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On a BSD-type formula for L-values of Artin
twists of elliptic curves

By Vladimir Dokchitser at University College London,
Robert Evans at King’s College London and Hanneke Wiersema at King’s College London

Abstract. This is an investigation into the possible existence and consequences of
a Birch–Swinnerton-Dyer-type formula for L-functions of elliptic curves twisted by Artin rep-
resentations. We translate expected properties of L-functions into purely arithmetic predictions
for elliptic curves, and show that these force some peculiar properties of the Tate–Shafarevich
group, which do not appear to be tractable by traditional Selmer group techniques. In particular,
we exhibit settings where the different p-primary components of the Tate–Shafarevich group
do not behave independently of one another. We also give examples of “arithmetically identi-
cal” settings for elliptic curves twisted by Artin representations, where the associated L-values
can nonetheless differ, in contrast to the classical Birch–Swinnerton-Dyer conjecture.

1. Introduction

The Birch–Swinnerton-Dyer conjecture classically provides a connection between the
arithmetic of elliptic curves and their L-functions. This link is in many ways still mysterious.
Indeed, some properties of L-functions do not obviously correspond to arithmetic properties of
elliptic curves and vice versa, a classical example being the compatibility of the conjecture with
isogenies, which is a highly non-trivial theorem of Cassels. In this article we focus on factori-
sation of L-functions: when E=Q is an elliptic curve and F=Q a finite extension, L.E=F; s/
factorises as a product of L-functions of twists of E by Artin representations L.E; �; s/. We
investigate what standard conjectures say specifically for these twisted L-functions. Ideally,
we would like to give a BSD-type formula for the leading term at s D 1 for L.E; �; s/, but,
as we shall explain, there is a significant barrier to this. However, we shall provide a tool for
extracting explicit arithmetic predictions, and illustrate its use by exhibiting new phenomena
about the behaviour of Tate–Shafarevich groups, Selmer groups and rational points.
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1.1. BSD formula for Artin twists. The Birch–Swinnerton-Dyer conjecture states that

ordsD1L.E=F; s/ D rkE=F;

and that the leading term of the Taylor series at s D 1 of the L-function is given by

(�) lim
s!1

L.E=F; s/

.s � 1/r
�

p
j�F j

�C.E/r1Cr2 j��.E/jr2
D

RegE=F jXE=F jCE=F

jE.F /torsj2
;

where r is the order of the zero, .r1; r2/ is the signature of F , �˙ are the periods of E and
CE=F is the product of Tamagawa numbers and other local fudge factors from finite places (see
Section 1.5). Of course, the formula implicitly assumes that the Tate–Shafarevich group XE=F

is finite.
Just as the Dedekind �-function can be expressed as a product of ArtinL-functions, so the

L-function L.E=F; s/ can be written as a product of twisted L-functions L.E; �; s/ for Artin
representations that factor through the Galois closure ofF=Q. The (conjectural) analogue of the
Birch–Swinnerton-Dyer rank formula is well known in this context (see e.g. [10, Section 2]):

Conjecture 1. For an elliptic curve E=Q and an Artin representation � over Q,

ordsD1L.E; �; s/ D h�;E.K/Ci:

Here, and throughout, E.K/C D E.K/˝Z C, where K is any finite Galois extension
of Q such that � factors through Gal.K=Q/, and h � ; � i denotes the usual representation theo-
retic inner product of characters. In other words, the conjecture predicts that, for an (irreduc-
ible) �, the order of vanishing of L.E; �; s/ is the “multiplicity” of � in the group ofK-rational
points of E.

However, the situation with the second part of the Birch–Swinnerton-Dyer conjecture
appears to be much more difficult.

Problem 2. Formulate a BSD-like formula for the leading term at s D 1 of L.E; �; s/.

There appears to be a barrier to finding such an expression, as there are “arithmetically
identical” settings giving rise to different L-values. We write L .E; �/ for the modification of
the leading term of L.E; �; s/ analogous to the left-hand side of (�) (see Definition 12).

Example 3 (see also Section 4). The elliptic curves with Cremona labels E D 307a1
and E 0 D 307c1 have the same conductor, same discriminant, trivial Tate–Shafarevich group,
no rational points and trivial local Tamagawa numbers both over Q and over Q.�11/C. How-
ever, for a Dirichlet character � of order 5 and conductor 11, one has L .E; �/ ¤ L .E 0; �/.
Specifically, L .E; �/ D 1, while L .E 0; �/ D .1˙

p
5

2
/2, the sign of ˙

p
5 depending on the

choice of �.

1.2. An arithmetic conjecture and its consequences. We will not propose an exact
expression for the hypothetical BSD.E; �/ term for the conjectural formula

“L .E; �/ D BSD.E; �/”.

However, based on the behaviour of L-functions, we will show that BSD.E; �/ must satisfy
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the list of properties given in Conjecture 4 below. One of the roles of BSD.E; �/ is that it lets
one decompose the Birch–Swinnerton-Dyer quotient

BSD.E=F / D
RegE=F jXE=F jCE=F

jE.F /torsj2

according to Artin representations, analogously to the factorisation of L-functions. This may
at first glance look almost vacuous, but, as we will explain, the existence of such a decompo-
sition has a range of consequences for Selmer groups, Tate–Shafarevich groups and ranks of
elliptic curves.

We write Q.�/ for the field generated by the values of the character of �, write �� for
the dual representation, and w� and wE;� for the root number of � and of the twist of E by �,
respectively.

Conjecture 4. Let E=Q be an elliptic curve. For every Artin representation � over Q
there is an invariant BSD.E; �/ 2 C� with the following properties. Let � and � be Artin
representations that factor through Gal.K=Q/:

(C1) BSD.E=F / D BSD.E; IndF=Q 1/ for a number field F (and XE=F is finite).

(C2) BSD.E; �˚ �/ D BSD.E; �/BSD.E; �/:

(C3) BSD.E; �/ D BSD.E; ��/ � .�1/rwE;�w�2� , where r D h�;E.K/Ci.

(C4) If � is self-dual, then BSD.E; �/ 2 R and sign BSD.E; �/ D signw�.

If h�;E.K/Ci D 0, then moreover:

(C5) BSD.E; �/ 2 Q.�/� and BSD.E; �g/ D BSD.E; �/g for all g 2 Gal.Q.�/=Q/.

(C6) If � is a non-trivial primitive Dirichlet character of order d , and either the conductors of
E and � are coprime or E is semistable and has no non-trivial isogenies over Q, then
BSD.E; �/ 2 ZŒ�d �:

Theorem 5 (see Corollary 25). Conjecture 4 holds assuming the analytic continuation
of L-functions L.E; �; s/, their functional equation, the Birch–Swinnerton-Dyer conjecture,
Deligne’s period conjecture, Stevens’s Manin constant conjecture for E=Q and the Riemann
hypothesis for L.E; �; s/:

Note that the statement of the conjecture is free of L-functions. Morally, it should be
purely a property of Selmer groups. However, it has some consequences that do not appear to
be tractable with classical Selmer group techniques, as we now illustrate.

Theorem 6 (see Theorem 28, Example 29). Let ` and p be primes such that the primes
above p in Q.�`/ are non-principal and have residue degree 2. If Conjecture 4 holds, then, for
every semistable elliptic curveE=Q with no non-trivial isogenies, jXE=QŒp�j D 1 and cv D 1
for all rational primes v, and for every cyclic extension F=Q of degree ` with E.F / D E.Q/,

if jXE=F Œp
1�j D p2, then jXE=F Œq

1�j ¤ 1 for some q ¤ p.

Roughly speaking, in the setting of the theorem the presence of the p-primary part of X
forces some other part of X to be non-trivial too. It would be interesting to have a purely
Selmer theoretic method that can explain such behaviour.
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Conjecture 4 can also be used to show that purely local constraints can force certain
Selmer groups of E over extensions F=Q to become non-trivial. More usual methods for
achieving such criteria either use Galois module structures or Iwasawa theoretic methods (both
can be used to make Selp.E=F / non-trivial for pjŒF W Q�, see e.g. [1, 9]) or use some form of
the parity conjecture (this requires ŒF W Q� to be even).

Theorem 7 (see Corollary 31). Suppose Conjecture 4 holds. There is an (explicit)
Galois number field F of odd degree and (explicit) rational prime `, such that every elliptic
curve E=Q with additive reduction at ` of Kodaira type III and good reduction at other primes
that ramify in F=Q has a non-trivial p-Selmer group Selp.E=F / for some prime p − ŒF W Q�.

We will also show that Conjecture 4 can be used to establish purely theoretical results,
such as the following case of the Birch–Swinnerton-Dyer conjecture for twists of elliptic curves
by dihedral Artin representations (below D2pq denotes the dihedral group of order 2pq). As
far as we are aware, this does not follow from known cases of the parity conjecture.

Theorem 8 (see Theorem 35). Let F=Q be a Galois extension with Galois groupD2pq ,
with p; q � 3mod 4 primes, and let � be a faithful irreducible Artin representation that fac-
tors through F=Q. If Conjecture 4 holds, then for every semistable elliptic curve E=Q, if
ordsD1L.E; �; s/ is odd, then h�;E.F /Ci > 0.

We stress once again that Conjecture 4 ought to be purely a statement about Selmer
groups, although we do not understand the extra structure on Selmer groups or on X that
causes it: our justification of the conjecture relies on L-functions. For applications like Theo-
rem 8 it is clearly important to find a proof that does not assume the Birch–Swinnerton-Dyer
conjecture.

Problem 9. Justify Conjecture 4 assuming the Tate–Shafarevich conjecture but not the
Birch–Swinnerton-Dyer conjecture.

Remark 10. The conjecture completely determines the value of BSD.E; �/ for Artin
representations � whose character is Q-valued. Indeed, for a finite group G, the image of the
Burnside ring in the rational representation ring has finite index. Thus, if � factors through
Gal.K=Q/ where K=Q is a finite Galois extension, there are intermediate fields Fi ; F 0j of
K=Q and a positive integer m such that �˚m ˚

L
i IndFi=Q 1 '

L
j IndF 0

j
=Q 1, and so (C1),

(C2) and (C4) imply that BSD.E; �/ is the unique real number such that

BSD.E; �/m D

Q
j BSD.E=F 0j /Q
i BSD.E=Fi /

and
sign BSD.E; �/ D signw�:

Remark 11. As illustrated in Theorem 8 above, our method sometimes allows us to
predict the existence of points of infinite order on elliptic curves (see also Section 3.3, and
Theorem 33 for an example with a quaternion Galois group). We have not found a setting
where we can predict the existence of rational points which is not already predicted by the
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parity conjecture, or which outright contradicts it. The computations arising in our approach
look very different from the theory of local root numbers, but (rather magically) always match.

1.3. L-values of Artin twists of elliptic curves. The heart of our approach to deriving
Conjecture 4 lies in extracting precise consequences of L-function conjectures in the setting of
Artin twists of elliptic curves. For the “L-function side” of the sought Birch–Swinnerton-Dyer
formula for twists we use the following modification of the leading term ofL.E; �; s/ at s D 1.
This is very carefully chosen so as to mesh well with the Birch–Swinnerton-Dyer conjecture
over number fields, the functional equation and Deligne’s period conjecture for Artin twists of
elliptic curves (see Section 2.4) at the same time. We will show that it satisfies the analogues
of (C1)–(C6) of Conjecture 4, which is our justification for the conjecture.

Definition 12. For an elliptic curve E=Q and an Artin representation � over Q, we
write

L .E; �/ D lim
s!1

L.E; �; s/

.s � 1/r
�

p
f�

�C.E/d
C.�/j��.E/jd

�.�/w�
;

where r D ordsD1L.E; �; s/ is the order of the zero at s D 1,
p

f� denotes the (positive)
square root of the positive generator for the conductor f� of �, and d˙.�/ are the dimensions
of the˙1-eigenspaces of complex conjugation in its action on �.

Theorem 13 (Theorem 24, Corollary 26). Let E=Q be an elliptic curve and let � be
an Artin representation over Q. Fix � satisfying �2 D w2�w

�1
E;�. Suppose that for all Artin

representations  over Q, the L-functions L.E; ; s/ have analytic continuation to C and
satisfy the functional equation, Deligne’s period conjecture and have no zeros in the inter-
val .1;1/: Suppose also that Stevens’s Manin constant conjecture holds for E=Q and the
Birch–Swinnerton-Dyer conjecture holds for E over number fields. Then:

(1) L .E; IndF=Q 1/ D BSD.E=F / for a number field F .

(2) L .E; �˚ �0/ D L .E; �/L .E; �0/:

(3) L .E; ��/ D .�1/r�2L .E; �/, where r D ordsD1L.E; �; s/:

(4) If � ' �� then L .E; �/ 2 R and w� �L .E; �/ > 0.

Henceforth suppose that moreover L.E; �; 1/ ¤ 0. Then:

(5) L .E; �/ 2 Q.�/.

(6) L .E; �/ �OQ.�/ is invariant under complex conjugation as a fractional ideal of Q.�/.

(7) L .E; �g/ D L .E; �/g for all g 2 Gal.Q.�/=Q/:

(8) � is a root of unity. If fE is coprime to f�, then �2 D .�1/d
�.�/w

dim�
E det �.fE /, where

det � is regarded as a primitive Dirichlet character (see Notation 15).

(9) � �L .E; �/ 2 Q.�; �/C; in particular, arg L .E; �/ D arg˙��1.

(10) If � is a non-trivial primitive Dirichlet character of order d , and either f� is coprime
to fE orE is semistable and has no non-trivial isogenies over Q, then L .E; �/ 2 ZŒ�d �:

Let

B D
m

sQ
j BSD.E=F 0j /Q
i BSD.E=Fi /
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for any number fields Fi ; F 0j and positive integer m that satisfy1)�M
g2G

�g

�m
˚

M
i

IndFi=Q 1 D
M
j

IndF 0
j
=Q 1;

where G D Gal.Q.�/=Q/. Then:

(11) NQ.�/=Q.L .E; �// D ˙B , with signC if m is odd.

(12) NQ.�/C=Q.� �L .E; �// D ˙
p
B if � 6' �� and � 2 Q.�/.

(13) NQ.�;�/C=Q.� �L .E; �// D ˙B if � 6' �� and � … Q.�/.

Remark 14. The hypothesis that L.E; �; s/ has no zeros in the interval .1;1/ is an
immediate consequence of the Riemann Hypothesis. The main reason why most of the results
above require the assumption that the L-value is non-zero is that it features in Deligne’s period
conjecture. It might be possible to extend the predictions to the higher rank case using the moti-
vic L-value conjectures (Beilinson, Bloch–Kato, Equivariant Tamagawa Number Conjecture).
These may also let one generalise the integrality statement (10) to other Artin representations
and to pin down the ideal generated by L .E; �/more precisely. We will not attempt to address
this here.

1.4. Layout. This paper is split into three parts.
In Section 2 we extract the explicit L-value predictions of Theorem 13 from the classical

conjectures and deduce Theorem 5 from them. The key technical step here is to express the
periods associated to an Artin twist of an elliptic curve to the classical periods �˙ (Corol-
lary 23).

In Section 3 we develop the arithmetic consequences for elliptic curves, including Theo-
rems 6, 7 and 8. The main ingredient is Proposition 27, which, based on Conjecture 4, lets us
link easily controllable local invariants to ranks and the Tate–Shafarevich group. In view of
Theorem 5 these results are all consequences of the classical conjectures on L-functions.

In Section 4 we discuss explicit examples of L-values of twists of elliptic curves by
Dirichlet characters and illustrate the difficulty of refining Theorem 13 to a clean BSD-type
prediction for the value of L .E; �/. We end by giving several tables of examples of a similar
kind to Example 3.

We have kept the three sections largely independent of one another. In particular, the
reader who does not wish to grapple with the motivic background can skip directly to the
arithmetic applications in Section 3 or the L-value examples in Section 4.

1.5. Notation. We fix (once and for all) an algebraic closure Q inside C. All our num-
ber fields will be subfields of this choice of Q.

Formally, all our Artin representations will be C-valued; that is, defined by a group homo-
morphism � W GK ! AutC.V / that factors through Gal.F=K/ for some finite Galois extension
F=K and some finite-dimensional complex vector space V . We will typically work with iso-
morphism classes of Artin representations, without explicitly mentioning it.

1) These exist by Remark 10.
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The following notation is used throughout the paper:

� E: an elliptic curve defined over Q.

� cv.E=F /: the local Tamagawa number of E=Fv.

� GF : the absolute Galois group Gal.Q=F / of a number field F � Q:

� Frobp: (arithmetic) Frobenius element at a prime p.

� ��: the dual representation of an Artin representation �:

� Q.�/: the (abelian) extension of Q generated by the character values of �:

� �g: for g 2 Gal.Q.�/=Q/, the Artin representation with character Tr �g D g ı Tr �.

� d˙.�/: the dimension of the˙1-eigenspace of complex conjugation on �:

� f�: the Artin conductor of �:

� fE : the conductor of E=Q.

� w�: the Artin root number of �:

� wE : the root number of E=Q (the sign in the functional equation).

� wE;�: the root number of the twist E=Q by � (see Section 2.5).

� IndF=K �: IndGKGF � for a field extension F=K and an Artin representation � over F:

� 	: the formal difference of Artin representations, i.e. �1 	 �2 D �3, �1 D �2 ˚ �3.

� �n: a primitive n-th root of unity.

� NF=K : the norm map from F to K.

Notation 15. We use the convention (as in [7] Section 3.2) that the Euler factor at a
prime p of L.E; �; s/ is

det
�
Id � Frob�1p p�s

ˇ̌
.H 1

` .E/˝ �/
Ip
�
;

where Ip is the inertia group at p,H 1
`
.E/ D H 1

et .E;Q`/˝Q` C for any embedding Q` ,! C
and any prime ` ¤ p.

To identify 1-dimensional Artin representations with Dirichlet characters, we use the
isomorphism Gal.Q.�n/=Q/! .Z=nZ/� given by �a $ a for �a W �n ! �an .

We caution the reader that with these normalisations, if L.E; s/ D
P
ann
�s and � is

a primitive Dirichlet character of conductor coprime to that of E, then

L.E; �; s/ D

1X
nD1

�.n/ann
�s:

Notation 16. Given an elliptic curve E=Q, let ! be a global minimal differential on E,
let c1 be the number of connected components of E.R/ and let 
˙ be a generator for the
subgroup of H1.E.C/;Z/ where complex conjugation acts as multiplication by˙1:

We define the˙-periods of E to be

�C.E/ D c1 �

Z

C
! and ��.E/ D

Z

�
!;

with 
˙ oriented so that �C.E/ 2 R>0 and ��.E/ 2 iR>0:
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Notation 17. For an elliptic curve E=Q and a number field F , we define

CE=F D
Y
v

cv.E=F /

ˇ̌̌̌
!

!min
v

ˇ̌̌̌
v

;

where v runs over the finite places of F , ! is a global minimal differential forE=Q and !min
v is

a minimal differential at v. By !=!min
v we mean any scalar � 2 F � that satisfies ! D �!min

v .
In terms of minimal discriminants, if E is given by a Weierstrass equation

y2 C a1xy C a3y D x
3
C a2x

2
C a4x C a6

with discriminant �E and ! D dx
2yCa1xCa3

, thenˇ̌̌̌
!

!min
v

ˇ̌̌̌�12
v

D

ˇ̌̌̌
�E

�min
E;v

ˇ̌̌̌
v

:

Notation 18. For an elliptic curve E=Q and a number field F , we define

BSD.E=F / D
RegE=F jXE=F jCE=F

jE.F /torsj2
:

We also briefly recall Stevens’s version of the Manin constant conjecture ([12, Conjec-
ture I]):

Conjecture 19 (Stevens’s Manin constant conjecture). Every elliptic curve over Q of
conductor N admits a modular parametrisation X1.N /! E with Manin constant 1.

Acknowledgement. The authors would like to thank the referee for their careful read-
ing of the manuscript and their suggestions and corrections, Chris Wuthrich for pointing out
an issue in our original claim about integrality of L-values and for fixing it in [16], and David
Burns for his valuable comments on a draft of the present article.

2. Artin twists of elliptic curves

In order to explain the implications of Deligne’s period conjecture for Artin twists of
elliptic curves, we first recall the relevant definitions from the theory of motives. We shall
follow closely the presentations given in [4, Section 4] and [15, Section 2] and refer the reader
to Deligne’s article [5] for a more detailed account.

Notation 20. The following additional notation applies only in this section:

� �: the element of GQ corresponding to complex conjugation.

� F: a number field (inside our fixed algebraic closure Q, as always).

� FC: the ring F˝C (unadorned tensor products are over Q).

� F`: the ring F˝Q` '
Q
�j`F�, where F� is the completion of F at the prime �:

� †F: the set of real and complex embeddings F! C:

� ".�/: the epsilon factor of an Artin representation � at s D 0, i.e. ".�/ D w�
p

f�:
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2.1. Motives. It will be sufficient for our purposes to view motives in the naive sense;
that is, as a collection of vector spaces with certain additional structures and comparison iso-
morphisms between them. In particular, a (homogeneous) motive M over Q with coefficients
in a number field F, dimension d and weight w carries the following data:

(i) (a) A d -dimensional F-vector space HB.M/ (the Betti realisation).

(b) An F-linear involution F1 on HB.M/:

(c) A Hodge decomposition into free FC-modules

HB.M/˝C D
M

rCsDw

H r;s.M/

such that F1H r;s.M/ D H s;r.M/:

(ii) (a) A d -dimensional F-vector space HdR.M/ (the de Rham realisation).

(b) A decreasing filtration ¹F kHdR.M/ W k 2 Zº of F-subspaces of HdR.M/:

(iii) (a) For each prime `, a free F`-module H`.M/ of rank d (the `-adic realisation).

(b) For each prime `, a continuous action of GQ on H`.M/:

(iv) A comparison isomorphism between FC-modules

IM;1 W HB.M/˝C
�
�! HdR.M/˝C

such that IM;1 ı .F1 ˝ �/ D .id˝ �/ ı IM;1 and

IM;1

�M
r�k

H r;s.M/

�
D F kHdR.M/˝C:

Remark 21. Comparison isomorphisms between other realisations are also part of the
data carried by M ; however, as we shall not need these for the work that follows, we choose to
omit them here and refer the interested reader to [15, Sections 2.5 and 2.6].

2.2. Motivic L-functions. Let M be a motive over Q with coefficients in F: For any
prime number `, identifying F` with

Q
�j`F� gives rise to a decomposition

H`.M/ D
M
�j`

H�.M/;

where H�.M/ is the image of H`.M/ under scalar multiplication by unity in F�:

For each prime number p, letDp � GQ be a choice of decomposition group at p and let
Ip � Dp be the corresponding inertia subgroup. The local polynomial of M at p is

Pp.M; t/ D det
�
id�t Frob�1p

ˇ̌
H�.M/Ip

�
;

where � is a prime of F not lying over p: We assume the standard hypothesis that Pp.M; t/ is
independent of the choice of � and has coefficients in F: For each � 2 †F, we define

L.�;M; s/ D
Y
p

�Pp.M; p
�s/�1 2 C;
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where �Pp.M;X/ 2 �FŒX� � CŒX�; the expression converges for s with sufficiently large
real part. It is conjectured that eachL.�;M; s/ admits a meromorphic continuation to the entire
complex plane which satisfies a functional equation of the form

L1.M; s/L.�;M; s/ D ".�;M; s/L1.M
�; 1 � s/L.�;M �; 1 � s/;

where the Euler factor at infinity L1.M; s/ is a product of gamma functions which does not
depend on � (see [5, Proposition 2.5]) and the epsilon factor ".�;M; s/ is a product of a constant
and an exponential (see [14] for the details and extra hypotheses required for this construction).

It is convenient, by identifying FC with C†F via the usual canonical isomorphism of
C-algebras,

x ˝ z 7! .z�.x/ W � 2 †F/;

to form a single L-function associated with M which takes values in FC:

L.M; s/ D .L.�;M; s/ W � 2 †F/:

2.3. Periods. LetM be a motive over Q with coefficients in F: For simplicity, we shall
restrict to the case where M has odd weight w: Let HB.M/˙ denote the ˙1-eigenspaces of
the endomorphism F1 and let

HdR.M/˙ D
HdR.M/

F 1Cbw=2cHdR.M/

for both choices of sign. The ˙-period map ˛˙M of M is the composition of the following
FC-linear maps:

HB.M/˙ ˝C ! HB.M/˝C
�
�! HdR.M/˝C ! HdR.M/˙ ˝C;

where the first map is induced by inclusion, the second map is the Betti-de Rham comparison
isomorphism, and the last map is induced by the natural quotient map. It follows from [5,
Section 1.7] that ˛˙M is an isomorphism. The ˙-period of M , denoted by c˙.M/, is defined
to be the residue class

det.˛˙M / mod F�

in F�C=F
�, where the determinant of the ˙-period map is calculated with respect to F-bases.

As above, by identifying FC with C†F , we can also view c˙.M/ as a “tuple”

c˙.M/ D .c˙.�;M/ 2 C�=F� W � 2 †F/:

2.4. Deligne’s period conjecture. Let M be a motive over Q with coefficients in F:

We retain the assumption that M has odd weight. We say that M is critical (at s D 0) if,
whenever j < k and H j;k.M/ ¤ 0, one has j < 0 and k � 0: See [4, Lemma 3] for a proof
that this is equivalent to the definition of criticality given in [5].

Suppose thatM is critical and fix a choice of representative for the period cC.M/ in F�C .
Then [5, Conjectures 2.7 and 2.8] assert that:

(1) ordsD0L.�;M; s/ is independent of � 2 †F and is non-negative.

(2) If L.M; 0/ ¤ 0, there exists x 2 F� such that, for all � 2 †F, one has

L.�;M; 0/ D �.x/cC.�;M/:
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2.5. The motive associated to a twist. Let E be an elliptic curve over Q and let � be
an Artin representation over Q: Choose any finite abelian extension F=Q over which � can be
realised and let � be an F-linear representation of GQ such that C ˝F � ' �:

In order to understand Deligne’s period conjecture in the setting of Artin twists of elliptic
curves, we are led to consider the tensor product motive h1.E/.1/˝ Œ� �, whose associated real-
isations and comparison isomorphisms arise by taking the tensor product of the corresponding
data for the motives h1.E/.1/ and Œ� � (see [15, Examples 2.1B and 2.1C] for detailed infor-
mation about the latter two motives). In particular, one has that

L.h1.E/.1/˝ Œ� �; s/ D .L.E; �
 ; s C 1/ W 
 2 Gal.F=Q//;

where L.E; �; s/ is the Artin-twisted Hasse–Weil L-function whose construction is described
explicitly in [7, Section 3.2]. We recall from [7, Section 3.2] that L.E; �; s/ is conjectured to
admit an analytic continuation to the whole complex plane which satisfies a functional equation
of the form

�C.s/
dim�L.E; �; s/ D ".E; �; s/�C.2 � s/

dim�L.E; ��; 2 � s/;

where �C.s/ D 2.2�/
�s�.s/ and the epsilon factor ".E; �; s/ has the form wE;� �N

1�s
E;� ,

where wE;� 2 C has absolute value 1 (the root number of the twist) and NE;� is a positive
integer (the conductor of the twist). Finally, we recall that one has the following “Artin formal-
ism”:

(1) L.E; �1 ˚ �2; s/ D L.E; �1; s/L.E; �2; s/,

(2) L.E; IndF=Q 1; s/ D L.E=F; s/,

where L.E=F; s/ is the usual (“un-twisted”) Hasse-Weil L-function of E=F:
The following theorem will allow us to find an explicit representative for the period

cC.h1.E/.1/˝ Œ� �/ in terms of the periods associated with the motives h1.E/.1/ and Œ� �:

Theorem 22. Let M be a motive over Q with rational coefficients such that

(1) M has dimension 2 and weight �1,

(2) dimQHB.M/˙ D 1,

(3) HB.M/˝Q C D H 0;�1.M/˚H�1;0.M/:

Let N be a motive over Q with coefficients in a number field F such that

(1) N has dimension d and weight 0,

(2) HB.N /˝Q C D H 0;0.N /:

Under these conditions, the motive M ˝N is critical and

cC.M ˝N/ D cC.M/�c�.M/� det.IN;1/ mod F�;

where �D dimF.HB.N /
C/, �D dimF.HB.N /

�/ and det.IN;1/ is computed using F-bases.

Proof. The tensor product motive M ˝N is specified by the data obtained by taking
the tensor product of the realisations of M and N and their additional structures; in particular,
M ˝N is a motive of dimension 2d and weight �1 such that

(a) HB.M ˝N/ D HB.M/˝Q HB.N / as an F-vector space.

(b) F1.M ˝N/ D F1.M/˝Q F1.N / as an F-linear involution.



12 Dokchitser, Evans and Wiersema, BSD-type formula for Artin twists of elliptic curves

(c) HdR.M ˝N/ D HdR.M/˝Q HdR.N / as an F-vector space.

(d) The de Rham filtration on HdR.M ˝N/ is

F kHdR.M ˝N/ D

8̂<̂
:
HdR.M ˝N/ if k � �1;

F 0HdR.M/˝Q HdR.N / if k D 0;

0 if k � 1:

(e) The Betti–de Rham comparison isomorphism IM˝N;1 is

.HB.M/˝Q HB.N //˝Q C
IM;1˝CIN;1
����������! .HdR.M/˝Q HdR.N //˝Q C

viewed as an isomorphism of FC-modules, where we have identified

.HB.M/˝Q HB.N //˝Q C D .HB.M/˝Q C/˝C .HB.N /˝Q C/

and similarly for the de Rham realisations.

It follows easily from properties (a)–(d) that

HdR.M ˝N/
C
D

HdR.M/˝Q HdR.N /

F 0HdR.M/˝Q HdR.N /

D
HdR.M/

F 0HdR.M/
˝Q HdR.N /

D HdR.M/C ˝Q HdR.N /;

HB.M ˝N/
C
D .HB.M/˝Q HB.N //

C

D .HB.M/C ˝Q HB.N /
C/˚ .HB.M/� ˝Q HB.N /

�/:

We choose bases for our various spaces as follows:

(1) a Q-basis ¹
Cº (resp. ¹
�º) for HB.M/C (resp. HB.M/�),

(2) a Q-basis ¹!0º for F 0HdR.M/ and extend to a basis ¹!0; !1º for HdR.M/,

(3) an F-basis ¹vC1 ; : : : ; v
C
� º (resp. ¹v�1 ; : : : ; v

�
� º) for HB.N /C (resp. HB.N /�),

(4) an F-basis ¹w1; : : : ; wd º for HdR.N /:

In terms of these bases, we have

IM;1.

˙
˝ 1/ D !0 ˝ �

˙
0 C !1 ˝ �

˙
1 for some �˙0 ; �

˙
1 2 C;

IN;1.v
˙
j ˝ 1/ D

dX
iD1

.b˙ij ˝ �
˙
ij /.wi ˝ 1/ for some b˙ij ˝ �

˙
ij 2 FC;

and so it follows from (e) that

IM˝N;1.

˙
˝ v˙j ˝ 1/ D

dX
iD1

.b˙ij ˝ �
˙
0 �
˙
ij /.!0 ˝ wi ˝ 1/

C

dX
iD1

.b˙ij ˝ �
˙
1 �
˙
ij /.!1 ˝ wi ˝ 1/:

Hence, with respect to these bases, the matrix of ˛CM˝N has ij -th component

Aij D

´
.1˝ �C1 /.bij ˝ �

C
ij / if j � �;

.1˝ ��1 /.bij ˝ �
C
ij / if � < j � n;
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and so taking the determinant yields the desired expression

cC.M ˝N/ D .1˝ �C1 /
�.1˝ ��1 /

� det.IN;1/ mod F�

D cC.M/�c�.M/� det.IN;1/ mod F�:

Finally, to see that M ˝N is critical, we simply observe that

HB.M ˝N/˝C D H 0;�1.M ˝N/˚H�1;0.M ˝N/;

where, viewed as FC-modules, we have

H 0;�1.M ˝N/ D H 0;�1.M/˝C H
0;0.N /;

H�1;0.M ˝N/ D H�1;0.M/˝C H
0;0.N /:

Corollary 23. Let E be an elliptic curve over Q and � be an Artin representation
over Q: Let F=Q be a finite abelian extension over which � can be realised and let � be an
F-linear representation ofGQ such that C ˝F � ' �: Then h1.E/.1/˝ Œ� � is a critical motive
and the component of cC.h1.E/.1/˝ Œ� �/ corresponding to our fixed embedding F � Q � C
is

�C.E/
dC.�/j��.E/j

d�.�/w�p
f�

mod F�:

Proof. Applying Theorem 22 with M D h1.E/.1/ and N D Œ� � yields

cC.h1.E/.1/˝ Œ� �/ D �C.E/
dC.�/��.E/

d�.�/ det.I�;1/ mod F�:

Moreover, it follows from [5, formula 5.6.1] that

id
�.�/ det.I�;1/ D .".�
 / W 
 2 Gal.F=Q// mod F�;

and so, since d˙.�/ D d˙.�/, ".�/ D ".�/ and ��.E/d
�.�/ D id

�.�/j��.E/j
d�.�/, we see

that
�C.E/

dC.�/
j��.E/j

d�.�/".�/ mod F�

is equal to the component of cC.h1.E/.1/˝ Œ� �/ corresponding to the identity in Gal.F=Q/:
Therefore, since ".�/ D w�

p
f�, the result follows on dividing through by f�:

2.6. Properties of L .E; �/. We now turn to L-values and the proof of Theorem 13.

Theorem 24. Let E=Q be an elliptic curve and let � and �0 be Artin representations
over Q. Suppose that L.E; �; s/ and L.E; �0; s/ admit an analytic continuation to C.

(L1) If � D IndF=Q 1 for a number field F , then

L .E; �/ D lim
s!1

L.E=F; s/

.s � 1/r
�

p
j�F j

�C.E/r1Cr2 j��.E/jr2
;

where .r1; r2/ is the signature of F and r D ordsD1L.E=F; s/:

(L2) L .E; �˚ �0/ D L .E; �/L .E; �0/:



14 Dokchitser, Evans and Wiersema, BSD-type formula for Artin twists of elliptic curves

(L3) If the functional equation for L.E; �; s/ holds near s D 1, then

L .E; �/ D
.�1/rwE;�

w2�
L .E; ��/;

where r D ordsD1L.E; �; s/:

(L4) If � is self-dual i.e. � ' ��, then

(i) L .E; �/ 2 R,

(ii) sign L .E; �/ D signw�, providing that L.E; �; s/ ¤ 0 for all real s > 1:

(L5) If L.E; �; 1/ ¤ 0 and Deligne’s period conjecture holds for the twist of E by �, then

(i) L .E; �/ 2 Q.�/�,

(ii) L .E; �g/ D L .E; �/g for all g 2 Gal.Q.�/=Q/:

(L6) If � is a non-trivial primitive Dirichlet character of order d , and either

(i) E is semistable and has no non-trivial isogenies over Q, or

(ii) Stevens’s Manin constant conjecture holds for E=Q and f� is coprime to fE ,

then L .E; �/ 2 ZŒ�d �:

Proof. For any Artin representation � over Q, we shall denote the leading coefficient in
the Taylor series expansion of L.E; �; s/ at s D 1 bybL.E; �; 1/: In this notation, Definition 12
states that

L .E; �/ D

p
f�bL.E; �; 1/

�C.E/d
C.�/j��.E/jd

�.�/w�
:

Recall (from [8], for example) that for an Artin representation � over a number field F , the
conductor f� and root numberw� are, respectively, an integral ideal ofF and a complex number
of absolute value 1, and that they have the following formal properties:

(1) f�1˚�2 D f�1f�2 and w�1˚�2 D w�1w�2 ,

(2) f IndL=F .�/ D disc.L=F /dim�NL=F .f�/ and w IndL=F .�/ D w�:

We refer to these as “Artin formalism”, analogously to the case of L-functions given in Sec-
tion 2.5.

(L1) By Artin formalism for the other factors, it suffices to prove that

dC.IndF=Q 1/ D r1 C r2 and d�.IndF=Q 1/ D r2:

Since IndF=Q 1 is the permutation module GQ=GF , we have

dC C d� D ŒF W Q� and dC � d� D tr.IndF=Q.1/.�//;

where � 2 GQ is complex conjugation. However, we also have that

tr.IndF=Q.1/.�// D #singleton orbits of � in GQ=GF D r1;

and so dC C d� D r1 C 2r2 and dC � d� D r1 and the claim now follows.
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(L2) By Artin formalism for the other factors, it suffices to note the identity

d˙.�˚ �0/ D d˙.�/C d˙.�0/:

(L3) Applying dr

dsr
jsD1 to the functional equation for L.E; �; s/ yieldsbL.E; �; 1/ D wE;� � .�1/rbL.E; ��; 1/;

and so, since f�� D f� and d˙.��/ D d˙.�/, we havep
f�bL.E; �; 1/

�C.E/d
C.�/j��.E/jd

�.�/w�
D .�1/r

wE;�w��

w�

p
f�� bL.E; ��; 1/

�C.E/d
C.��/j��.E/jd

�.��/w��

which, on recalling that w�w�� D w�˚�� D 1, simplifies to the given formula.
(L4) For sufficiently large s 2 R, we can express L.E; �; s/ as a Dirichlet series and, as

the character of � is real-valued, it follows that the coefficients of this series are real. Hence,
one has L.E; �; s/ D L.E; �; s/ on a right-half of the real line. Since L.E; �; s/ is analytic
everywhere in C (conjecturally), it follows that L.E; �; s/ D L.E; �; s/ for all s 2 C and so,
in particular, that bL.E; �; 1/ 2 R: Moreover, since � is self-dual, we have w� D ˙1 and so it
follows that L .E; �/ 2 R:

We see from the Euler product that L.E; �; s/ � 0 for all sufficiently large s 2 R and so,
since L.E; �; s/ is continuous and, by hypothesis, nowhere zero on .1;1/, the intermediate
value theorem implies that bL.E; �; 1/ > 0: It thus follows that L .E; �/w� 2 R>0:

(L5) As in Section 2.5, let F=Q be a finite abelian extension over which � can be realised
and let � be an F-linear representation of GQ such that C ˝F � ' �: By Corollary 23, the
motive h1.E/.1/˝ Œ� � is critical and moreover, if L.E; �; 1/ ¤ 0 and Deligne’s period con-
jecture holds, then

(i) L .E; �/ 2 F�,

(ii) L .E; �
 / D L .E; �/
 for all 
 2 Gal.F=Q/:

The result follows from this on noting that �
 ' � for all 
 2 Gal.F=Q.�//:
(L6) (i) This follows directly from [16, Theorem 1]. (ii) In this case f� is not divisible by

any prime where E has bad reduction, so the claim follows from [16, Theorem 2a].

Corollary 25. Let E be an elliptic curve over Q, and suppose that L.E; �; s/ has an
analytic continuation to C for all Artin representations � over Q, and take BSD.E; �/ to
be L .E; �/. Then (C1)–(C6) of Conjecture 4 hold subject to the following conditions:

(C1) The Birch–Swinnerton-Dyer conjecture holds for E over number fields.

(C2) Unconditional.

(C3) L.E; �; s/ satisfies the functional equation and Conjecture 1.

(C4) L.E; �; s/ has no zeros in the interval .1;1/:

(C5) L.E; �; s/ satisfies Deligne’s period conjecture.

(C6) Stevens’s Manin constant conjecture holds for E=Q.

In the following corollary we prove the remaining parts of Theorem 13. In particular,
parts (1)–(4) record some of the formal consequences of the (conjectural) properties (L1)–(L5)
stated in Theorem 24 and parts (5)–(7) use the classical Birch–Swinnerton-Dyer conjecture to
make predictions about the norm of L .E; �/:
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Corollary 26. LetE=Q be an elliptic curve and let � be an Artin representation over Q:
Suppose that L.E; �; s/ admits an analytic continuation to all of C and that L.E; �; 1/ ¤ 0:
Suppose moreover thatL.E; �; s/ satisfies the functional equation, Deligne’s period conjecture
and has no zeros in the interval .1;1/: Then:

(1) U.E; �/ WD L .E;��/
L .E;�/

is a root of unity in Q.�/:

(2) L .E; �/ �OQ.�/ is invariant as a fractional ideal under complex conjugation.

(3) � �L .E; �/ 2 Q.�; �/C where � 2 C is such that �2 D U.E; �/:

(4) U.E; �/ D w2�w
�1
E;� and, if fE is coprime to f�, this equals .�1/d

�.�/w
dim�
E det �.fE /,

where det � is regarded as a primitive Dirichlet character.

Let G D Gal.Q.�/=Q/ and choose number fields Fi ; F 0j and a positive integer m such that�M
g2G

�g

�˚m
˚

M
i

IndFi=Q 1 '
M
j

IndF 0
j
=Q 1

(these exist by Remark 10), and write B for the unique positive real number such that

Bm D

Q
j BSD.E=F 0j /Q
i BSD.E=Fi /

:

Suppose that the Birch–Swinnerton-Dyer conjecture holds for E over number fields. Then:

(5) NQ.�/=Q.L .E; �// D ˙B , with signC if m is odd.

(6) If � 6' �� and � 2 Q.�/, then NQ.�/C=Q.� �L .E; �// D ˙
p
B:

(7) If � 6' �� and � … Q.�/, then NQ.�;�/C=Q.� �L .E; �// D ˙B:

Proof. (1) It follows from (L5) that U.E; �/ 2 Q.�/ and that

U.E; �/g D L .E; �g/=L .E; �g/ for all g 2 G:

In particular, one has jU.E; �/gj D 1 for all g 2 G , and so U.E; �/ is indeed a root of unity.
(2) This follows directly from (1) on noting that, by (L5), one has

L .E; ��/ D L .E; �/:

(3) It follows from (L2) and (L5) that

L .E; �g
˚ .�g/�/ D U.E; �g/L .E; �g/2

D .U.E; �/L .E; �/2/g for all g 2 G;

and so, recalling that w�g˚.�g/� D 1 for any g 2 G , it follows from (L4) that

.U.E; �/L .E; �/2/g 2 R>0 for all g 2 G:

Hence, taking � 2 C such that �2 D U.E; �/, we see that � �L .E; �/ 2 Q.�; �/C:
(4) The first statement follows immediately from (L3) and the second from [7, Theo-

rem 16].
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(5) Writing R.�/ D
L

g2G �g, it follows from (L2) and (L5) that

L .E;R.�// D NQ.�/=Q.L .E; �//:

However, since R.�/˚m ˚
L
i IndFi=Q 1 '

L
j IndF 0

j
=Q 1, another application of (L2) gives

L .E;R.�//m D

Q
j L .E; IndF 0

j
=Q 1/Q

i L .E; IndFi=Q 1/
:

Hence, by (L1) together with the Birch–Swinnerton-Dyer conjecture, we get

L .E;R.�//m D Bm;

and so the result follows on taking m-th roots.
(6) and (7) Let � D Gal.Q.�; �/=Q/ and H D Gal.Q.�; �/C=Q/: If � 6' ��, thenM


2�

�
 '
M
�2H

.�˚ ��/�;

and so it follows from (L2), (L3), (L4) and (L5) that

L

�
E;
M

2�

�

�
D NQ.�;�/C=Q.L .E; �˚ ��// D NQ.�;�/C=Q.� �L .E; �//2:

On the other hand, (L2) gives us

L

�
E;
M

2�

�

�
D

´
L .E;R.�// if � 2 Q.�/;

L .E;R.�//2 if � … Q.�/;

and so the results follow from L1 together with the Birch–Swinnerton-Dyer conjecture.

3. Arithmetic applications

In order to obtain arithmetic applications of Conjecture 4 we shall make use of (C5),
which is the analogue of the Galois equivariance property of L-values. As we do not have
an exact expression for BSD.E; �/ in general, we shall take the following approach. The rep-
resentation � D

L
g2Gal.Q.�/=Q/ �

g has rational trace and hence BSD.E; �/ can, on the one
hand, be expressed in terms of BSD-quotients BSD.E=Ki / for suitable fields Ki (see Remark
10), and, on the other hand, is the norm of BSD.E; �/ from Q.�/ to Q by (C5). As we shall
illustrate, this places non-trivial constraints on the BSD.E=Ki /, and hence on ranks and the
Tate–Shafarevich groups. We stress that the expression is the norm of an element of Q.�/,
rather than just of a fractional ideal.

Proposition 27. Let G be a finite group and � an irreducible representation. Write� M
g2Gal.Q.�/=Q/

�g

�˚m
D

�M
i

IndGHi 1
�
	

�M
j

IndG
H 0
j

1
�
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for some m 2 Z and some subgroups Hi ;H 0j < G. If Conjecture 4 (C1), (C2), (C5) hold, then
for every elliptic curve E=Q and Galois extension F=Q with Galois group G, either

h�;E.F /Ci > 0

or Q
i BSD.E=FHi /Q
j BSD.E=FH

0
j /
D NQ.�/=Q.x/

m

for some x 2 Q.�/. Moreover, if � is non-trivial, G is abelian of exponent d and (C6) of
Conjecture 4 holds, then one can take x 2 ZŒ�d � provided that either fE and f� are coprime,
or E is semistable and has no non-trivial isogenies.

Proof. If h�;E.F /Ci D 0, then the formula is satisfied by x D BSD.E; �/.

In order to make use of the above theorem in specific settings, we will need to control
the various terms in the BSD factors of the formula. For convenience of the reader we have
recorded in Section 3.4 some standard facts about Selmer groups, Tamagawa numbers and the
term j!=!minj that will be used in our computations.

3.1. Interplay between p-primary parts of the Tate–Shafarevich group. For our
first application we will take the simplest setting, when the Galois group is cyclic of prime
order, and make use of the fact that the ratio of BSD-terms is the norm of a principal ideal. The
basic idea is that if the p-part of this number cannot be expressed as the norm of a principal
ideal, then, necessarily, the q-primary part must be non-trivial for some other prime q.

Theorem 28. Let `, p be primes such that the primes above p in Q.�`/ are non-prin-
cipal and have residue degree 2. If Conjecture 4 holds, then for every semistable elliptic curve
E=Q with no non-trivial isogenies, with jXE=QŒp�j D 1 and cv D 1 for all rational primes v,
and for every cyclic extension F=Q of degree ` with E.F / D E.Q/,

if jXE=F Œp
1�j D p2, then jXE=F Œq

1�j ¤ 1 for some q ¤ p; `.

Proof. We will in fact prove the stronger statement that XE=QŒq
1� is strictly smaller

than XE=F Œq
1� for some q ¤ p; `. The fact that it is a subgroup for all q ¤ ` is standard: it

is true for qk-Selmer groups by Lemma 36, and as E.Q/ D E.F / it is also true for XŒq1�.
A 1-dimensional faithful representation � of Gal.F=Q/ ' C` has Q.�/ D Q.�`/. NowX

g2Gal.Q.�/=Q/

�g
D CŒG�	 1;

so by Proposition 27,
BSD.E=F /
BSD.E=Q/

D NQ.�`/=Q.x/ for some x 2 ZŒ�`�.

Since E.F / D E.Q/, it follows that E.F /tors D E.Q/tors and RegE=F D `
rkE=Q RegE=Q

(Lemma 36 (2)). As E=Q is semistable, the contributions to CE=F and CE=Q only come from
Tamagawa numbers (Lemma 36 (5)). These are trivial over Q by hypothesis, so are also trivial
at all primes that split in F=Q; if v is a prime of multiplicative reduction that does not split,
then the corresponding Tamagawa number over F is 1 unless the reduction is split multiplica-
tive and the prime ramifies, in which case it is ` (Lemma 36 (4)). Putting this together, we
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deduce that
jXE=F j

jXE=Qj
� `n D NQ.�`/=Q.x/ for some n 2 Z:

Note that ` is totally ramified in Q.�`/ and the ideal above it .�` � 1/ is principal. Thus if
XE=F Œq

1� DXE=QŒq
1� for all q ¤ p; `, it would follow that p2 is the norm of a principal

ideal of ZŒ�`�. By assumption, the primes above p have norm p2 and are non-principal, so this
is not the case.

Example 29. Let E=Q be a semistable elliptic curve with no non-trivial isogenies,
with

Q
v cv D 1 and XE=Q D 1, and let F=Q be the degree 229 subfield of Q.�2749/. In this

setting, if E.Q/ D E.F /, then jX.E=F /j ¤ p2, for the prime p D 1148663. Indeed, p is
a prime which has residue degree 2 in Q.�229/, and the prime above it is non-principal (this is
hard to achieve, which is why ` D 229 is taken to be so large), so this is a consequence of the
above theorem. However, it is perfectly possible for such a curve to have

E.Q/ D E.F / and jX.E=F /j D p2 � .integer coprime to p/;

as, for instance, is the case for the elliptic curve 2749a1. (This is based on a Magma computa-
tion of the analytic order of X and the analytic rank, and assumes the BSD conjecture.)

3.2. Forcing non-trivial Selmer groups. The BSD-terms BSD.E=FHi / in Proposi-
tion 27 are composed of “hard” global invariants (Tate–Shafarevich group and points of infinite
order) and “easy” local invariants (Tamagawa numbers and differentials). We will now illus-
trate how the result can be used to make the easy local data force non-trivial behaviour of
global invariants. Once again, we will exploit the fact that the ratio of BSD-terms is the norm
of a principal ideal. We focus on non-abelian groups of the form G D Cq1q2 Ì Cr , and begin
by simplifying the norm condition.

Theorem 30. Let q1; q2; r be three distinct odd primes such that q1; q2 � 1mod r , but
q1; q2 6� 1mod r2, and with q1 an r-th power in Z=q2Z and vice versa. Let G D Cq1q2 Ì Cr
with Cr acting non-trivially on both the Cq1 and Cq2 subgroups. If Conjecture 4 holds, then
for every elliptic curve E=Q and every Galois extension F=Q with Galois group G, either
rkE=F > 0 or

BSD.E=F Cr /BSD.E=Q/

BSD.E=F Cq1ÌCr /BSD.E=F Cq2ÌCr /
D qa1q

b
2k

for some a; b 2 Z and k 2 Q with k � 1mod q1q2.

Proof. Let  be a faithful 1-dimensional representation of Cq1q2 and � D IndGCq1q2  .
This is a faithful r-dimensional irreducible representation of G, and

Q.�/ D Q.�q1q2/
Cr

with theCr action coming fromCr �Aut.Cq1q2/D .Z=q1q2Z/
�DGal.Q.�q1q2/=Q/. Apply-

ing Proposition 27 to the identityM
g2Gal.Q.�/=Q/

�g
D IndGCr 1˚ 1	 IndGCq1ÌCr

1	 IndGCq2ÌCr
1

shows that either rkE=F > 0 or the ratio of the BSD terms in the statement is a norm of an
element x 2 Q.�/.
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It thus suffices to show that the norm of every non-zero principal ideal .x/ in Q.�/ is of
the form qa1q

b
2k, for some a; b 2 Z and k 2 Q with k � 1mod q1q2. Observe that

Q.�q1q2/ D Q.�/.�q1/ D Q.�/.�q2/:

In particular, Q.�q1q2/=Q.�/ is unramified at all primes, so by class field theoryY
p

Frobordp x
p D id 2 Gal.Q.�q1q2/=Q.�//;

the product taken over the primes of Q.�/ (all the infinite places being complex as r is odd).
By hypothesis, q1 is an r-th power in Fq2 and r2 − jF�q2 j, so Fq2.�q1/=Fq2 has degree coprime
to r ; hence every prime above q2 must split in Q.�/.�q1/=Q.�/, that is Frobp D id for every
p j q2. Similarly Frobp D id for every p j q1, and henceY

p jq1;q2

Frobordp x
p D id:

For a prime p − q1; q2 the Frobenius element is determined by �q1q2 7! �
N.p/
q1q2 , which shows

that Y
p −q1;q2

N.p/ordp x D 1 2 .Z=q1q2Z/
�;

and hence the norm of x is of the required form.

Corollary 31. Let F=Q be a Galois extension of degree 3q1q2 that contains a Galois
cubic field K=Q and ` a prime that satisfy

� q1; q2 � 4 or 7mod 9, and q1 is a cube modulo q2 and vice versa,
� b

q1q2
4
c � b

q1
4
c � b

q2
4
c 6� 0mod 3,

� `3 � 1mod q1, but ` 6� 1mod q1 and ` 6� 1mod q2,
� ` has residue degree 3 and ramification degree q1q2 in F=Q.

If Conjecture 4 holds, then every elliptic curveE=Q that has additive reduction at ` of Kodaira
type III and good reduction at other primes that ramify in F=Q, must have a non-trivial
p-Selmer group for some prime p − ŒF W Q�.

Proof. First note that Gal.F=Q/ ' Cq1q2 Ì C3 (the inertia group at ` is tame, so Cq1q2
is a subgroup, and the extension is split by the Schur–Zassenhaus theorem). As ` 6� 1mod q1,
there is no Galois extension of Q of degree q1 that is ramified at `, and similarly for q2. It
follows that C3 must act non-trivially both on Cq1 and Cq2 . Moreover, q1 and q2 are both
cubes modulo each other and are� 4 or 7mod 9, so Theorem 30 applies with r D 3.

If the Selmer group Selp.E=F / is trivial for a prime p − ŒF W Q�, then it is also trivial
over any subfield of F (see Lemma 36 (1)), and hence neither the torsion nor X contribute
to the p-part of the BSD quotient in the theorem. The rank over F is then also 0, so all the
regulators are trivial. Thus by Theorem 30, supposing that Selp.E=F / D 0 for all p − ŒF W Q�,

CE=F Cr � CE=Q

C
E=F Cq1ÌCr � CE=F Cq2ÌCr

D qa1q
b
2k

for some a; b 2 Z and k � 1mod q1q2. However, in our setup this is not the case, as we
now explain.
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First observe that all primes of good reduction, which include all ramified primes in
F=Q apart from `, have trivial Tamagawa numbers and j!=!minj terms in all extensions, and
hence do not contribute to the ratio of the CE=�-terms above. If q ¤ ` is a prime of bad reduc-
tion for E=Q, then, by assumption, it is unramified in F=Q. The minimal differential at q
then remains minimal in all extensions, so that the j!=!minj terms for these primes are all 1.
Moreover, the decomposition group at q is either trivial or cyclic of order 3, q1; q2 or q1q2,
and a straightforward case-by-case check shows that the Tamagawa numbers from the primes
above q contribute a perfect cube to the above ratio of CE=�-terms (in fact each extension of
Qq always appears in the expression a multiple of three times).

Finally, consider the primes above `. As ` has ramification degree q1q2 in F=Q, it is
totally ramified in F Cr ; F Cq1ÌCr and F Cq2ÌCr . Thus E has reduction type III or III� at the
prime above ` in these fields, and the corresponding Tamagawa number is always 2 (see, for
example, [11, Section IV.9]). The minimal model over Q` does not remain minimal (valu-
ation of the discriminant goes above 12, Lemma 36 (6)) and the j!=!minj terms contribute
`b
3�q1q2
12
c=`b

3�q1
12
c`b

3�q2
12
c
D `n, where n 6� 0mod 3 by assumption.

Putting these computations together shows that

CE=F Cr � CE=Q

C
E=F Cq1ÌCr � CE=F Cq2ÌCr

D x3`n

for some x 2Q and integer n 6� 0mod 3. However, ` has order 3 in F�q1 and so, as q1 6� 1mod 9,
it is not a cube in Fq1 . As q2 is a cube mod q1, this expression cannot be of the form qa1q

b
2k for

any k � 1mod q1q2, which gives the desired contradiction.

Remark 32. Number fields satisfying the hypotheses of Corollary 31 do exist. For
example, we can take q1 D 643 and q2 D 43. For simplicity, let us take K D Q.�9/C which
has class number 1 and then choose ` and F using class field theory as follows. First pick
five candidate primes `1; : : : ; `5 that satisfy the third and fourth bullet points of the corollary –
these are congruence conditions, so such primes exist. As `i has residue degree 3 in K and
`3i � 1mod q1, the group .OK=

Q
`i /
� has a quotient isomorphic to .Cq1/

5: The unit group
of K has rank 2, so the ray class group ..OK=

Q
`i /
�=image of O�K/ has a Gal.K=Q/-stable

quotient isomorphic to .Cq1/
n for some n � 3. In particular, as q1 � 1mod 3 and Fq1 contains

the third roots of unity, there are at least three Gal.K=Q/-stable Cq1-quotients whose corre-
sponding fields F1; F2; F3 under global class field theory are linearly disjoint. By construction,
the Fi are Galois over Q, have degree q1 overK and only the `i can ramify in Fi=K. AsK has
class number 1 and the Fi are linearly disjoint, at least three of the `i must ramify in some of
the fields. Now repeating the same construction with the same `i for q2 similarly yields three
fields F 01; F

0
2; F

0
3 of degree q2 over K. One of the `i must ramify both in one of the Fi and in

one of the F 0i , say `1 ramifies in F1 and in F2. We can then take F D F1F2 and ` D `1.

3.3. Forcing points of infinite order. For our final type of application of Proposi-
tion 27, we will make the local data force the existence of points of infinite order on elliptic
curves. This time, the idea is to make sure that the ratio of BSD-terms in the theorem cannot
be the norm of an element at all, and hence E=F must have positive rank. In order to do this,
we need a way of controlling the Tate–Shafarevich group. In general, this is very difficult, so
we will simply make use of the fact that it has square order and that all squares are norms from
quadratic fields.
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Theorem 33. Suppose Conjecture 4 holds. LetE=Q be an elliptic curve, F=Q a Galois
extension with Galois group G, � an irreducible representation of G and� M

g2Gal.Q.�/=Q/

�g

�˚m
D

�M
i

IndFi=Q 1
�
	

�M
j

IndF 0
j
=Q 1

�
for some m 2 Z and subfields Fi ; F 0j � F . If either

Q
i CE=Fi=

Q
j CE=F 0j

is not a norm from
some quadratic subfield Q.

p
D/ � Q.�/, or if it is not a rational square when m is even,

then E has a point of infinite order over F .

Proof. Suppose rkE=F D 0. By Proposition 27,
Q

BSD.E=Fi /=
Q

BSD.E=F 0j / is the
m-th power of the norm of an element of Q.�/. In particular, it is a norm from Q.

p
D/, and ifm

is even, it is a rational square.
As the rank is zero over F , the regulators that enter the BSD-terms are all 1. The contri-

butions from X and torsion are all squares, and hence automatically norms from Q.
p
D/. It

follows that the remaining expression
Q
i CE=Fi=

Q
j CE=F 0j

must be a norm from Q.
p
D/ as

well, and a rational square in case m is even.

The criterion of Theorem 33 can be applied in many Galois groups to find local conditions
on elliptic curves that guarantee the existence of points of infinite order. We illustrate it on the
group of quaternions, Q8:

Corollary 34. Suppose Conjecture 4 holds. Let F=Q be a Galois extension with Galois
group Q8. Then every elliptic curve E=Q with good reduction at 2 and 3 and with an odd
number of potentially multiplicative primes that do not split in F=Q must have a point of
infinite order over F .

Proof. Let � be the 2-dimensional irreducible representation of Q8 and let C2 be the
unique subgroup of Q8 of order 2, so that

�˚2 D IndQ81 1	 IndQ8C2 1:

We will show that CE=F
CE=L

has odd 2-adic valuation, where L D F C2 . The result then follows
from the theorem.

Observe that if a prime p splits in F=Q, then it necessarily already splits inL=Q. Indeed,
if there is only one prime above p in L, then the decomposition group at p surjects onto
Q8=C2. The only subgroup with this property is the whole of Q8, so there is only one prime
above p in F . It follows that split primes contribute square contributions to CE=F

CE=L
.

As E has good reduction at 2, these primes do not contribute to the ratio: ! remains
minimal in all field extensions of Q2 and the local Tamagawa number is always 1 (Lemma 36).
At primes v − 2, the contribution from ord2 j!=!minjv will clearly be zero. Thus

ord2
CE=F

CE=L
D

X
p2B

ord2.cw=cv/;

where B is the set of primes of bad reduction of E that do not split in F=Q, and where v and
w are the primes above p in L and F , respectively.

If p 2 B , then p necessarily has residue degree 2 and ramification degree 4 in F=Q and
the prime above it ramifies in F=L, as the only possible choices for the (tame!) inertia sub-
group and its cyclic quotient are Q8=C4 ' C2 for one of the cyclic subgroups of order 4. In
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particular, if p is a prime of potentially multiplicative reduction, then E has split multiplicative
reduction at v in L and cw D 2cv (Lemma 36). If p is a prime of potentially good reduction,
then the p-adic valuation ı of the minimal discriminant of E=Qp determines the Kodaira type
of E at v and at w. Recall that the Tamagawa number of E over a local field M is the num-
ber of Frobenius invariant points of E.M nr/=E0.M

nr/, so we read off from [11, Chapter 9,
Table 4.1] that the pair of Tamagawa numbers cv; cw is either 3; 3 or 3; 1 (ı D 2; 10), 1; 1 or
4; 1 (ı D 3; 9, noting that Lv is a quadratic unramified extension of a field, so Frobenius has
odd order on E=E0 over Lv), 2; 2 .ı D 4; 8/, or 1; 1 .ı D 6/. Thus in all cases of potentially
good reduction ord2 cw=cv is even. The result follows.

As a final application, we will prove a result on the Birch–Swinnerton-Dyer conjecture in
dihedral extensions. This time we will classify the cases when our local BSD-term data predicts
that � appears in E.F /C and compare it to the corresponding root number predictions.

Theorem 35. Suppose Conjecture 4 holds. Let F=Q be a Galois extension with Galois
groupD2pq , with p; q� 3mod 4 primes, and let � be a faithful irreducible Artin representation
that factors through F=Q. Then for every semistable elliptic curve E=Q, if ordsD1L.E; �; s/
is odd, then h�;E.F /Ci > 0.

Proof. We first remark that this L-function does have an analytic continuation to C and
satisfies the standard functional equation. (It can be expressed as a classical Rankin–Selberg
product. Alternatively, � is induced from a 1-dimensional representation  of Gal.F=K/,
whereK is the quadratic subfield ofF , and soL.E; �; s/ D L.E=K; ; s/ D L.�E=K˝ ; s/,
where �E=K is the automorphic form obtained by cyclic base change from the modular form
attached to E=Q by modularity.)

We apply Proposition 27 to the identityM
g2Gal.Q.�/=Q/

�g
D IndGC2 1	 IndGD2p 1	 IndGD2q 1˚ 1;

whereG D D2pq . Here Q.�/ D Q.�pq/C contains the quadratic field Q.
p
pq/. Since squares

are always norms from quadratic fields we deduce that either h�;E.F /Ci > 0 or

CE=LpqCE=Q

CE=LpCE=Lq
�

RegE=Lpq RegE=Q
RegE=Lp RegE=Lq

D NQ.
p
pq/=Q.x/ for some x 2 Q.

p
pq/;

where Lpq D F C2 , Lp D FD2q and Lq D FD2p are the intermediate fields of degree pq; p
and q over Q, respectively.

WriteM for the set of primes of multiplicative reduction ofE=Q, ar D 1 if the reduction
at a prime r 2M is split and ar D �1 if it is non-split, and write er and fr for the ramification
and residue degree of a prime r in F=Q, respectively. Set

X D ¹v W 1 in Kº [ ¹r 2M; er D 1; fr D 2º [ ¹r 2M; er D 2; ar D �1º:

Claim 1. If h�;E.F /Ci D 0, then

CE=LpqCE=Q

CE=LpCE=Lq
�

RegE=Lpq RegE=Q
RegE=Lp RegE=Lq

D .pq/#X ��;

where “�” is shorthand for a rational square.
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Claim 2. We have ordsD1L.E; �; s/ � #X mod 2.

Observe that pq is not the norm of any element of Q.
p
pq/: indeed, as p � 3mod 4, the

norm equation pq D a2 � pqb2 is not even soluble in Qp. It thus follows from the two claims
and the formula above that h�;E.F /Ci > 0, which proves the theorem.

Proof of Claim 2. The parity of the order of vanishing of the L-function is given by the
root number wE;�. As E=Q is semistable and dim � D 2, by [7, Theorem 1],

wE;� D .�1/
dim��

Y
r2M

adim�Ir
r det.Frobr j�Ir /;

where dim �� is 1 or 2 according to whether K is complex or real, Frobr is any choice of
Frobenius element at r in Gal.F=Q/, and �Ir is the subspace of � that is pointwise fixed by
the inertia subgroup Ir . If a prime r 2M is unramified in F=Q, then its contribution to the
product is �1 if and only if Frobr has order 2. If it ramifies, then the contribution is �1 if and
only if Ir has order 2 (in D2pq , jIr j D 2 forces Frobr to be trivial) and ar D �1. In other
words wE;� D .�1/#X .

Proof of Claim 1. Since E=Q is semistable, its global minimal differential remains
minimal in all field extensions, so we can write

CE=L D
Y
r2M

Cvjr.L/

with Cvjr.L/ D
Q
vjr cv.E=L/.

The groupD2pq has five rational irreducible representations: trivial 1, sign �, �p that fac-
tors through the D2p-quotient and similarly �q and �pq . Now pick points P1; : : : ; Pa 2 E.Q/
that form a basis for E.Q/˝Z Q, the 1-isotypical component of E.F /˝Q. Complete it to a
basis P1; : : : ; Pa;Q1; : : : ;Qb 2 E.Lp/ for E.Lp/˝Q, with the Qi belonging to the �p-iso-
typical component of E.F /˝Q; and similarly to P1; : : : ; Pa; R1; : : : ; Rb for E.Lq/˝Q
with the Ri belonging to the �q-isotypical component. By assumption, �pq does not appear in
E.F /˝Q, so that the Pi ;Qi and Ri together form a basis for E.Lpq/˝Q. Moreover, as the
height pairing on E.F / is Galois invariant, the spaces spanned by the Pi , the Qi and the Ri
are orthogonal to each other. Finally, recall that the height pairing scales under field extensions
by the degree, so that the ratio of the regulators is

RegE=Lpq RegE=Q
RegE=Lp RegE=Lq

D � � qrkE=Lp�rkE=Q prkE=Lq�rkE=Q;

the square error coming from the fact that our bases span finite index sublattices of E.Q/,
E.Lp/, E.Lq/ and E.Lpq/ (see Lemma 36).

As the p- and q-primary parts of XE=F are finite (which is therefore also true over
all the subfields), the known cases of the parity conjecture for E=Q, E=Lp and E=Lq (see
[6, Theorem 1.3]), tell us that the parity of each exponent in the above formula is determined by
the corresponding root number. Thus, like for the CE=�-terms, we can express this as a product

qrkE=Lp�rkE=Q
D � �

Y
r2M[¹1º

q�
.q/
r ;
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where � .q/r is 0 or 1 depending on whether w.E=Qr/
Q
vjr w.E=.Lp/v/ is 1 or �1; and simi-

larly for the exponent of p. Hence

CE=LpqCE=Q

CE=LpCE=Lq
�

RegE=Lpq RegE=Q
RegE=Lp RegE=Lq

D � �
Y

r2M[¹1º

Zr ;

where Zr D Cvjr.Q/Cvjr.Lp/Cvjr.Lq/Cvjr.Lpq/q�
q
r p�

p
r . Thus it now suffices to check that

Zr D pq� for r 2 X and Zr D � for r … X .
To explicitly determine Zr , we systematically work through all possibilities. Recall that

the local root number w.E=Lv/ is C1 for good and non-split multiplicative reduction and �1
for split multiplicative reduction and for archimedean places. Recall also that if the Kodaira
type of E=Lv is In, then the Tamagawa number is n if the reduction is split, and 1 or 2 if
it is non-split, depending on whether n is odd or even, which we will denote by Qn. Finally,
multiplicative reduction of type In becomes of type Ien after a ramified extension of degree e,
split reduction remains split, and non-split reduction becomes split if the extension has even
residue degree. We tabulate in Table 1 the contribution to the above product from a prime r
depending on its ramification degree er and residue degree fr in F=Q; inD2pq these uniquely
determine the inertia and decomposition subgroups, and hence the splitting behaviour of r in
all intermediate extension. The values are constrained by the fact that both the (tame!) inertia
group is cyclic of order er and normal in the decomposition group with a cyclic quotient of
order fr . The entries for split and non-split multiplicative reduction of type In are separated by
a semicolon.

Finally, note that if the quadratic field K is real, then F=Q is totally real, so Lp has p
infinite places and q�

q
1 D 1, and similarly for Lq; hence Z1 D 1. If K is imaginary, then

er ; fr Cvjr .Q/ Cvjr .Lp/ Cvjr .Lq/ Cvjr .Lpq/ q
�
.q/
r p�

.p/
r Zr

1; 1 nI Qn npI Qnp nqI Qnq npqI Qnpq 1I 1 1I 1 �
1; 2 nI Qn n

pC1
2 I Qnn

p�1
2 n

qC1
2 I Qnn

q�1
2 n

pqC1
2 I Qnn

pq�1
2 qI q pIp pq�

1; p nI Qn nI Qn nqI Qnq nqI Qnq 1I 1 1I 1 �
1; q nI Qn nI Qn npI Qnp npI Qnp 1I 1 1I 1 �
1; pq nI Qn nI Qn nI Qn nI Qn 1I 1 1I 1 �
2; 1 nI Qn .2n/

p�1
2 nI 2

p�1
2 Qn .2n/

q�1
2 nI 2

q�1
2 Qn .2n/

pq�1
2 nI 2

pq�1
2 Qn qI 1 pI 1 pq�I�

p; 1 nI Qn npI Qn nqI Qnq .np/qI Qnq 1I 1 1I 1 �
p; 2 nI Qn npI Qn n

qC1
2 I Qnn

q�1
2 .np/

qC1
2 I Qn.np/

q�1
2 1I 1 pIp �

p; q nI Qn npI Qn nI Qn npI Qn 1I 1 1I 1 �
q; 1 nI Qn nqI Qn npI Qnp .nq/pI Qnp 1I 1 1I 1 �
q; 2 nI Qn nqI Qn n

pC1
2 I Qnn

p�1
2 .nq/

pC1
2 I Qn.nq/

p�1
2 1I 1 qI q �

q; p nI Qn nqI Qn nI Qn nqI Qn 1I 1 1I 1 �
2p; 1 nI Qn npI Qn .2n/

q�1
2 nI 2

q�1
2 Qn .2np/

q�1
2 npI 2

q�1
2 Qn 1I 1 pI 1 �

2q; 1 nI Qn npI Qn .2n/
p�1
2 nI 2

p�1
2 Qn .2nq/

p�1
2 nqI 2

p�1
2 Qn 1I 1 qI 1 �

pq; 1 nI Qn npI Qn nqI Qn npqI Qn 1I 1 1I 1 �
pq; 2 nI Qn npI Qn nqI Qn npqI Qn 1I 1 1I 1 �

Table 1. Tamagawa number and regulator ratio contributions from a prime r .
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Lp has one real and p�1
2

(=odd) complex places and q�
q
1 D q, and similarly for Lq; hence

Z1 D pq. Thus, indeed, Zr D pq� for r 2 X and Zr D � for r … X , as required. This
finishes the proof of Claim 1.

The theorem is proved.

3.4. Summary of some basic properties. We list some standard results regarding ellip-
tic curves over local and global fields. We give brief proofs as, while these results are well
known, they may not always be easy to find in the literature.

Lemma 36. Let E=K be an elliptic curve over a number field, F=K a field extension
of finite degree d . Let v be a finite place of K with wjv a place above it in F , and !v and !w
minimal differentials for E=Kv and E=Fw , respectively.

(1) If F=K is Galois, then Seln.E=K/ identifies with a subgroup of Seln.E=F / for all n
coprime to d .

(2) For P;Q 2 E.K/, their Néron–Tate height pairings over K and F are related by

hP;QiF D d hP;QiK :

(3) If rkE=F D rkE=K, then

RegE=F D
d rkE=K

n2
RegE=K ;

where n is the index of E.K/ in E.F /.

(4) If E=Kv has good reduction, then cv D 1. If E=Kv has multiplicative reduction of
Kodaira type In, then n D ordv �min

E;v and cv D n if the reduction is split, and cv D 1
(respectively, 2) if the reduction is non-split and n is odd (respectively, even).

(5) If E=Kv has good or multiplicative reduction, then j!v=!w jw D 1.

(6) If E=Kv has potentially good reduction and the residue characteristic is not 2 or 3, thenˇ̌̌̌
!v

!w

ˇ̌̌̌
w

D qb
eF=K ordv �min

E;v
12

c;

where q is the size of the residue field at w.

(7) If v has odd residue characteristic, E=Kv has potentially multiplicative reduction and
Fw=Kv has even ramification degree, then E=Fw has multiplicative reduction.

(8) Multiplicative reduction becomes split after a quadratic unramified extension.

Proof. (1) In the inflation-restriction sequence

H 1.Gal.F=K/;E.F /Œn�/! H 1.K;EŒn�/! H 1.F;EŒn�/;

the first term is killed both by jGal.F=K/j and by n, and is therefore trivial. Thus the second
map and its restriction to n-Selmer groups are injective.

(2) This follows from the definition of the height pairing, see [13, equation (1.6)]. (Note
that it is not normalised as for the absolute height.)

(3) Follows from (2) and the fact that the height pairing is bilinear and non-degenerate.
(4) See [11, Section IV.9].
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(5) AsE=Kv has good or multiplicative reduction, its minimal Weierstrass model overKv
remains minimal over Fw , so !v is also a minimal differential over F .

(6) In this setting ordw �min
E;w < 12, so the result follows from the formula in Notation 17.

(7) This follows from the theory of the Tate curve, see e.g. [11, Exercise 5.11].
(8) Clear from the definition of non-split multiplicative reduction.

4. Arithmetically similar twists with different L-values

In this section we discuss the problem of formulating a precise Birch–Swinnerton-Dyer-
type formula for twists of elliptic curves by Dirichlet characters �. We make the information
that we know about L .E; �/ explicit and discuss the difficulties illustrated in Example 3. We
will also give many numerical examples, for the benefit of those readers who may wish to
analyse these L-values in more detail.

The numerical examples throughout this section were worked out using Magma [2]. The
orders of X given are strictly speaking “analytic orders of X”, that is the orders that are
predicted by the Birch–Swinnerton-Dyer conjecture.

Notation 37. Recall from Notation 15 that we identify Dirichlet characters � with their
corresponding 1-dimensional Galois representations. We write K� for the abelian number
field cut out by the kernel of �, that is for the smallest extension K�=Q such that � factors
through Gal.K�=Q/.

In the context of Dirichlet characters, we already know from Theorem 13 a substantial
amount about L.E; �; 1/ in terms of arithmetic data:

Theorem 38. Suppose Stevens’s Manin constant conjecture holds for E=Q. Let � be
a non-trivial primitive Dirichlet character of order d and conductor coprime to fE . Then
L .E; �/ 2 ZŒ�d � and, if L.E; �; 1/ ¤ 0, then furthermore

� �L .E; �/ 2 R for � D �.fE /
dC1
2

p
�.�1/wE :

If rkE=Q D 0 and the Birch–Swinnerton-Dyer conjecture holds for E over Q and K�, then

NQ.�d /C=Q.� �L .E; �// D ˙
jE.Q/torsj

jE.K�/torsj

s
jXE=K� j

Q
v cv.E=K

�/

jXE=Qj
Q
p cp.E=Q/

:

If moreover d is odd and BSD.E=K�/ D BSD.E=Q/, then L .E; �/ D ��1u for some unit
u 2 O�

Q.�d /C
.

Proof. The first claim follows from Theorem 13 (8)–(10) with � D �.
Applying Theorem 13 (12) with the identity

L
g2Gal.Q.�d /=Q/ �

g ˚ 1 D CŒG� shows
that

NQ.�d /C=Q.� �L .E; �// D ˙

s
BSD.E=K�/
BSD.E=Q/

:

Since the conductor of E is coprime to that of �, the primes of bad reduction of E are unrami-
fied in K�=Q, so a global minimal differential for E=Q remains minimal over K� and hence
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all the contributions of the form j!=!minj to the BSD-terms are trivial. This proves the desired
second formula.

For the final claim, note that as rkE=Q D 0 and d is odd, we must have

wE D �.�1/ D 1;

so that � 2 Q.�d /. The result now follows from the previous parts.

Let us note that, under the above assumptions, we can predict the value L.E; �; 1/ from
Birch–Swinnerton-Dyer-type information up to an element of norm ˙1 in Q.�d /

C. In fact,
since L .E; �/ is integral, the prediction is stronger than that. For instance, if � has order 3 and
BSD.E=K�/ D BSD.E=Q/, then L.E; �; 1/ is fully determined up to a sign. However, this
final ambiguity appears to be severe:

Theorem 39. For elliptic curves E=Q and Dirichlet characters � as in Theorem 38,

(1) L .E; �/ cannot be expressed purely as a function of the character �, of E.Q/, XE=Q,Q
p E.Qp/=E0.Qp/ as abelian groups and ofE.K�/;XE=K� ;

Q
v E.K

�
v /=E0.K

�
v / as

Gal.K�=Q/-modules.

(2) The fractional ideal .L .E; �// cannot be expressed purely as a function of �, and
of E.Q/, XE=Q,

Q
p E.Qp/=E0.Qp/, E.K

�/;XE=K� and
Q
v E.K

�
v /=E0.K

�
v / as

abelian groups.

Here the products are taken over all primes of Q and ofK�, andE0 denotes the usual subgroup
of points of non-singular reduction.

This theorem follows from the fact that one can find curves with identical arithmetic
invariants listed in (1) and (2), but with different algebraic L-values L .E; �/. This is shown
by the next two examples, where most of the objects listed in (1) and (2) are trivial.

Example 40. Let E1=Q be the elliptic curve given by

y2 C y D x3 � 8x � 9;

and E2=Q be another elliptic curve given by

y2 C y D x3 C x � 1;

which have Cremona labels 307a1 and 307c1, respectively. Let � be the primitive Dirichlet
character of order 5 and conductor 11 defined by �.2/ D �5. Both curves have

jEi .Q/j D jEi .K
�/j D jXEi=Qj D jXEi=K� j

D

Y
p

cp.Ei=Q/ D
Y
v

cv.Ei=K
�/ D 1:

In particular, all the groups listed in Theorem 39 are trivial. In fact, the curves also have the
same conductor fEi D 307 and the same discriminant �Ei D �307. However, their algebraic
L-values differ:

L .E1; �/ D 1; L .E2; �/ D �
4
5.1C �5/

2:
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Remark 41. As the discriminants for the two curves in the above example are the same
and thus in particular have the same sign, both curves have the same number of connected
components over R. In other words, one can add the group of real connected components
E.R/=E0.R/ to the list of groups in Theorem 39 (1), as well as the conductor and the discrim-
inant of E.

Example 42. Let E1=Q be the elliptic curve given by

y2 C y D x3 � x2 � 1;

and E2=Q be another elliptic curve given by

y2 C xy D x3 C x2 � 3x � 4;

which have Cremona labels 291d1 and 139a1, respectively. Let � be the primitive character of
order five and conductor 31 defined by �.3/ D �35 . Both curves have

jEi .Q/j D jEi .K
�/j D jXEi=Qj D

Y
p

cp.Ei=Q/ D
Y
v

cv.Ei=K
�/ D 1

and
jXEi=K� j D 11

2:

The discriminants�E1 D �291 and�E2 D �139 again have the same sign. For these curves,

L .E1; �/ D 2�
3
5 � �

2
5 � �5 C 2 and L .E2; �/ D 5�

3
5 C �

2
5 C �5 C 5:

These factorise as

.L .E1; �// D p1p2 and .L .E2; �// D p3p4;

where p1 D .11; 7C�5/, p2 D .11; 8C�5/, p3 D .11; 6C�5/, p4 D .11; 2C�5/ are the primes
of Q.�5/ above 11.

We note that it is plausible that the exact factorisation can be recovered from the Galois
module structure of X. Unfortunately, it appears to be beyond our computational reach to
check this at present. (See, however, the recent work of Burns and Castillo [3, Remark 7.4].)

Remark 43. In the above example, our results on L-values are strong enough to predict
that the ideal L .Ei ; �/ must be either p1p2 or p3p4, though, as the example illustrates, they
do not allow us decide which of the two occurs. To see why the factorisation must be one of
these two, consider any Dirichlet character � of order 5 and any elliptic curve E=Q satisfying
the conditions of Theorem 38 and additionally

BSD.E=K�/
BSD.E=Q/

D 112:

Then by Theorem 13 (10), (11) and (6), L .E; �/ is an element of ZŒ�5� of norm 112 and
generates an ideal that is fixed by complex conjugation. Hence .L .E; �// must be either p1p2
or p3p4.

For those who may be interested in investigating theseL-values further, we end by giving
a range of further examples. All elliptic curves below are given by their Cremona labels.

Example 44. There are plenty of curves that have trivial Mordell–Weil groups, X and
Tamagawa numbers both over Q and over K� for the same Dirichlet character � of order 5
as in Example 40. In Table 2 we have chosen some groups of such curves that also have the
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E L .E; �/ E L .E; �/ E L .E; �/ E L .E; �/ E L .E; �/

307a1 1 432g1 u2 714b1 1 1187a1 �35u
�1 1216g1 ��25u

2

307c1 �45u
2 432h1 ��45u

�1 714h1 ��5u
3 1187b1 �45u

�3 1216k1 �5u
�1

Table 2. Conductor f� D 11 with �.2/ D �5; �K� D 114.

same conductors, but, as in the example, have different algebraic L-values (here u D 1C �5 is
a fundamental unit in Q.�5/).

Example 45. The examples are even easier to find for cubic characters �. As before,
we will look at curves with

jE.Q/j D jE.K�/j D jXE=Qj D jXE=K� j D

Y
p

cp.E=Q/ D
Y
v

cv.E=K
�/ D 1:

All of the curves we look at in Table 3 will satisfy the conditions of Theorem 38, and thus by
the same theorem we can predict the L-values up to sign. How to predict the sign is unclear,
even for curves with the same conductor.

E L .E; �/ E L .E; �/ E L .E; �/ E L .E; �/ E L .E; �/

1356d1 �3 3264r1 ��3 3540a1 ��3 4800i1 ��3

1356f1 ��3 3264s1 �3 3540b1 �3 4800bj1 ��3

4800bm1 �3

Conductor f� D 7 with �.3/ D �23 , �K� D 49.

222b1 �1 1392c1 �1 4386c1 �1 9024l1 ��23
222e1 1 1392j1 1 4386m1 1 9024bf1 �23

Conductor f� D 13 with �.2/ D �23 , �K� D 169.

702d1 �1 1443a1 1 5616j1 �1 12096bq1 1 19008u1 �1

702i1 1 1443b1 �1 5616o1 1 12096dc1 �1 19008bh1 1

5616p1 1 12096dd1 1

Conductor f� D 19 with �.2/ D �23 , �K� D 381.

714b1 �1 2453a1 1 8138b1 1 12096x1 �3

714h1 1 2453c1 �1 8138c1 �1 12096dc1 �3

12096dd1 ��3

Conductor f� D 31 with �.3/ D �3, �K� D 961.

5885a1 ��3 11764a1 ��3 12096x1 �23 15498h1 ��23 16590c1 1

5885d1 �3 11764b1 �3 12096bb1 ��23 15498i1 �23 16590n1 �1

12096bn1 �23
12096cz1 ��23

Conductor f� D 37 with �.2/ D �3, �K� D 1369

Table 3. Algebraic L-values for varying Dirichlet characters � of order 3.
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In these examples, the curves in each block also have discriminants of the same sign
as each other and the same number of points over F3. The first condition ensures that they
have the same number of real components. The second condition is motivated by p-adic
L-functions, where the interpolation formula for L-values is adjusted by an extra term that
depends on jE.Fp/j.

Example 46. Here we give a list of curves similar to Example 42. We again take the
character � of order five and conductor 31 defined by

�.3/ D �35 ;

and consider curves with conductor coprime to 31 with

jE.Q/j D jE.K�/j D jXE=Qj D
Y
p

cp.E=Q/ D
Y
v

cv.E=K
�/ D 1

and
jXE=K� j D 11

2:

We know from Remark 43 that the ideal .L .E; �// of OQ.�5/ is either p1p2 or p3p4, where
p1 D .11; 7C �5/;p2 D .11; 8C �5/;p3 D .11; 6C �5/;p4 D .11; 2C �5/ are the primes of
Q.�5/ above 11. For the following list of curves L .E; �/ splits as p1p2: 216b1, 216c1, 291d1,
443c1, 475a1. For the following list of curves L .E; �/ splits as p3p4: 139a1, 140b1, 267b1,
333d1, 378h1, 432g1, 579a1.
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