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Abstract
Empirical study of road traffic collision rates is challenging at small geographies due to the relative rarity of
collisions and the need to account for secular and seasonal trends. In this paper we demonstrate the successful
application of Hidden Markov Models (HMMs) and Generalised Additive Models (GAMs) to describe road traffic
collision (RTCs) time series using monthly data from the city of Edinburgh (STATS19) as a case study. While both
models have comparable level of complexity, they bring different advantages. HMMs provide a better interpretation
of the data-generating process, whereas GAMs can be superior in terms of forecasting. In our study both models
successfully capture the declining trend and the seasonal pattern with a peak in the autumn and a dip in the
spring months. Our best fitting HMM indicates a change in a fast-declining-trend state after the introduction of
the 20mph speed limit in July 2016. Our preferred GAM explicitly models this intervention and provides evidence
for a significant further decline in the RTCs. In a comparison between the two modelling approaches the GAM
outperforms the HMM in out-of-sample forecasting of the RTCs for 2018. The application of HMMs and GAMs to
routinely collected data such as the road traffic data may be beneficial to evaluations of interventions and policies,
especially natural experiments, that seek to impact traffic collision rates.

Keywords
road traffic collisions; speed limits; speed zones;time series; linear models; maximum likelihood estimates; state-
space model

Introduction
The United Kingdom’s Department for Transport (DfT)
reported that in the 12 months up to September, 2018
27,295 people were killed or seriously injured on British
roads. Although deaths and injuries on the road have
been declining locally and nationally (170,993 casualties
in 2017 compared to 160,597 in 2018), as a preventable
cause of death and disability, road traffic collisions (RTCs)
remain an important policy priority.

A key in reducing the number of RTCs is a
good understanding of their trend and seasonality. In
particular, it is important for policy makers to be able to
identify shifts in trend and associate them with possible
causes. Accidents are the result of complex human
behaviour influenced by multiple factors across micro-
macro geographic and temporal scales. To model all of
these would be impossible. In this paper we present
two different modelling approaches that provide valuable
insights in the data generating process of RTCs using a
minimal number of explanatory variables.

We take RTCs in Edinburgh as a case study. Our choice
was motivated by the fact that in 2016 a 20mph speed limit
was introduced city-wide across Edinburgh by the City of

Edinburgh council (Turley 2014). It is a sign-only scheme
and does not include physical traffic calming measures
(Scotland 2016). We investigate the effect of this policy
on a city-wide scale, implicitly including spill-over effects
on Edinburgh streets with no additional restrictions. The
20mph speed limit, which from now on we will refer to
as the intervention, is a suitable example of an event that
can potentially be associated with a structural change in
the trend of RTCs and thus is of particular interest for the
policy makers. A systematic review of the effectiveness
of 20mph speed limits is provided in (Cairns et al. 2014;
Cleland et al. 2020).

The Hidden Markov Models (HMMs) discussed in this
paper treat the time points of trend shifts as unknown.
If, however, a shift in trend can be associated with one
particular factor such as the speed limit intervention,
the effect of this factor could be explicitly modelled
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using a different modelling approach - the Generalised
Additive Model (GAM). GAMs allow for non-linear
dependence in the covariates and thus provide more
flexibility than standard modelling approaches such as
Generalised Linear Models (GLMs).

The aim of this methodological paper is to provide
additional valuable tools to the methods commonly
used to aid decision-makers in the evaluation of natural
experiments. In particular, we introduce methods to
detect shifts in the trend of a time series and to
assess the influence of potential contributing factors.
Our methodology enables a wider range of research
questions to be asked when faced with small samples of
longitudinal outcome measurements, adopting extensive
model discrimination procedures which include forecast-
ability of the models considered. In addressing the
challenges of modelling outcomes such as RTCs at
smaller scales like individual cities, we gain an
understanding of the trends and seasonality of the RTCs
in Edinburgh as well as the effects of the 20mph speed
limit policy that was introduced in 2016.

The sparse presentation of the modelling approach
common in the planning literature related to 20mph speed
limits in the UK (for example Grundy et al. (2009)) is
of limited help to the practitioners. This is why we have
taken the effort to make our methods transparent and
reproducible by providing sufficient detail.

Approaches commonly used for modelling
RTCs and related phenomena
Key approaches to modelling RTCs and related phenom-
ena include Autoregressive Integrated Moving Average
(ARIMA) models, Poisson count models, Negative Bino-
mial models, Multivariate/Binomial logistic models, Hid-
den Markov Models (HMMs) and Generalised Additive
Models (GAMs).

ARIMA models are important for quantifying the
trend in collisions (by week/month/year), facilitating
forecasting of collisions and assessing for seasonality.
This type of model has been implemented for modelling
data on accidents from various countries (Yousefzadeh-
Chabok et al. 2016; Mehmandar et al. 2016), for
forecasting the trend in road collision mortality and
assessing road traffic injury trends (Friedman et al. 2007),
for assessing the impact of raised speed limits on road
traffic fatalities (Rodrı́guez et al. 2015), and assessing
road traffic injury trends, and assessing and predicting
road accident injury (Parvareh et al. 2018).

Poisson models are commonly used for modelling
road collision data since the data are counts (Akin
2001; Roshandeh et al. 2016). However, in many cases
the data are overdispersed, and Poisson models are not
ideal. In contrast, Negative Binomial models facilitate the
modelling of count data when that data are overdispersed.
In a recent study on the effects of 20 mph speed limits

in Bristol Bornioli et al. (2020), Negative Binomial
regression was applied to demonstrate the significant
effect of the intervention on the reduction of fatal injuries.
Both Poisson and Negative Binomial models are applied
in Akin (2001).

HMMs are important for assessing underlying mech-
anisms for generating the observed data and are suitable
for overdispersed, and autocorrelated data (Zucchini et al.
2016). These models, also known as Hidden Markov Pro-
cesses or Markov Switching models, are another option
for modelling count data such as the number of road traffic
collisions per month. Through the introduction of a latent
layer, these regime-switching models naturally accom-
modate long-term structural changes. HMMs have been
adopted by researchers for assessing vehicle trajectories
(Saunier and Sayed 2006), for modelling traffic incidents
at intersections (Jun et al. 2013), for modelling Vehicular
Crash Detection (Singh and Song 2009) and for vehicle
collision prediction (Xiong et al. 2018).

GAMs facilitate modelling count data such that the
explanatory variables are incorporated into the model
in the form of smooth functions, allowing for non-
linear relationships to be considered in the modelling
process. A GAM can be considered as an extension of a
Generalised Linear Model (GLM). GAMs have been used
for estimating motorcycle collisions (Machsus et al. 2015)
and for accident frequency analysis (Xie and Zhang 2008)

Other approaches in road traffic collisions research
include those which focus on assessing the impact of key
factors on the frequency of road traffic collisions such
as Lord and Mannering (2010), assessing the probability
of injury severity of drivers with discrete choice models
such as ordered Probit and mixed Logit models (Chen and
Chen 2011; Chen et al. 2019; Dong et al. 2018), assessing
individual transport corridors (Kolody et al. 2014) and
investigating the likelihood of road traffic collisions by the
hour (Chen et al. 2018).

To date, road traffic collisions in the UK have not been
modelled with either HMMs nor GAMs; the focus has
been on Poisson based models. Modelling approaches
already used include Space-time multivariate Bayesian
models (Boulieri et al. 2017), Zero Truncated Bivariate
Poisson models (Chowdhury and Islam 2016), Gener-
alized linear models, Generalized estimating equations,
Hierarchical generalized linear models (Memon 2012),
and interrupted time series models Grundy et al. (2009).

Extending the focus to time series models such as
HMMs and GAMs introduces a larger scope for enquiry
into the RTC temporal trends. Our methods extend that
done by Grundy et al. (2009) by facilitating the detection
of structural changes in the temporal trend, and facilitating
the detection of non-linear patterns in the temporal trend.

The detection of latent temporal shifts in road traffic
collisions has not been addressed in the modelling
approaches in the literature so far; in addition, non linear
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estimation of the temporal trend has not been addressed
either. In this paper we address both of the above-
mentioned goals.

Data
The dataset used for the analyses in this paper is
the road safety data compiled by the Department
for Transport from STATS19 accident report forms
that are completed by the police for any collisions
involving person injury in Great Britain (source https:
//www.gov.uk/government/collections/
road-collisions-and-safety-statistics).
In particular we investigate the monthly total count
of RTCs, which happened in the City of Edinburgh
(citywide) for the period for which we have available
data: April 1996 until December 2018 (we subset the
data for the UK by setting LAD # = 923). Edinburgh
is the capital city of Scotland, with a central Old Town
including buildings data back to the medieval period
and an adjacent Georgian New Town, surrounded by
suburbs. In 2017 the population of the city was estimated
to be 513,210 (source https://www.edinburgh.
gov.uk/strategy-performance-research/
edinburghs-population?documentId=
12754&categoryId=20202), living across an
area of around 264 km2. The city is home to businesses
and industry as well as a popular tourist destination, with
major festivals in August and December/January.

We have 273 monthly observations in total, 30 of which
are after the intervention. We divide this in two samples -
a training and a validation. The training sample ends in
December 2017 and has 261 observations, 18 of which
are after the intervention. We use this sample for fitting
models. The validation sample consists of the 12 monthly
RTCs in 2018 and is used for evaluating out-of-sample
forecasting performance of the chosen models. We note
that from the viewpoint of the complexity of the models
we use in our analyses, our (training) sample size, i.e. the
number of time points, is small.

Figure 1 plots the total time series of RTCs in the City
of Edinburgh for the study period. The solid bar indicates
the time point of the intervention - July 2016, while the
dashed bar indicates the start of the validation sample.
Visual inspection suggests dependence in the data and a
decreasing trend. There seems to be a further decrease in
the trend after the intervention but a more formal approach
is needed to strengthen this statement.

To gain further insights we plot in Figure 2 the mean
RTCs per month divided by the number of days for
the respective month (leap years are ignored for this
calculation), i.e. we plot the mean RTC rate per day
for each month. The plot gives a crude idea of potential
seasonality. There seems to be a peak in the autumn
months, while the start of the year tends to be calmer. We
also observed an isolated peak in August, which might
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Figure 1. Time series of monthly counts of road collisions in
Edinburgh. The solid bar indicates the time point of the
intervention - July 2016. The dashed bar indicates the start
of the validation sample - January 2018.

be attributable to the increase traffic during the Fringe
festival in Edinburgh.
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Figure 2. Mean RTCs for each month divided by the number
of days for the respective month (mean rates).

This early exploratory analysis shows indications for
serial dependence, trend and seasonality, which will be
addressed in the methodology section.

Methodology

Hidden Markov Models
In their nature HMMs are time series models, which
automatically makes them a suitable candidate. They
account for dependence in the data through the latent
Markov Chain. They are flexible and could be tailored for
many real world applications. In particular, incorporating
trend and seasonality is straight-forward as demonstrated
in Section Modelling the state-dependent distributions.
Moreover, the distributions of forecasts could be easily
obtained as discussed in Section Estimation, model
selection, diagnostics, decoding and forecasting. In
addition, the latent states could be decoded, which in
turn could provide useful insights in the data-generating
process. Most importantly, through the latent layer of
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state process
(hidden) St−1 St St+1

observations Xt−1 Xt Xt+1

Figure 3. Visualisation of an HMM. Arrows indicate
dependence. St denotes the state process, while Xt

denotes the observable one.

states one can detect shifts in the trend without explicitly
accounting for potential explanatory variables, which may
be difficult to obtain.

HMMs are stochastic processes containing two
components - an observable time series influenced by
an underlying latent state sequence. In our case the
observable process produces realisations of the RTCs.
It is assumed that at each time point the system could
be in one of N possible states indicated by the hidden
process. The latter follows a Markov Chain satisfying
the memorylessness property that given the current state
future values are independent of the past. The random
variables from the observable process are assumed to be
drawn fromN distributions, where the latent state process
determines which of these distributions is “switched on”
at each time point. For this reason the distributions are
called “state-dependent distributions” and are usually
assumed to come from the same distributional family (see
(Langrock et al. 2015) for a non-parametric approach).
Conditional on the current state, the respective observable
random variable is independent of all past (and future)
observations and states.

In the following we denote the observable state-
dependent process by Xt, t = 1, ..., T with T being the
sample size, and the underlying latent N−state Markov
Chain by St. The two components and their dependence
structure are visualised in Figure 3. Given the limited
data set we consider HMMs with N = 2 states but also
checked in the empirical study whether more than 2 states
are required.

The specification of HMMs can be broken down
into two parts - specification of the Markov Chain and
specification of the state-dependent distributions. Here we
provide a short summary of these specifications. Details
can be found in the Supplementary material.

A Markov Chain is charactarised by the initial
distribution δ, i.e. the probabilities of each state when we
start observing the process, and by transition probabilities
γtij := P(St = j|St−1 = i) summarised in the transition
probability matrix (t.p.m.)

Γ =

(
γ11 γ12
γ21 γ22

)
=

(
1− γ12 γ12
γ21 1− γ21

)
(1)

γ11 and γ22 give the probabilities of staying in the same
state - State 1 and State 2, respectively, while γ12 and γ21
provide the probabilities for a shift.

For the state-dependent distributions we first specify
the distributional family. Since we are modelling counts,
a suitable candidate is the Negative Binomial (NB)
distribution. It has the advantage of a size parameter
controlling the variance and therefore allowing for
overdisperssion within the states. We consider two further
distributional families - Poisson and Normal. The Poisson
distribution is a popular choice when modelling counts.
It offers less flexibility than the NB distribution as its
variance strictly equals the mean. Noting that the counts
are relatively large numbers taking a wide range of values,
one could alternatively use the Normal distribution as an
approximation.
Irrespective of the choice of distributional family for the
counts of RTCs, we model the mean taking a Generalised
Linear Model approach. In particular, we use a log link to
express the mean as follows:

log(µt,i) = log(dayst) + ai + b1,it

+ b2 cos(2πt/12) + b3 sin(2πt/12), (2)

with i = 1, ..., N and t = 1, ..., 261. log(dayst) is the
offset. ai and b1,i are the intercept and the slope of the
trend lines associated with each state. A switch between
the state would therefore lead to a switch in the trend. For
completeness in our empirical study we consider a model
with a constant slope across the states, i.e. b1,1 = b1,2 =
b1. We refer to this model as a “constant trend” model. In
simple words, such a model accommodates a step change
in the expected number of RTCs without affecting the
trend.
Note that we implicitly assume that the seasonal pattern
controlled by the parameters b2 and b3 is constant across
the states. This is done out of necessity given the small
sample size but we also find this assumption reasonable.
Any changes are more likely to affect the trend rather
than the seasonality. We also note that a constant seasonal
pattern facilitates the interpretation of the states.

If the research interest lies in studying the influence on
the trend of one particular factor such as the intervention,
it can be added within the framework of HMMs as
a further explanatory variable in the mean model for
the state-dependent distribution (2). We explore this
modelling approach in the Supplementary material. Here
we note that we found no compelling evidence for the
advantage of this alternative. This is not surprising. We
would expect the intervention to have an effect either on
the Markov Chain as a cause of a structural change, or
on the state-dependent distribution but not necessarily on
both.

Estimation, model selection, diagnostics, decoding and
forecasting We use a Maximum Likelihood approach
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for the estimation of the model parameters. A brute
force approach to calculating the likelihood would require
summation over all possible states at each time point,
which becomes infeasible even for moderate sample sizes.
Tractability of the likelihood is achieved using the so-
called forward algorithm - see (Zucchini et al. 2016) for
details. The parameters in the likelihood are estimated
using Newton-Raphson-type numerical optimisation of
the log likelihood. This is implemented in the software
R (R Core Team 2018) using a bespoke code based on the
routine nlm.
We use the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) to choose between
the candidate models. One way of checking the adequacy
of the model is using pseudo-residuals. For details about
the calculation of these see (Zucchini et al. 2016).
The crucial part in our analysis is decoding the states to
allow us to detect shifts in the trend. For this purpose
we use a procedure known as the Viterbi algorithm
(see Zucchini et al. (2016)) that allows us to obtain the
sequence of states with the highest probability given the
data.
Using the concept of forward probabilities which is
in the core of the forward algorithm, one can obtain
the distribution of the h-step-ahead forecasts of the
observable variable Xt - see (Zucchini et al. 2016). From
this distribution point and interval forecasts can be easily
produced.

Generalised Additive Models
The HMM from the previous section allows us to detect
shifts in the trend, which can be associated with the
intervention. However, when the primary interest of
the policy makers lies in the explicit modelling of the
intervention effect Generalised Additive Models (GAMs)
(Wood 2016) provide a suitable alternative.

A GAM for the RTC data could be specified as follows.
Let Xt be a random variable for the RTCs such that
Xt ∼ NB(µt, n) and

log(µt) = log(dayst) + ftr(t) + fseas(s)

with t = 1, ..., 216 and s = 1, ..., 12. log(dayst) is
as before an offset term, ftr and fseas are smooth
functions with cubic spline basis for the trend and for the
seasonality features, respectively. Detail on constructing
splines is provided in Wood (2016). We note that fseas
is s cyclic cubic regression spline with k = 12 knots
to ensure continuity at the end points of the spline.
The basis dimension of ftr is set to 10 - the default
suggested in Wood (2016). In our empirical study we
checked whether this dimension is sufficiently high using
a residual randomisation test.

Incorporating the effect of the intervention, the mean
equation could be modified as follows

log(µt) = log(dayst) + ftr,1(t) + fseas(s) + dtftr,2(t),

where as before t = 1, ..., 261 and s = 1, ..., 12 and
dt is a dummy variable taking the value zero for t =
1, 2, ..., 243 and 1 otherwise. This is in fact a smooth-
factor interaction between the trend and the dummy-
variable dt. ftr,1 gives effect of the trend without the
intervention, ftr,2 gives the additional effect of the
intervention on the trend. If the term is significant and
leads to a further decline of the trend, then this provides
evidence that the policy of limiting the speed to 20mph in
the city of Edinburgh has been successful.
We fit the model using the gam function from the mgcv
package (Wood 2016). A restricted Maximum Likelihood
(REML) estimation is applied.
For model selection (between GAM models) a corrected
AIC is used as defined in Wood (2016), p.304.
Diagnostics were performed using residual plots and
tests on the deviance residuals. In particular, we look at
quantile-quantile plots and residual versus fitted values
plots to see if there are any patterns unexplained by the
model. We also check the autocorrelation in the residuals.
Using the underlying parametric representation of a GAM
model, one can obtain a “prediction matrix” based on the
covariates. Together with the estimated coefficients the
prediction matrix could be used for forecasting (Wood
2016). In R we use the command predict with the
argument type="response" to produce forecasts on
the response scale.

Empirical study
In an empirical study we fit the HMMs and the GAMs to
the RTC data and run model selection, model diagnostics
and forecasting evaluation. We start with fitting HMMs to
the data.

HMMs
There is a wide variety of candidate models within
the HMM framework. In particular we have to make a
decision regarding the distributional family of the state-
dependent distributions, the number of states and whether
we will allow the slope of the trend to vary across the
different states.
For this purpose we consider 6 models in total. First
we fit 2-state HMMs with NB, with Poisson and with
Normal state-dependent distributions. For these models
we keep the effect of both the trend slope and seasonality
constant across the states. Based on the best fit we
investigate whether increasing the number of states brings
an improvement. Finally we consider models when the
trend slope varies across the states (but the seasonality
remains constant as discussed above). The likelihoods and
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Table 1. Negative Log-likelihood (nllk), AIC and BIC for the 7
HMMs. S stands for seasonality, T stands for trend. The
minimal AIC and BIC are given in bold.

Model nllk AIC BIC

HMMs with constant T and S

2-state NB 1070.26 2158.51 2190.59
2-state Poisson 1086.49 2186.97 2211.92
2-state Normal 1073.85 2165.69 2197.77

1-state NB 1086.56 2183.11 2200.93
3-state NB 1067.28 2164.56 2218.03

2-state NB HMM with varying T

varying T 1067.33 2154.66 2190.31

the model selection criteria for the 6 models are given in
Table 1.

From the three candidate distributions, the NB is
preferred. Note that the Normal distribution provides a
reasonable approximation. One state is not enough to
explain the data, which indicates that the trend is not
constant. Note that the 1-state HMM is in fact a GLM,
which indicates that a non-trivial HMM is preferred over
simpler models. In addition, more than two states are
not justified even for the simplest models. Based on both
model selection criteria the best model is a 2-state NB
with varying trend and constant seasonality.

Model fit and diagnostics for the best model In this
section we investigate the model fit of our preferred
HMM. First we check the adequacy of the fit with
the pseudo-residual segments. A plot is provided in
Supplement Figure 1. We don’t spot any particular
problems as most segments are within the 99% confidence
boundaries. Therefore there are no clear indications for
inadequacy of the fit.

Summaries of the the estimates of the intercept and
the trend coefficients in equation (2) is provided in the
Supplementary material. We note here that there is a
significant negative trend. The estimates of the trend
coefficients for each state do not lie in the confidence
intervals for the trend parameter of the other state, which
confirms that there is a significant difference in the effect
of trend across the states.

To facilitate the interpretation of the estimated trend
coefficients and to gain a better understanding of the states
we plot the fitted values for both states in Figure 4.

State 1 starts with a slightly higher expected number of
RTCs and its decline over the years is slower. Based on
the plot we cautiously label state 1 as a “slow-decreasing-
trend” and state 2 as a “fast-decreasing-trend” state.

The contribution of each month to the log rate is plotted
in Figure 5. Ceteris paribus, accident numbers seem to
peak in early autumn and are lowest lowest in early
spring. This result confirms our findings in the exploratory
analysis (Figure 2).
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Figure 4. 2-state NB HMM with varying trend, constant
seasonality and no intervention effect: Fitted values for the
two states. Solid line is for state 1 and dashed line is for
state 2.
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Figure 5. 2-state NB HMM with varying trend and constant
seasonality: contribution of each month to the log mean.

The estimated t.p.m. is

Γ̂ =

(
γ̂11 γ̂12
γ̂21 γ̂22

)
=

=

(
0.9624 (0.9470,0.9973) 0.0376 (0.0027,0.0530)

0.0123 (0.01,0.1306) 0.9877 (0.8694,0.99)

)
The states are very persistent and switches occur rarely -
between 1% and 3% of the time (depending on the state).
Persistent states (high probability of staying in the same
state) can be reasonably explained by a slow changing
data-generating process with the rare switches between
the states corresponding to non-observable structural
changes. In our model switches correspond to trend shifts.
The indication that these occur rarely is in line with our
expectations.
The key question is to find when the trend shifts
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took place. We address this using the global decoding
procedure - the results are given in the upper plot in
Figure 6.
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Simulated RTCs from the best model (same sequence of states)

Figure 6. Decoding of the states and a simulated sample.
State 1 (“slow-decreasing state”) is in dashed line, while
state 2 (“fast-decreasing state”) is in solid line.

The states are indeed persistent with the system tending
to stay slightly longer in the “fast-decreasing-trend”
state 2. For the 261 months we observe four transitions,
which is in line with the estimates for γ12 and γ21. The
four trend shifts occur in October 1997 (fast to slow), July
2000 (slow to fast) , November 2013 (fast to slow) and
April 2017 (slow to fast).

It is not always possible to associate a trend shift with
a particular event. There are many factors working in the
background and their interaction might have caused the
slowing or the acceleration of the decreasing trend. At the
moment we don’t have an explanation for the first three
shifts. However, the last trend shift - the one in April 2017
- occurred several months after the intervention. The result
can be used as an indicator for the policy makers that the
20mph limit was a success.
Note that using HMM to detect a trend shift could be a cue
to explore potential explanations, especially if the shift
indicated an increase in RTCs.

If the policy makers are interested in an explicit
modelling of the effect of the intervention, GAMs provide
a better alternative.

Before we investigate this in more detail, we run a
further diagnostic check using simulations from the
fitted model. For the purpose of comparison we use the
decoded state sequence for the simulation. The simulated
time series of RTCs is given in the lower plot of Figure 6.
The simulated data seems to reflect well the observed
process. In particular it captures the declining trend and
the formation of a ”trough” in the later years of the
observation period.

GAMs
Two GAMs- one with and one without intervention - are
fitted to the data using the R package mgcv. The corrected
AIC of the GAM with intervention (2115.456) is lower
than the corrected AIC of the model without intervention
(2116.385). This provides us with some confidence to
work further with the former model.

We start with running some diagnostic checks on the
fit. Detailed information is given in the Supplementary
material. Here we note that the fit is reasonable.

The model fit reveals that the smooth terms for the
trend, for the seasonality and for the additional effect
on the trend are all highly significant (the three p-values
are < 0.001), which provides further evidence for the
statistical significance of the effect of the intervention. We
plot the three smooths in Figure 7. The GAM has correctly
captured the declining trend including the “trough” in
later years. The seasonal pattern is very similar to the one
in Figure 2 from the exploratory analysis. The key finding
is that the effect of the intervention is to further decrease
the number of RTCs. Thus the GAM also indicates that
the introduction of the 20mph limit policy in the City of
Edinburgh was successful.
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Figure 7. Fitted smooths. Upper plot gives the smooth for
the trend, lower left plot gives the smooth for the seasonality,
lower right plot gives the smooth for the additional effect of
the intervention.

Forecasting
HMMs and GAMs helped us learn about the trend,
seasonality and the impact of the intervention on the RTCs
in Edinburgh. Both approaches serve different purposes
in our study - detecting shifts in the trend for the HMMs
and explicit modelling of the intervention for GAMs - but
a natural question is how do the two models compare to
each other. We address this question by using forecasts
as a comparison measure for the performance of the
best performing HMM and GAM from the model fits. In
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particular, we take advantage of the 12 observations for
2018 to make 1-step-ahead out-of-sample forecasts and
evaluate the performance of the two models using the
Mean Squared Error (MSE) measure.

Table 2. A table with the observed RTCs and the forecasts
from the selected HMM and GAM.

Month RTCs HMM GAM

1 60 76 66
2 60 66 58
3 74 71 60
4 55 68 54
5 50 70 60
6 74 70 57
7 73 75 55
8 75 78 63
9 60 78 56

10 62 81 58
11 69 77 59
12 56 77 51

MSE - 171.56 102.69

Table 2 gives the observed values and the two sets of
forecasts for each month in 2018 as well as the MSE.
The GAM has a much lower MSE than the HMM, which
can be attributed to the fact that the HMM tends to
overestimate the RTCs in the last few months of 2018. We
conclude that the GAM proves more valuable in making
out-of-sample forecasts.
To consolidate our findings about the intervention effect,
we calculate the MSE of the forecasts obtained from the
GAM without intervention. This MSE was 126.11, which
is higher than the MSE of the forecasts from the GAM
with intervention. This provides further evidence for the
intervention effect.

Discussion

In this paper we apply and critically appraise two
modelling approaches - HMMs and GAMs - to develop
our understanding of the systems that determine road
traffic collisions and to evaluate changes and interventions
within those systems.

The reduction of road traffic collisions is a “real world”
problem for which the analytical tools for assessment
deal with primarily, count data. Here, we demonstrate
successfully, both the application and advantage of using
HMMs and GAMs in evaluations conducted within a
public health natural experiment framework. Moreover,
we have suggested techniques that can be used in local
government to learn about the shifts in RTC trends and
to identify when an intervention may be required - for
example when the HMM indicates a slow down in the
decreasing trend.

Hidden Markov Models are gaining popularity in
modelling time series in numerous areas of research,
including ecology (Popov et al. 2017), finance (Rogers
and Zhang 2011) and medicine (Langrock et al. 2013)
to name just a few. From modelling perspective, the
advantages of HMMs lie in their intuitive appeal, the
mathematical tractability of the likelihood function and
the flexibility of extending the baseline model. From the
perspective of the policy makers HMMs can be used
as an exploratory tool to identify shifts in trend using
the procedure of global decoding. In our case study we
focused on a well known intervention and demonstrated
that the trend moved from a slow-decreasing to a fast-
decreasing state several months after its introduction. In
other applications, the time points of switches between the
latent state trends can potentially be linked to previously
unidentified and modifiable determinants of collisions.

When the main interest lies in modelling the effect
of the intervention, GAMs (Wood 2016) provide an
alternative modelling approach that captures non-linear
patterns using splines. These models can be easily adapted
for time series data.

We draw two major conclusions from our study. First,
both HMMs and GAMs could reliably model time series
of RTCs when the main goal is to reflect the trend and
the seasonal patterns observed in the data. In terms of
assessing the effect of intervention, the GAM was our
preferred approach because of the better model fit and
forecasting success. Second, there is compelling evidence
that, following the 20mph policy in Edinburgh a further
reduction in collision rates in this city occurred. This is
a significant result for overall public health in the City of
Edinburgh and can spur on similar policies in other cities
in the United Kingdom.

It is worth noting however, that there are a number
of covariates that can potentially influence the RTCs:
other activities occurring in the City such as the cycling
and walking initiatives in the City of Edinburgh, the
fluctuating changes in fuel prices, general attitude towards
alcohol consumption, etc. As with the intervention,
we have only considered them implicitly within the
HMM framework by allowing structural changes in
the data-generating process. Future studies may focus
on quantifying them and when a richer data set is
available - implementing such covariates in the modelling
approaches outlined in this paper.

Finally, there is no reason why HMMs and GAMs
should only be viewed as competing models. Both
approaches can be successfully combined in an HMM
with smooth functions of the covariates in the state-
dependent distributions (Langrock et al. 2017). Our
sample size is too small for such a complex model but
once more data are available this path could be explored
in future research.
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