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ABSTRACT 

 Electrochemical hydrogen peroxide synthesis using two-electron oxygen 

electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly 

and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. 

Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction 

(WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts 

have been used for the same and were characterized using several electroanalytical, chemical, 

spectroscopic and chromatographic tools. Though there have been a few reviews summarizing 

the recent developments in this field, none of them have unified the approaches in catalysts’ 

design, criticized the ambiguities and flaws in the methods of evaluation, and  emphasized the 

role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in 
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the catalysts’ design, performance optimization, evaluation perspectives and their 

appropriateness and opportunities with electrolyte engineering. In addition, particularized 

discussions on fundamental oxygen electrochemistry, additional methods for precise screening, 

and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, 

this review discloses the state-of-the-art in an unpresented view highlighting the challenges, 

opportunities, and alternative perspectives.  

Keywords: H2O2 generation; Electrocatalysis, Oxygen reduction reaction; Water oxidation 

reaction; Electrochemical synthesis. 

INTRODUCTION 

 Electrochemical hydrogen peroxide synthesis has become one of the efficient and easier 

ways of generating the greener oxidizing agent (i.e. H2O2) in an environmentally friendly manner 

[1]. Hydrogen peroxide is a universal oxidizing agent which is used as oxidant, disinfectant, 

bleaching agent, and as a fuel depending on the site of application. Fuel-cells, industrial 

bleaching, waste-water treatment, pulp bleaching, fine synthesis of organic molecules, and 

medical equipment cleansing are few of several applications that it has found [2,3]. Hydrogen 

peroxide is eco-friendly as it releases water as the by-product upon use whereas bleaching agents 

such as oxychlorides release toxic chlorine gas and also increase the salt content of the medium 

in the overall process [4,5]. Hence, it has been given a greater attention in the recent past. 

Despite being the greenest oxidizing agent of all, its global production is still dominated by the 

anthraquinone process which was developed back a century [6,7]. Anthraquinone process is a 

multi-step process that requires hydrogenation of anthraquinone over a metal catalyst surface 

which is generally Ni or Pd, separation of hydroquinone, oxidation of hydroquinone with air, 

phase transfer of produced hydrogen peroxide to water, distillation of hydrogen peroxide 
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transferred to aqueous phase for concentrating, and the recovery of regenerated anthraquinone. 

Since anthraquinone process is a multi-step process, hydrogen peroxide is usually produced in 

batches with very high concentration (~80%). This concentrated solution is then diluted at the 

site of use depending on the application which is a dangerous process and require extreme 

precautions. Moreover, transporting such highly concentrated solutions of hydrogen peroxide 

was also witnessed to be detrimental as there was an incident of explosion [8]. Realizing the 

demerits of anthraquinone process, researchers came up with the direct synthesis of hydrogen 

peroxide from molecular hydrogen and oxygen gases over metallic catalyst surfaces [9–12]. 

Though this method offers a single-step  synthesis with no requirements for phase transfer and 

distillation, the potentially explosive combination of molecular hydrogen and oxygen gases in a 

wide range of composition makes it still a hazardous method. This issue is usually avoided 

introducing an inert gas in the reaction medium. Due to these pitfalls of anthraquinone process 

and direct synthesis, researchers are now focusing on the decentralization of hydrogen peroxide 

production from these processes. One of the efficient ways to do is going for electrochemical 

synthesis as it is relatively safer, faster, and easier to handle with [1]. Electrochemically, 

hydrogen peroxide can be synthesized by both partial oxygen reduction reaction (ORR) and 

partial water oxidation reaction (WOR) [3,13]. Major complexity in electrochemical synthesis of 

hydrogen peroxide is achieving the two-electron selectivity. Even though electrochemical 

synthesis has several advantages over both anthraquinone process and the direct synthesis 

(Scheme 1).  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



4 
 

 

Scheme 1: Graphical depiction of fundamental functions in anthraquinone process, the direct 

synthesis, and electrochemical synthesis with associated demerits and merits. 

Unlike anthraquinone process, electrochemical synthesis can be carried out continuously with no 

requirements for phase transfer catalysts (PTC), distillation, and use of a carcinogen. Unlike the 

direct synthesis, electrochemical synthesis require either water or only dioxygen molecule as a 

starting material and uses protons and electrons generated in situ via electrolysis at the counter 

electrode to form hydrogen peroxide [14,15]. Hence, electrochemical synthesis of hydrogen 

peroxide is far superior to both anthraquinone process and the direct synthesis. Electrocatalysts 

of different kinds have been reported to perform two-electron ORR avoiding four-electron path 

to the complete reduction of O2 to water with selectivity as high as 100%. These catalysts 

include heteroatom (N, S, O, and F) containing carbons [15–20], metal complexes with N-donors 

in carbon matrices (M-N-C catalysts) [18,21–23], metals and their alloys [24–26], Similarly, 

partial water oxidation is also performed with oxidized/oxygen containing carbons[27,28] and 

metal oxides of very poor selectivity towards four-electron water oxidation [29–32]. Number of 

catalysts developed for two-electron ORR is quite larger in number than that of two-electron 
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WOR [1,13]. Owing to the superiority of electrochemical synthesis of hydrogen peroxide, it has 

become very frequent to see new catalysts appearing in the literature. Recent reviews appeared in 

literature had either focused only on two-electron ORR[13] or a complete evolution of the field 

from the beginning while emphasizing the future directions [1,3]. In contrast, this review 

critically analyses the strategies used in catalysts’ design, perspectives of evaluation and 

associated ambiguities, and proposes the key changes that are to be adopted for further 

developments while emphasizing the future direction of growth in an unpresented view. 

Different practices followed by different groups of researchers in assessing the performance of 

H2O2 evolving electrocatalysts lay difficulties in unifying and benchmarking activity trends. 

Hence, a significant part of this review is dedicated to critique the ambiguities in screening 

methods and propose alternative quantification methods with an elaborated note on oxygen 

electrochemistry. In addition, the necessity of electrolyte engineering in improving H2O2 

productivity which was never talked by any review is discussed here. Finally, we have identified 

the strategies used in catalysts’ design for both two-electron ORR and two-electron WOR and 

unified them all under a few simple principles which helped us predicting other prospective 

elements in the periodic table capable of forming H2O2 selective catalysts. Therefore, this review 

assists the researchers by providing a rational guide to use the evaluation techniques 

appropriately while familiarizing them with the recent strategies employed in catalyst’s design 

targeting two-electron oxygen electrochemistry in a viewpoint never presented earlier.  

EVALUATION PERSPECTIVES 

 In general, electrocatalysts are screened for their activity, stability and selectivity. These 

characteristics of a catalyst must be satisfied in order to qualify it for sustainable full-cell 

operations [33,34]. Activity of an electrocatalyst is determined by the overpotential at a defined 
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current density (or at onset) in general which is a thermodynamic parameter. The same is true in 

electrochemical synthesis of hydrogen peroxide too. In two-electron WOR, the onset 

overpotential is calculated subtracting the equilibrium potential of hydrogen peroxide evolution 

from water (1.76 V vs. reversible hydrogen electrode (RHE)) from the potential at which the 

catalyst under study delivers 0.2 mA cm
-2

 [30]. In contrast, such onset overpotential is given 

relatively less importance in two-electron ORR. In fact, any catalyst that has larger overpotential 

for ORR than the equilibrium potential (0.70 V vs. RHE) of hydrogen peroxide formation from 

dioxygen (i.e. two-electron ORR) is considered to be a good catalyst [13]. The approach 

followed in two-electron WOR allows us to take energy-efficiency of an electrocatalyst into 

consideration whereas the approach used in two-electron ORR does not. Stability is one of three 

important characteristics of an electrocatalyst which primarily testifies its suitability for long-

term operations and it is examined in the same way for both two-electron ORR and two-electron 

WOR catalysts unlike the different conventions followed in activity determination. In general, 

chronoamperometry or chronopotentiometry is carried out at a fixed potential/current where the 

selectivity of the catalyst is higher for several hours to days of operation and the stability of the 

catalyst under study is expressed in terms of percentage loss (in chronoamperometry) or increase 

in overpotential (in chronopotentiometry) of activity [35]. Above both activity and stability, 

selectivity of an electrocatalyst is given a greater significance in both two-electron WOR and 

two-electron ORR as there is a thermodynamic competition between four-electron and two-

electron paths [1]. By definition, four-electron path of ORR and WOR is said to occur at a 

relatively lower equilibrium potential (1.23 V vs. RHE). This equilibrium potential of four-

electron oxygen electrocatalysis is 0.53 V cathodic to two-electron WOR and 0.53 V anodic to 

two-electron ORR which implies that there is a very high probability for four-electron path while 
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comparing the desired two-electron paths of ORR and WOR. Because of this reason, almost all 

electrocatalysts developed so far have been carefully designed and engineered to suppress the 

four-electron paths. In general, the best catalysts that are selective for two-electron ORR and 

WOR are poor for four-electron ORR and WOR which are desired for energy-efficient fuel cell 

and water electrolysis operations [36,37]. Selectivity is usually determined in terms of Faradaic 

efficiency (FE) which is determined by different methods such as rotating ring disk electrode 

(RRDE) [13], gas chromatography [27,29,32], titration [1,25], and even by instant test strips 

[29,30,32]. The RRDE method has so far been used only for two-electron ORR. In this method, 

equation (1) is used to determine the FE [13]. 

    FE (%) = [iR / (NCL × iD)] × 100    (1) 

where, iR and iD are ring and disk currents, respectively. NCL represents the collection efficiency 

of the RRDE which can be obtained from the average of ratio of iR and iD acquired at 100, 400, 

900, 1600, and 2500 rpm with a known redox couple (such as Ferro-Ferri) involving single 

electron transfer [38,39]. In typical quantification of hydrogen peroxide produced from two-

electron ORR by RRDE method, a rotation rate of 1600 rpm is chosen for acquiring polarization 

curves in the potential region of 0.05 to 1.00 V vs. RHE at the disk electrode while maintaining a 

constant potential of 1.2 V vs. RHE at the ring electrode. Then, from ring and disk currents and 

from the calculated NCL, FE is calculated. Recently, the potential dependent disk current 

corresponding to hydrogen peroxide formation is also calculated using the ring current and NCL 

[13,24,25]. Compared to all other methods of quantification of produced hydrogen peroxide, 

RRDE method is handier and quicker and does not require sufficient saturation of electrolyte 

with the synthesized H2O2. Other mentioned methods such as chromatography, titration, and 

H2O2 test strips uses the equation (2) to calculate FE [13]. 
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FE (%) = Experimentally quantified H2O2 (mol) / Calculated H2O2 (mol) × 100  (2)  

These methods require the electrolyte solution under screening to get saturated with the 

electrochemically generated hydrogen peroxide sufficiently before analysis. Hence, usually, 

potentiostatic electrolysis for a period of 5 to 10 min is performed every time before 

quantification at all desired potentials.[30] In this way, these methods are disadvantageous to that 

of RRDE method where the later can quantify electrochemically generated hydrogen peroxide 

simultaneously at the ring while keeping the potential at the ring constant. However, 

chromatography, titration, and H2O2 test strips have their own merits as they show the actual 

concentration of hydrogen peroxide in solution after significant time of electrolysis and under no 

externally induced or forced mass transfer. The rotation rate set at RRDE method induces a 

forced mass transfer (convectional) of synthesized hydrogen peroxide and influence the 

selectivity to a greater extent. As far as two-electron ORR half-cell studies are concerned, the 

RRDE method is superior but not the precise one reflecting the actual rate and selectivity. On the 

other hand, chromatography, titration, and H2O2 test strips are more reliable when it comes to 

full-cell studies (such as flow-cell, proton exchange membrane fuel cell (PEMFC), gas diffusion 

electrode (GDE), etc.) [16,40–44]. In titration method, the electrogenerated H2O2 is titrated 

against the standardized acidified permanganate solution which could easily oxidize H2O2 and 

the end point of which is indicated by a persisting pale pink colour as a result of added excess 

permanganate [45]. This is the cheapest method of all which do not require sophisticated 

instruments (RRDE, gas chromatography, and spectrophotometers). The chemical reaction that 

involves in the titrimetric quantification of H2O2 is given in equation (3) [3]. 

  5H2O2 + 6H
+
 + 2MnO4

– 
 2Mn

2+
 + 8H2O + 5O2↑    (3) 
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Other than these, RRDE method is also sometimes used to calculate the O2 efficiency as another 

way to show the selectivity for H2O2 evolution in ORR which uses equation (4) [13].  

  O2 efficiency (%) = (2 × iR/NCL) / (iD + iR/NCL) × 100   (4) 

However, in our view, it is convenient to show FE in percentage calculated using equation (1). 

Besides, a few group of researchers use the Koutecký–Levich (K-L) plot for determining the 

number of electron transferred in ORR which also can qualitatively reveal the selectivity of an 

electrocatalyst [6,46]. These are the methods that have so far been used to determine the 

selectivity. Though it is important that the given electrocatalyst should have exclusive selectivity 

for two-electron ORR or WOR, the activity and stability must not be neglected in the meantime. 

Tafel analysis and TOF determination must also be given equal importance to that of selectivity.  

Ambiguities in Evaluation Methods 

 From the above discussions, it is quite clear that the selectivity of a H2O2 evolving 

catalyst is determined using various methods by different group of researchers. This basically 

makes it difficult to come up with a rational comparison of performances studied 

electrocatalysts. In two-electron ORR, a majority of people uses RRDE method whereas a few 

are using titration/chromatography method. On the other hand, RRDE is not used in two-electron 

WOR. Similarly, in two-electron ORR, the overpotential is not given much significance whereas 

people who work on two-electron WOR consider the potential at which the catalyst under study 

delivers 0.2 mA cm
-2

 as onset potential [29,30]. Despite being a concurrent, handier, and faster 

method of quantification, RRDE suffers from the fact that it is not revealing the selectivity of the 

catalyst under study in a standard condition (i.e. no externally induced/forced mass transfer). 

Because of this, a catalyst’s performance is always overestimated when the selectivity is 

determined using RRDE method. The very first experimental evidence showing the differences 
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in the FE determined using RRDE and titration for Au/C, Ag/C and Pt-Hg/C was shown by Yang 

and co-workers (Figure 1) [13].  

 

Figure 1: Faradaic Efficiency of Pt-Hg/C (dark blue), Au/C (ocher), and Ag/C (grey) two-

electron ORR catalysts determined in 0.1 M HClO4 with RRDE, gas diffusion electrode (GDE) 

submerged and membrane electrode assembly (MEA) setups. Titration method was used to 

quantify H2O2 in GDE submerged and MEA cell set ups. Reproduced with permission from ref. 

13 (Copyright 2018, American Chemical Society).  

Clearly, the RRDE method overestimates the selectivity (for Au/C and Pt-Hg/C) as it was 

measured under externally forced mass transfer condition. Besides, their experiment also showed 

the influence of design of electrochemical cell on the selectivity. This indicates us that there most 

certainly exists an ambiguity in selectivity determination. The effect of design of cell and the 

mesoscopic structure of catalyst/electrode interface could also cause ambiguities in selectivity 

determination of two-electron WOR too. The key issues with the evaluation perspectives in two-

electron ORR and two-electron WOR are listed below. 
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 Though the same H2O2 is synthesized and quantified in both two-electron ORR and two-

electron WOR, the methods used are totally different and thereby questioning the 

reliability. 

 In two-electron ORR, RRDE is the mainly used technique for the quantification which 

provides no information on real-time productivity and saturation of H2O2. 

 In two-electron WOR, permanganate titration or the test strip reader take too much time 

within which further chemical, thermal, photo, and electrochemical decomposition of 

synthesized H2O2 is highly feasible thereby undervaluing the actual Faradaic efficiency 

of respective electrocatalysts. 

 Irrespective of the electrochemical path used for H2O2 electrosynthesis, most of the 

studies were carried out with conventional three-electrode cell in which the 

oxidation/reduction of H2O2 at the counter electrode is not given any significance. 

 Major proportion of interest is given mainly to the selectivity than activity and stability 

which are also crucial in assessing the rate of production of H2O2. 

 Tafel analysis is key component in all sort of electrocatalysis research which is not used 

as effectively as it is used in water electrolyser and fuel-cell characterizations. 

 Mesoscopic effect of electrode and cell are not given any significance albeit these effects 

could largely affect activity, selectivity, and stability of the catalysts under study. 

Other Ways of Precisely Assessing H2O2 Evolving Catalysts 

It is comprehended from above discussion that it is hard to come up with a standard set of 

evaluation perspectives for electrochemical hydrogen peroxide evolution either via two-electron 

ORR or two-electron WOR. However, following modifications in the standard protocols of 

evaluation could be adapted to make the data more insightful and truly reflecting the intrinsic 
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activity. The very first modification that we suggest is the use of RRDE method for both two-

electron ORR and WOR. Undoubtedly, the selectivity measured using RRDE is not of standard 

conditions but of externally forced mass transfer conditions. Even then, most of the well-

established two-electron ORR catalysts have only been evaluated using RRDE. Therefore, it is 

inevitable at this stage and we propose the use of RRDE for two-electron WOR too. In this case, 

potential of WOR catalyst modified disk electrode can be swept from 1.60 to 2.60 V vs. RHE (or 

even as high as 3.20 V vs. RHE as  reported in a few recent reports) while maintaining a constant 

potential of 1.20 V vs. RHE at the ring electrode. Doing this, two-electron WOR catalysts’ 

selectivity can also be determined concurrently as done for two-electron ORR catalysts. Even 

though there is a huge possibility that anodically produced H2O2 may also get oxidized at the 

disk electrode (the potential of which is being swept) at high anodic potentials, the oxidation of 

H2O2 at Pt ring electrode at 1.20 V vs. RHE would still be kinetically more facile than the 

catalyst coated over the disk electrode which is designed exclusively for two-electron WOR. 

However, the Pt ring in a commonly used RRDE set up has its own disadvantages such as self-

oxidation at 1.2 V vs. RHE causing changes in kinetics of H2O2 electrooxidation and associated 

collection efficiency, ability to disproportionate electrosytnhesized H2O2 chemically, and slow 

kinetics of H2O2 electrooxidation at Pt surfaces. Hence, if a RRDE with a Pt ring is to be used, 

we recommend the following procedure to be followed. 1) Using a potential a little lesser than 

the self-oxidation potential of Pt but higher than the oxidation potential of H2O2 (i.e., lower than 

1.2 V and higher than 0.7 V vs. RHE), 2) Using the highest possible rotation rate so as to avoid 

the diffusion limitation issue to avoid the chemical disproportionation of H2O2 on Pt surface, and 

3) Making the measurements as quickly as possible without exposing Pt to the electrolyte for a 

much longer time to avoid the deactivation of Pt. Instead, a RRDE set up with a gold or silver 
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ring can be an optimal choice which do not possess such issues. Otherwise, the quantification 

methods used under standard conditions (such as chromatography, H2O2 test strips, and titration)  

should also be used for two-electron ORR. As stated earlier, titration method utilizes the redox 

reaction (equation 3) between acidic permanganate and hydrogen peroxide in which the 

generally oxidizing H2O2 becomes a reducing agent as the reduction potential of acidified 

permanganate is much higher than that of H2O2. In this method, the endpoint is determined from 

the pale pink colour imparted by the excess permanganate added to the analyte (with unknown 

H2O2) which means that the concentration determined from this endpoint is always slightly 

higher than the actual concentration of H2O2 in the analyte. Moreover, there are higher chances 

for human error while manually adding titrant from the burette which would further cause 

additional errors in endpoint determination. To overcome this, we propose the use of 

conductometry/potentiometry titration from which the endpoint could precisely be obtained from 

the change in conductivity/potential with respect to the addition of titrant to the analyte. Besides, 

one can also opt one of many H2O2 sensors available in the market (such as H2O2 test strips) or 

could make one on their own with a little knowledge from photochemical or electrochemical or 

photoelectrochemical detection of H2O2 using a variety of catalysts reported in literature which 

could detect in nano molar concentrations.  

So far, we have discussed the alternate methods of determination of selectivity. On the 

other hand, high activity is also important for rapid and bulk production of H2O2. Activity is 

measured by overpotential at defined current density (or at onset of H2O2 evolution). This is a 

very loosely followed evaluation parameter in this field and we even found that no significance 

was given in a few works to such activity markers. As in other electrocatalytic reactions (such as 

complete ORR and OER), no assumption on fixed current density can be made (to measure 
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overpotential) as we are not sure that the observed current is either of H2O2 evolution or of the 

formation of H2O/O2 or the combination thereof. Hence, it is suggested that the onset 

overpotential can be preferably used. In addition, the rate of production of H2O2 can be 

determined from the quantification results as turnover frequency (TOF) which could also be used 

as another activity marker.  

As we are more concerned about the selectivity, we could also make use of extensive 

Tafel analysis to shed light on the mechanism which in turn can be used to highlight the 

selectivity qualitatively in a given region of overpotential [47,48]. In HER and OER 

electrocatalysis, the Tafel slope is used to judge the mechanism by which the catalyst under 

study perform the desired reaction. Typically, the experimental conditions of H2O2 evolution 

(both two-electron ORR and two-electron WOR) are much similar to that of HER and OER. To 

corroborate the mechanism of HER/OER, the Tafel slope is used to predict the number of 

electrons transferred in the rate determining step (RDS). If the Tafel slopes are 120, 90, 60, and 

30 mV dec
-1

 and the charge transfer coefficient is assumed to be 0.5, the corresponding number 

of electrons transferred in the RDS is one, two, three, and four, respectively [49]. If one acquires 

the Tafel plot from the kinetic current for a wide range of overpotentials, they can predict the 

number of electrons transferred in RDS, mechanism and the selectivity (qualitatively). Obtaining 

Tafel slope in a wide range of overpotentials could also reveal change in mechanisms which can 

be used to correlate the trend in FE determined by other methods. Tafel plots of different 

stainless steel 304 (SS-304) foils treated chemically for different time of reaction and IrO2 

modified SS-304 (Figure 2) revealing the change in mechanism of OER in 1.0 M KOH is an 

example how such an extensive Tafel analysis can also be used in H2O2 evolution too to predict 

the mechanism and selectivity [50].  
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Figure 2: Tafel plots of SS-304 treated in different conditions and of IrO2 modified SS-304 

showing change Tafel slopes which in turn indicates the change in mechanism of OER. 

Reproduced with permission from ref. 50 (Copyright 2017, American Chemical Society).  

However, this method is applicable only to two-electron WOR as two-electron ORR is limited 

by mass transfer after a certain overpotential. However, still one could get to know the 

mechanism of ORR from the Tafel plot derived out of mass-transport influence corrected kinetic 

currents [51,52]. Recently studied two-electron WOR catalysts are also polarized as high as 3.20 

V vs. RHE within which the equilibrium potential of hydroxyl radical formation via water 

oxidation falls at 2.73 V vs. RHE.  This means that there is a fair chance for the preferable 

formation of hydroxyl radical over hydrogen peroxide. In general, a few two-electron WOR 

catalysts showed decreased FE after 2.70 V vs. RHE. Such changes in reaction cannot be 

understood just from FE measurements whereas an extensive Tafel analysis can. We believe that 
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the above discussed additional methods of precisely assessing the activity and selectivity of H2O2 

evolving electrocatalysts will extensively be used in future works. 

OXYGEN ELECTROCHEMISTRY  

 Electrochemical transformation of oxygen and its compounds is the most important 

reaction process without which the realization of clean energy generation, storage, sustainable 

energy technology, and hydrogen economy are nowhere near in the future [53,54]. Efficiency of 

fuel cells depends largely on the performance of the cathode catalyst performing four-electron 

ORR [51,52,55]. Similarly, energy efficiency of hydrogen generation from water through 

electrolysis is determined almost exclusively by the four-electron WOR (otherwise familiar 

OER) which is complex and involves in O–O bond forming reaction [56–58]. Amount of 

electrical energy stored in a metal-air battery on the other hand depends largely on the efficiency 

of bi-functional activity of the catalyst material used as an air-electrode. This air-electrode must 

perform both complete four-electron ORR and four-electron WOR in order to have high cell-

voltage and subsequent high power density [59–62]. Other than these, environmental pollution 

treatment processes such as electrochemical bleaching (electro Fenton process) in the presence of 

a co-catalyst which will form the highly reactive hydroxyl radicals is also involving in 

electrochemical transformation of oxygen and oxygen containing small molecules (H2O2 and 

water) [63–65]. An excellent review focussing on various energy conversion reactions that 

utilize the electrochemical transformation of oxygen and its species was written by Katsounaros 

and co-workers[53] which can be referred for further grasping of the significance of oxygen 

electrochemistry in a broader sense. Just like the above said areas of energy research and their 

dependence on oxygen electrochemistry, electrochemical hydrogen peroxide synthesis also gets 
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benefitted by it. In this case, as we introduced earlier, it is the two-electron and two-proton path 

in both ORR and WOR.  

Electrochemical Oxidation of Water 

Water is one of the most-abundant sources for hydrogen on earther and hence, a tremendous 

attention is being paid on its electrolysis to generate hydrogen. Beyond just hydrogen generation, 

water also offers other potential and value-added products that find important industrial 

applications which include hydrogen peroxide. Equations (5 – 8) shows the ways by which water 

can be electrochemically oxidized depending on the number of electrons and protons transferred. 

  2H2O  O2 + 4H
+
 + 4e

–
   E = 1.229 V vs. RHE   (5) 

  2H2O  HO2˙ + 3H
+
 + 3e

–
   E = 1.655 V vs. RHE   (6) 

  2H2O  H2O2 + 2H
+
 + 2e

–
   E = 1.760 V vs. RHE   (7) 

  H2O  HO˙ + H
+
 + e

–
   E = 2.730 V vs. RHE   (8) 

Hence, controlled electrochemical oxidation of water may benefit us with hydroperoxyl radical 

(the anion of it is called superoxide), hydrogen peroxide, and hydroxyl radical. However, in 

practice, the formation of hydroperoxyl radical through three-electron water oxidation has never 

been succeeded before as four-electron and three-electron paths are almost concurrent and 

indistinguishable. Fortunately, one-electron reduction of oxygen offers a safe  path to form 

hydroperoxyl radicals and superoxide ions which is very commonly observed in biological 

systems. A classic example is the production of superoxide anion by protonated nicotinamide 

adenine dinucleotide (NADH) in response to invading pathogens in human body via one-electron 

reduction of dioxygen molecule [66–68]. This hydroperoxyl radical or superoxide anion acts as 

rather a strong reducing agent than a oxidizing agent. In fact, the order of oxidizing capability of 
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these reactive oxygen species goes as hydroxyl radical > hydrogen peroxide > hydroperoxyl 

radical > dioxygen. Hence, in principle, depending the target materials which require 

oxidation/reduction one can simply control the formation of desired reactive oxygen species 

(ROS) formation by monitoring the potential. However, it is not that simple in practice because 

of the kinetic competition between four-electron oxidation of water and other paths. In addition, 

the four-electron mechanism is the thermodynamically favored path with the lowest equilibrium 

potential (1.229 V vs. RHE).  

Electrochemical Reduction of Dioxygen 

 Electrochemical reduction of dioxygen is an equally thoroughly explored area of energy 

conversion electrocatalysis owing to its importance in determining the cell voltage and power 

density of fuel cells and metal-air batteries [51,52,69]. Besides, it is also vastly studied for the 

generation of hydroxyl radical and hydrogen peroxide. As far as hydrogen peroxide synthesis via 

oxygen reduction is concerned, it is advantageous as one can achieve exclusive selectivity [1,13]. 

However, the mass transfer limitation, need for continuous oxygen supply, and low-current 

production lowers its significance greatly. Equations (9 – 12) show the different ROS that can be 

formed via controlled reduction of dioxygen molecule.  

  O2 + 4H
+
 + 4e

– 
 2H2O  E = 1.229 V vs. RHE   (9) 

  
 

 
O2 + 3H

+
 + 3e

–
  3HO˙  E = 0.803 V vs. RHE   (10) 

  O2 + 2H
+
 + 2e

–
   H2O2  E = 0.700 V vs. RHE   (11) 

  O2 + H
+
 + e

–
  HO2˙   E = 0.330 V vs. RHE   (12) 
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These reactions and the corresponding equilibrium potentials are important in designing catalysts 

considering the energies of interactions of intermediate species. In our case, it is the two-electron 

path for both ORR and WOR. Hence, while designing an electrocatalysts one always has to be 

cautious in suppressing the thermodynamically favoured four-electron path at lower 

overpotentials and other possible (three- and single-electron) paths at high overpotentials to 

ensure high rate and exclusive selectivity. So far, every two-electron ORR and two-electron 

WOR catalysts reported in literature had strategically avoided the four-electron path by making 

them poor catalysts for complete ORR and OER which are discussed in forthcoming sections. 

Such catalysts had always begun ORR and WOR beyond the equilibrium potential of two-

electron paths (0.700 and 1.760 V vs. RHE, respectively for ORR and WOR).  

Effect of Single- and Three-Electron Paths in H2O2 Synthesis 

 Change in the selectivity of H2O2 evolving catalysts at relatively higher overpotential is 

an understudied phenomenon in this area of research. Apparently, several, two-electron ORR and 

two-electron WOR electrocatalysts had exhibited lowering in the H2O2 Faradaic efficiency. In 

most of the cases where H2O2 was synthesized via two-electron water oxidation, the reason for 

such a lowering was attributed to the shift in equilibrium caused towards the starting material 

(H2O) with the increasing product (H2O2) concentration according to Le Chatelier’s principle 

which seems to be true as no relationship between such a lowering in selectivity and equilibrium 

potentials of other possible paths of oxygen electrochemistry discussed above [32].  
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Figure 3: ORR LSVs of Ag (a) and Pt-Hg (b) catalysts in 0.1 M HClO4 showing gradual 

lowering in FE, peroxide current (red), and ring current corresponding the oxidation of H2O2 

formed at the disk of RRDE assembly at U < 0.3 V vs. RHE (the equilibrium potential of 

hydroperoxide radical formation via single-electron ORR). Reproduced (a) with permission from 

ref. 13 (Copyright 2018, American Chemical Society) and (b) from ref. 24  (Copyright 2013, 

Nature Publishing Group).  

Another possible reason is that at high overpotentials, these materials which are poor in 

performing four-electron oxidation might have become active for it due to the probable changes 

that occur in the work function of the surface. Beyond these reasons, lowering in selectivity of 

two-electron path could also be attributed to the emergence of single-electron path. However, 
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such a justification was never made in any reports wherever such a lowering is observed and the 

potential at which the lowering witnessed was closer to the equilibrium potentials of single-

electron paths in ORR and WOR.  

 

Figure 4: WOR LSVs of different facets of ZnO in 2.0 M KHCO3 showing a gradual lowering 

in FE beyond 2.73 V vs. RHE (the equilibrium potential of formation of hydroxyl radical via 

single-electron WOR). Reproduced with permission from ref. 29 (Copyright 2019, American 

Chemical Society). 

A cautious survey of such studies where lowering of selectivity witnessed at higher 

overpotentials corresponding to single-electron path are discussed here. Yang and co-

workers[13] and Siahrostami and co-workers[24] witnessed such a lowering in selectivity for Ag 

and Pt-Hg two-electron ORR catalysts in 0.1 M perchloric acid (Figure 3a-b). As we can see 

from Figure 3a-b that at U < 0.3 V vs. RHE (the equilibrium potential for the formation of 

hydroperoxyl radical via ORR), the peroxide current (red) and the corresponding peroxide 

oxidation current at ring electrode (blue) began decreasing gradually. Meanwhile, a concurrent 

lowering in the FE was also evidenced. However, such a potential dependent selectivity change 
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with these same catalysts are observed only in 0.1 M perchloric acid but not in 0.1 M potassium 

hydroxide. This further indicates that solution pH will have huge role in determining the 

efficiency of a given electrocatalyst in H2O2 synthesis via two-electron ORR. Similarly, a recent 

work by Kelly and co-workers[29] demonstrated that the different phases of ZnO two-electron 

WOR catalysts (in 2.0 M KHCO3) suffered lowering selectivity just above 2.7 V vs. RHE which 

is the equilibrium potential for the formation of hydroxyl radical via single-electron WOR 

(Figure 4). These studies are showing an unhighlighted phenomenon of selectivity change at 

higher overpotentials which could be detrimental when high rate production of H2O2 is aimed. 

Again, such a change in selectivity can be reflected via an extended Tafel analysis covering a 

larger range of overpotentials discussed in the previous section. It is also expected that just like 

the detection of H2O2 via electrochemical oxidation and titrimetric reduction, methods and 

techniques should be developed to detect and quantify the hydroperoxyl radical/superoxide anion 

and hydroxyl radical formed as a result of change in selectivity via single-electron ORR and 

single-electron WOR. This could lead to the development of a brand new and an exciting area of 

research involving single-electron electro activation of water and dioxygen with potential 

applications elsewhere. To conclude this section, the merits and demerits of both two-electron 

ORR and two-electron WOR are described briefly in Table 1. 

Table 1: Merits and demerits of two-electron ORR and two-electron WOR in H2O2 

electrosynthesis. 

Two-electron ORR 

Merits Demerits 

 Requires less overpotential 

 Mostly deliver 100% Faradaic 

 Further electroreduction of H2O2  at 

high overptoentials 
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efficiency 

 Easily quantified with RRDE 

 Number of known catalysts is greater 

than that of two-electron WOR 

 Influence of three-electron ORR after 

0.3 V vs. RHE in the cathodic region 

 Use of mercury is unavoidable in 

known metallic catalysts with 100% 

Faradaic efficiency. 

 Faradaic efficiency is determined 

instantaneously using RRDE and 

hence, cannot reflect other key issues 

such as rate of production, saturation, 

stability of synthesized H2O2 in 

solution. 

 It lacks from low productivity as a 

consequence of low current density 

limited by the diffusion of O2. 

 Requires continuous bubbling of O2 for 

interruption less H2O2 production. 

Two-electron WOR 

Merits Demerits 

 High productivity as a result of high 

current activity 

 No bubbling of O2 is required 

 Faradaic efficiency is determined using 

relatively precise methods after 

 Further electrooxidation of H2O2 

 Hydroxyl radical formation after 2.7 V 

vs. RHE 

 Poor Faradic efficiency as a result of 

competing four-electron OER 
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sufficient saturation. 

 Loss of H2O2 is accounted in general by 

relating with the chemical and 

electrochemical decomposition paths 

 Simultaneous evolution of O2 enhances 

the diffusion of H2O2 away from the 

electrode surface 

 Does not require sophisticated analytic 

tools such as RRDE. 

 Number of known catalysts is very low 

when compared to that of two-electron 

ORR 

 No standard procedure of quantification 

of H2O2 is followed 

 Higher probability of further 

electrooxidation as a result of low rate 

of H2O2 diffusion 

 

BONDING AND ENERGIES OF INTERACTIONS 

Bonding of catalytic site to the electroactive species and the energies of interactions of 

intermediate species with the electrocatalytic site are crucial in determining activity. In that 

sense, H2O2 evolving catalysts are no exception. It was introduced earlier that the catalyst 

development for controlled ORR is quite mature but not so for controlled WOR to produce H2O2. 

However, there is a few first principle studies that evaluated the activity trend of various ORR 

catalysts (metals, alloys, and M-N-C) and various metal oxide WOR catalysts. Such theoretically 

predicted activity trend is discussed here.  

Trends in Two-Electron ORR 

In determining the activity trend of any given set of electrocatalysts, constructing a Sabatier 

volcano plot is the primary step [70]. To do this, calculated limiting overpotential is plotted 

against the adsorption of energy of an intermediate species, the formation of which is likely to be 

the rate determining step (RDS). In ORR, formation of metal hydroperoxide intermediate (M-
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OOH) is considered to be the RDS and hence, the adsorption free energy of *OOH is plotted 

with the limiting potential for determining the activity trend. 

 

Figure 5: (a) Two- and four-electron Sabatier ORR volcano plots of various metals. (b) Two-

electron ORR Sabatier volcano plot for Hg alloys of Pd, Pt, Au and Cu in comparison with 

pristine Au and Pt surfaces. Reproduced (a) with permission from ref. 71 (Copyright 2012 

American Chemical Society) and (b) from ref. 25 (Copyright 2014 American Chemical Society).  

Following this, Viswanathan and co-workers[71] reported the two-electron and four-electron 

ORR activity trends for a range of metal catalysts (Figure 5a). This study showed that no 

catalyst in which the reduction of *OOH to H2O2 is limited by the strong adsorption of *OOH 

can perform two-electron ORR as the potential for four-electron ORR is always more positive 

(black line). Conversely, the right-leg of both four-electron path and two-electron path in ORR 

overlaps suggesting equal probability for the formation of H2O2 and H2O with the catalysts 

sitting on the right leg of the volcano having weak binding energy towards *OOH adsorption. 

This clearly shows that the electronic effects of these metals do not favour H2O2 formation. 

However, this electronic effect was successfully manipulated by alloying these poorly active 
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two-electron ORR catalysts with inert metal host such as Hg (Figure 5b) [25]. Such a change 

directed towards two-election ORR is purely a geometrical effect and not of electronic effect. 

This is the well-known strategy of making isolated catalysts in a matrix of inert material which 

either be a metal like Hg or an extended covalent network like graphitic carbons and graphene 

derivatives. This topic is detailed in the forthcoming sections. 

 

Figure 6: Plot of *O adsorption free energy against *OOH adsorption free energy of various 

metals and M-N/C catalysts studied for two-electron ORR. Reproduced with permission from 

ref. 13 (Copyright 2018, American Chemical Society).  

Irrespective of the RDS, considering the very high tendency (thermodynamically favoured) for 

four-electron ORR, it is also important to ensure that the formation of *O is suppressed in order 

to have high selectivity. This can be achieved only by isolating the catalytic sites from other sites 

by placing them far away in an inert matrix like Hg or graphitic carbon because the preferred *O 
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adsorption sites are the hollow and bridge sites and the existence of which can be eliminated via 

such an isolation. When the catalytic sites are geometrically isolated from one another, the 

probable existence of hollow and bridging sites becomes very low and the adsorption of *OOH 

will always occur on atop site which is the only catalytic site favouring two-electron ORR. 

However, such geometrical isolation also destabilizes *OOH adsorption but increases the 

selectivity leading to overall enhancement in H2O2 production rate. This effect was shown by 

Yang and co-workers[13] for a range of metal and M-N-C ORR catalysts by plotting the 

respective adsorption free energy of *O against the adsorption free energy of *OOH (Figure 6). 

According to Figure 6, M-N-C (M=Cu, Ni, Pt, and Pd) that sit above the horizontal line 

indicating the optimal adsorption free energy for *O could perform better in H2O2 synthesis via 

two-electron ORR.  

Trends in Two-Electron WOR 

 Just like the activity trends predicted for ORR catalysts from first principle calculations, 

activity and selectivity trends for WOR catalysts can also be predicted using Sabatier volcano 

plot which is obtained by plotting limiting potentials (where all elementary steps are in 

thermoneutral state) against the adsorption free energy of *OH which is believed to be the RDS 

of water oxidation. For a WOR catalyst to be highly selective for H2O2 evolution instead of O2 

evolution, adsorbed *O and hydroxyl radicals in solution must be less stable than H2O2 in 

solution and adsorbed *OH, respectively. In general, with two-electron WOR catalysts that bind 

oxygen intermediates too strongly, the oxidation of *OH to H2O2 is the RDS whereas with  

WOR catalysts that bind oxygen intermediates too weakly, formation of adsorbed *OH from 

water is the RDS. Since *OH is involved in RDS of both strongly binding and weakly binding 

WOR catalysts, a conventional Sabatier volcano plot can be constructed by plotting theoretically 
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calculated limiting potentials against the adsorption free energy of *OH. This means that a 

highly active two-electron WOR catalyst will sit on the top (when WOR UL is in negative 

values) or at the valley (when WOR UL is in positive values) of the Sabatier volcano plot. 

 

Figure 7: Sabatier volcano plot of four- and two-electron water oxidation reactions for a few 

metal oxide catalysts. Reproduced with permission from ref. 72 (Copyright 2015, American 

Chemical Society). 

Such a volcano plot for both four-electron and two-electron WOR was first predicted by 

Viswanathan and co-workers[72] (Figure 7) that included PtO2, RuO2, MnO2, SnO2, and TiO2. 

Following this, the volcano plot of two-electron WOR metal oxide catalysts is being updated 

frequently by the works of Siahrostami and co-workers [29–32]. Figure 8 is the volcano plot of 

two-electron WOR catalysts reported till date in which we can find that ZnO (00–10) sits at the 

top of the plot with the most optimal binding energy for *OH adsorption while maintaining high 

selectivity for H2O2 evolution. Besides, WOR catalysts that bind oxygen strongly and WOR 
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catalysts that bind oxygen weakly require huge overpotentials. However, their selectivity was 

relatively better. In order to have a wide potential window of evolving H2O2 via water oxidation, 

an ideal catalyst would have supressed selectivity towards O2 and hydroxyl radical evolution 

(four- and single-electron oxidations, respectively). 

 

Figure 8: Two-electron WOR volcano plot for reported H2O2 evolving catalysts. The 

corresponding data were taken from the works of Viswanathan and co-workers[72] and 

Siahrostami and co-workers.[29–32]  

A similar two-electron WOR volcano plot for carbon based catalysts was reported by Xia and 

co-workers[28] who examined the effect of extent of oxidation of these carbon catalysts on the 

selectivity of two-electron WOR. One thing that is common with all these catalysts is that they 

all are poor catalyst for thermodynamically favoured four-electron WOR. As far as two-electron 

WOR is concerned, the number of catalysts developed is relatively low and it is expected 

explode in numbers in near future. At this point, it is also emphasized that the trends witnessed 
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with volcano plots are not be taken as a sole indicator of superior activity. Rate of the reaction 

under study and the environment also do matter a lot. This means that a catalyst that occupy the 

atop position could show low selectivity and productivity and vise-versa. 

TRENDS IN CATALYSTS’ DESIGN  

 Above discussed activity trends, evaluation perspectives and associated ambiguities, 

corresponding electrochemical transformations of oxygen will help us understanding the trends 

in catalysts’ design. In this section, we have chosen only the seminal discoveries of the field 

which fetched significant advancement to the field to a newer level. A detailed summary of two-

electron ORR catalysts and two-electron WOR catalysts that have so far been reported can be 

found elsewhere [1,3,13,73].   

Trends in Designing Two-Electron ORR Catalysts 

 As stated earlier, two-electron ORR is quite saturated in terms of catalysts’ development 

and the reported catalysts can be classified basically into four types as metals and their alloys, 

heteroatoms (N. F, and O) doped carbons, metal oxides, and M-N-C structures. With all these 

catalysts, the selectivity for two-electron ORR is achieved following a single principle of having 

isolated ORR sites. Alloying, complexing with macromolecular chelating agents and partial 

masking are three important strategies employed in achieving ORR catalytic site isolation. When 

we have such isolated ORR catalytic sites, the formation metal hydroperoxide intermediate is 

facilitated as the only possible mode of bonding is via Pauling model (M(η
1
-O2) in which 

breaking of O–O bond is highly unlikely to occur. This selective mode of binding achieved by 

catalytic site isolation is actually the most important phenomenon governing H2O2 selectivity. 

Scheme 2 depicts different modes of O2 binding when we closely packed and isolated ORR sites. 
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Scheme 2: Graphical sketch showing H2O2 evolution facilitating Pauling model of O2 binding 

with isolated ORR sites. 

Strategy of Alloying 

 Isolation of ORR active catalysts in an inert host was first shown by alloying. Pt is known 

for its superior four-electron ORR activity in both acid and alkali. Interestingly, when this Pt is 

alloyed with ORR inactive materials such as Hg and Au, it performed two-electron ORR very 

selectively. Siahrostami and co-workers[24] began this strategy by alloying Pt with Hg that 

showed excellent selectivity for H2O2 synthesis around 0.45 V vs. RHE in 0.1 M HClO4. Later, 

Verdaguer-Casadevall and co-workers[25] had extended this strategy to alloy Ag, Pd, and Cu 

with Hg and found similar enhancement in selectivity towards H2O2 synthesis in 0.1 M HClO4 

saturated with O2. An interesting finding in this study was that Pd-Hg demanded even lower 

overpotential than Pt-Hg  whereas Cu-Hg and Ag-Hg that demanded relatively higher 

overpotential delivered ~100% selectivity (Figure 9a-b). This implies that an ideal catalyst is the 

one that could have both low overpotential and high selectivity. Pizzutilo and co-workers[74] 

later examined the role of Au content (ORR inactive host) in ORR active Pd catalysts by varying 
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their stoichiometric composition in the same O2-saturated 0.1 M HClO4 solution. As anticipated, 

higher proportion of Pd led to four-electron ORR whereas higher Au content favoured two-

electron ORR. Having known that alloying an ORR active catalyst with an inert host at 

nanoscale was highly fruitful in improving H2O2 selectivity, much attention was later paid in 

designing single-atom catalysts (SAC) in which the total content of ORR active catalysts is 

several times lower than the ones in alloyed catalysts.  

 

Figure 9: (a) Two-electron ORR volcano plot of Ag, Pt, Pd, and Cu catalysts alloyed with Hg. 

(b) Plot showing the selectivity of the same at 2.5 mA cm
-2

. Reproduced with permission from 

ref. 25 (Copyright 2014, American Chemical Society).  

This strategy was first shown by Jirkovsky and co-workers[75] to be effective for Au-Pd systems 

in which Pd is the ORR active component while Au was serving the purpose of being an inactive 

host in Ar-saturated 0.1 M HClO4. Their results suggested that an optimum catalyst with high 

H2O2 selectivity can be obtained when the fraction of Pd is close to 0.1.  Further advancements 

was brought out by Choi and co-workers[76] in an effort to isolate Pt SAC with a completely 

different inert host which was 17% sulphur containing zeolite templated 3D graphene structures 
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in 0.1 M HClO4. By this method, selectivity close to 95% was achieved. However, overpotential 

was much higher than the earlier studies. Meanwhile, Yang and co-workers[77] made an 

interesting Pt SAC-inert host couple taking TiN as the ORR inert host which has never been used 

before but failed to compete with the earlier reports in terms of selectivity in 0.1 M HClO4 

saturated with O2. In fact, the best selectivity achieved with this catalyst was realized at a very 

high overpotential (600 mV). Having realized that the inert host could have an effect on H2O2 

selectivity, the same group extended this strategy by taking TiC as an additional ORR inert host 

and achieved a better selectivity [78] with the same electrolytic medium. However, the issue of 

high overpotential was never overcome by such a change in host material from TiN to TiC. An 

interesting SAC of Ni with graphene (ORR inert) host has very recently been reported by Song 

and co-workers[46] that achieved selectivity as high as 94% with a very low overpotential (100 

mV) in 0.1 M KOH in which usually the produced H2O2 is less stable. Hence, this finding is one 

among those important studies that lifted the strategy of isolating ORR catalysts with an inert 

host from noble metals to a non-noble metal (Ni).  

Strategy of Chelating 

Isolating ORR catalysts as SAC is easy to achieve when we have precise control over the 

number of atoms dispersed in a localized space. All the previously mentioned SACs had actually 

consisted a cluster of atoms rather than a truly single atom. Truly single atom containing 

catalysts were actually the M-N-C structures in which a single metal centre is surrounded usually 

by a tetradentate N-containing chelating macromolecules which include porphyrin and 

phthalocyanine [16,23,79–83]. These complexes of porphyrin and phthalocyanine are actually 

having a single atom of ORR catalysts that are well isolated form another atom of the same 

thereby enabling the Pauling model O2 bonding that favours two-electron ORR.  
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Figure 10: (a) ORR LSVs acquired with RRDE for Co, Ni, Fe, Cu, and Mn based M-N-C 

catalysts in comparison with N-C with their respective H2O2 oxidation current (@1.2 V vs. RHE) 

detected at the ring electrode. (b) Plot showing H2O2 selectivity and number of electron transfer 

involved in ORR. (c) H2O2 reduction LSVs of all studied catalysts in N2 purged 0.5 H2SO4 

containing 1 mM H2O2. Reproduced with permission from ref. 21 (Copyright 2019, American 

Chemical Society).  

However, not all M-N-C catalysts are selective for two-electron ORR, many M-N-C catalysts 

have previously been reported to be highly active for four-electron ORR too [84]. Only Mn and 

Co based M-N-C catalysts have been reported to be selective for H2O2 synthesis via ORR so far 

and it is still elusive what makes other M-N-C based SACs efficient in four-electron ORR. 

Besides just M-N-C structures, their composites with other nanostructured carbon materials were 
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also reported bring out better stability. However, the selectivity enhancement brought up in these 

cases may actually be due to added carbon than the M-N-C structures. Between Mn and Co 

based M-N-C catalysts, Co based M-N-C catalysts showed better selectivity. An extended 

comparison of two-electron ORR activity was recently reported by Sun and co-workers[21] who 

designed M-N-C structures taking Co, Mn, Ni, Fe, and Cu in N2-saturated 0.5 M H2SO4. In this 

study, they found an excellent two-electron selectivity with Co-N-C single site catalyst Fe-N-C 

showed the lowest selectivity which is a well-known four-electron ORR catalyst (Figure 10a-c). 

The isolation strategies discussed above have so far been centred around only a very few ORR 

catalysts and it is expected that the same strategies can also be extended to other metals (Se, Ru, 

Ir, Rh, Nb, and Ce) that were reported for two-electron ORR in the recent past [63,85,86].  

Strategy of Heteroatom Doping 

 Heteroatoms (O, N, B, S, and F) doped carbonaceous catalysts are the ones with the 

highest number of studies for two-electron ORR. A closer examination will reveal that these 

catalysts were also able to achieve such selectivity for two-electron ORR activity by the strategy 

of isolation. With these catalysts, heteroatoms in the continuum of sp
2
 carbon networks usually 

be partially polarized (negatively except for B-doped carbon) and acts as electron reservoir for 

the initial adsorption of O2 for further electrochemical reduction. When we have such isolated 

heteroatoms in the relatively ORR inactive carbon networks, they prefer attaching to O2 

molecule via the end-on Pauling model facilitating H2O2 synthesis. An extensive summary of 

developments of these catalysts were earlier given by the reviews by Perry and co-workers[1] 

and Siahrostami and co-workers [13]. Besides just heteroatom doping, modification with other 

molecules such as anthraquinone and its derivatives and polymers of aniline and tetrafluoro 

ethylene were also shown to improve the selectivity of these catalysts [63,85–88]. In this 
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category, an interesting report was made by Chen and co-workers[89] who made isolated islands 

of boron nitride (BN) in a sp
2
 carbon matrix. This catalyst performed ORR with 90% selectivity 

for H2O2 in the low overpotential region which got lowered gradually with the increasing 

overpotential in O2-saturated 0.1 M KOH.  

Strategy of Partially Masking Catalytic Sites 

In contrast to the above discussed ways of isolating ORR catalytic sites, partial masking differs 

by having a layer of an ORR inert coating (sp
2
 carbon networks) with sufficient number of pores 

over a large surface of an ORR catalyst. Choi and co-workers[90] reported this interesting 

strategy with Pt catalyst in which they increased the time of coating of amorphous carbon on Pt 

particles and found that catalysts coated extensively with amorphous carbon for over three and 

four hours showed selectivity as high as ~50% in oxygenated 1.0 M HClO4. Figure 11a-b shows 

the advantageous end-on (Pauling model) O2 bonding with partially masked Pt particles over the 

one with no coating. Though this method is shown to be effective in bringing up selectivity 

change with Pt, the observed selectivity is not as high as the ones achieved with alloying, 

chelating, and heteroatom doping. Hence, one may even think of coalescing all these four ways 

of isolating ORR catalytic sites in different combinations which may improve selectivity and 

activity towards H2O2 synthesis via ORR. Irrespective of the type of the catalysts used, two-

electron ORR has always been achieved following a single principle of catalyst site’s isolation 

which forbade other modes of O2 bonding that would have led to complete (four-electron) ORR. 

However, further in situ/operando studies are required to reveal the actual role of having an ORR 

inert host and isolating ORR active sites which will be invaluable to further improve the 

selectivity of these ORR catalysts for H2O2 synthesis via controlled ORR.   
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Figure 11: (a) Graphical sketch showing side-on bonding mode favoured by uncoated Pt 

particles leading to four-electron ORR. (b) Graphical sketch showing end-on bonding mode 

favoured by partially masked (amorphous carbon coated) Pt particles leading to H2O2 synthesis. 

Reproduced with permission from ref. 90 (Copyright 2014, American Chemical Society). 

Trends in Designing Two-Electron WOR Catalysts 

 Two-electron WOR is even a handier way of producing H2O2 electrochemically as it does 

not require continuous purging of O2 gas like two-electron ORR. The major issue with this path 

is the competition from the thermodynamically favoured OER (four-electron WOR). In addition, 

a highly oxidizing operational potential at the working electrode surface could easily lead to 

further oxidation of synthesized H2O2 if it stays for a sufficiently large time at or near the 
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interface within the inner and outer Helmholtz planes and to some extent in the diffusion layer. 

Just like ORR, OER is also favoured by closely packed catalysts which can evolve O2 molecule 

in a way analogous to four-membered decycloaddition reaction. However, even with single metal 

atom containing molecular catalysts, OER was preferably shown to be active rather than two-

electron WOR [34]. This implies that one cannot simply make an OER active catalyst into two-

electron active WOR catalyst just by isolating the catalytic sites which were found to be effective 

in switching the selectivity of well-known ORR catalysts in the favour of H2O2 synthesis. Hence, 

the first condition to make a selective catalyst for anodic H2O2 synthesis via two-electron WOR 

is finding a catalyst that does not begin water oxidation below the equilibrium potential of two-

electron WOR (1.76 V vs. RHE). Obviously, this condition rules out all the well-known OER 

electrocatalysts of metals Ru, Ir, Ni, Fe, Co, and Mn and combination thereof [91]. Hence, 

people have so far been paying attention to the oxides of metals (Sn, Ti, V, W, Zn, Ca, and Bi) 

and combination thereof which are known for their poor OER activity [29–32]. Besides, 

carbonaceous catalysts with various degrees of oxidation are also shown to be highly selective 

for H2O2 evolution via two-electron WOR. This implies that the only strategy followed to design 

a H2O2 evolving anode catalyst is sticking with metals or elements known for their poor OER 

activity. The very first anode catalyst reported for H2O2 production was oxidized conducting 

carbon by Ando and Tanaka[27] with a PEMFC set up which were earlier used only for the 

production of H2O2 via two-electron ORR in 0.1 M NaOH. Since then, no significant 

improvement was witnessed with carbonaceous two-electron WOR catalysts until a very recent 

report by Xia and co-workers[28] who coated various carbon catalysts with hydrophobic 

polymers that helped confining in situ generated O2 gas that in turn regulated the WOR to be 

highly selective for H2O2 evolution from water in 1.0 M Na2CO3 solution. An interesting result 
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of this study was the gradual lowering in overall water oxidation current and gradual increase in 

H2O2 selectivity with the increasing hydrophobic polymer (PTFE) coating (Figure 12a-b). This 

is different from all those earlier studies on anodic H2O2 synthesis. We expect that other 

carbonaceous catalysts such as the ones containing different heteroatoms could also be preferable 

candidates for two-electron WOR. 

 

Figure 12: (a) LSVs of carbon fibre paper (CFP) with different percentages of PTFE coating. (b) 

Plot of Faradaic Efficiency (for H2O2) against various potentials. Reproduced with permission 

from ref. 28 (Copyright 2020, Nature Publishing Group). 

Besides carbonaceous catalysts, oxides of metals known for poor OER activity have been shown 

to be highly selective for anodic H2O2 evolution from water which include TiO2, SnO2, WO3, 

BiVO4, CaSnO3 and ZnO. All these catalysts have basically one thing in common that they do 

not begin water oxidation reaction before 1.76 V vs. RHE thereby favouring H2O2 evolution. 

Among them, ZnO has been reported to have the lowest onset potential with highest selectivity 

of 80% for H2O2 evolution from water at 3.0 V vs. RHE (Figure 13) [29]. BiVO4 reported earlier 

just as an electrocatalyst by Shi and co-workers[32] was then made into an efficient photoanode 

via Gd-doping by Baek and co-workers[31] that fetched high selectivity and high rate of 
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production of H2O2 from water in 2.0 M KHCO3. This opened up a new avenue of making 

several photoanodes for H2O2 synthesis via two-electron WOR. Beyond the metals reported as 

oxides for two-electron WOR, other prospective metals which may possess good selectivity for 

anodic H2O2 evolution from water include Nb, Mo, Zr, Cu, Cd, Te, Sb, Ta, Re, and In. We 

expect that oxides of these metals in combination with alkaline earths and other reported 

catalysts would be reported in the near future as these are also falling in the category of metals 

that do not begin water oxidation below 1.76 V vs. RHE in mildly acidic to mildly basic 

solutions. 

 

Figure 13: Bar diagram of various reported two-electron WOR catalysts with their respective 

Faradaic Efficiencies (in %) at 3.0 V vs. RHE. Reproduced with permission from ref. 29 

(Copyright 2019, American Chemical Society). 

However, it is not mandatory to be sticking around this principle as the theoretical study of 

Viswanathan and co-workers[72] discussed earlier predicted H2O2 evolution beyond certain 

potentials with RuO2 and MnO2 that are known for OER (Figure 8) too. Hence, we believe that a 
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highly selective catalyst can also be obtained from those known for OER by applying appropriate 

overpotential with precise tuning of energy of intermediate species’ interactions which in turn is 

to be done by rational catalyst design. Besides bonding and energy of interaction of 

intermediates, other mesoscopic characteristics such as electrode material morphology, 

dimension of electrode, externally forced mass transfer and efficient simultaneous removal of 

synthesized H2O2 could further improve the overall performance of H2O2 production via both 

two-electron ORR and two-electron WOR.  

SOLUTION CHEMISTRY OF HYDROGEN PEROXIDE AND ITS SIGNIFICANCE IN 

PRODUCTIVITY ENHANCEMENT 

Perceiving the solution chemistry of synthesized H2O2 is important in order to improve the 

production rate via any of the stated method which is true for the electrochemical synthesis too. 

Stability of synthesized hydrogen peroxide in solution is a crucial factor that determines the 

practical applicability of any method by which it is being produced. Hence, it is important to 

understand the ways in which H2O2 can be decomposed. 

Decomposition Pathways for Electrosynthesized H2O2. 

 In both two-electron ORR and two-electron WOR, the synthesized H2O2 under no 

influence of externally induced mass transfer (i.e., diffusion is the only mechanism by which 

mass transfer occurs) gets accumulated near the electrode surface when compared to the bulk of 

the solution. This increases the chances of further oxidation (in WOR) or reduction (in ORR) as 

shown below.  

  H2O2 +  O2 + 2H
+
 + 2e

–
  E = 0.68 V vs. RHE  (13) 

H2O2 + 2H
+
 + 2e

–
  2H2O  E = 1.76 V vs. RHE  (14) 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



42 
 

As can be noted from the above equations, the oxidation potential of H2O2 (equation 13) is much 

lower than the oxidation potential of water to form H2O2 (equation 7) and the reduction potential 

of H2O2 (equation 14) is much higher than the reduction potential of O2 to form H2O2 (equation 

11). This shows why the instant transport of H2O2 from around the electrode surface once it is 

formed is necessary. This implies that the selectivity of an electrocatalyst for H2O2 synthesis is 

not only depending on its intrinsic activity but also on how efficiently the synthesized H2O2 is 

taken away from the vicinity of the electrode-electrolyte interface. Whenever there is an 

externally induced mass transfer (such as RRDE, GDE, PEMFC, and flow-cell assemblies), the 

selectivity has always measured to be higher than the one determined under static conditions 

(i.e., when diffusion is the only mass transport mechanism). Moreover, synthesized H2O2 can 

undergo decomposition via reactions with various electrochemically generated reactive oxygen 

species which were summarized earlier by Perry and co-workers [1]. Hence, one should also be 

mindful of their working potential as hydroxyl radical can be formed at 2.73 V vs. RHE via 

water oxidation and superoxide can be formed at 0.33 V vs. RHE via oxygen reduction which are 

potential oxidizing and reducing agents, respectively and could easily lead to the dissociation of 

synthesized H2O2 while lowering the selectivity of the electrode material under study. 

 Besides, H2O2 does easily undergo disproportionate decomposition (equation 15) 

producing water and oxygen and the rate of which increases with increasing solution pH and 

temperature. 

   2H2O2  2H2O + O2     (15) 

A relatively stable solution of H2O2 is obtained by diluting with acid below room temperature. 

Hence, continuous or frequent withdrawal of electrolyte solution when the concentration of H2O2 

reaches the critical level that pushes the chemical decomposition should avoid this issue. 
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Similarly, white light having a significant portion of blue light spectrum (300 – 450 nm) had 

been found to induce the homolysis of O–O bond in H2O2 via σ  σ* electronic excitation 

producing highly oxidizing hydroxyl radical which can oxidize H2O2 in solution. Though a few 

two-electron WOR catalysts were shown to get benefitted from photoactivation, care must be 

taken to avoid photo-induced homolysis of electrosynthesized H2O2 to improve productivity and 

selectivity.  

Electrolyte Engineering: A Way of Improving H2O2 Productivity 

 The preceding discussion has made it clear that it is not just the activity and selectivity of 

the catalyst under study determining the overall productivity but also the stabilization and 

efficient and timely removal of electrosynthesized H2O2. While effective removal of 

electrosynthesized H2O2 from the vicinity of electrode-electrolyte interface can be achieved via 

stirring the solution, rotating the electrode, purging gas, flowing electrolyte, and frequent 

withdrawal of electrolyte solution enriched with electrosynthesized H2O2, the stability of it has to 

be achieved by engineering the electrolyte solution. Electrolyte engineering is a famous term in 

electrolysis of neutral and near-neutral waters where electrolyte composition is altered to 

enhance the catalytic activity of the material [34,92]. On the other hand, engineering electrolyte 

could also assist stabilizing the electrosynthesized H2O2. Thus, it would prevent H2O2 from 

decomposing via spontaneous chemical disproportionation which is favoured by a high negative 

enthalpy change (ΔH = –2884.5 kJ mol
-1

) and increase in entropy (ΔS = 70.5 J mol
-1

 K
-1

). As it 

has just been mentioned that pH of the solution impacts the stability of H2O2 to greater extent 

and an acidic environment is relatively ideal, having acidic buffers is the first choice that one has 

to make in engineering electrolyte solutions. However, not every practical application of H2O2 

requires an acidic solution. Medical disinfection needs a solution of H2O2 with neutral or near-
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neutral pH and paper pulp bleaching requires it as a basic solution. This advocates the need for 

improving the stability of electrosynthesized H2O2 in an electrolyte of desired pH. One way to do 

this is adding H2O2 stabilizing additives such as anions of a few p-block elements such as Si, Al, 

Ge, and Sn [93,94]. However, it is also essential to ensure that the addition of such redox inert 

anions do not alter the pH of the solution by using buffered electrolytes. Moreover, charged ROS 

produced along with the desired H2O2 evolving reaction could lead its decomposition. Hence, 

introducing a radical scavenger which can scavenge both the oxidizing ones (such as hydroxyl 

radical) and reducing ones (such as superoxide) can improve the overall H2O2 productivity. 

Prospective scavengers include S and Se [95–97]. Even though engineering electrolyte is a 

promising way to improve practical concentration of electrosynthesized H2O2 beyond chemical 

and electrochemical decompositions, it has never been applied in any study and it is expected 

that it would become an irresistible strategy in improving H2O2 productivity via both two-

electron ORR and two-electron WOR. 

FUTURE DIRECTION 

 Electrochemical synthesis of hydrogen peroxide has so far been centralized around at 

cathodic partial reduction of dioxygen molecule by 90% with a range of catalysts from noble 

metals and their alloys to molecular M-N-C complexes. The partial reduction of O2 (two-electron 

ORR) has been accomplished following a single principle of isolating ORR catalytic sites in an 

ORR inert host material which has obviously been paying off. However, as ORR is a mass 

transport limited reaction irrespective of how cathodic is the applied potential from the reversible 

potential of two-electron ORR (0.68 V vs. RHE), the amount of H2O2 produced is limited by the 

diffusion of O2 which has so far been eliminated to a significant extent from affecting the 

selectivity by employing RRDE. However, in real large-scale operations such as the GDE or 
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PEMFC assemblies, the selectivity appears to have been lowered significantly than the one 

measured with RRDE assembly. This apparently tells us that not every two-electron ORR 

catalysts could actually be believed for their claimed selectivity. Besides, the mass transport 

limitation with two-electron ORR actually makes it a slow method of H2O2 production. On the 

other hand, we have two-electron WOR which is not limited by diffusion and capable of 

producing relatively larger quantity of H2O2 but suffers from poor selectivity. The maximum 

selectivity achieved in two-electron WOR so far is ~80% with ZnO by Siahrostami and co-

workers [29]. This apparently implies that water oxidation could actually be the future of large 

scale electrosynthesis of H2O2 just from water with no requirement of purging O2 all the time 

during the synthesis provided that the selectivity issue is addressed in the near future. 

Unfortunately, the quantity of catalysts reported for two-electron WOR is nowhere near to the 

total number of catalysts reported for two-electron ORR. This explicitly implies the need for 

increasing the attention on anodic H2O2 synthesis. Electrosynthesis of hydrogen peroxide is 

indeed would be the friendliest method of all provided that the electric potential supplied is from 

renewables. Stating that and witnessing increasing number of photoactivated electrocatalysts 

performing two-electron WOR, we believe that photoelectrochemical water oxidation reactors 

could be the choice of green H2O2 synthesizer.  

 Besides deciding between two-electron ORR and two-electron WOR, finding a 

generalized method of selectivity determination is an utmost priority in this field as it could 

overwhelm or underrate an electrocatalyst for its performance depending on the method by 

which its selectivity is determined. It is now understood that externally induced mass transfer 

could impart a great change in selectivity as it greatly enhances the transport of H2O2 away from 

the electrode surface once it has been formed. However, the relatively handier RRDE method 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



46 
 

may have earlier stated issues in two-electron WOR. Hence, permanganate titration and H2O2 

test strips are being used widely which actually do in some ways reflect the actual performance 

as there is no externally induced mass transfer. However, with RRDE in two-electron ORR, the 

selectivity is determined simultaneously as H2O2 is produced. In the case of two-electron WOR, 

before quantifying produced H2O2, a relatively larger time is required (usually 5 to 10 min of 

electrolysis at a fixed potential). These humongous differences in the time of selectivity 

determination between two-electron ORR and two-electron WOR make it unfair to compare the 

performances. Hence, a generalized method should be developed. Beyond production and 

quantification, stabilization of synthesized H2O2 has to be improved which could be done with 

the ways suggested in the penultimate section. An important issue with the electrosynthesized 

H2O2 is that the electrolytic medium is not always neutral. It is mostly acidic with two-electron 

ORR and mildly alkaline with two-electron WOR. This makes the synthesized H2O2 inapplicable 

in many fields of its practical use. However, a few fields of application require H2O2 in an acidic 

environment (e.g., fuel cells and waste-water treatment) and also in an alkaline environment (e.g. 

paper pulp bleaching). In those cases, these solutions can be directly applied. For other purposes, 

a simple neutralization reaction with a base/acid solution of minimum volume (to ensure that 

H2O2 is not diluted extensively) yet with the desired concentration can be used to get the right 

pH for use. Key developments that we anticipate will occur in near future in this field are 

depicted graphically in Scheme 3. Further works focused on these directions will ensure both the 

eradication of ambiguities in evaluation and developments in catalysts’ design. Several other 

perceptions on how this field must grow have been discussed in the earlier perspective and 

review by Siahrostami and co-workers[13] and Perry and co-workers [1]. Hence, it is concluded 

here that the two-electron WOR which is far better in productivity must be given additional 
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attention while unifying/generalizing the ways in which selectivity is determined and ensuring 

that the H2O2 is produced in a completely greener way with the energy harvested from 

intermittent sources. 

 

Scheme 3: Anticipated directions of growth in H2O2 electrosynthesis in the near future. 

CONCLUSIONS AND OUTLOOK 

 Hydrogen peroxide, the greenest oxidizing agent of all having applications in various 

fields from industrial bleaching to medical disinfection has so far been majorly produced (by 

95%) through the energy intensive anthraquinone process which pose several hazards from using 

a carcinogen (anthraquinones) to requiring the transport of concentrated H2O2 solution which is 

potentially explosive. On the other hand, the direct synthesis of H2O2 from hydrogen and oxygen 

gas over a noble metal surface under high pressure with carrier gases lack from poor rate and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



48 
 

increased cost of production. Hence, electrochemical synthesis of H2O2 is being investigated 

intensively as a promising alternate capable of decentralizing the global production. In 

electrochemical synthesis, H2O2 can be obtained either by two-electron ORR or two-electron 

WOR which are hard to be performed with conventional catalysts that are known to perform 

four-electron ORR and four-electron WOR (OER) without rational catalysts design enabling 

H2O2 favouring bonding modes and energy of interactions. In the case of ORR, the two-electron 

selectivity has been achieved following a single principle of constructing isolated catalytic sites 

that favour Pauling mode of bonding O2 (end-on) avoiding the breaking of O–O bond after the 

transfer of two electrons. In contrast, two-electron selectivity in WOR has so far been achieved 

by sticking to the materials known for their poor OER activity. These strategies did help in 

realizing high selectivity but the productivity remains an issue. In the case of ORR, H2O2 

production is limited by the diffusion of O2 and it requires continuous bubbling of O2 (such as 

GDE assembly) which make it both relatively less productive and harder to handle. On the other 

hand, WOR is not limited by any electroactive species as water is the electroactive species 

present abundantly in the solution. However, the only thing that concerns the production of H2O2 

via two-electron WOR is its relatively lower selectivity as reported by many. Unfortunately, this 

claim may not be true as the method of determination of selectivity in two-electron ORR and 

two-electron WOR are always and almost totally different. Hence, unifying/generalizing the 

ways in which selectivity is determined will be crucial for further developments in this field. 

Owing to the superiority of two-electron WOR of being mass transfer independent and high 

productivity, this realm of this research is expected to undergo a major transition in the near 

future. Besides just selectivity, improving activity (current) and stability are two other key 

factors that will be deciding the fate of the material in being applied to full cell operations for a 
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prolonged period of time. Moreover, further progress in the field will largely depend on the 

comprehension of structure-activity/selectivity/stability relationship which can be obtained via in 

situ/operando spectroscopic tools. Having said that it is concluded here that the electrochemical 

synthesis of H2O2 is clearly an interdisciplinary area of research that requires helping hands from 

electrochemists, material chemists, theoretical chemists, and electrochemical engineers to enable 

its successful global-level commercialization in an effort of making H2O2 the truly greenest 

oxidizing agent of all in terms of both production and application.  
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 Graphical abstract: This review analyzes the recent developments of electrochemical synthesis 

of H2O2 in terms of both catalysts’ design and evaluation perspectives while predicting the 

direction of future growth. 

Highlights: 

 Trends in 2 electron ORR and WOR catalysts are critically analyzed. 

 Ambiguities in evaluation perspectives are criticized and alternatives are proposed. 

 Fundamentals of oxygen interfacial electrochemistry is elaborated to understand the trends. 

 Advantages of 2 electron WOR over 2 electron ORR in H2O2 electrosynthesis is emphasized. 

 Need for electrolyte engineering strategies to improve productivity and selectivity is discussed. 
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