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Abstract—Several works have been applied non-temporal clas-
sification techniques in the Human Activity Recognition area.
Instead of that, we present an approach for modelling the human
activities using a temporal learning tool. Here, the activities are
considered as time-dependent events, and we use a temporal
learning method for their classification. We employ a well-
known learning tool named Echo State Network (ESN). An
ESN is a specific type of Recurrent Neural Networks, which has
proven well performances for solving benchmark problems with
sequential and time-series data. Another advantage is that the
method is very robust and fast during the learning algorithm.
Therefore, it is a good tool for being applied in real time contexts.
We apply the proposed approach for analyzing a well-know
benchmark dataset, and we obtain promising results.

I. INTRODUCTION

Human Activity Recognition (HAR) is a relatively new
research area that has been gaining relevance during the last
decade [1]. The monitoring of human activities can be helpful
for understanding the human behaviour. As a consequence,
several scientific fields are pouring their interest into the HAR
area, which include: sociology, psychology, human-computer
interaction, and other field interested in the human behaviour.
Nowadays, there is a huge number of smartwatch and mobile
phone users, and this number is increasing with the time.
Hence, there is a big opportunity to use the captured informa-
tion through these devices for recognizing the human activities
in real-time. Recently, a large public dataset that deals with the
problems related to HAR in real-time contexts was introduced
to the research communities [2]. The collected dataset has
information of several subjects taken from several devices.
The authors in [2] analyses the effect of measuring the human
activities using different devices by using different recognition
techniques. The learning techniques for recognizing activities
that have been applied were non-temporal learning methods
such as : K-NN, SVM, Random Forest, and C4.5. In the same
way, several research works during the last decade have been
applied only non-temporal classification tools. We present
details about related works in the next section.

Our contribution in this paper consists in modeling and
solving a HAR problem using a temporal learning tool, which
it differs from the reported approaches in the literature. The
human activities evolve in time. Therefore, a natural approach

is to classify the output variables that evolve in time by
applying classification techniques that use the temporal or
sequential information of the dataset. We take account of the
spatial information contained into the input features as well as
the temporal information among the events. In particular, we
used a specific type of Recurrent Neural Network (RNN) that
was introduced at the beginning of the 2000’s under the name
of Echo State Network (ESN) [3]. In a learning procedure,
the ESN tool has advantages for modeling sequential data by
overcoming the limitations of RNNs. Another, good charac-
teristic of the ESN is that it has been produced very good
results in comparison to other techniques in many practical
applications [4]. In addition, we are interested in studying the
ESN technique on the HAR area because it has a robust and
fast training process. Therefore, it is a very useful tool for
learning or modeling datasets on real-time.

This paper is organized as follows. Section II presents a
concise survey of the related works introduced during the
past years by the research. In section III, we present the for-
malization of the temporal learning problem and an overview
about the ESN model. The benchmark dataset and the results
analysis are presented in section IV. We conclude this paper
in section V with a precise discussion and an outlook for the
future directions.

II. RELATED WORKS ON HUMAN ACTIVITY RECOGNITION

The information gathered from smartphones, smartwatches
and any other wearable electronics can be used for analysing
human behaviour. Data can be “artificially” generated in a
laboratory or “naturally” collected data by placing sensors for
registering human actions. At one hand, artificially generated
data can suffer of over-simplicity and thus, can influence the
activities of the subject [5]. On the other hand, data sets gath-
ered from more natural environments suffer from the variations
in movement patterns. Several works analysed the process
of generation data and its properties [6], [7]. For example,
in [6] the authors gathered activities of 20 humans during
20 days in semi-natural conditions. They placed five biaxial
accelerometers on five different human body parts. Then, the
authors applied machine learning methods for the activity
recognition, they used: decision table, instance-based learning



(IBL), C4.5 decision tree, and Naive Bayes classifiers. The
best performance was observed by the C4.5 decision tree that
reaches a classification rate of 84%. Other similar works that
have obtained good performance with C4.5 decision trees can
be seen in [8], [9]. In [10], the authors collected data using a
single triaxial accelerometer worn on the pelvic region of each
subject, and they created a mapping between this data and the
activities. Both activity-based computing and context-aware
computing suggest the adaptation of user-wearable devices or
mobile devices to adapt according to the state of the user ac-
tivities [11]. In [12], authors applied classification techniques
for recognizing the following activities: walking, climbing
up, climbing down, standing up, sitting down, and falling,
based on the data collected from a variety of accelerometer-
based devices. Recent works on activity recognition witnessed
classification of the human activities using SVM [13]–[15].
Traditional Neural Networks (NNs) was also applied [16],
and in [17] a specific type of NN named Extreme Learning
Machines was used.

A data from inertial embedded sensors in smartphones
was made in [17]. The authors used an on-line sequential
extreme learning machine for human activities recognition and
compared their results with the obtained ones when SVM was
used [7]. An overview about the implemented classification
methods using on-line and off-line training algorithms on
data from different platforms, phones, and sensors is available
in [18]. In this survey, phones and sensors were used for
the following tasks: on-line activity recognition, the resource
consumption analysis, the real-time assistive feedback, the
validation of on-line activity recognition, the orientation-
independent activity recognition, the independent position
activity recognition, fixed and adaptive sampling, and dynamic
and adaptive sensor selection.

In recent work [19], authors designed a type of ensemble
classifier algorithm where the classifiers have hierarchy, the
outputs of the higher levels use the outputs of many other
classifiers from the lower levels. At each level, different
activities were detected, by using base classifiers. Hence,
the output of one level passed to the higher level made the
detection more specialized in the classification of activities.
In [20], authors suggested us to perform feature selection from
the extract features in the time domain (absolute mean, median
absolute deviation, maximum, minimum, signal magnitude
range, interquartile range, and power) and in the frequency
domain (maximum, mean, kurtosis, skewness power). Then the
authors applied kNN, SVM, kernel-extreme learning machine,
and sparse representation classifier for the classification of
the activities. Similarly, in [21] was proposed a method that
follows speech processing strategies into a human activity
recognition and segmentation (HARS) system. The recognition
system was based on Hidden Markov Models (HMMs), for
recognizing and segmenting six different physical activities:
walking, walking upstairs, walking downstairs, sitting, stand-
ing and lying. Another helpful survey about HAR can be found
in [18], and a very useful review of the data sources and the
learning techniques applied on activity recognition can be seen

in [2].

III. SUPERVISED SEQUENCE LABELLING WITH ECHO
STATE NETWORKS

This section contains two parts. First, we start by formal-
izing the mathematical problem studied in this paper. Second,
we describe the ESN model and their properties.

A. Formalisation of a temporal learning problem

The goal of a classification problem consists of defining
a model for labeling an outcome variable based on a set of
input features [22]. Roughly speaking, the model is defined
using a particular dataset, with the condition that the generated
input-output mapping should be able of "well" mapping any
other unknown dataset. A distinctive assumption for solving
this task is considering the data points independent of each
other. Instead of this, in the case of temporal learning, we can
not assume independent patterns because of the both input and
output are measured form strongly correlated sequences [23].
Therefore, in the case of temporal learning the model should
be able of learning the geometric characteristics of the patterns
as well as their serial order. Formally, we refer the distinct
points of the input sequence as the time-steps [23]. Let a(t)
be the input pattern collected at time step t, and let y(t) be
its corresponded output. The dimensions of input and output
space are given by Na and Ny, respectively. The goal of
modeling is consists of using a training set S composed by the
pairs (a,y) for defining a parametric learning map ϕ(·) such
that is able to label the sequences in a test set S′ (S∩S′ = ∅)
as accurate as possible. For measuring the accuracy of the
mapping, a distance in an arbitrary time range [1, T ] is used.
In this paper, we use the following well-known quadratic
distance:

E =
1

T

T∑
t=1

Ny∑
o=1

(ŷo(t)− yo(t))2, (1)

where ŷo(t) is the coordinate o of the model output at time
t. Although, in our experimental part the output space is
unidimensional (Ny = 1).

B. Background on Echo State Networks

Recurrent Neural Networks (RNNs) are a type of Neural
Networks (NNs) particularly suitable for solving benchmark
problems with temporal and sequential data. They are bio-
inspired distributed systems, where the nodes are simple
processors (most often sigmoid functions) that transform and
send information among them in a topology of graph (network-
like structure). The graph has a weighted topology, and for
the specific case of RNN at least one circuit is presented.
This cyclical characteristic on the graph makes the RNN
a special tool for processing sequential data. Due to the
circuit, the model has the ability of memorize the information.
However, the RNN has a limited popularity in the community,
probably this is caused because is difficult to figure out an
optimal topology [23]. More specifically, several optimization
techniques that work well on NNs without recurrences can fail
in the case of RNNs [24].



At the beginning of the 2000s, a new approach for designing
and training a RNN was introduced in the community under
the names of Echo State Network (ESN) [3] and Liquid State
Machine (LSM) [25]. Both models have been developed in
parallel and they are computationally equivalent. The first one
was introduced by a research team of the Machine Learning
area, and the second one comes from researchers on the
area of Neurocomputing. The model consists of two well-
differentiated structures. One is a RNN used for processing and
memorizing the input sequence. Another one is a simple linear
regression for generating the model outputs. Often, the RNN
structure is randomly initialized by following some algebraic
properties that we discuss below. Another characteristic of
RNN is that its weights are fixed during the learning process.
The role of the recurrent part, named reservoir [26], is to
memories the serial order of the inputs and to expand the input
space into a larger dimensional space (projection space). In the
phase of linear regression, the points from the projected space
are mapped into the output space. Only the weights of the
linear regression are adjusted during the training algorithm.
As a consequence, the learning is fast and robust. In addition,
the model has proven to obtain very well performances in
many real applications [4], [26].

The model is defined as follows. We follow previous men-
tioned notations where Na, Nx and Ny are the number of
input, hidden and output neurons, respectively. Let win be
a Nx × Na matrix that collects the input-reservoir weights.
Similarly, let wr be a Nx × Nx matrix that collects hidden-
hidden weights and let wout be a Ny × Nx matrix with
the projected space to the output space. The RNN on the
reservoir is characterized at each time by the following high-
dimensional state:

x(t) = f1(w
ina(t) +wrx(t− 1)). (2)

The output of the model is given by:

ŷ(t) = f2(w
outx(t)), (3)

The functions f1(·) and f2(·) are two predefined coordinate-
wise functions, most often they are a tanh(·) function.

In this paper, we use a slight variation of the canonical ESN
method that computes the reservoir state as follows:

x(t) = (1− α)x′(t) + αx(t− 1), (4)

where the parameter α ∈ [0, 1) is called leaky rate and is
used for controlling the reservoir state update. In addition, the
regression also contains the input patterns. Then, the matrix
wout is a Ny×Na+Nx dimensional matrix with the projected
space to the output space. For the sake of notation simplicity,
we omit the bias term (it is included in the weight matrices).

Due to the fact that the reservoir is fixed during the learning,
the ESN initialization plays a very relevant role in the model.
Basically, the ESN initialization must satisfy the following
conditions [4], [27]. The size of the reservoir should be
much larger than the dimensionality of the input space. This
parameter impacts on the linear separability of the input data.

Another relevant parameter is the input scaling factor what
weights the input patterns, in our case we normalise the
inputs, so all the inputs have equal relevance. The spectral
radius of the reservoir matrix controls the stability and the
memory capability of the RNN [26], [27]. Several techniques
for setting the initial parameters have been introduced, for
instance see [28], [29]. In order of having stable dynamics the
spectral radius (we denote it by wr) should satisfy ρ(wr) < 1.
Although, the stability can even happen when ρ(wr) >= 1 [4].
Another parameter is the sparsity of the reservoir connections.
We define reservoir weights with 20% non-zero values.

IV. EXPERIMENTAL RESULTS

Here, we present the benchmark data used for This section
starts with a description of the benchmark data. Next, we
present our experimental results.

A. Benchmark dataset description

In this paper, we use a subset of the large dataset presented
in [2] where, the authors were interested in figuring out the
impact on the human activity recognition produced by data that
is measured by several heterogeneous sensors. In our work, we
are interested in evaluating the ability of temporal learning for
modeling the human activity. In this way, we analyse a dataset
collected with an embedded Gyroscope sensor, that is sampled
at the highest frequency the respective device allows [2]. The
tools used for collected the data are two LG smartwatches
and two Samsung Galaxy Gears smartwatches. There are three
subjects realizing the following activities (the output variable
to be modeled): Biking, Sitting, Standing, Walking, Stair Up
and Stair down, which are encoded by 0, 1/6, 1/3, . . . , 1,
respectively. The input information are the coordinates x, y,
z, the subject, the watch model, and the device. For more
details about the collection of the data, see [2]. Figures 1, 2
and 3 show the activities of the subject 1, 2 and 3, respectively.
From those graphics, we can see the different behavior of the
subjects.
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Figure 1: Activity of the subject 1 on the testing dataset.
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Figure 2: Activity of the subject 2 on the testing dataset.
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Figure 3: Activity of the subject 3 on the testing dataset.

In Figures 1, 2 and 3, the x-axis indicates time (time-
step at which the activities were recorded), and the y-axis
indicates the activity performed by the subject (e.g., Biking,
walking, Standing, etc.). Our objective is to predict/classify
these activities using the ESN and taking account of the time-
sets of the activities.

B. Analysis of the results

The first step was setting up the global parame-
ters of the ESN. Therefore, we evaluated the perfor-
mance of the ESN for the following parameter stings:
reservoir size Nx in {30, 40, 50, . . . , 120}, spectral radius
ρ(wr) in {0.1, 0.2, . . . , 0.9, 0.99} and leaky rate α in
{0.1, 0.3, 0.5, 0.7, 0.9}. Then, we divide the dataset in two
subsets, the first subset (80%) was used for the training of the
model and the second subset (20%) was used for the testing of
the model. We used off-line ridge regression for computing the
output weights [30]. For the illustration of the impact of this
parameter setting on the ESN model accuracy, we studied there
logarithmic scale map (Figures 4, 5 and 6). Each of one is for
different subject and for different leaky rate. Figure 4 shows
the accuracy of the model (in logarithmic scale) according
to the reservoir size and spectral radius when the ESN has
leaky rate equal to 0.1. Figure 5 presents the accuracy (in
logarithmic scale) when the leaky rate was 0.5, and Figure6
shows the logarithmic quadratic error for subject 3 and leaky
rate 0.9. In Figures 4, 5 and 6, we observed the impact of
the parameter Nx on the trade-offs between the training and
the testing. It was found that the larger Nx values reduces the



Table I: Mean of the quadratic errors of the 30 experiment
with different initialized ESN. The parameters were N∗x = 40,
ρ∗ = 0.7.

Leaky Subject 1 Subject 2 Subject 3
0.1 0.238× 10−4 0.104× 10−4 0.012× 10−1

0.5 0.255× 10−4 0.095× 10−4 0.022× 10−1

0.9 0.331× 10−4 0.013× 10−3 0.035× 10−1

Table II: Mean of the standard deviations of the 30 experiment
with different initialised ESN. The parameters were N∗x = 40,
ρ∗ = 0.7.

Leaky Subject 1 Subject 2 Subject 3
0.1 0.132× 10−4 0.696× 10−4 0.010× 10−1

0.5 0.142× 10−4 0.749× 10−4 0.023× 10−1

0.9 0.192× 10−4 0.103× 10−3 0.030× 10−1

training error, but at the same time increase the testing error.
In all the cases, the best values corresponds to Nx < 50. On
the other hand, the impact of the spectral radius is not very
clear although it seems that the best situations are produced
when the parameter ρ belongs to [0.5, 0.8] Once we define the
best ESN global parameters that we denote by N∗x , ρ∗, and
α∗, we run 30 random initialized ESN and their performances
were evaluated. According to the obtained results, we consider
that the best parameters are: N∗x = 40 and ρ∗ = 0.7.

Table I presents the mean accuracy computed using (1)
among the 30 experiments, with an ESN defined with (N∗x , ρ

∗)
parameters according to the subjects and the leaky rate. A
similar information is shown in Table II, in this case, the
standard deviation among the 30 trials are presented. From
Tables I and II, it is possible to statistically compare (using
confidence intervals with Normal approximations) the impact
of the leaky rate on the model accuracy. In addition, from the
information of Table I, we can see that the best performance
was produced by the temporal learning modeling. As an exam-
ple, in Figure 7, we present the target and its prediction given
by an ESN with the following parameter setting: α∗ = 0.5,
N∗x = 40, ρ∗ = 07. In Figure 7, the red curve is the target and
the blue one corresponds to the estimation. We can see that the
estimation is very well, there is sometime a small delay when
the person change of activity. From Table I, it is possible to
see that the modeling accuracy for the subject 3 is less than
the modeling accuracy for the other two subject. The possible
cause for such difference in accuracy is because of the different
length of the training set, each subject has different training
set (subject 1 has 136083 points, subject 2 has 149204 points
and subject 3 has 29285 points). The differences of the sizes
were given by the original data set that has different size of
data according the persons. Another cause of such difference,
can be produced by the fact of that each subject has different
behavior. Therefore, the training data can be very different
from each other.
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Figure 4: Model accuracy in logarithmic scale. The classifica-
tion was for subject 1 with a ESN with leaky rate α equal to
0.1.
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Figure 5: Model accuracy in logarithmic scale. The classifica-
tion was for subject 2 with a ESN with leaky rate α equal to
0.5.
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Figure 6: Model accuracy in logarithmic scale. The classifica-
tion was for subject 3 with a ESN with leaky rate α equal to
0.9.

0 2 4 6 8 10 12

x 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Activity Recognition of Subject 2 with leaky rate=0.5, Nx=40, rho=0.7

Time

A
ct

iv
ity

 

 

Prediction
Target

Figure 7: Example of the accuracy of the model. Activity of the
subject 2 and its prediction given by an ESN with α∗ = 0.5,
N∗x = 40, ρ∗ = 07.

V. CONCLUSIONS AND FUTURE WORK

We present an approach for Human Activity Recognition
(HAR) that models the problem using temporal learning. In
related works, most often the classifiers were built as non-
temporal supervised learning techniques. The human activities
evolve in time. Here, we consider the problem as a tempo-
ral supervised learning. Our hypothesis is that the activity
presented at current time impacts in the next ones. We use
a well-known learning tool for modelling temporal learning
named Echo State Networks. The method has presented well-
performances in several real-world problems. Another good
property of the model is that is very robust and fast during
the training, therefore it can be a good tool for real time
contexts. Then, the model can be adapted in real-time devices
producing new most appropriate activity estimations. The ESN
has several parameters, we presented a sensitivity analysis of
its parameters. We figure out that for this specific dataset,
the model is very sensitive to the size of the hidden-hidden
weights. On the other hand, the impact of the leaky rate and
the spectral radius of the hidden-hidden matrix seem to have
less relevance. The proposed method a very good accuracy,
in the near future we are interested in analysing the problem
with other type of biaxial or triaxial accelerometers, as well
as with other supervised learning techniques.
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