7 (1.0) 28.6 (1.0) NS

FCSRT, mean (SD) 46.1 (2.0) 46.1 (2.0) 45.4 (2.1) NS

Clinical characteristics

AF, No. (%) 28 (9) 16 (8) 12 (10) NS

BMI, mean (SD), Kg/m2 25.2 (3.5) 25.1 (3.8) 25.5 (2.9) NS

Diabetes, No. (%) 15 (5) 9 (4.5) 6 (5) NS

Dyslipidemia, No. (%) 133 (42) 80 (40) 53 (45) NS

Head trauma, No. (%) 26 (8) 20 (10) 6 (5) NS

HTA, No. (%) 129 (41) 71 (35) 58 (50) 0.013

IHD, No. (%) 35 (11) 17 (8.5) 18 (15) 0.050

Mood disorders, No. (%) 85 (27) 71 (35) 14 (12) < 0.001

OSAS, No. (%) 19 (6) 8 (4) 11 (9) 0.049

Plasma Vit. B12 deficiency, No. (%) 6 (1.5) 4 (1.5) 2 (1) NS

AF atrial fibrillation, BMI body mass index, FCSRT free and cued selective reminding test, HTA arterial hypertension, IHD ischemic heart disease, MMSE Mini-Mental
State Examination, NFL neurofilament light chain, OSAS obstructive sleep apnea syndrome, SD standard deviation, SMC subjective memory complaints, SUVR
standardized uptake value ratio, t-Tau total Tau
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individuals for baseline and 1 year of follow-up have been
observed. When we repeated the analysis, after stratifying
participants in cerebral amyloid PET negative and positive,
we found similar results in both subgroups, with no signifi-
cant difference for the baseline and at 1 year of follow-up.
Regarding the 3-year follow-up, for amyloid positive indi-
viduals, t-Tau concentrations were higher in males aged
more than 76 years than in those younger (mean and SE:
7.6 ± 2.1 and 5.5 ± 1.9 pg/mL, respectively, P = 0.048), but
not in women (mean and SE = 4.9 ± 0.6 and 6.4 ± 1.2 pg/
mL, respectively, P = 0.220). We found similar results in
amyloid-PET-negative individuals: higher concentrations in
men aged more than 76 years than in those younger (mean
and SE: 5.5 ± 0.6 and 4.0 ± 0.3 pg/mL, respectively, P =
0.032) and not in women (mean and SE: 5.5 ± 0.4 and 5.4 ±
0.3 pg/mL, respectively, P = 0.886). We did not detect a sig-
nificant effect of APOE ε4 allele on plasma t-Tau concen-
trations nor a significant interaction between APOE ε4
allele and sex, nor between APOE ε4 allele and age, both in
the total sample and after splitting whole sample in
amyloid-PET-negative and positive individuals.

Biological factors contributing to high baseline plasma
biomarker concentrations
Using baseline NFL as a dependent variable, PLS identi-
fied the following variables separating the sample on the
basis of NFL concentrations above or below the third
quartile: age (VIPs = 2.74) and plasma baseline t-Tau
(VIPs = 1.53). The participants with NFL concentration
above the third quartile are older and had higher t-Tau
concentrations than the others (Table 3). In the second
PLS model, the parameters identifying individuals with
t-Tau = 0/1 were plasma vitamin B12 deficiency (VIPs =
2.48) and sex (VIPs = 1.83). Individuals with plasma t-
Tau concentrations above the third quartile (t-Tau = 1)
were more significantly represented by women than men
(females = 76%, males = 24%). Individuals with plasma
vitamin B12 deficiency showed plasma t-Tau concentra-
tions above the upper quartile (Table 3).

Plasma biomarkers and cerebral amyloid load
No association between baseline plasma NFL or t-Tau
concentrations and both baseline and 2-year follow-up

Fig. 1 Plasma NFL changes overtime. The first graph (a) showed repeated measurements at baseline (T0), 1-year follow-up (T1), and 3-year
follow-up (T2). The second one (b) charted differences for plasma NFL concentrations stratified by sex at the three time points. The third graph
(c) reported within person plasma NFL trajectories. Data are referred to a subset of SMC (N = 79) who performed T0, T1, and T2 blood samples.
Abbreviations: F, female; M, male; NFL, neurofilament light chain; SMC, subjective memory complainers; t-Tau, total Tau; T0, baseline; T1, 1-year
follow-up; T2, 3-year follow-up
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cerebral Aβ deposition were reported. Baseline plasma
NFL concentrations were weakly associated with global
brain amyloid increase over time (Δ SUVR, ρs = 0.15;
P = 0.030). When a subsequent stepwise forward regres-
sion using baseline plasma NFL as a dependent variable
was performed, a relationship with Δ amyloid deposition in
the left posterior cingulate and in the bilateral inferior par-
ietal gyri has been observed (r = 0.13; P = 0.019 and r = 0.14;
P = 0.013, respectively). Furthermore, baseline plasma NFL
concentration was associated with plasma t-Tau (ρs = 0.18;
P = 0.011) and CSF NFL (ρs = 0.90; P < 0.001). In Table 4,
we charted a summary of the associations between plasma
biomarkers and cerebral amyloid load.

Plasma biomarkers and cognition
No association between baseline plasma NFL or t-Tau
concentrations and baseline MMSE score or FCSRT was
observed. Baseline plasma NFL concentrations negatively
correlated with MMSE at 3-year follow-up (ρs = − 0.13;
P = 0.029). No association with FCSRT was observed. Δ
t-Tau correlated inversely with MMSE (ρs = − 0.19; P =

0.015) and positively with Δ NFL (ρs = 0.30; P < 0.001)
at the 3-year follow-up. In Table 4, we reported a sum-
mary of the associations between plasma biomarkers and
MMSE and FCSRT scores.

Discussion
We performed a study on both plasma t-Tau and NFL
concentrations longitudinally assessed in a monocentric
cohort of cognitively normal individuals with SMC. We
found that both plasma t-Tau and NFL concentrations
increased over time in our preclinical population.
Women had a higher increase of plasma t-Tau concen-
trations over time compared to men. A positive inter-
action between female sex and aging to determine a
longitudinal increase of t-Tau was also observed. To our
knowledge, no other studies reported a significant asso-
ciation between plasma t-Tau concentrations and sex
though a higher concentration of tau in CSF of females
with AD was reported compared to men [36]. This may
depend on differences in sex hormones with a suggested
protective role of testosterone against the

Fig. 2 Plasma t-Tau changes overtime. The first graph (a) showed repeated measurements at baseline (T0), 1-year follow-up (T1), and 3-year follow-up (T2).
The second one (b) charted differences for plasma t-Tau concentrations stratified by sex at the three time points. The third graph (c) reported within
person plasma t-Tau trajectories. Data are referred to a subset of SMC (N= 79) who performed T0, T1, and T2 blood samples. Abbreviations: F, female; M,
male; NFL, neurofilament light chain; SMC, subjective memory complainers; t-Tau, total Tau; T0, baseline; T1, 1-year follow-up; T2, 3-year follow-up
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hyperphosphorylation of tau [36]. Indeed, it is well-
known that AD is more prevalent in females than males
[37]. We hypothesize that, in our sample, females with
SMC showing increased plasma t-Tau concentrations
might more probably progress to AD compared to
males. These findings indicated that sex-specific refer-
ence values may be considered for plasma t-Tau bio-
marker. By contrast, we showed that sex did not impact
plasma NFL concentrations. Indeed, Mattsson and col-
leagues did not report any sex association in a large co-
hort including prodromal and AD participants, while
two other studies showed an association with men and
women, respectively [11, 38]. Although only in CSF,
NFL concentrations were higher in men than women in
a large meta-analysis of healthy controls and several
neurodegenerative diseases including AD [39]. Finally,
the association between plasma NFL concentrations and
sex remained uncertain and should be elucidated by fur-
ther longitudinal studies [3, 10].
Age impacted plasma NFL concentrations over time

and was associated with plasma NFL. This finding con-
firms the well-known relationship between aging and
NFL [5, 40, 41], though not reported in some diagnostic
categories (e.g., multiple sclerosis and Creutzfeldt Jacob
disease) [39, 41]. Aging and relative subclinical cerebro-
vascular alterations per se convey to a subtle neuronal
damage and, consequently, the release of axonal bypro-
ducts, such as NFL, into body fluids [29, 41, 42]. The re-
lationship between plasma NFL increase and age should
be clarified in future studies. Finally, we did not exclude
that a high impact of age on plasma NFL concentrations
might mask a potential sex effect in our relatively small

Table 3 Partial least square regression models

Index NFL VIPsa t-TAU VIPsa

Sex 0.01 1.83

Age 2.74 0.18

t-TAU 1.53

NFL 0.82

Amyloid PET SUVR 0.69 0.08

APOE ɛ4 0.14 0.53

Cognitive score

MMSE 1.47 0.72

FCSRT 0.94 0.62

Clinical characteristics

AF 0.77 0.29

BMI 1.25 0.81

Diabetes 0.38 0.56

Dyslipidemia 0.06 0.34

Head trauma 0.20 0.53

HTA 1.27 0.22

IHD 1.21 0.47

Mood Disorders 0.01 1.19

OSAS 0.80 1.04

Plasma Vit. B12 deficiency 0.01 2.48

AF atrial fibrillation, BMI body mass index, FCSRT free and cued selective
reminding test, HTA arterial hypertension, IHD ischemic heart disease, MMSE
Mini-Mental State Examination, NFL neurofilament light chain, OSAS
obstructive sleep apnea syndrome, SD standard deviation, SMC subjective
memory complaints, SUVR standardized uptake value ratio, t-Tau total Tau,
VIPs variable importance for the projection
aVIPs is considered significant when ≥ 1.5

Table 2 Summary of effect of biological variables and their interactions on longitudinal plasma NFL and t-Tau

NFLa Sample NFLa Amyloid- group NFLa Amyloid+ group

Model F value P value F value P value F value P value

Sex 1.910 0.168 1.482 0.224 0.130 0.719

Age 19.071 < 0.001 2.382 0.002 2.765 0.001

APOE 0.071 0.790 1.067 0.379 2.569 0.041

Sex * Age 0.973 0.483 1.622 0.088 1.532 0.178

Sex * APOE 1.375 0.242 0.856 0.464 1.096 0.353

Age * APOE 0.930 0.526 1.367 0.191 1.326 0.195

t-Taub Sample t-Taub Amyloid− group t-Taub Amyloid+ group

Model F value P value F value P value F value P value

Sex 11.639 0.003 5.327 0.022 2.507 0.002

Age 2.320 0.105 1.472 0.186 1.651 0.090

APOE 0.286 0.593 1.598 0.178 1.022 0.399

Sex * Age 4.654 0.038 2.317 0.005 3.507 0.030

Sex * APOE 0.039 0.844 0.877 0.417 0.790 0.501

Age * APOE 0.802 0.667 1.452 0.085 1.550 0.210
aDependent variable: NFL (pg/mL)
bDependent variable: t-Tau (pg/mL)
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size cohort. By contrast, plasma t-Tau does not seem to
be strictly related to age. However, the positive inter-
action between female sex and aging, which indicates a
longitudinal increase of t-Tau in males, should be fur-
ther investigated.
Results obtained for SMC individuals did not suggest

the presence of higher concentrations of both plasma
NFL and t-Tau in APOE ɛ4 carriers than in non-carriers.
This finding is in line with previous studies that did not
indicate significant differences between APOE ɛ4 carriers
and non-carriers in terms of plasma NFL concentrations
[5, 40]. On the other hand, no association of plasma t-
Tau with APOE ε4 carrier status assessment was shown
[3].
The PLS analysis confirmed that age was associated

with baseline plasma NFL, whereas female sex with base-
line plasma t-Tau concentrations. Additionally, plasma
vitamin B12 deficiency was related to baseline plasma t-
Tau concentrations. This last finding is of particular
clinical relevance and further studies are needed to in-
vestigate the potential interaction of t-Tau and vitamin
B12 concentrations in blood. A further independent
study may check this finding out verifying if this result
holds true. In case, a trial with vitamin B12 dietary

supplement may be proposed for preclinical individuals
with SMC followed with serial plasma t-Tau
measurements.
Plasma NFL concentrations weakly correlated with

cortical amyloid load deposition at baseline. Plasma NFL
was also associated to increased cortical amyloid depos-
ition, at 2-year follow-up, in the left posterior cingulate
cortex and bilateral inferior parietal cortex. Interestingly,
these areas are part of the default mode network that is
functionally impaired in AD [43, 44]. Our analysis indi-
cated an effect of high baseline plasma NFL concentra-
tions on the deposition of amyloid plaques in the brain
in a population with SMC. In addition, NFL was signifi-
cantly higher in amyloid-PET-positive APOE ε4+ allele
carriers compared to the ε4− ones at 3 years of follow-
up. However, our analysis did not distinguish SMC con-
verters to MCI or dementia from non-converters. In a
previous investigation on SMC individuals, only a trend
of higher plasma NFL concentrations was described in
amyloid-PET-positive SMC participants versus amyloid-
PET-negative ones [16]. Other studies evaluating the
more advanced prodromal and dementia stages of AD
did not demonstrate any association between cerebral
amyloid load and plasma NFL concentrations [3, 45].

Table 4 Correlations between baseline plasma biomarkers and other variables in the SMC population

Baseline plasma NFL (SMC = 316) Baseline plasma t-Tau (SMC = 316)

ρs P value ρs P value

Baseline

Amyloid-PET

SUVR 0.089 0.114 − 0.035 0.535

Age 0.270 < 0.001 − 0.051 0.363

FCSRT − 0.031 0.585 − 0.031 0.584

MMSE − 0.059 0.295 0.019 0.742

Plasma NFL 0.180 0.011

Plasma T-Tau 0.180 0.011

CSF NFLa 0.900 < 0.001 − 0.026 0.337

CSF T-Taua 0.540 0.014 − 0.067 0.514

Follow-up

Amyloid-PETb

SUVR 0.074 0.229 0.016 0.797

Δ SUVR 0.150 0.030 0.037 0.514

FCSRTc − 0.029 0.881 − 0.084 0.173

MMSEc − 0.130 0.029 0.044 0.477

Δ FCSRTc − 0.017 0.787 0.013 0.837

Δ MMSEc 0.039 0.526 − 0.083 0.173

AF atrial fibrillation, BMI body mass index, FCSRT free and cued selective reminding test, HTA arterial hypertension, IHD ischemic heart disease, MMSE Mini-Mental
State Examination, NFL neurofilament light chain, OSAS obstructive sleep apnea syndrome, SD standard deviation, SMC subjective memory complaints, SUVR
standardized uptake value ratio, t-Tau total Tau
aReferred to a subsample of 40 SMC
b2-year follow-up
c3-year follow-up
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Finally, the relationship between plasma NFL concentra-
tions and cortical amyloid deposition should be further
elucidated.
We demonstrated a cross-sectional and longitudinal

association between plasma NFL and t-Tau concentra-
tions. Moreover, the rate of increase of the two plasma
biomarkers was related. There is only one previous lon-
gitudinal study reporting an association between plasma
NFL and t-Tau in a pooled cohort of AD, MCI, and cog-
nitively healthy controls [3]. This suggests that both bio-
markers may reflect common neurodegenerative
mechanisms in preclinical individuals with SMC.
In line with other studies [5], we found a strong cor-

relation between plasma and CSF NFL concentrations in
a subset sample of our SMC individuals [5]. The strict
association between plasma and CSF NFL concentra-
tions suggests that NFL alterations in peripheral fluids
mirror those occurring in the central nervous system
[46].
Baseline plasma NFL concentrations were associated

with a 3-year follow-up decline of MMSE score. Our find-
ings are partially in line with those of other studies on
prodromal AD and AD dementia [3, 10, 11, 45, 47, 48]
and with a study on preclinical AD individuals [16]. The
rate of change of t-Tau, but not of NFL, was associated
with a decrease in MMSE score at three-year follow-up.
The use of serial plasma biomarker measurements and the
rate of change of concentrations over time may be more
reliable than absolute values, at a single time point, in dif-
ferentiating patients with neurodegenerative diseases from
controls [47]. In this regard, a recent study confirmed that
the rate plasma t-Tau increase may be predictive of the
dementia development and be adopted as a biomarker for
risk stratification [13].
Finally, the lack of associations of NFL and t-Tau with

a decrease in FCSRT score over time here reported is
possibly due to the relative short length of follow-up and
the low rate of conversion in our SMC population (N = 6
persons, 2%). Therefore, our results on cognitive decline
should be cautiously considered as a preliminary.

Limitations of study
Our study presents some caveats. First, the low number
of converters (SMC-MCI and SMC-dementia) does not
allow any definitive conclusions on the role of plasma
NFL and t-Tau in predicting cognitive worsening over
time in preclinical individuals with SMC. Furthermore,
we miss some sample collection along the time points,
and we lack imaging data regarding brain metabolism
and atrophy. Potential effects of genetic polymorphisms
other than APOE ε4 allele on modifications of plasma
NFL and t-Tau concentrations could not be ruled out.
The t-Tau assay does not have a good linearity and

parallelism and our results need to be confirmed in fur-
ther investigations.

Conclusion and future direction
We reported significantly increased concentrations of
plasma t-Tau in female sex and the potential association
of plasma vitamin B12 deficiency with plasma t-Tau
concentrations. We confirmed the significant association
of plasma NFL concentrations with age and the correl-
ation with its CSF concentrations. It was a potential pre-
dictor of longitudinal cerebral amyloid deposition in
specific brain areas associated with AD pathophysiology.
Rate of changes of plasma t-Tau may predict longitu-
dinal worsening of cognition in SMC individuals. We
also supported previous results reporting no association
between plasma NFL and t-Tau with APOE ε4 allele. In
this regard, age, sex, and APOE ε4 allele combined with
plasma NFL and t-Tau may be used to establish a risk
stratification score integrating different information on
the development of dementia.
In light of our findings, we believe that the impact of

biological variables needs to be critically assessed in the
biomarker discovery and development process for AD
diagnosis [49]. Moreover, our results should not be
generalizable to other more specific settings (e.g., clinical
population studies), different geographies, and ethnic
groups.
Exploring the impact of these biological variables on

the concentrations and longitudinal trajectories of
plasma NFL and t-Tau in cognitively normal individuals,
independently of their stability or their development of
cognitive decline over time, is crucial to define the po-
tential role of plasma NFL and t-Tau as diagnostic, prog-
nostic, and theragnostic biomarkers. Importantly, our
study also suggested that NFL and t-Tau seem not to be
considerably influenced by comorbidities and vascular
risk factors and remain relatively stable. Indeed, these
steps will allow to better delineate their potential
context-of-use for different settings, including clinical
practice and pharmacological trials. In this respect, the
recruitment of individuals for clinical trials will be im-
proved using pathophysiological blood-based biomarkers
detecting individuals at risk for progression and decline.
We foresee the option to enter a novel era of next-
generation biomarker-guided targeted therapies for AD
and other neurodegenerative diseases under the para-
digm of precision medicine [50].
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