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The importance of considering homogenous economic agents when estimating energy demand functions is rec-
ognized in the literature, but so far data availability problemshave explained the prevalence of empirical analyses
only at an aggregate level. Motivated by the goal of developing the new industrial module to be adopted by the
UK government Department of Business, Energy and Industrial Strategy (BEIS) for their econometric Energy De-
mand Model, we propose the first cointegration analysis that provides evidence on energy demand elasticities
with respect to economic activity and energy price at a disaggregated industrial level. While the average of our
estimates are comparable to those of the existing literature on the industrial sector as a whole, we find that
there is considerable heterogeneity in relation to the long-run impact of economic activity and energy price on
energy consumption, as well as to the speed with which firms re-adjust their equilibrium demand of energy in
response to economic shocks. Finally, we learn that long-run disequilibria are tackled through altering the
level of energy consumption rather than economic activity, a conclusion that has important implications for pol-
icy analysis.
.V. This is an op
©2017 TheAuthor(s). Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
Keywords:
Energy demand
Energy consumption
Elasticities
Industrial
Subsectors
Industrial sector
Cointegration
1. Introduction

The amount of energy used in industrial sectors constitutes an impor-
tant share of national energy balances. Despite decreasing in some OECD
countries, industrial energy consumption has accounted for a surprisingly
constant share of world energy consumption, fluctuating between 33% in
1971 and 27% in 2013 (IEA, 2016).While the 2007 special issue of Energy
Economics devoted to modelling industrial energy demand (Greening
et al., 2007) testifies the academic interest for this subject, econometric
studies on industrial energy demand are surprisingly scarce, as argued
in Bernstein and Madlener (2015). A somewhat plausible explanation
for this lack of published studies could be related to the perception that
the industrial sector is one of the hardest end-uses to analyse, model
and forecast (Greening et al., 2007), a perception which might be imput-
ed to aggregation problems, i.e. the high heterogeneity of industrial firms,
lumpy and sunk nature of investments, lags between the time when in-
vestments are made and when their impact on energy consumption un-
folds, and the diversity in the energy price faced by industrial firms.

Existing data and tools available in standard econometric toolkits,
however, are able to tackle these issues to a reasonable extent. In the
spirit of Pesaran et al. (1999), who advocated estimation of energy de-
mand functions on a set of consumers that is as homogeneous as
en access article und
possible, the increasing availability of data disaggregated at two-digit
SIC level for a sufficiently long time span should help overcomeaggrega-
tion issues. The impact of the lumpy nature of energy investments can
manifest itself as structural breaks in the coefficients of energy demand
models but rigorous econometric tests, like the one adopted in this
study, can easily be employed to ascertain and control for these changes.
Modelling the impact of economic variables on energy-using stock
while taking into account the lag between the time investments are
made and when their impact on energy consumption unfolds is more
problematic. The capitalmeasurement framework and the dynamic fac-
tor demand model of Pindyck and Rotemberg (1983) can be used to
take into account different vintages of capital and price-induced im-
provements in the energy efficiency of capital stock, as recently imple-
mented in Steinbuks and Neuhoff (2014), but comprehensive data are
rarely available.1 Finally, the difference in energy price levels faced by
industrial firms is also difficult to incorporate in econometric studies.
In some cases data are available, e.g. Department for Business, Energy
and Industrial Strategy (BEIS) (2016a) publishes data on fuel prices
paid by firms of different sizes, but similarly disaggregated information
on energy consumption and GVA is not accessible, therefore hindering
any econometric analysis. Microeconometric approaches like the one
1 As an example, the EU KLEMS database used in Steinbuks and Neuhoff (2014) ends in
2009.

er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/355150445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2017.08.027&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.eneco.2017.08.027
mailto:p.agnolucci@ucl.ac.uk
http://dx.doi.org/10.1016/j.eneco.2017.08.027
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/01409883
www.elsevier.com/locate/eneeco


367P. Agnolucci et al. / Energy Economics 67 (2017) 366–374
implemented in Bjørner and Jensen (2002) are however able to address
this problem.

The aim of this paper is to estimate the industrial energy demand in
the UK by examining its dynamics within the different subsectors. In
this respect wemake two substantial contributions to the existing liter-
ature. First of all, we highlight that our paper is the first cointegration
study that provides evidence on energy demand elasticities at a disag-
gregated industrial level. Our review of the literature identifies only
three studies estimating industrial energy demand at a comparable
level of disaggregation, none ofwhich takes into account the time series
characteristics of the variables.2 Our choice to explicitly estimate the
long-run equilibrium relationship between energy consumption and
its main determinants enables us to investigate a number of key ques-
tions related to: 1) the impact on energy price and economic activity
of disequilibria in energy consumption; 2) the speed of the adjustment
process originated by any disequilibrium; 3) the role of trends in the
long-run energy consumption; 4) the structural stability of the estimat-
ed relationships.

Our second contribution consists in providing new evidence about
the relative importance of economic activity and energy price in deter-
mining the energy consumption level. No general consensus could be
found in the existing literature on the industrial sector of the economy,
a problem thatmight be due to the fact that industrial sectors have rare-
ly been subject to systematic investigation. A rare exception is the UK,
but unfortunately estimated elasticities differ significantly among stud-
ies. In some cases, such as in Dimitropoulos et al. (2005) and Hunt et al.
(2003), elasticities of economic activity is higher than that of energy
price, whereas a more balanced view can be found in Agnolucci
(2009) and Agnolucci (2010). Therefore, by looking at the dynamics of
energy consumption at the subsectoral level we hope to cast new light
on the current debate about the value of energy demand elasticities.
Our conclusions are important not only from an academic perspective,
but also, and probably more tangibly, for policy-making purposes as,
for instance, a very low value of the elasticity with respect to price ques-
tions the very rationale of policies that rely on price signals, e.g. the EU
ETS or the UK climate change levy, to achieve climate and energy
goals. As a matter of fact, the analysis developed in this paper has
been motivated by the very goal of developing the new industrial ener-
gy demand model adopted by the UK government Department of Busi-
ness, Energy and Industrial Strategy (BEIS), as part of their wider Energy
Demand Model.

The structure of the paper is as follows. In Section 2 we discuss the
existing literature and assess its conclusions. Reflecting our two lines
of contribution we mentioned above, we discuss two sets of studies,
with the first focused on the estimation of industrial energy demand
at the subsectoral level, and the other focused on the UK industrial sec-
tor as a whole. After setting out our methodological approach in
Section 3, we provide details on the data we use in Section 4. In
Section 5, after assessing the outcome from the unit root tests, we pres-
ent ourmain results in terms of cointegration analysis and estimation of
energy demand equations. These results are then discussed in Section 6,
followed by a summary of our findings in Section 7.
2. Literature review

In the energy literature, consumption of energy in the industrial sec-
tor is posited to be positively related to economic activity and negatively
related to relative energy price (when modelling energy demand) or
relative fuel prices (when modelling demand for a specific fuel).3 The
2 Bernstein and Madlener (2015) undertake an analysis similar to ours but concentrat-
ing on electricity rather than energy demand.

3 This simply implies that energy is assumed to be a normal good with respect to in-
come and an ordinary good with respect to price.
methodologies that have been applied to the study of energy and fuel
consumption in the industrial sector include:

1) Time series analysis based on cointegration, e.g. Polemis (2007),
sometimes allowing for time-varying parameters, e.g. Chang et al.
(2014);

2) Panel cointegration studies focused on the time component, e.g. El-
Shazly (2013), or the cross-section component of the panel, e.g.
Bjørner and Jensen (2002);

3) Input factor and fuel substitution models based on translog and lin-
ear logit specifications, which are normally static models applied to
one single (Kim and Heo, 2013) or several industrial subsectors
(Frondel and Schmidt, 2002), although dynamic specifications can
also be found (Christopoulos, 2000, Urga and Walters, 2003);

4) Approaches focusing on the asymmetric impact of economic vari-
ables, mainly implemented with regard to energy price, normally
based on the decomposition methodology introduced by Dargay
and Gately (1995) – see Adeyemi and Hunt (2007) and Adeyemi
and Hunt (2014) for two recent applications of this methodology
in the industrial sector;

5) Implementations of the Structural Time Series Model of Harvey
(1989), an approach introduced in the energy literature through
the Underlying Energy Demand Model (UEDM) of Hunt et al.
(2003) – see Dilaver and Hunt (2011) and Adeyemi and Hunt
(2014) for two recent applications in the industrial sector.

As noticed by Bernstein andMadlener (2015), disaggregated analyses
of energy consumption of industrial subsectors have rarely been under-
taken. In their literature review these authors cite five studies that use
two-digit industrial data: Agnolucci (2009), Calogirou et al. (1997),
Christopoulos (2000), Christopoulos and Tsionas (2002), and Floros and
Vlachou (2005). All these papers, with the exception of Floros and
Vlachou (2005), use two-digit industrial data to create a panel dataset,
i.e. Agnolucci (2009) and Calogirou et al. (1997), or to build a series for
the manufacturing sector as a whole, i.e. Christopoulos (2000), and
Christopoulos and Tsionas (2002). In other words, four out of the five
mentioned papers are not interested in producing estimates of elasticities
at the two-digit industrial subsector level.

In addition to Floros and Vlachou (2005), we identified two other
studies estimating energy price and economic activity elasticities in in-
dustrial subsectors. Bjørner and Jensen (2002) compute these elastici-
ties by using a fixed effects static model estimated on data from 8
surveys of firms collected in Denmark between 1983 and 1997. Price
elasticities vary between −0.69 and −0.21 with the average for the
whole industry being −0.44. Statistically significant energy demand
elasticities with respect to economic activity vary between 0.44 and
0.65, with the average for the whole industry being 0.54. Floros and
Vlachou (2005) model consumption of energy and energy fuels in the
Greek two-digit industrial subsectors by using a two-stage translog
model, where the first stage assesses the substitution between energy,
capital and labour, while the second stage captures the substitution be-
tween energy fuels. The model is estimated using time series data over
the period 1982–1998. Price elasticities vary considerably between
−1.13 and −0.02, with the upper bound decreasing to −0.04 when
non-statistically significant elasticities are discarded.

Steinbuks and Neuhoff (2014) assess the impact of energy price on
energy consumption by modelling price-induced and autonomous
changes in the energy efficiency of capital stock. These authors analyse
5 industrial subsectors in 19 OECD countries over the period 1990–
2005 bymeans of two models: a Vintage Capital model and a restricted
versionwhere the input efficiency of capital stock does not change, as in
Pindyck and Rotemberg (1983). Their results indicate that higher ener-
gy prices decrease energy use through improved energy efficiency of
capital stock and reduced demand for energy inputs. Price elasticities
of energy demand obtained from the Vintage Capital model estimated
for the UK industrial subsectors vary between −0.87 and −0.26,



Table 1
Energy demand elasticities with respect to price and economic activity estimated for the UK industrial sector.

Study Model Estimation period Price Economic activity

Hunt et al. (2003) STSM with symmetric price 1971–1995 −0.2 0.71
Dimitropoulos et al. (2005) STSM with symmetric price 1967–1999 −0.17 0.70
Agnolucci (2009) Average from various panel estimators 1978–2004 −0.64 0.52
Agnolucci (2010) STSM with symmetric price 1973–2005 −0.59 0.45
Agnolucci (2010) STSM with asymmetric price 1973–2005 −0.65/−0.47/−0.37a 0.48
Adeyemi and Hunt (2014) STSM with asymmetric price 1962–2010 −0.51b 0.49

Key: STSM= Structural Time Series Model.
a Elasticity with respect to price maxima, price recoveries and price cuts.
b Elasticity with respect to price maxima.
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narrower than the range obtained from the model of Pindyck and
Rotemberg (1983), i.e. between−1.04 and −0.25. The investment re-
sponse to energy prices varies considerably across manufacturing in-
dustries, being higher in energy-intensive sectors, but unfortunately
no results about the UK industrial subsectors are presented. Estimates
from Bjørner and Jensen (2002), Floros and Vlachou (2005), and
Steinbuks and Neuhoff (2014) are displayed for comparative purposes
in Table A2a and A2b of the Appendix.

In our literature reviewwe discovered that the same uncertainty as to
themagnitude of the elasticitieswith respect to price and economic activ-
ity characterizes theUK industrial sector, as canbe seen in Table 1). At one
extreme, we have studies like Dimitropoulos et al. (2005) and Hunt et al.
(2003), according to which energy price has a relatively modest direct
impact on consumption. At the other extreme, Agnolucci (2009) and
Agnolucci (2010) conclude that the effect of energy price is clearly stron-
ger than that of economic activity. Adeyemi and Hunt (2014), more re-
cently, obtain an estimate for the elasticity with respect to economic
activity that is very similar to Agnolucci (2009) and Agnolucci (2010),
but the contribution of energy price in explaining the highly variable pat-
tern of energy consumption is, however, limited by the fact that Adeyemi
and Hunt (2014) employ a model with energy price maxima only, based
on the decomposition approach of Dargay and Gately (1995). This choice
entails that the time series on price is mainly constant with only few step
changes occurring in the periods when a new pricemaximum is reached.

3. Methodological approach

Our study starts with the implementation of a unit root testing proce-
dure relying largely on the DF-GLS test of Elliott et al. (1996), given its
higher size-adjusted power in finite samples, and the Zivot and
Andrews (1992)4 test, which allows for one break at an unknown point
in time. The number of lags in the testing equations was selected by the
modified Akaike information criterion of Ng and Perron (2001), which
is robust to the presence of negative MA components in the error term.
We choose the deterministic terms by considering both the Akaike and
the Bayesian information criteria on models that include an intercept
only or an intercept and a linear trend. Implementation of unit root test-
ing is important as the cointegrating Vector Autoregression (VAR) model
briefly discussed below requires variables integrated of order one. In case
of stationary variables, one could implement a VAR in levels or in case of
non-stationary variables which do not appear to be cointegrated a VAR in
first differences, i.e. without the component in levels in the equation
below. In case of inconclusive results from unit root testing, implementa-
tion of the Bounds testing procedure of Pesaran et al. (2001) offers the ad-
vantage of being robust to variables being stationary or integrated of
order one. As evidence from unit root testing on the variables used in
this study point decisively at integration of order one, see results below,
discussion of the methodology is focused on the cointegrating VAR.

Estimation of the energy demand function is implemented in two
steps. In the first step we look for evidence of long-run relationships
4 ZA henceforth.
by testing for cointegration, using a Vector Autoregression (VAR) ap-
proach to model a system that describes the dynamics of energy con-
sumption, energy price and GVA (see Johansen, 1988 and Johansen,
1991). More formally, we estimate a standard Vector Error Correction
model (VECM) of order p

Δxt ¼ Γ0 þΠxt−1 þ
Xp

i¼1

Γ iΔxt−i;

where xt is a 3 × 1 vector containing the logarithms of energy consump-
tion, GVA and energy price, Π and Γi are 3 × 3 coefficient matrices andΓ0 contains deterministic terms. In those cases where cointegration is
found by the trace and maximum eigenvalue tests, one can then assess
the exogeneity assumption for the variables in the system and their signif-
icance inside the cointegrating vector. To assess the robustness of the re-
sults from the trace and maximum eigenvalue cointegration tests we
also run the Bounds Testing procedure of Pesaran et al. (2001), which is
implemented within a ARDL model that results from applying the Akaike
information criterion on the general specification corresponding to the
VECM used in the trace and maximum eigenvalue tests. Additional lags
are added until serial autocorrelation is removed from the residuals, as
assessed by the LM statistic and the inspection of the correlogram. In
those cases where cointegration is not found one would need to estimate
a VAR in first differences (based on our results from unit root testing). This
is not implemented in our study due to prevailing evidence for
cointegration discussed below. In the second step of our methodology,
we study the single equation Error CorrectionModel (ECM) explaining en-
ergy consumption conditional on the cointegrating vector estimated from
the VECM. This allows us to analysemore in depth thefit of themodel and
the short-run dynamic specification, including the adjustment coefficients,
as well as run the relevant diagnostic checks. A detailed discussion of the
two steps included in our methodological approach can be found below.

Factors that might influence energy consumption include energy-
saving technological innovation, the price of other production inputs
and changes in the structural composition of the industrial subsectors.
While a STSM can capture at least in part these factors through a stochas-
tic trend component, we prefer to focus on identifying the long-run rela-
tionships between the variables, which is best accomplished by a
cointegration analysis within a VAR framework. Moreover, we opt for a
parsimonious specification, a choice justified by the limited time period
spanned by the dataset and the inevitable loss of degrees of freedom
whichwould be implied by a VARwith a high number of variables. Draw-
backs and advantages of linearmodels like ours,which are theworkhorse
in the estimation of energy demand, are well known in the literature.
They are normally preferred on the basis of better performance compared
to more complex models, simplicity and limited data requirements
(Amarawickrama and Hunt, 2008; Bernstein and Madlener, 2015;
Bhattacharyya and Timilsina, 2010, and Pesaran et al., 1999).5
5 It is also worth mentioning that using a non-linear functional form would prevent us
from implementing cointegration analysis based on Johansen (1988) and Johansen (1991)
or the cointegration break analysis of Kejriwal and Perron (2010) discussed below.
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We adopt Johansen's VAR approach to cointegration for two main
reasons. Firstly, we do not want to impose the existence of only one
cointegrating vector, but instead let the data provide evidence for
this.6 Secondly, we prefer to adopt an agnostic reduced formmodelling
strategy, rather than imposingweak exogeneity assumptions on energy
price and GVA. By doing so we are able to investigate the validity of the
exogeneity restrictions rather than imposing them.7 A drawback of the
Johansen method, compared to the bounds testing approach of
Pesaran et al. (2001), is the need for all variables to be integrated of
the same order, which leaves some uncertainty related to the degree
of integration ascertained by any unit-root testing procedure. This
does not seem to be a very compelling reason for discarding the VAR ap-
proach based on the results from our unit-root tests.

In the first step of our methodological approach, we test for
cointegration by using the trace and maximum eigenvalue tests of
Johansen (1991). Following Johansen (1992) determination of the
cointegrating rank is based on the interpretation of the estimated
cointegrating relations aswell as their statistical properties. This implies
that we require estimated coefficients in the cointegrating vector to
conform to economic theory, i.e. a positive coefficient on economic ac-
tivity and a negative one on energy price. With regard to the determin-
istic terms in the cointegrating vector we have no prior reason for
preferring a cointegrating vector with a constrained trend to a vector
where only the intercept is present. Again, we follow Johansen (1992)
and estimate a model with a intercept only and one with a restricted
trend as well. Bearing in mind the methodological advice on
cointegration analysis in small samples from Lütkepohl (2005), and
Lütkepohl and Krätzig (2004), we start testing for cointegration in the
VECM with no lags and increment the lag order up to a maximum of
two if a cointegrating vectorwith signs consistentwith economic theory
cannot be found in more parsimonious models.8

During the estimation of the cointegrating vector, we drop either en-
ergy price or economic activity if coefficients with signs consistent with
economic theory cannot be found in models including up to two lags,
and examineVARswith two variables. As discussed in Section 4, this oc-
curred only in the case of one subsector. After estimating the
cointegrating vector, we implement likelihood ratio tests to assess the
exogeneity assumptions in the VECMs and the significance of each var-
iable in the cointegrating vector.We also analyse the residuals of the es-
timated VECMs to verify the absence of serial correlation and
heteroscedasticity. The stability of the long-run energy demand equa-
tion is investigated by implementing the procedure of Kejriwal and
Perron (2010)9 which allows for structural breaks at unknown points
in time in the cointegrating relationship.10We consider a pure structur-
al change model, i.e. case 1) in KP, where all coefficients are allowed to
change across regimes.We dealwith potentially endogenous regressors
6 Given the variables used in this study, i.e. energy consumption, energy price and GVA,
we interpret the existence of one cointegrating relationship as the demand for energy in
that specific industrial subsector.

7 Other advantages of Johansen's approach include higher estimation efficiency
resulting from a full information maximum likelihood method, absence of bias that might
be produced by neglecting either the short-run or the long-run components of themodel,
and the ease with which this framework allows to test for restrictions on the long-run
equilibrium relationships. There is also some evidence of better finite sample properties
(see e.g. Gonzalo, 1994).

8 As discussed in Lütkepohl and Krätzig (2004), starting with a large order, and sequen-
tially testing to remove not significant lags, has the problem of large Type I error. In addi-
tion, Lütkepohl (2005) clarifies that consistent order estimation may not be a relevant
objective in small sample situations. In fact, the true data generating process may not ad-
mit a finite order VAR representation.

9 KP henceforth.
10 KP propose amore comprehensive framework, specifically devised to address stability
in cointegration models, than the alternative of applying standard tests for unknown
breaks combined with Hansen's (2000) fixed regressors bootstrap procedure, or the ap-
proach followed in Johansen et al. (2000), which only deals with structural breaks in the
trend and intercept at a known point in time.
by adding one lead and one lag of the first-differences of the integrated
variables in an equation comprising the cointegrating vector, as sug-
gested by the dynamic OLS regression (DOLS) approach of Saikkonen
(1991).11 Considering the sample size, we decide to allow for one single
break throughout the testing procedure.

As mentioned above, in the second step of our methodological ap-
proach we study the short-run dynamics, including the adjustment co-
efficients, by estimating energy demand equations for all subsectors as
Error Correction Models (ECMs), conditional on the long-run relation-
ship identified in the cointegrating VARs, and incorporating the struc-
tural break if detected by the KP test. We add impulse dummies in the
short-run component of the model if extreme outliers emerge from vi-
sual inspection of the residuals. As simulation studies have shown that
excessivemodel reduction in ECMs carries the risk ofwrongly removing
relevant variables, we adopt a conservative approach by dropping only
those variables with a sign not consistent with economic theory and
those with the expected sign but a p-value higher than 0.50.12 Finally,
as a validation check, we test the estimated ECMs for heteroscedasticity,
serial correlation, functional misspecification and structural stability
using a CUSUM test.
4. Data

Our dataset includes three variables, energy consumption, energy
price and GVA, observed at an annual frequency between 1990 and
2014 for all the eight industrial subsectors, which are listed in
Table A1 of the Appendix. Energy consumption, which is computed as
the sum of fuel consumption from data in Department for Business,
Energy and Industrial Strategy (BEIS) (2016a), takes into account ener-
gy used for the production of heat and, from 2000 onwards, the impact
of energy efficiency policies. Energy price was obtained as a weighted
average of fuel prices, taken from Department for Business and Energy
and Industrial Strategy (BEIS) (2016b). Prices indices, which incorpo-
rate all relevant taxes (Climate Change Levy included), were converted
into price levels by using information on the2000 average fuel price.We
then added the price of the EU ETS allowances based on the carbon in-
tensity of energy fuels and the share of each subsector covered by the
EU ETS, and finally computed a time series for the energy price. Data
on the Gross Value Addedwhich are measured in chained volumemea-
sures (million pounds) and were obtained from ONS (2016). This data
source enabled an almost perfect match with the taxonomy of the in-
dustrial sector used in Department for Business, Energy and Industrial
Strategy (BEIS) (2016a), with the exception of the Non-Ferrous Metals
subsector, as shown in Table A1 of the Appendix. All data were convert-
ed into indices, although this does not affect the value of the coefficients
from the estimation as we take the logarithms of all variables.

Time patterns of the data can be seen in Fig. A1 of the Appendix. Vi-
sual inspection of the data hints at the possibility of our variables being
integrated of order 1, whereas the likelihood of a structural break in the
marginal distributions appears to vary considerably across subsectors
and variables. In the case of energy price, the change in the pattern
unfolding from 2005 onwards is apparent from the graphs. One can
also appreciate that, with the exception of TEX, the industrial GVA was
considerably affected by the financial crisis although economic activity
quickly return to pre-crisis levels in the case of ENV, FBT and NFM sub-
sectors. A key to the acronyms of the industrial subsectors modelled in
this study can be found in Table A1 of the Appendix.
11 Cfr. equation (9) in KP.
12 While simplicity and parsimony of a model are usually associated with a good fore-
casting performance, Brüggemann (2004) finds that reduction of the short-run dynamics
in a VECM can be detrimental not only for impulse response analysis but also for
forecasting.



Table 2
Estimated cointegrating vectors from the VECMs. The last column labelled “Exogeneity”
displays the p-value of the Likelihoood Ratio test on the joint significance of the adjust-
ment coefficients of the two equations describing energy price and economic activity. A
key to the acronyms of the industrial subsectors can be seen in Table A1.

yt pt Trend Constant Exogeneity

CHE 0.48 −0.32 −0.02 3.87 0.58
ENV 0.32 −0.30 −0.01 4.47 0.11
FBT 0.50 −0.17 −0.01 3.13 0.22
MIN 0.36 3.04 0.08
NFM 1.10 −0.52 1.50 0.93
OTH 1.42 −0.78 1.09 0.01
PPP 0.24 −0.34 4.83 n/a
TEX 0.12 −0.44 5.80 0.06
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5. Estimation results

5.1. Results from unit root tests

Our unit root testing procedure points at GVA, energy consumption
and energy prices of UK industrial subsectors being integrated of order
1, with some series characterized by evident structural breaks. This is
consistent with what was obtained by Bernstein and Madlener (2015)
for GVA, electricity prices and consumption in theGerman industrial sub-
sectors. More precisely, the DF-GLS tests on energy consumption point at
the variable being integrated of order 1 in all but one subsector – OTH -
see Table A3a of the Appendix. First differences of energy consumption
in this subsector, however, appear to be stationary based on the results
from the ZA test. Based on our results from the DF-GLS test, energy
price seems to be integrated of order 2, with few exceptions at the 10%
significance level (see Table A3b), but application of the ZA test decisively
points at the variable being integrated of order 1. GVA appears to be inte-
grated of order 1 in five subsectors out of eight, based on the DF-GLS test,
as shown in Table A3c. However, results from the ZA test lead us to con-
clude that GVA is integrated of order 1 in the remaining three subsectors.
Results from the unit root tests imply that we can proceed to test exis-
tence of cointegration among the variables used in our study. As de-
scribed above we do so by adopting the Johansen's approach to
cointegration and the Bounds Testing procedure of Pesaran et al. (2001).
16 Stability of the VAR in all subsectors is confirmed by the fact that all roots, apart from
5.2. Results from cointegration analysis

Results from the cointegration tests, shown in Table A4 of the Ap-
pendix, points overall at the existence of one cointegrating vector in
the estimated system. More precisely, at 10% significance level, the
trace statistic suggests one cointegrating vector in seven of the eight
subsectors, but in five subsectors, namely CHE, FBT, OTH, PPP and TEX,
thisfinding is supported by both the trace and themaximumeigenvalue
tests. Only the trace test indicates one cointegrating vector in the ENV
andMIN subsectors, whereas in the case of NFM, the trace and themax-
imum eigenvalue statistics both suggest two cointegrating vectors.13

Results from our application of the Bounds Testing procedure of
Pesaran et al. (2001), as described above, are shown in Table A5, while
the critical values can be found in Table A6 of the Appendix. After
selecting the model specification using the strategy discussed above,
we obtain evidence of cointegration in all but the ENV subsector.14

In summary, we can be sufficiently confident about the existence of
one cointegrating relationship in all of our eight industrial subsectors.
The exception of NFM, where apparently two cointegrating vectors
emerge, might be caused by the fact that, contrary to the other subsec-
tors, there is no perfectmatch between the definition of the subsector in
the economic and the energy datasets – see Table A1 of the Appendix.15

Given the consistent evidence from the other seven subsectors we take
the indication of a second cointegrating vector in NFM as a likely spuri-
ous finding, and so decide to estimate a VECM with one cointegrating
vector also for the this latter subsector.

Results from the cointegration tests imply that we can proceed with
the estimation of the cointegrating VAR described in the equation
above, according to the Johansen approach to cointegration, the results
from which are displayed in Table 2. All eight cointegrated VARs turn
out to be stable, with energy demand reducing the discrepancy from
13 Results for the ENV andMIN sectors could be reflective of the findings of Toda (1994)
according to which these tests are not very powerful for sample sizes that are typical for
economic time series. Lütkepohi et al. (2001) concludes that the trace test performs better
than the maximum eigenvalue tests when the power is low, which might explain our re-
sults in the ENV and MIN sectors.
14 Cointegration is however detected by the bounds test also in the ENV sector whenwe
include four lags in the ARDL model – test statistic being equal to 11.85.
15 Limitations arising from data availability are not new in this field. Bernstein and
Madlener (2015), for instance, highlight how this could be due to problems with data
quality.
the long-run equilibrium of the previous period.16 The values of the co-
efficients for the NFM subsector are well within the range spanned by
the other subsectors, therefore leading us to believe that our assump-
tion of one cointegrating vector for this subsector is reasonable. The
table also presents the value of the Likelihood Ratio test assessing the
weak exogeneity of energy price and economic activity with respect to
energy consumption. In all but two subsectors, OTH and PPP, the weak
exogeneity assumption is accepted at the 5% significance level, and
therefore incorporated in the model used to estimate the cointegrating
vectors in the table. In the case of OTH, rejection of theweak exogeneity
assumption is due to energy price appearing to adjust to the disequilib-
rium in the cointegrating relationship.17 As this is unlikely to reflect ac-
tual market dynamics, due to energy consumption of OTH being only 2%
of total energy consumption in the UK, the exogeneity assumption is
imposed in the model used to estimate the cointegrating vector also
for OTH. Statistical significance of the coefficients in the cointegrating
vectors is assessed by running Likelihood Ratio tests (see Table 3). We
observe that energy price is highly significant with very small p-values
in all but one subsector. Economic activity is statistically significant at
5% only in the case of CHE and OTH, although significance can be ac-
knowledged at 20% in 6 out of the 8 subsectors. When considered joint-
ly, energy price and economic activity are strongly statistically
significant in all subsectors, providing in this way confirmation on the
existence of a long-run cointegrating relationship.18

Table 4 displays the outcome from implementing standard diagnos-
tic tests on the VECMs used to produce the cointegrating vectors in
Table 2. Results confirm the overall validity of the selected models
across the eight subsectors. Residual autocorrelation, as measured by
the LM test, is evident only in the case of the TEX subsector, whereas
heteroscedaticity, as measured by the White test, can be found only in
theMIN subsector. Further diagnostic tests are performed on the condi-
tional ECMs describing the energy demand equation in each subsector,
as discussed below.
5.3. Results from the conditional error correction models (ECMs)

Before estimating the ECMs, conditional on the cointegrating rela-
tionships identified in the VECMs, we investigate the stability of the
long-run energy demand equation by implementing the procedure of
the two that are equal to 1, are within the unit circle.
17 The p-value of the Likelihood Ratio statistic on GVA, conditional on the exogeneity of
energy price, is 0.39.
18 It is worth mentioning that it is possible to either drop a variable when the corre-
sponding coefficient is not statistically significant, an approach implemented in
Bernstein and Madlener (2015), or alternatively to keep that variable in the model, a
choice taken in Bjørner and Jensen (2002) and Floros and Vlachou (2005). In our study,
we adopt the latter approach and keep variables in the cointegrating vector, even if non
statistically significant, given the unequivocal evidence on the existence of cointegration
among the three variables, and also mindful of the fact that the lack of statistical signifi-
cance could be simply due to the limited time span of the sample used in our study.



Table 5
Results from the KP test. A key to the acronyms of the industrial subsectors can be seen in
Table A1.

KP statistics 95% CV Notes

CHE 4.82 10.88 qb = 2, trend, trimming = 0.20
ENV 8.99 10.88 qb = 2, trend, trimming = 0.20
FBT 15.35 10.88 qb = 2, trend, trimming = 0.20, break date: 2009
MIN 6.65 9.27 qb = 1, trimming = 0.15
NFM 8.34 12.27 qb = 2, trimming = 0.20
OTH 11.18 12.27 qb = 2, trimming = 0.20
PPP 9.39 12.27 qb = 2, trimming = 0.20
TLC 5.16 12.27 qb = 2, trimming = 0.20

Table 4
Number of lags and p-values of diagnostic tests for the VECMs used to estimate the
cointegrating vectors presented in Table 2. A key to the acronyms of the industrial subsec-
tors can be seen in Table A1.

Lags Serial correlation Heteroscedaticity

CHE 1 0.91 0.29
ENV 1 0.61 0.08
FBT 0 0.14 0.09
MIN 0 0.21 0.02
NFM 2 0.41 0.22
OTH 1 0.10 0.15
PPP 2 0.08 0.42
TEX 1 0.00 0.45

Table 3
P-values of the likelihood ratio tests for the coefficients in the cointegrating vectors shown
in Table 2. A key to the acronyms of the industrial subsectors can be seen in Table A1.

pt yt pt and yt pt, yt and trend

CHE 0.004 0.049 0.010 0.005
ENV 0.005 0.480 0.001 0.003
FBT 0.000 0.134 0.000 0.000
MIN 0.157
NFM 0.001 0.139 0.000
OTH 0.002 0.044 0.004
PPP 0.000 0.467 0.000
TEX 0.001 0.200 0.001
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Kejriwal and Perron (2010). Results, presented in Table 5, are over-
whelmingly in favour of the stability of the equilibrium relationship,
the only exception being the FBT subsector. Unfortunately, as the
break is estimated to occur in 2009 this does not leave enough observa-
tions to identify the parameters associated with the second segment.

The coefficients capturing the short-run dynamics of energy con-
sumption in the conditional ECMs are shown in Table 6. Economic activ-
ity is present in the short-rundynamics of two out of the eight economic
subsectors, while energy price is never retained.19 Based on visual ex-
amination of the residuals from the conditional ECMswe added impulse
dummies to control for outliers in the energy consumption of all subsec-
tors. In almost all cases a dummy is required to capture an abnormal ob-
servation in correspondence of the recent financial crisis. It is worth
noting that in themajority of cases these impulse dummies imply an ad-
ditional reduction in energy consumption around 2008–2009, beyond
what is explained by the fall in economic activity, with the exception
of NFM and MIN, where energy consumption appears to fall less than
what could be expected from its relationship with GVA.20

Finally, we display in Table 7 the outcome from standard diagnostic
tests. The magnitude of the p-values for the Breusch-Godfrey, Breusch-
Pagan-Godfrey and the RESET tests overall confirms the validity of the
estimated models. The test against autocorrelation rejects at 5% signifi-
cance level only in the PPP subsector. This seems a reasonable result
bearing in mind the parsimonious short-run dynamics represented in
the ECMs.21 To assess the possibility of structural breaks in the short-
run coefficients we also performed the CUSUM test, which suggests no
evident sign of parameter instability (see Fig. A2 of the Appendix).

6. Discussion

The estimated cointegrating vectors, adjustment coefficients and
short-run dynamics enable us to draw a number of interesting insights
into the dynamic features of the UK industrial energy consumption, in
19 In the case of two sectors, FBT and MIN, there is no short-run dynamics as the VECM
selected during the cointegration analysis had no lags.
20 In one case, MIN, the positive coefficient is due to a spike in energy consumption.
21 As 1 rejection out of the 24 tests we implemented corresponds to about 4%, this out-
come could be simply explained by the size of the tests.
particular in terms of: the direction of causality in the long-run equilib-
rium relationship between the variables, the impact on energy con-
sumption of changes in price and economic activity, the existence of
long-run trends in the energy demand equations, and the speed with
which energy demand corrects past discrepancies with respect to the
long-run equilibrium.

First of all, based on the results from the Likelihood Ratio tests in
Table 3, we can conclude that the impact of energy price is easier to
identify from the data than the effect of economic activity. This result
is clearly in contrast with the findings of Bernstein and Madlener
(2015), who claim to estimate a statistically significant price and eco-
nomic activity in two and five, respectively, of the analysed five
subsectors.22 Confirming our conclusions, all price elasticities for the
UK industrial subsectors in Steinbuks andNeuhoff (2014) are statistical-
ly significant, while this occurs only for a third of the Greek subsectors
assessed by Floros and Vlachou (2005). In Bjørner and Jensen (2002),
on the contrary, the elasticity with respect to economic activity is statis-
tical significant in all but one industrial subsector.

In terms of causality, it is striking how both economic activity and
energy price appear to be weakly exogenous, given that the estimates
indicate no adjustment of these two variables to the disequilibrium in
the energy demand cointegrating equation in all but the PPP subsector.
This is an importantfindingboth in terms ofmodelling andpolicy impli-
cations, which is confirmed by the results of Likelihood Ratio tests on
the adjustment coefficients of the price (αp) and GVA equations (αy)
in Table 2. For modelling purposes, this may be interpreted as justifying
a cointegration approach that assumes weak exogeneity of the right-
hand side variables of the energy demand equation. As for policy impli-
cations, it shows that any event that produces a deviation from the long-
run energy consumption equilibrium, like the introduction of energy
efficiency policies, is likely to give rise to an adjustment in the level of
energy consumption, rather than influencing economic activity or ener-
gy prices. Although we expected energy price to be weakly exogenous,
given the limited size of energy consumed by any of the subsectors
assessed in this study relative to the total size of the UK energy market,
we had no clear expectation on the GVA, as firms might choose to alter
their production in response to disequilibria in the long-run energy
equilibrium condition. Our finding partially match those of Bernstein
and Madlener (2015), given that they find evidence of energy price
being exogenous, but they reject exogeneity of GVA in three of the
five analysed subsectors.

We also notice substantial differences across subsectors in the
estimated value of the long-run elasticities within the cointegrating
equation. From a methodological point of view this can be taken as ev-
idence against pooling under the assumption of homogeneity of slopes
across subsectors, typical of panel data studies, a point advocated in
Agnolucci (2009), and against conducting energy demand modelling
22 Comparison is complicated by the fact that Bernstein andMadlener (2015) reports or-
dinary t-statistics for the coefficients of the cointegrating vector rather than likelihood ra-
tio tests, which might explain their higher frequency of significant coefficients on
economic activity, as theWald (and t) test suffers from larger size distortions than the like-
lihood ratio test (see Haug, 2002).



Table 6
Estimated coefficients and t-stats (in square brackets) from conditional ECMs for the energydemand equations. Figures in parentheses in theDummy1 andDummy2 columns indicate the
years characterized by a one-time shift in the intercept. A key to the acronyms of the industrial subsectors can be seen in Table A1.

Δet − 1 Δet − 2 Δyt − 1 Constant Dummy 1 Dummy 2 αe Adj R2

CHE 0.66 [3.99] 0.67 [1.83] −0.01 [−0.58] −0.15 [−2.41] (2014) −1.01 [−5.07] 0.56
ENV −0.01 [−1.28] −0.15 [−3.24] (2009) −0.10 [−2.11] (1994) −0.42 [−3.31] 0.56
FBT −0.01 [−2.11] −0.07 [−2.82] (2009) −0.86 [−5.11] 0.70
MIN −0.03 [−2.29] 0.19 [3.07] (2008) 0.17 [2.87] (2000) −0.32 [−3.20] 0.62
NFM −0.18 [−0.99] −0.13 [−0.78] −0.06 [−3.31] 0.22 [2.53] (1996) 0.20 [1.99] (2010) −0.39 [−2.83] 0.50
OTH 0.00 [0.12] −0.51 [−5.40] (2008) −0.29 [−2.01] 0.66
PPP 0.21 [1.39] 0.29 [0.64] −0.01 [−0.68] 0.15 [2.72] (2005) −0.13 [−2.12] (2008) −0.34 [−2.73] 0.55
TLC −0.09 [−0.68] −0.03 [−3.46] 0.18 [4.33] (1993) 0.12 [2.82] (2000) −0.36 [−3.17] 0.66

Table 7
P-value for the Serial correlation (Breusch-Godfrey), Heteroscedasticity (Breusch-Pagan-
Godfrey) and the RESET tests. A key to the acronyms of the industrial subsectors can be
seen in Table A1.

Serial correlation Heteroscedasticity Reset

CHE 0.44 0.59 0.93
ENV 0.17 0.73 0.89
FBT 0.18 0.58 0.50
MIN 0.49 0.56 0.66
NFM 0.45 0.46 0.60
OTH 0.09 0.44 0.97
PPP 0.04 0.86 0.19
TLC 0.43 0.43 0.66
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for the industrial sector as a whole. From a policy perspective, we ob-
serve that theNFM andOTH subsectors show a price elasticity of energy
demand respectively of −0.52 and −0.78, which are markedly higher
than the values in all the other subsectors, where elasticity ranges be-
tween−0.17 and−0.44. The values of the elasticities are overall fairly
similar to the figures obtained by Bjørner and Jensen (2002), and
Steinbuks and Neuhoff (2014), a similarity that is also found in the esti-
mated elasticity for the industrial sector as a whole. Indeed, we obtain
an average price elasticity of −0.41, which is virtually identical to the
−0.44 in Bjørner and Jensen (2002) for the Danish industrial firms.23

The average elasticity obtained by Steinbuks and Neuhoff (2014) for
the three subsectors analysed in their study is −0.35, fairly close to
our value of −0.28 for the same three subsectors. Our findings are
also close to those of Bernstein and Madlener (2015), who estimated
the price elasticity of electricity demand to be between −0.30 and
−0.50.24 An even greater heterogeneity is observed in the elasticity of
energy demand with respect to economic activity, with values ranging
from 0.12 to 1.42. Once we remove the OTH and the NFM subsectors,
however, the values vary between 0.12 and 0.50. These estimates are
very similar to those shown in Bjørner and Jensen (2002), with our av-
erage value across all eight subsectors being 0.57, which is very close to
their 0.54. Our values are however smaller than those presented in
Bernstein and Madlener (2015) for electricity, possibly suggesting a
23 One should bear inmindhowever that comparing our estimates to those from Bjørner
and Jensen (2002)) and Steinbuks and Neuhoff (2014) is complicated by a number of fac-
tors. In the case of the former, this is due to thedifferent econometricmethodology, type of
data used in the study, limited overlap of the time span covered by the datasets, andmore
importantly to the fact that the same industrial sector in two different countriesmight rea-
sonably have different elasticities. Insights from the comparison of our results with those
in Steinbuks and Neuhoff (2014) are influenced by the different econometric methodolo-
gy and the limited variability of energy price in their sample, i.e. containing only one ob-
servation (2005) with a relatively high energy price.
24 This is surprising as we would have expected electricity not only to command a price
premium but also to be less amenable to be substituted in the production process, there-
fore having a smaller price elasticity, like for example found by Arnberg and Bjorner
(2007) in the case of the Danish industrial companies. It is worth mentioning that results
from Bernstein andMadlener (2015) are, according to the authors, in line with the previ-
ous literature and that in two cases, i.e. FBT and CHE sectors, Bernstein and Madlener
(2015) impose a price elasticity equal to zero as the coefficients are not statistically
significant.
shift towards electricity as the level of economic activity in the industrial
sector grows over time.

As discussed above, the presence of significant time trends in the
cointegrating vectors may account for factors that are not modelled ex-
plicitly, such as energy efficiency improvements or changes in the struc-
ture of the industrial subsectors occurring over time. As can be seen in
Table 2 though, time trends are present only in three subsectors, i.e.
ENV, CHE and FBT. Interestingly, in the last two subsectors a linear
trend is estimated also for electricity consumption in Bernstein and
Madlener (2015). Nevertheless, contrary to these authors, our trends
are all negative, reflecting the likely impact of non-modelled drivers
that produces a gradual decrease over time in the level of energy con-
sumption. Presumably, this estimated negative trend captures increases
in energy efficiencywithin the production process, or the impact of gov-
ernment policies aimed at encouraging energy-saving efforts.

From the value of αe in Table 6 we can also appreciate the speed of
adjustment to shocks that temporarily divert the dynamics of the vari-
ables from the equilibrium condition describing energy consumption
in the long-run. Six of the eight subsectors have equilibrium adjustment
coefficients falling between −0.29 and −0.42. However, in CHE and
FBT the adjustment coefficient is considerably larger in absolute value,
−1.01 and −0.86 respectively. This implies that, ignoring the short-
run dynamics, 90% of the long-run disequilibrium generated by a
shock will be absorbed in about one year in CHE and FBT, and in about
six years in all other subsectors.25 We can, therefore, conclude that the
UK industrial subsectors are characterized by considerable heterogene-
ity not only in relation to the impact of changes in price and economic
activity on energy consumption, but also in terms of the speed with
which firms re-adjust their equilibrium consumption of energy as dif-
ferent shocks hit the economy. Thisfinding suggests the existence of im-
portant structural differences which make the relative importance of
disequilibrium costs against adjustments costs highly heterogenous
for firms belonging to different industrial subsectors.

7. Conclusions

This is the first cointegration analysis that provides evidence on the
UK energy demand elasticities at a disaggregated industrial level, fol-
lowing in this way the example of Bernstein and Madlener (2015),
which employed a similar approach to estimate electricity demand for
the German industrial subsectors. We performed a multivariate
cointegration analysis of the UK industrial subsectors, using data be-
tween 1990 and 2014, with the aim to uncover the peculiarities of the
energy demand function across the different subsectors, overcoming
in this way the risks implied by an aggregate analysis (Pesaran et al.,
1999).

The validity of our estimated long-run energy demand equation is
substantiated by the outcomeof the cointegrations tests, the plausibility
of the coefficients values, and the results of the diagnostic checks and
the stability tests. In particular, we performed a rigorous analysis of
25 It isworthmentioning that in the case of CHE the adjustment coefficient implies a very
slight overshooting as 101% of the past long-run disequilibrium is corrected.
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the stability of the cointegrationmodels andwe found that,with one ex-
ception, there is no evidence of significant structural breaks in the esti-
mated energy demand equations. Despite we have to admit that
additional future observations will be needed for a more conclusive an-
swer, we notice that the validity in terms of stable coefficients survives
even throughout the period of the recent financial crisis. As time series
for industrial subsectors at the two-digit SIC level with a length similar
to the dataset used in this study are increasingly becoming available, we
would expect to see this approach to be applied to other countries to
start building evidence on energy demand elasticities which accounts
for the peculiarities of firms belonging to different industrial subsectors.
Considering the salience and visibility of energy, climate and industrial
policies, building robust evidence on energy demand elasticities at the
subsectoral level seems particular important for policy-makers, espe-
cially in light of the recent increase in energy prices and the effort to
tackle CO2 emissions.

The first clear conclusion that one can draw from our study is the ex-
istence of considerable heterogeneity in relation to themagnitude of the
long-run impact on energy consumption of economic activity and ener-
gy price, with the former varying between 0.12 and 1.42 and the latter
ranging between−0.78 and−0.17 across the eight different industrial
subsectors. Considerable heterogeneity can also be observed in relation
to the speed with which firms re-adjust their long-run equilibrium de-
mand for energy in response to economic shocks. This is likely the con-
sequence of important differences in the ability of firms to respond to
changes in prices and economic activity, which is related to the specific
structural characteristics of each subsector. Estimated adjustment coef-
ficients between−1.01 and−0.29 imply that, depending on the specif-
ic subsector and ignoring the short-run dynamics for simplicity, it can
take approximately from 1 to 6 years to absorb 90% of any shock to
the energy demand equation. Heterogeneity of long-run elasticities
and adjustment coefficients across industrial subsectors has interesting
implications both in terms ofmodelling and policy-making.With regard
to the former, our results advice against pooling under the assumption
of homogeneity of coefficients across subsectors, typical of panel data
studies, and specifically against modelling energy demand for the in-
dustrial sector as a whole. From a policy perspective, the markedly dif-
ferent values in the coefficients can be used by policy-makers to
quantify the plausible effect of policies targeted at specific industrial
subsectors, aswell as the length of the time span that is required for pol-
icies to display its full impact.

A second conclusion emerging from our study is that any disequilib-
rium in the long-run energy demand seems to be tackled by adjusting
the level of energy consumption rather than economic activity. In
terms of policy implications, this suggests that policies affecting the
long-run level of energy consumption, e.g. energy efficiency policies,
are unlikely to influence the level of economic activity. Our work also
casts some light on the presence of long-term trends in the evolution
of energy consumption. Interestingly, the data suggested the inclusion
of a linear trend in the long-run energy demand equation only for
three of the eight subsectors assessed in our study. As linear trends
are, however, all negative, they are likely to reflect the impact of energy
efficiencymeasures or a change in the composition of the industrial sub-
sectors away from energy intensive economic activities.

Finally, our contribution is helpful in reconciling the previous results
for the UK industrial sector discussed in Dimitropoulos et al. (2005) and
Hunt et al. (2003) with those in Agnolucci (2009, 2010), in relation to
the impact of energy price and economic activity on energy consump-
tion. The former set of studies estimated a relatively modest impact of
price on energy consumption compared to the impact of economic ac-
tivity, while the second set of studies reached a more balanced conclu-
sion. Interestingly, 3 of these four studies implement a Structural Time
Series Model, therefore casting doubts on the estimation methodology
as a possible reason for the difference in the value of elasticities. Other
possible reasons could be aggregation bias – as all four contributions es-
timate energy demand for the industrial sector as a whole – or the fact
that the value of elasticities change considerably across time. Our
study produce average elasticities with respect to economic activity
and energy price across subsectors equal to 0.57 and−0.41, respective-
ly. As the value of the elasticities in this study are fairly close to those
presented in Agnolucci (2009, 2010), we produce further evidence sug-
gesting that economic activity and energy price are similarly important
in explaining observed energy consumption. We also notice that while
estimates of elasticitywith respect to economic activity are fairly similar
in the four contributions above and in the recently published Adeyemi
and Hunt (2014) (using a Structural Time Series Model estimated for
the industrial sector as a whole), elasticity with respect to energy
price in the two most recent articles (Agnolucci, 2009, 2010) and in
this study is considerably higher, in absolute value, than the estimates
in earlier contributions, such as Dimitropoulos et al. (2005) and Hunt
et al. (2003). This hints at the possibility of price elasticities changing
across time, an interesting line of enquiry which should be explored in
future research. Finally, the fact that our results for the energy demand
elasticities are comparable to those obtained by Bjørner and Jensen
(2002) and Steinbuks and Neuhoff (2014) for the Danish and UK indus-
trial subsectors, respectively, provides further support to the robustness
of our estimates, which can therefore be adopted as plausible reference
value for policy-making analysis on the UK industrial sector.
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