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Abstract—Introduction of the fuzzy-set enabled the modeling
of uncertain and noisy information. Type-2 fuzzy set took this
further ahead by allowing fuzzy membership function to be fuzzy
itself. In this work, we discussed an interval type-2 fuzzy inference
system (IT2FIS). The training of the IT2FIS was provided
in supervised manner by using metaheuristic algorithms. We
comprehensively illustrated the formulation of the IT2FIS into an
optimization problem. A precise genotype (a real vector) mapping
of IT2FIS and a population-based strategy for optimum rule-base
selection is described in this work. Since the IT2FIS learning
is computationally difficult and costly, which we described in
detail in this work, a comprehensive comparison between the
performances of the metaheuristic algorithms were examined.
The obtained results suggest that the IT2FIS learning was
faster at the initial iterations of the metaheuristic learning,
but tend to slow and get stuck in local minima. However, the
metaheuristic algorithms, differential evaluation and bacteria
foraging optimization offered significantly better results when
compared to artificial bee colony, gray wolf optimization, particle
swarm optimization and the other fuzzy inference models chosen
for comparisons from literature.

I. INTRODUCTION

Fuzzy inference system has a vast range of application
domain since it does human-like reasoning by modeling am-
biguous, uncertain, incomplete, inaccurate, and noisy infor-
mation. Initially, we had only type-1 fuzzy set, introduced by
Zadeh [1], to addressed such problems, but the fuzzy set type-
2 development has drawn much attention towards handling
nosy and imprecise data [2]. A fuzzy inference system (FIS)
is composed of a fuzzifier that fuzzify input information, an
inference-engine that infer information from a rule-base, and a
defuzzifier that returns the crisp information. In simple words,
an FIS infer the information from a rule-base. Hence, FIS can
be described as a set of rules, where rules are in the form: IF-
THEN that is antecedent and consequent form. Takagi-Sugeno
model [3] is a widely used FIS model that embraced this IF-
THEN form, where the antecedent part consists of membership
functions (MFs) and the consequent part consists of real value
or a function that infer the information depending on the
antecedent part.

Type-2 fuzzy-set and type-1 fuzzy-set differs when it comes
to the representation of the antecedent part and the represen-
tation of the consequent part of a rule in FIS. Unlike the crisp
outputs of the type-1 fuzzy set MFs, the output of type-2 fuzzy
set MFs are fuzzy in nature. Such nature of MFs in type-2
fuzzy set is advantageous in processing uncertain information

effectively than that of the type-1 fuzzy set [4]. Hence, type-
2 fuzzy set is able to overcome certain limitations of the
type-1 fuzzy set [4]. However, type-2 fuzzy inference system
is computationally expensive because of the large number
of parameters in the optimization and the type-reduction
mechanism required at the defuzzification part. Interval type-
2 FIS (IT2FIS), because of its simplification of type-2 MF,
reduces the computational cost. The MFs in interval type-2
fuzzy set are bounded by an upper MF and a lower MF and
the area between the upper MF and the lower MF is called
the footprint of uncertainty [2]. The MFs for FIS are designed
by using optimization and the design of MFs for an IT2FIS
means the optimization of its parameters. Hence, it is called
the optimization of FIS. Therefore, the optimization of the FIS
parameters is crucial and the metaheuristics are best suited in
this role. Such form of optimization in known as parameter
learning or training. In this work, an FIS system was designed
by selection of an optimal subset of rules from a population of
rules. Such selection was met by using a genetic representation
of FIS. Hence, from a population of rules, an optimal subset
of rules was selected [5]. Each rule was designed by using
type-2 Gaussian MFs, whose parameters were subjected to
optimization together with the parameters of the consequent
parts of the each rule. Therefore, for a given dataset, FIS posed
supervised learning task. The significance of FIS optimization
is supported by several successfully application in engineering
problems [6], [7].

The metaheuristics are nature-inspired (bio-inspired) algo-
rithms that optimize a real vector by searching a vast real-
valued search-space. The optimization is met by minimiz-
ing/maximizing an objective function. In this, work, the pa-
rameters of IT2FIS were formulated into a real vector that was
optimized by using different metaheuristic algorithms: artifi-
cial bee colony [8], bacteria foraging optimization [9], differ-
ential evolution [10], gray wolf optimization [11], and particle
swarm optimization [12]. Additionally, different benchmark
datasets taken from UCI machine learning repository [A]
were used for the experiments. In this work, a comprehensive
comparative study between the metaheuristic algorithms was
presented. We observed that FIS training was faster at initial
stage of metaheuristic training, but tend to slow at the later
stages of learning. Additionally, comparative study between
metaheuristics from FIS suggest that there differential evolu-
tion and bacteria foraging performed in two distinct data set



and none of one algorithm excel in all the case, which is what,
no free lunch theorem described by Wolpert and Macready [13]
says. Moreover, the performance of the optimized FIS was
compared with FIS methods chosen from literature [14], [15],
[16], [17], [18].

In the past, researcher used various metaheuristic for FIS
optimization [19], [20]. A list of several bio-inspired meta-
heuristic algorithms used for the optimization of FIS is offered
in [21]. The list consist of detail study of particle swarm
optimization, genetic algorithm, and ant colony optimization.
Additionally, they offer a comparative study of these bio-
inspired algorithm over a mobile robot [22]. Since type-2 FIS
is inspired by type-1 FIS, it inherits the idea of modeling
for its parameter optimization from type-1 FIS [23]. A detail
description of modeling of FIS is provided in [24]. In this
work, our focus was on the following dimensions of FIS
optimization:

1) Introduction of interval type-2 FIS (Section II-A).
2) Introduction of the metaheuristics (Section II-B).
3) Formulation of interval type-2 FIS as metaheuristic

optimization (Section III).
4) Evaluation of the FIS and metaheuristics (Section IV).
5) Analysis of no free lunch theorem effect (Section IV).

The primary goal of this work was to illustrate usefulness
of different metaheuristic in the optimization of IT2FIS for
data mining tasks. Specifically, IT2FIS was applied to model
regression problems and the performance of IT2FIS was
compared to other models available in literature. Additionally,
strength of individual metaheuristics were compared.

II. PRELIMINARIES

This section describes the interval type-2 fuzzy inference
system (IT2FLS) and the metaheuristic algorithms which are
used for optimizing IT2FLS.

A. Interval Type-2 Fuzzy Inference System

A type-2 fuzzy set Ã is characterized by a 3-dimensional
membership function [25]. The three axes of type-2 fuzzy set
are defined as follows. The x-axis is called primary variable,
the y-axis is called secondary variable (or primary MF, which
is denoted by u), and the z-axis is called the MF value (or
secondary MF value, which is denoted by µ). Hence, in a
universal set X , a type-2 fuzzy set Ã has the form:

Ã = {((x, u) , µÃ (x, u)) |∀x ∈ X,∀u ∈ [0, 1]} . (1)

Hence, µ has a 2-dimensional support called the foot print
of uncertainty of Ã, which is bounded an upper MF µ̄Ã(x)
and a lower MF µ

Ã
(x). The foot print of uncertainty is the

area enclosed within the upper MF and the lower MF (see
Fig. 1(b)). A Gaussian function with uncertain mean within
[m1,m2] and standard deviation σ is a interval type-2 MF
(see Fig. 1, which is expressed as:

µÃ(x,m, σ) = exp

[
−1

2

(
x−m
σ

)]
, m ∈ [m1,m2]. (2)

In this work, the upper MF and the lower MF were defined
as [2]:

µ̄Ã(x) =

 µÃ(x,m1, σ), x < m1

1, m1 ≤ x ≤ m2

µÃ(x,m2, σ), x > m2

(3)

and
µ
Ã

(x) =

{
µÃ(x,m2, σ), x ≤ m1+m2

2
µÃ(x,m1, σ), x > m1+m2

2

(4)
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Fig. 1. Type-1 MF (a) with mean m = 5.0. Type-2 Fuzzy MF (b) with fixed
σ = 2.0 and means m1 = 4.5 and m2 = 5.5. Upper MF in green and lower
MF in red are defined as per (3) and (4).

A FIS with one or more interval type-2 MF is an interval
type-2 FIS. The basic blocks of a type-2 FIS is shown in
Fig 2. FIS depends on the rule-base, which is in IF-THEN
form. Hence, a general form of M rules for an input vector x =
{x1, x2, . . . , xn} and corresponding output y has the following
form:

Ri : IF x1is Ãi
1and . . . and xnis Ãi

nTHEN y is Bi
n (5)

Fuzzifier Rule-base Defuzzifier

Type-reducerInference Engine

Crisp
Input

Crisp
Output

Fig. 2. Type-2 Fuzzy Inference System



where B = [b̄, b] is weights at consequent part of the rule
and i = 1, 2, . . . ,M . The firing strength of interval type-2
F i = [f̄i, f i] is computed as:

f̄i =

n∏
j

µ̄Ãi
j

and f
i

=

n∏
j

µ
Ãi

j

(6)

At this stage, inference engine fires the rule and the type-
reducer reduces the type-2 fuzzy set to type-1 fuzzy set.
Here, in this work, center of set type-reducer, prescribed by
Karnik [2], was used. The center of set ycos is computed as:

ycos =
⋃

fi∈Fn

∑M
i=1 f

ibi

f i
= [yl, yr], (7)

where yl and yr are left and right end of interval. For the
acceding order of b̄i and bi, yl and yr are computed as:

yl =

∑L
i=1 f̄

ib̄i +
∑M

i=L+1 f
ibi∑L

i=1 f̄
i +
∑M

i=L+1 f
i
, (8)

yr =

∑R
i=1 f

ibi +
∑M

i=R+1 f̄
ib̄i∑R

i=1 f
i +
∑M

i=R+1 f̄
i
, (9)

where L and R are the switch point, determined by

bL ≤ yl ≤ bL+1 and b̄R ≤ yr ≤ b̄R+1,

respectively. The defizzified crisp output was computed as:

ŷ(x) =
yl + yr

2
. (10)

We resorted to using IT2FIS for supervised learning. Hence,
for a dataset having N input-output pair {x, y}, the fitness of
model created from IT2FIS was computed using root of mean
squared error (RMSE). The RMSE E is expressed as:

E =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (11)

where ŷ and y are the predicted and desired outputs.

B. Meta-heuristic Algorithms

Metaheuristic algorithms are nature inspired algorithms
that optimize real vector by searching vast search space. To
searches through the search-space, metaheuristic algorithms
efficiently combines two techniques: exploitation and explo-
ration. By exploitation, it creates new solution from the already
discovered solutions and by exploration, it searches through
new areas of a search space or in other words, it avoids already
visited areas of a given search space. There are several types
of metaheuristic algorithms. Each metaheuristic algorithm is
inspired by a form of natural heuristics. For example, artificial
bee colony (ABC), bacteria foraging optimization (BFO), gray
wolf optimization (GWO), and particle swarm optimization
(PSO) are inspired from the foraging behavior of swarm or
animals. On the other hand, differential evolution (DE) and
genetic algorithm (GA) are inspired by evolutionary process
of natural selection. However, the metaheuristic algorithms

follows a common procedure as laid down in Algorithm 1, but
they differ in their respective design of metaheuristic operators,
i.e., the heuristics.

Algorithm 1 Meta-heuristic Framework for Optimization
1: procedure META-HEURISTICS-NN(W, ε)
2: Initialize W0

3: Fittest solution w∗ = fittest(W0)
4: repeat
5: Wt+1 := MHOperator(Wt)
6: ŵ = fittest(Wt+1)
7: if w < w∗ then
8: w∗ = w
9: end if

10: until Stopping criteria ε satisfied
11: return w∗
12: end procedure

1) Artificial bee colony (ABC): Karaboga [8] proposed
ABC, which is inspired by foraging behavior of honey bee
swarm. To find an optimal solution for a given problem ,the
ABC algorithm uses a population of bees (solutions) and
explore the given search-space. The ABC algorithm works as
follows. First, a memory W of initial food positions (solution)
wi = {w1, w2, . . . , wD} ∀i = 1, 2, . . . , P is initialized, where
P is size of population. Second, the food position wi is
updated by the artificial bees in iterative fashion. Thus, in
ABC, the j-th variable of i-th solution is computed as:

wij = wij + rand(−1, 1)× (wij − wkj) (12)

where, k ∈ [1, P ], j ∈ [i,D], and xij is the comparison
between the i-th food source and a randomly chosen neighbor
k. If no good solution is found for some number of trials tabc
by using (12), then, new solution is computed as:

wij = wmin,j + rand(0, 1)(wmax,j − wmin,j), (13)

where min and max is the bound of the j-th variable. Simi-
larly, other metaheuristics have their nature inspired heuristics
procedure for real vector computation.

2) Bacteria Foraging Optimization (BFO): The heuristic of
BFO imitates the social and foraging behavior of bacteria [9].
It mathematical defines the tumbling and the swimming be-
havior of bacteria to represent exploration in a search space.
Additionally, BFO imitates a bacteria reproduction and death
to improve the algorithm’s performance. Hence, the parameters
used in BFO are: number reproduction step Nr, number of
death steps Nd, number of tumbling and swim steps Ns,
and, death rate dr. BFO is a complex and efficient algorithm,
provided a careful setting of these parameters.

3) Differential Evolution (DE): DE proposed by Storn and
Price [10] is a metaheuristic that uses crossover operator
inspired by the mechanisms of “natural selection.” The basic
principle of DE is as follows. First, an initial population of D-
dimensional solutions wi are initialized. The creation of new
solutions takes place iteratively. To create new solutions, three



distinct solutions a, b, and c and the best solution g are chosen
from P many solutions. Then, a random index k ∈ [1, P ] is
chosen. Hence, a new solution w

′

i is constructed as:

w
′

i =

{
ai + F (gi − ai) + F (bi − ci) if ri < CR or i = P
xi if ri ≥ CR or i 6= P

(14)
where CR indicates the crossover rate, F indicates the weight
factor and ri is a uniform random sample chosen in (0, 1).

4) Genetic Algorithm (GA): GA is inspired by the dynam-
ics of evolutionary strategies, i.e., the principles of “the natural
selection.” It explores a real-valued search-space by using the
genetic operators such as: selection, crossover, and mutation.
Theses operators are applied over a current population to
generate a new population, iteratively [5]. To generate a
new population, a selection operator selects some individuals
(solution vectors) from a current population for crossover and
mutation operators to create the new individuals for the new
population. The selection procedure (e.g., tournament selec-
tion), the crossover frequency pc and the mutation frequency
pm governs the performance of GA. Let w1 ∈W and w2 ∈W
are two individual solutions. Then a new solution is created
by using crossover operator as:

wnew =

{
r.w1 + (1− r).w2 if w ∈ Rn[
w1

1, . . . , w
1
r , w

2
r+1, . . . , w

2
n

]
if w ∈ B (15)

where r is a vector of random numbers taken from [0, 1] with
a uniform distribution, and r is a random integer within [1, n].
Similarly, the mutation operator mutates a solution wi as:

wnew =

{
wi + a.r.wi if w ∈ Rn[
wi

1, . . . ,∼ wi
r, . . . , w

2
n

]
if w ∈ B (16)

where r is a vector of random numbers taken from [0, 1] with
a Gaussian distribution, r is a random integer from [1, n], a is
a scaling factor, and “∼” indicates a flip operation (i.e., 0 to
1 or 1 to 0). There are other form of crossover and mutation
operators defined in literature [5].

5) Gray Wolf Optimization (GWO): GWO algorithm is
inspired by the social and foraging behavior of Gray wolves. A
folk of gray wolves works in a social hierarchy such as: alpha
(leader), beta, and gamma wolves. Mathematically, a solution
vector is update as:

wt
i = (X1 +X2 +X3)/3, (17)

where X1, X2, X3 are computed by using knowledge of alpha,
beta and gamma wolves. Mirjalili et al. [11] provides a detail
study on GWO algorithm.

6) Particle Swarm Optimization (PSO): PSO proposed by
Eberhart and Kennedy [12] is a population based meta-
heuristic algorithm imitates the mechanisms of the foraging
behavior of swarms. The PSO depends on the velocity and
position update of a swarm. The velocity in PSO is updated
in order to update the position of the particles in a swarm.
Therefore, the whole population moves towards an optimal
solution. The PSO uses a population of motile candidate par-
ticles characterized by their position wi and velocity vi inside

the D-dimensional search space. Each particle remembers the
best position (in terms of fitness function) it visited bi and
knows the best position discovered so far by the whole swarm
g. At each iteration, the velocity of a particle i is updated as:

vt+1
i = c0vti + c1r

t
1(bi − wt

i) + c2r
r
2(gt − wt

i), (18)

where c0 indicates inertia factor, c1 and c2 indicates the
positive acceleration constants, and r1 and r2 indicates the
random vectors sampled from a uniform distribution. The
vector bt

i denotes i-th particles best position at the t-th
iteration. Similarly, the vector gt is the best position visited by
the whole swarm at time the t-th iteration. Hence, the position
of the i-th particle at t-th iteration is computed as:

wt+1
i = wt

i + vt+1
i (19)

In this work, the described algorithms were applied for
optimizing interval type-2 FIS and their performances were
evaluated accordingly.

III. FRAMEWORK OF IT2FIS OPTIMIZATION

First step in IT2FIS or simply FIS design was the formation
of a rule-base. In this work, rules were created by using
Gaussian MFs as described in (2) and M rules were randomly
generated for the rule-base. From the randomly generated
rules, the subset of rules that offered the best fitness as
per (11) was selected for the parameter optimization. For the
selection of the best subset of rules, each rule in an FIS were
randomly assigned a status “0” (inactive) or “1” (active) that
tells whether to select the i-th rule for the FIS or not. Hence, a
population of Q many FIS was generated. The k-th rule-base
or a FIS Ck was defined as:

Ck = {R1, R2, . . . , RM} ∀ k = 1, 2, . . . , Q, (20)

where status of rule Ri is either “0” or “1”. Such population is
a genetic population, where the individuals (say k-th FIS) were
coded into a binary vector w ∈ B [5]. Hence, using a randomly
generated population of binary vector and genetic evolution an
optimal FIS was obtained using (15) and (16). The parameters
of GA used in this process was as follows: crossover rate was
set to 0.8, mutation rate was set to 0.2, tournament selection
length was set to 4, population size was set to 50, and total
number of generation was set to 10. Therefore, the individual,
i.e, the FIS that offered the best fitness (say k-th rule-base or
FIS) was selected and the inactive rules were eliminated from
the rule-base. Hence, the size of new rule-base was reduced
to M ′. In this work, initial number of rules M was set to 20
and as a result of subset selection, we got five rules for the
experiments on each dataset, i.e, M ′ was equal to 5. This was
the optimization of rule-base itself, which resemble Pittsburgh
approach of FIS optimization [26].

In second step, the obtained IT2FIS were optimized, i.e.,
the FIS parameters were mapped onto a real vector w ∈ RD,
which resemble Michigan approach of FIS optimization [26].
Thus, the parameters of rule (5) were formulated into a vector
form. Since interval type-2 MF is bounded by a lower and an
upper MF (see Fig. 1), we have two Gaussian means m1 and



m2 and a variance σ to be optimized. The Gaussian means
m1 and m2 for type-2 Gaussian MF (2) were defined as:

m1 = m+ λ ∗ σ (21)

and
m2 = m− λ ∗ σ, (22)

where λ was a random variable taken from uniform distribu-
tion and m was the center of Gaussian means m1 and m2

taken from [-1.5, 1.5]. Similarly, σ of type-2 Gaussian MF (2)
was taken from [0, 1]. Hence, we had a tuple (m,λ, σ) of size
three at the antecedent part of a rule. The consequent part B
of the rule (5) has a left and a right weight b̄ and b, which
was taken from uniform distribution withing [0, 1]. Thus, the
consequent part gave us a tuple (b̄, b) of size two. Now, we
have three variables from antecedent part and two variable
from consequent part of the rule (5). The antecedent part of a
rule was computed using (6). Here, for M ′ rules and n inputs,
we may chose M ′ ∗ n different tuples at antecedent part and
we may chose M ′ different tuples at consequent part. Thus,
the total length of mapped real vector w of the interval type-2
FIS, i.e., the dimension of a solution vector was:

D = 3 ∗M ′ ∗ n+ 2 ∗M ′, (23)

which is expressed as:

W = [w1,w2, . . . ,wM ′
], (24)

where i-th component of the vector is

wi = {(m,λ, σ)i1, . . . , (m,λ, σ)in, (b̄, b)
i}. (25)

Once the real vector was determined, the metaheuristic algo-
rithms were applied for optimizing it. Metaheuristic algorithms
such as: ABC, BFO, DE (version DE/rand−to−best/1/bin
[27]), GWO, and PSO were used. Each of these algorithms is
a population (Pop.) based algorithm that uses P many search
agents (initial solutions). Additionally, these algorithms are
iterative in nature (see Algorithm 1). Hence, the number of
function evaluation (Eval.) are P ∗ I , where I is the number
of iterations. Table I describes the parameter setting of the
respective metaheuristic algorithms, which was used during
the experiments. Moreover, the metaheuristic algorithms are
stochastic in nature, which means, the algorithms depend
on the random number generator and the random seeds. In
this work, Mersenne-Twister random generator algorithm with
fixed random seeds was used during the execution of each of
the metaheuristic algorithms. Each of the metaheuristic works
differently depending on the heuristics they used. Hence, the
performance of the algorithms depends on their respective
parameter setting.

The mentioned interval type-2 FIS was trained over the
benchmark datasets shown in Table II. The dataset mentioned
in Table II were taken from UCI machine learning reposi-
tory [A] and KEEL dataset repository [B]. In this work, the
obtained FIS had five rules that is variable M ′ as in (24)
was five. Here, the term “difficulty” in Table II refers to
the dimension of the real vector (24). For example, the

TABLE I
PARAMETER SETTING OF THE ALGORITHMS

# Algo. Pop. Eval. Other
1 ABC 50 50000 tabc = 100
2 BFO 50 50000 Nr = Nd = Ns = 10, dr = 0.25
3 DE 50 50000 CR = 0.9, F = 0.7
4 GWO 50 50000 -
5 PSO 50 50000 c0 = 0.729, c1 = 1.49 c2 = 1.49

TABLE II
SET OF EXAMPLE OF THE DATASETS FOR THE EXPERIMENTS

# Dataset Abbr. Attributes Samples Difficulty
1 Abalone ABL 8 4177 130
2 Diabetes DIB 2 43 40
3 Elevator ELV 18 16599 280
4 Fridman FRD 5 1200 85
Note: The dataset FRD has random Gaussian noise included
as mentioned in [18]

difficulty of dataset ABL was D = 3 ∗ 5 ∗ 8 + 2 ∗ 5 = 130
(see Table II). Our objective was to study the performance
of the metaheuristics for the optimization of the obtained
IT2FIS. However, as suggested in no free lunch theorem, the
performance of an algorithm depends on the dataset. In other
words, some algorithm performs better for some datasets and
some for the others that is no algorithm perform better for all
the datasets [13]. The result section describes the performance
evaluation of the metaheuristics over all the datasets used for
training of the obtained IT2FIS. Additionally, we examined the
learning ability of the mentioned FIS using the metaheuristics.
Hence, several models from literature listed in Table III were
used for the comparisons.

IV. RESULTS

We conducted the experiments in two phases: 1) experi-
ments using 10-fold CV of the datasets, where the number
of function evaluation were 50000 and 2) experiments using
training (80%) and test (20%) partition of the dataset, where
the number of function evaluation were 50,000 dataset. The
collected results are as follows.

TABLE III
IT2FIS MODELS FROM LITERATURE

Model Ref. Description
NBAG [14] Neural Bootstrap Aggregation Bagging
Bench [14] Benchmark Bagging Ensemble
Simple [14] Simple Bagging Ensemble
GRNNFA [15] General Regression NN and Fuzzy Reason-

ing Theory
SONFIN [28] Self-constructing neural fuzzy inference

network
T2FLS-G [16] Gradient-descent based IT2FIS tuning
SEIT2FNN [17] Self-evolving IT2FIS
IT2FNN-SVR(N) [18] IT2 Fuzzy-NN-Support-Vector Regression-

Numeric Input
IT2FNN-SVR(F) [18] IT2 Fuzzy-NN-Support-Vector Regression-

Fuzzy Input



TABLE IV
INTERVAL TYPE-2 FIS TRAINING RESULTS OVER 10-FOLD CV

Data Eval. ABC BFO DE GWO PSO
ABL Trn RMSE 2.349 2.249 2.108 2.408 2.189

Trn STD 0.053 0.058 0.031 0.071 0.035
DIB Trn RMSE 0.411 0.435 0.343 0.458 0.395

Trn STD 0.027 0.033 0.037 0.014 0.042
ELV Trn RMSE 0.005 0.005 0.004 0.005 0.004

Trn STD 0.000 0.000 0.000 0.000 0.000
FRD Trn RMSE 2.053 1.948 1.459 2.667 1.675

Trn STD 0.163 0.237 0.174 0.160 0.147
RMSE avg. 1.204 1.159 0.978 1.385 1.066

Note: At each run, the dataset FRD was partitioned randomly
20% training and 80% test

TABLE V
INTERVAL TYPE-2 FIS TEST RESULTS OVER 10-FOLD CV

Data Eval. ABC BFO DE GWO PSO
ABL Tst RMSE 2.377 2.243 2.129 2.419 2.197

Tst STD 0.161 0.142 0.136 0.115 0.127
DIB Tst RMSE 0.635 0.593 0.672 0.669 0.621

Tst STD 0.269 0.266 0.228 0.250 0.269
ELV Tst RMSE 0.005 0.005 0.004 0.005 0.004

Tst STD 0.000 0.000 0.000 0.000 0.000
FRD Tst RMSE 2.092 2.002 1.476 2.703 1.766

Tst STD 0.296 0.310 0.154 0.153 0.243
RMSE avg. 1.277 1.211 1.070 1.449 1.147

Note: At each run, the dataset FRD was partitioned randomly
20% training and 80% test

A. Experiment Results: Phase-I

At first phase, the training to FIS was provided using 10-
fold cross validation (10-fold CV) method. In a 10 fold CV, a
dataset is equally divided into 10 sets and from the portioned
sets, one set is chosen for testing. Whereas, the rest of nine sets
are used for training. This process is iterated over 10 times and
each time a distinct set is picked-up for the testing. Tables IV
and V illustrates training and test results computed using 10-
fold CV method. The training (Trn) and test (Tst) results in
Table IV and V were averaged RMSEs computed as per (11).
Accordingly, standard deviation (STD) of training and test
results of 10-fold CV were computed. The standard deviation
of training and test RMSE indicates the consistency of the
performance of FIS that was trained using the metaheuristics.
Here, in both cases, RMSE and STD, a lower value indicates
better performance than any higher values of RMSEs and
STDs.

We found that the FIS models listed in Table III, i.e., models
chosen from literature were tested over dataset FRD (see
dataset No. 4 in Table II). Hence, we compared the FIS models
of literature and the FIS models of this work (see Table VI).
The models in Table VI are arranged in acceding order of the
RMSE values. Hence, we rank the FIS model in two different
columns. Each was according to their training and test RMSEs,
respectively. The rank provided in Table VI were merely based
on the comparisons of the RMSEs and the training condition
were different in a sense that the different platforms, hardware
configurations, programming languages, random seeds, etc.
may have been used. Although these were the limitations

TABLE VI
FRD DATASET: I2FIS COMPARISONS WITH DIFFERENT MODELS

Training set Test set
Rank Models RMSE Rank Models RMSE

1 IT2FNN-SVR(N) 1.409 1 IT2FIS-DE 1.476
2 IT2FIS-DE 1.459 2 IT2FNN-SVR(F) 1.597
3 IT2FNN-SVR(F) 1.557 3 IT2FIS-PSO 1.766
4 IT2FIS-PSO 1.675 4 IT2FNN-SVR(N) 1.788
5 SEIT2FNN 1.841 5 SEIT2FNN 1.941
6 IT2FIS-BFO 1.948 6 IT2FIS-BFO 2.002
7 IT2FIS-ABC 2.053 7 IT2FIS-ABC 2.092
8 SONFIN 2.475 8 NBAG 2.121
9 T2FLS-G 2.534 9 GRNNFA 2.136

10 IT2FIS-GWO 2.667 10 Simple 2.224
11 NBAG - 11 Bench 2.317
12 GRNNFA - 12 SONFIN 2.531
13 Simple - 13 T2FLS-G 2.597
14 Bench - 14 IT2FIS-GWO 2.703

Note: The models in bold are from this work and the training and test results
were computed for 10 runs.

of this comparison, it is evident that the performance of
FIS models developed in this work, were very comparative
with several models in the literature. For example, interval
type-2 FIS optimization using DE (IT2FIS-DE) had the best
performance when it came to test rank and had performed only
next to model IT2FNN-SVR(N) [18] when it came to training
set.

Moreover, from a detailed examination of the 10-fold CV
results in Tables IV and V, it is evident that no FIS model
performed best in all cases of datasets, which ratify the
no free lunch theorem [13]. In Table IV, we see that the
training performance of DE is the best in all the dataset
in comparison to the other algorithms. However, the test
performance of DE, as indicated in Table V, is not the best in
all cases. Here, for dataset DIB, the algorithm BFO performed
better than that of DE, but the difference between the RMSEs
of the algorithms were marginal. This discussion met the
fifth dimension of our objective in this work (see Section I).
Thus, in second phase of our experiments, we evaluated the
performance of each metaheuristic algorithms over several
iterations (function evaluations), but we did use only 80% of
training samples. The algorithms were iterated 10,000 times,
which was equivalant to 50,000.

B. Experiment Results: Phase-II

In this phase, we investigated the performance of the models
in two dimensions. First, we investigated the convergence
rate of the metaheuristic algorithms. Second, we compare the
training RMSEs of the models. Hence, Figs. 3, Fig.4, Fig.5,
and Fig.6 shows the convergence rate of each algorithm during
the training of FIS. We examined the convergence rate to
find the learning ability of FIS using metaheuristic algorithms.
The convergence of an algorithm means, how training error is
reduced iteratively during the training procedure.

In Fig. 3, Fig. 4, Fig. 5, and Fig. 6, the x-axis indicates
the iteration (generations) of evaluation of the algorithms in
training of FIS; whereas, the y-axis indicates the RMSE com-
puted according to (11). From the convergence analysis of the



algorithms, it is evident that the convergence of FIS was faster
at the initial stage of training and subsequently got slower and
stuck into a local minim. However, the RMSE obtained were
satisfactory, which is listed in Table VII. Since metaheuristic
algorithms are stochastic in nature, their performance eval-
uations are subjected to averaging (or statistical validation)
of the results over many runs. Additionally, metaheuristic
algorithms have the tendency to favor certain problems over
the others. In the scope of this work, we conclusively find the
evidence that under the parameter setting specified in Table I,
the metaheuristic DE was the best among the algorithm.

From Table VII, it is further evident that under the present
parameter settings, the metaheuristic algorithm DE and ABC
performed significantly better than the other metaheuristics
algorithms in FIS parameter optimization. Additionally, we
found that although the training condition were different in the
FIS models IT2FIS-DE, IT2FIS-ABC and IT2FNN-SVR(N),
the performance of the IT2FIS-DE and IT2FIS-ABC gave the
best training RMSE in comparison to FIS model IT2FNN-
SVR(N) [18]. Here, the comparison with literature was limited
to only dataset FRD.

TABLE VII
INTERVAL TYPE-2 FIS TRAINING RESULTS OVER 80% DATA

Dataset ABC BFO DE GWO PSO Lit. [18]
ABL 2.194 2.178 2.103 2.328 2.396 -
DIB 0.333 0.441 0.300 0.478 0.329 -
ELV 0.004 0.004 0.004 0.004 0.004 -
FRD 1.444 1.742 1.360 2.200 1.667 1.409

Note: The model Lit. [18] is IT2FNN-SVR(N), which has the best training
avg. RMSE among the models listed in Table VI from literature. The dataset
FRD had 20% training and 80% test partition.
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V. DISCUSSION

We set five dimensions of objectives to explore in the
research work (see Section I). To meet with the proposed
objectives, first, we presented a concise discussion on the
FIS and the metaheuristic algorithms. A detailed discussion
on the design of the metaheuristic frameworks is offered in
Section III. We explored the use of genetic algorithm (GA) for
the optimization of FIS rule-base. In our GA based approach,
FIS was formulated into a binary-vector and the population of
such binary-vector helped us to optimize the FIS rule-base. We
found that for each dataset, GA led FIS rule-base had five rules
in its rule-base. The parameters of the obtained FIS (rule-base)
were tuned by using different metaheuristic algorithms. We
discovered that the FIS optimized using DE gave us the best
training and test RMSEs. The developed IT2FISs were tested
over four different datasets. The results presented in Table IV,
Table V, and Table VII described that the some metaheuristic
algorithm performed best in some cases of dataset and some
in other datasets (see Section IV). Additionally, a comparison
presented in Table VI over the dataset FRD illustrated that
the FIS model FIS-DE gave the test RMSE equal to 1.476
and it had performed better in comparison to the other listed
FIS models. The convergence analysis presented in experiment
phase-II provides us an interesting insight of the FIS training.
It described that the longer iterations of training was not
very helpful in terms of convergence of the RMSEs since
in the most of the cases of datasets, the metahuristics got
stuck into local minima at very early iteartion (around 1500-
2500). However, some algorithms such as DE and BFO had
shown tendency to escape local minima in case of datset ELV
(Fig. 5) and datset FRD (Fig. 6). Hence, a carefully setting of
metaheuristic parameter offers significant improvement to FIS
optimization.



VI. CONCLUSIONS

In this work, supervised training to developed FIS was
provided using metaheuristic algorithms. The metaheuristic-
based FIS optimization framework had a genotype mapping
of the FIS rule base into genetic vector and FIS parameters
into a real vector. An optimum rule-base was obtained from
a genetic population. Then, several metaheuristic algorithm
were applied for the parameter optimization of the obtained
FIS. The performances of the FIS and the performances of the
metaheuristic algorithms were comprehensively studied. From
the performance evaluations, we found that in the training
of FIS, which is computationally expensive and which is
a difficult optimization problem, the differential evaluation
algorithm performed better than the other employed meta-
heuristic algorithms. However, the performance of the bacteria
foraging optimization algorithm for the test sets were better
in some cases. Such performance study was based on the
mentioned parameter setting of the metaheuristic algorithms
and the programming environment.
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