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ABSTRACT  
A brief history of diffusions in Finance is presented, followed by an even 
briefer discussion of jump-diffusions that involve Poisson or Lévy	 jumps. 
The main purpose of the paper is then to discuss applications of self-
exciting and mutually-exciting Hawkes point processes. After an outline of 
the basic properties of this class of processes, there is a review of some 
recent articles that show how incorporating them as contagious jumps into 
Financial diffusions may improve model fit, forecasting, pricing, hedging 
and portfolio management.  
 

KEYWORDS  Hawkes process; jump-diffusion; pricing; hedging; portfolio  
JEL	CLASSIFICATION   G00; G11; G15; G17 

1.	Introduction	

Brownian	 motion	 has	 an	 interesting	 history	 of	 applications	 in	 Finance	 and	 Physics.	 In	
particular	 the	 famous	 Black-Scholes-Merton	 pricing	 formula,	 introduced	 in	 the	 1970’s,	
sometimes	 including	 Poisson	 jumps	 introduced	 by	 Merton	 (1976),	 has	 been	 a	 significant	
workhorse	in	commercial	use.	Hawkes	(1971a,	1971b)	introduced	self-exciting	and	mutually	
exciting	 generalisations	 of	 Poisson	 processes	 a	 couple	 of	 years	 earlier.	 They	 were	 not	
envisaged	at	that	time	to	have	anything	to	do	with	Finance,	indeed	they	were	not	used	much	
at	all	for	any	applications,	except	Seismology,	for	about	30	years.	However,	in	the	last	15	years	
or	so	applications	have	mushroomed	in	the	literature	in	many	fields	of	research,	including	a	
wide	 range	 of	 applications	within	 Finance.	 This	 article	 reviews	 recent	 publications	 about	 a	
particular	kind	of	Financial	application:	so-called	Hawkes	jump-diffusions.	

Section 2 gives a brief history of  Brownian motion and other diffusion processes that have been 
used in Finance. Section 3 briefly mentions jump-diffusions with Poisson or Lévy jumps. There is 
indeed a large literature on this topic but we do not wish to delay getting to the main purpose of this 
note: Hawkes jump-diffusions. These are discussed in section 5 after an introduction to Hawkes 
processes in Section 4. Section 6 concludes. 
	

2.	Diffusion	models	in	Finance	

2.1	Brownian	Motion	

Diffusion models in finance started with the simplest Brownian motion model introduced in the 
PhD thesis Théorie de la Spéculation by Bachelier (1900): his seminal thesis marked the beginning 
of financial mathematics. His interest was in applying the theory to pricing, but it remained 
essentially unknown to the finance literature until Paul  Samuelson rediscovered it  in the 1950s 
(alerted to it by statistician L. J. Savage). Samuelson (1972) describes Bachelier’s pioneering work 
on Brownian motion as superior to Einstein’s  (1906) much praised later independent derivation of 
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Brownian motion. Einstein was interested in the rather different problem of the irregular movement 
of microscopic particles suspended in a liquid, as observed by the Scottish botanist Robert Brown 
(1828). More generally, he hoped to apply the kinetic theory of matter as a means of verifying the 
existence of atoms.  

The methods of Bachelier and Einstein were not totally rigorous because a proper theory of 
probability was not available at the time. Wiener (1923) provided a more rigorous treatment of 
Brownian Motion, including showing that a Brownian path was nowhere differentiable. A more 
complete and rigorous definition of probability theory was developed by Kolmogorov (1931, 1933)  
that allowed proper formal treatment of many stochastic processes. Davis (2006) describes in detail 
Bachelier’s thesis and further advances in probability, such as martingales and stochastic 
integration, made by people such as Feller, Lévy, Doob and Itô.  

As much as he admired Bachelier’s introduction of the mathematics of Brownian Motion, and 
his innovative application to finance, Samuelson (1972) was very critical of the financial 
application: as the individual steps formed a Gaussian random walk it meant negative prices and 
unlimited liability were both possible. Both of these problems disappear if you use instead 
Geometric Brownian motion, as introduced by Samuelson (1965). 

Davis (2006) also describes the more complicated business of applying advances in probability 
theory to the economics of finance. This includes the famous Black-Scholes (1973) option pricing 
theory, based on Geometric Brownian motion, and Merton’s (1973) generalisations, including 
allowing for stochastic interest rates and the idea that prices should be expressed in terms of some 
numéraire asset (in his case a zero-coupon bond). 

 

2.2	Other	diffusion	processes	

2.2.1	Ornstein–Uhlenbeck	process.	

Diffusion processes other than Brownian motion or Geometric Brownian motion have found 
application in Finance. This process, Uhlenbeck and Ornstein (1930), is an example of a Gaussian 
Markov process that, in contrast to the Wiener process, is mean-reverting. Its original application to 
Physics was to the motion of a Brownian particle subject to friction. It is the continuous-time 
analogue of the discrete-time AR(1) process. It satisfies the stochastic differential equation 

	   dxt = −θxtdt +σ dWt , 	 (1)	

where Wt  is a standard Wiener process. A drift term can be added to give the equation 

	   dxt = θ(µ − xt )dt +σ dWt , 	 	(2) 
which in Finance is known as the Vasicek (1977) model. Then the mean reversion property is	 

E(xt | x0 ) = µ + (x0 − µ)e−θt . 	 (3)	
The process is commonly used to model interest rates and exchange rates. A multidimensional 
version of the model can be obtained simply by writing   xt ,Wt   as vector processes and σ as a 
matrix.  
 
2.2.2	The	Cox-Ingersoll-Ross	model	(CIR)	

The	 Cox-Ingersoll-Ross	 (1985)	 model,	 often	 referred	 to	 as	 CIR,	 is	 obtained	 by	 a	 simple	
modification	 of	 the	 driving	 term	 in	 the	 Vasicek	 model,	 giving	 the	 stochastic	 differential	
equation	

  dxt = θ(µ − xt )dt +σ xt dWt . 	 (4)		 	 	 	
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It is also used to describe the evolution of interest rates and the pricing of interest rate derivatives. 
Time varying functions replacing the fixed coefficients can be introduced in the model in order to 
make it consistent with a pre-assigned term structure of interest rates and volatilities, see for 
example Brigo and Mercurio (2001).  

2.2.3	Heston	model	

Another approach models volatility itself as a separate but coupled process, hence getting a 
stochastic volatility class of models like the popular Heston (1993) stochastic volatility model.  

	
  

dxt = rxtdt + xt Vt dWt
(1);

dVt = k(θ −Vt )dt +σ Vt dWt
(2) ,
		 (5)	

where the two Wiener processes are possibly correlated. The second equation is a CIR model for 
the volatility. If the parameters obey the Feller condition (   2kθ >σ 2  ) then the volatility process Vt 
is strictly positive. A significant extension of both the CIR model and the Heston model to the case 
of stochastic mean and stochastic volatility is given by Chen (1996). 

3.	Poisson	and Lévy	jump-diffusion		

Merton (1976) realized that diffusion could not describe some of the rapid changes that could be 
plainly seen from time to time in financial series. He introduced the idea that jumps in the form of a 
Poisson process, in conjunction with Geometric Brownian motion diffusion, gave a better 
description of many series and showed that option pricing could be improved by taking them into 
account. Cox and Ross (1976) showed that in this situation  perfect hedging may still be achieved in 
certain circumstances. 

Since then many papers have been written on Poisson jump-diffusions using some of the 
diffusions mentioned above to model various financial problems. The next step in modeling 
sophistication was to replace the Poisson process by more general Lévy jumps: an extensive 
treatment of their application to many financial problems is given in the comprehensive book by 
Cont and Tankov (2004, 2016).  This excellent work combines many practical examples with clear 
explanations of the mathematical basis of their treatment.  

However, Poisson and Lévy processes have well-known independence properties that do not 
explain the clustering of jumps that is often identified in financial series. This can  to some extent 
be dealt with by underlying Markov processes which may have two or more states with different 
jump intensity levels, rather like a medical problem such as hayfever where more cases occur in 
certain weather/pollen conditions — the clustering is caused by changes in conditions, not by 
contagion (infection from other people). Jump intensity in financial series may well vary in periods 
of boom and bust, depression or high volatility. 

Although much has been written about jump-diffusions of the kind discussed in this section, we 
will not discuss them further in this paper. Instead we concentrate on jump-diffusion processes in 
which the jumps have contagious characteristics: typically, various kinds of so-called Hawkes 
jump-diffusions. 

4.	Hawkes	processes	

Hawkes (1971a, 1971b, 1972) introduced a family of models for stochastic point processes called 
‘self-exciting and mutually-exciting point processes’, the essential property of which was that the 
occurrence of any event increased the probability of further events occurring. This contagious 
behaviour is perhaps better understood in terms of a branching process or cluster process 
representation, (Hawkes and Oakes 1974). Although these processes did not become popular for 
many years, except among Seismologists, they became established in the literature under the name 
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Hawkes processes. Since about 2005, they have become popular in a very wide range of 
applications, including Finance. The mathematical properties of the original models have been 
extensively studied and the models themselves modified and extended. 

Applications of Hawkes processes within the field of Finance are very diverse. We will not dwell 
on them here, but refer to the excellent survey by Bacry et al (2015) for an introduction to the 
theory and applications to Finance; see also Hawkes (2018). We give here a very brief definition of 
Hawkes processes before moving on to Section 5, where we discuss a very particular kind of 
application: Hawkes jump-diffusions. 

4.1	Self-exciting	point	processes	

An important  property of  a point process   N (t) , defined as the number of events of some type in 
the time interval   (0,t) , is the conditional intensity  

     λt = limΔ→0 E[N (t + Δ)− N (t) | Ft ],   
where the filtration   Ft  stands for the information available up to (but not including) time t. A fairly 
general self-exciting process can be defined in terms of an intensity of the form 

	
  
λt = µ(t)+ γ (t −Ti ,ξi )

Ti<t
∑ , 	 (6)	

where    0 < T1 < T2 <…< Tn <… are the times at which events occur.   µ(t) >0 provides a Poisson 
base level for the process: this may be an explicit function of time, possibly constant, or perhaps an 
exogenous economic function. The function   γ (t −Ti ,ξi ) ≥ 0 , called the (exciting) kernel of the 
process, provides the contribution to the intensity at time t that is made by an event that occurs at a 
previous time  Ti < t  , which may have a mark  ξi  associated with it.     Thus each event increases 
the intensity, which then decays according to the function γ  until the next event occurs to push it 
up again.  

Such a process is a marked self-exciting process, the mark being perhaps the magnitude of a 
price jump: for example, large price jumps may increase the intensity more than small jumps. A 
simple self-exciting process is one without marks, then the kernel becomes simply   γ (t −Ti ) ≥ 0.   

4.2	Mutually-exciting	point	processes	

The processes become more useful when there are different types of events, such as price jumps for 
different stocks or different indices. Large (2007) identified 10 different types of event in an order 
book. 

The basic model supposes that there are D different types of point process 
  

Ni(t){ }i=1

D  with 
intensities given by 

	
  
λi:t = µi + γ ij (t − u)

0

t

∫
j=1

D

∑ dN j (u) = µi + γ ij (t −Tj:r
Tj:r<t
∑

j=1

D

∑ ),		 (7)	
where	

  
Tj:r 	is	 the	 time	 at	which	 the	 rth	 event	 of	 type	 j	 occurs.	 The	 function	   γ ij (i) 	is	 a	 cross-

exciting	term	with	
  
γ ij (t −Tj:r ) 	being	the	contribution	to	the	intensity	of	type-i	events	made	by	

a	 type-j	 event	 occurring	 at	 time	
  
Tj:r .	   γ ii(i) 	is	 a	 self-exciting	 term	 for	 type-i	 events.	 This	

equation	can	also	be	expressed	in	matrix	form	as	
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λ t = µ + Γ(t − u)dN(u),

0

t

∫ 		 (8)	
with	 the	matrix	 	  Γ(t − u) 		 having	 elements	

  
γ ij (t − u) 		 and	 the	 other	 terms	being	 the	 obvious	

column	vectors.	
This basic model may be generalized with marks and exogenous factors in a manner similar to 

that for the univariate self-exciting model. 

5.	Hawkes	jump-diffusions	

As we discussed earlier, diffusion processes have often been used by themselves without reference 
to jumps. Similarly, Hawkes jump processes can be used without reference to any diffusion process. 
This may be particularly so in very high frequency Finance (such as tick-by-tick data) when every 
event may be thought of as a jump. Also, jumps may be extracted from otherwise continuous data 
and analysed separately.  

In this section we will discuss the application of Hawkes jump-diffusion processes, i.e. some sort 
of Hawkes jump process incorporated in some sort of diffusion process of the kind discussed 
earlier. We shall be concerned with a number of questions:  

• What type of diffusion? 
• What are the details of the Hawkes jump model? 
• How do the two processes work together? 
• What financial problem are we trying to solve? 
• Is the Hawkes jump-diffusion better at solving that problem than a simple diffusion, or 

Poisson jump-diffusion or Lévy jump-diffusion? 
We cannot discuss every paper that deals with this topic but have chosen papers that between 

them deal with a wide range of financial processes. We cannot go deeply into the extensive and 
complex mathematics that is often involved, but try to explain clearly what models are being used 
and describe briefly some of the mathematical and computational methods that are used in solving 
the problems. Also, we tend to favour papers that are not totally theoretical, but include examples 
analysing real data and discussion of the implications for practical financial management. 

When applying a jump-diffusion model to describe data series it will often, though not always,  
be necessary  to identify the location of jumps in time and perhaps also the magnitude of the jumps. 
How this may be accomplished is an interesting topic but we will not address it here: if necessary, 
we just assume that the authors have somehow found a way to do it. 

5.1	Interacting	World	markets	

Aït-Sahalia et al. (2015) used a mutually-exciting jump-diffusion process to model market indices 
in six different parts of the World (US, UK, Japan, etc.). A jump in one region of the world 
increases the intensity of jumps both in the same region (self-excitation) as well as in other regions 
(cross-excitation), generating episodes of highly clustered jumps across world markets. The 
diffusion process is Geometric Brownian motion with stochastic volatility following a Heston 
process. Thus, for i=1 to m,  

	   

dXi,t = µidt + Vi,t dWi,t
X + Zi,tdNi,t

dVi,t =κ i(θ i −Vi,t )+ηi Vi,t dWi,t
V . 	 (9)		

where subscript i refers to region i;   W
X ,W V  are independent  multivariate Wiener processes; 

  
Ni,t ,Zi,t  are jump processes and jump magnitudes, respectively, with the 

  
Ni,t{ }i = 1 to m  a set of 

mutually exciting Hawkes point processes with exponential kernels and therefore intensities 
satisfying differential equations 
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dλi,t =α i(λi,∞ − λi,t )dt + βi, jdN j ,t

j=1

m

∑ .		 (10)	
The jump magnitudes are assumed to have double exponential distributions, allowing for positive 
and negative jumps. 

Data observed were simply daily returns, so that neither jumps nor detailed intra-day diffusions 
were actually observed. The models were fitted by a generalised method of moments (GMM) based 
on comparison of theoretical and observed moments such as first four moments, autocovariances 
and cross-covariances. This was a major task, so that in practice only univariate (m=1) and bivariate 
(m=2) cases were completed. 

This procedure provided evidence of self-excitation in all six world markets, and of asymmetric 
cross-excitation, with the US market typically having more influence on the jump intensity of other 
markets than the reverse. The model clearly out performed one with Poisson jumps (zero  βs  in the 
above model). This was also shown by obtaining better tail distributions and predicted co-jumping: 
important for risk management and portfolio choice. 

5.2	Pricing	and	hedging	

Hainaut, D. (2016a) analysed the impact of volatility clustering in stock markets on the evaluation 
and risk management of equity indexed annuities (EIA). The reference index is modelled by a. 

diffusion combined with a bivariate mutually-excited jump process. The index,  St , has dynamics  

 
  

dSt

St

= µt +σ dWt + (eJt
+
−1)dNt

+ + (eJt
−
−1)dNt

− ,   (11) 

where   Nt
+ , Nt

−  are, respectively, positive and negative jump processes with jump sizes   Jt
+ , Jt

−  , 
each exponentially distributed. The clustering of shocks is modelled by mutually-exciting marked 
processes where the jump intensities have dynamics given by  

 
  
dλt

i =κ i(ci − λt
i )dt +δ ii Jt

idNt
i +δ ij Jt

jdNt
j ,   where (i, j) = (+,−) or (−,+).  (12) 

For	example	the	intensity	of	positive	jumps	is	excited	both	by	previous	positive	jumps	and	by		
	
negative	jumps,	so	that	
	

	   dλt
+ =κ + (c+ − λt

+ )dt +δ++Jt
+dNt

+ +δ+−Jt
−dNt

− , 		
	
with	a	similar	equation	for	the	intensity	of	negative		jumps	obtained	by	interchanging		+	and		–	
subscripts	or	superscripts.		
	

The model is used to evaluate options embedded in simple variable annuities. The paper 
compares prices, one-year value at risk, and tail value at risk of simple EIAs, computed with 
different models. 

Hainaut and  Moraux (2019) combined a Hawkes jump-diffusion process with hidden Markov 
switching between three states. Within each state the diffusion is standard geometric Brownian 
motion. The jumps are driven by exponential Hawkes process with double exponential distribution 
of jumps sizes, so that the intensity is given by  
	   dλt =α (θt − λt )+ηdLt ,		 (13)	
where  Lt is the accumulated absolute jump size 

  
Lt = Ji

i=1

Nt

∑ .   (14) 
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However, the parameters of these processes are different within the three hidden Markov states, but 
for reasons of simplicity the parameters  α ,η  and the distribution of jump sizes are taken to be the 
same for all three states. Then 

	
  
d ln St = µt −

σ t
2

2
− λt E(eJ −1)

⎛

⎝⎜
⎞

⎠⎟
dt +σ tdWt + JdNt 	.	 (15)	

The model is calibrated on daily returns of S&P 500 data using a complex iterative method that 
obtains initial parameter estimates from a peaks-over-threshold (POT) approach followed by a 
sequential Markov chain particle filter. The first state is judged to be one of strong economic 
growth: it has small volatility σ  and average return on stocks of 23.5%. The third state is taken to 
be one of economic recession. with volatility above 40% and average stock return -38%. The 
second state is intermediate between these two. The self-exciting jumps occur mainly in times of 
economic recession and are rare in periods of economic growth. Jumps are estimated to be 
responsible for 4%, 25% of volatility in states two and three respectively but contribute virtually 
nothing in the first state of economic growth. 

An analysis using AIC and BIC confirms that the model fits the data better than either a simple, 
non-switching, Hawkes jump-diffusion or a switching Geometric Brownian motion, without jumps. 

The paper ends with a substantial discussion of the application of the model to option pricing, 
the details of which are beyond the scope of this review. 

Hainaut and  Moraux (2018) use a simpler model with no switching between hidden economic 
states. Thus the above equations still hold, but the parameters  µ,σ ,θ  remain constant instead of 
varying with time. Using daily returns of S&P 500 from 2005 to 2015 it is found that the volatility 
of the Brownian part is about 12% whereas, if the pure diffusion is fitted without jumps, the  
volatility rises to 21%: so the jumps contribute considerably to the volatility. 

The main core of the paper is concerned with option prices and hedging strategies under this 
model and, in particular, the effect of contagious jumps on these. To this end a family of affine 
changes of measure is obtained that preserves the dynamics of prices under the risk neutral 
measure. There follows a substantial theoretical development that forms the basis of calculating 
pricing and hedging strategies, and subsequent simulation studies. 

The practical problems to be thus studied are minimum variance hedging of an option using 
either the underlying asset or another derivative as the hedging instrument. The first conclusion is 
that jump clustering can cause huge losses in the absence of any hedge.  

Secondly, hedging with the underlying does little to mitigate exposure to the risk of jump 
clustering; also there is not much difference between minimum variance hedging and delta hedging, 
except when the jump intensity is high.  

Third, the situation may be much better if the hedging instrument is another derivative, typically 
with a longer maturity than the one we aim to protect.   In this situation the minimum variance 
hedging strategy clearly outperforms  a pure delta hedging strategy. 

Ma et al (2017) considered vulnerable options in which the buyer is exposed to the default risk 
of the option writer, an example of counterparty risk. In order to price such an option Hawkes jump-
diffusion models are proposed both for the price of a stock and the value of an option-writer’s 
assets. The former includes two kinds of independent self-exciting jumps: one a sequence of jumps, 

  Nt ,  arising from a systematic shock, such as a financial crisis, which influence all entities in the 

financial system; the other are idiosyncratic shocks,   Nt
(1) ,   for the particular stock. A similar model 

for the option-writer’s assets includes the same systematic shocks and a third set of shocks,   Nt
(2)  .  

The intensities of these jump processes satisfy simple Hawkes models 
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λt = λ0 +θ e−δ (t−s) dNs0

t

∫ ;

λt
(1) = λ0

(1) +θ1 e−δ1(t−s) dNs
(1)

0

t

∫ ;    λt
(2) = λ0

(2) +θ2 e−δ2 (t−s) dNs
(2)

0

t

∫ .
		 (16)	

 
The stock price, St, and the value of the option writer’s assets, At, satisfy jump-diffusions 

	

  

dSt

St−

= (r − kS (λt + λt
(1) ))dt +σ S dWt

(1) + d Yi
i=1

Nt+Nt
(1)

∑ ;

dAt

At−

= (r − kA(λt + λt
(2) ))dt +σ AdWt

(2) + d Zi
i=1

Nt+Nt
( 2 )

∑ .

		 (17)	

 

r is a risk-free rate;   Wt
(1) ,Wt

(2)  are standard Wiener processes with correlation ρ.  Yi{ }  is an i.i.d. 
sequence of jump sizes with mean kS, that apply to both systematic and idiosyncratic jumps in the 

stock price,  Zi{ }  is an i.i.d. sequence of jump sizes with mean kA, that apply to both systematic 
and idiosyncratic jumps in the value of the option writer’s assets.  

The main aim of the paper is to price a put or call European option at time t . It is assumed that 
the option writer can only default at the strike time T, and does so if her/his assets are less than 
some critical value at that time. Formulae are given for these prices that reduce to the usual Black-
Scholes formula as a special case when jumps do not occur. The general formulae depend on 
certain expectations that are not analytically evaluated: instead the jump processes are simulated 
and the expectations calculated from the consequent paths of the jump-diffusions. 

Using these simulations, and assuming that any jumps have log-Normal distributions of jump 
size, the paper concludes with an extensive numerical study of the performance of the full model,  
and compared with various models (Black-Scholes, Merton, Klein, Tian) that either have Poisson 
jumps (therefore no jump clustering) or no jumps at all. 

5.3	Portfolio	optimization	

Aït-Sahalia and Hurd (2016) considered a portfolio of assets represented by the standard mutually 
independent Geometric Brownian processes with constant volatilities and a mutually-exciting set of 
jump processes with exponential kernels. Only negative asset jumps are included, as these are 
considered to be the most important from both a portfolio risk management perspective and their 
contribution to mutual excitation. In this theoretical paper the main conclusion is that the optimum 
portfolio for an investor with log-utility would be to choose the optimum investment as if the jumps 
followed Poisson processes with constant intensities — except that those ‘constant’ intensities are 
changing all the time and so, theoretically, the portfolio should be continuously rebalanced (with no 
transaction costs). 

Bian et al (2019) consider a simple portfolio of a risky asset and a risk-free asset over a period 
(0,T) and optimize the portfolio by maximizing the expectation of a constant relative risk aversion 
(CRAA) utility function of terminal wealth   U ( XT )  , where   U (x) = x p / p.   The exciting process is 
a simple exponential Hawkes process with dynamics 

	   dλt =α (λ∞ − λt )+ βdNt . 		 (18)	
Note	 that	 with	 β>0 the intensity jumps at the same time as N. The somewhat unusual jump-
diffusion of the risky asset incorporates the jumps into a Geometric Brownian motion with 
stochastic volatility having dynamics 
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dSt

St

= µ(λt )+ r⎡⎣ ⎤⎦dt +σ (λt )dWt +YtdNt , 		 (19)	
where	 the	 jump	 size	  Yt = eZt −1 	and	 Zt	 is	 a	 Gaussian	 random	 variable.	 Note	 that	 the	 risk	
premium	µ and the volatility σ are functions of the intensity  λt  , and therefore jump at the same 
time as the price of the risky asset. If  π t  is the proportion of wealth invested in the risky asset at 
time t, an investment strategy is an adapted stochastic process 

  
π t{ }t∈[0,T ]

.  A proof of existence and 

uniqueness of an optimal strategy is given under general conditions on the functions   σ (i),µ(i),   
The paper seems to be essentially an exercise in detailed, complicated mathematical analysis. 

There is no attempt to confront the unusual model with actual financial data. 

5.4	Bayesian	analysis	

5.4.1	Bayesian	learning	

Fulop et al (2014) propose an asset pricing model that takes into account cojumps between prices 
and diffusive volatility. Unusually, price jumps are excited only by the negative jumps: thus the 
jump intensity (for both positive and negative jumps) satisfies 
	   dλt = k2(θ2 − λt )dt − β2dJt

− ,		 (20) 

where	  Jt
+ , Jt

− 		 are	 cumulative	 magnitudes	 of	 positive	 and	 negative	 jumps	 respectively.	The 
negative jumps also contribute to a CIR process for the diffusive volatility	

	   dVt = k1(θ1 −Vt )dt +σ Vt dWt − β1dJt
− .	 (21) 

A Bayesian learning approach is used to implement real time sequential analysis. This is quite 
complex as it involves simultaneously updating beliefs both about many state variables and about 
model parameters — also about model beliefs if a number of alternative models are contemplated. 
The analysis was based on daily returns of S&P 500 from January 2, 1980 to December 31, 2012.  

The model has closed-form conditional expectations of the volatility components, making it 
convenient for risk management, volatility forecasting and option pricing. The learning process 
easily enables study of how the process changes over time: for example the self-exciting jump 
intensity clearly becomes more important since the 2008 financial crisis, leading to high levels of 
volatility during periods of financial crisis. This is particularly important in pricing short maturity 
out-of-money options.  

The speed of learning for the diffusion parameters is considerably faster than that for the jump 
parameters, because of the low arrival rate of extreme events. There is strong asymmetry in the 
amount of learning over the tails of the return distribution: the left tail is soon well established but 
there is much uncertainty about the right tail behavior throughout the sample. 

The full model clearly outperforms three sub-models obtained by omitting aspects of the jump 
process. However, from the point of view of predicting volatility, it cannot beat the simple 
GARCH(1,1) process.  

The paper contains many impressive and interesting figures. 

5.4.2	Bayes	analysis	of	daily	data	together	with	some	intra-day	measures	

Maneesoothorn et al (2017) discuss a Heston volatility diffusion with Hawkes jumps in both log-
price and volatility.  Thus the basic equations are  

	
  

dpt = µ + γVt( ) + Vt dBt
p + dJt

p ,

dVt =κ (θ −Vt )+σ v Vt dBt
υ + dJt

υ ,
		 (22)	
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where	 pt is	log-price;		  Bt
p , Bt

v 	are	standard	Brownian	motions	for	log-price	and	volatility,	

respectively,	with	  corr(dBt
p ,dBt

υ ) = ρdt;  		log-price	and	volatility	jumps	are	denoted

  dJt
i = Zt

idNt
i ,  for i = ( p,υ), 	respectively.	The	additional	term	 γVt 	in	the	first	of	these	equations	

allows	for	a	volatility	feedback	(i.e.	the	impact	of	volatility	on	future	returns).		
The	self-exciting	price	jumps,	have	intensity	satisfying	that	occur	at	times	given	by	the	

counting	process Nt
p ,	

	
  
dλt

p =α p (λ∞
p − λt

p )+ β ppdNt
p .		 (23)	

Volatility jumps are self-exciting but are also generated differentially by positive and negative price 
jumps: thus, if a subset of price jumps with negative sizes is counted by the process whose jumps 
are denoted by    dNt

p(− ) = dNt
p1(Zt

p < 0)  , then jump times of volatility are given by the counting 

process  Nt
υ  whose jump intensity satisfies 

	
  
dλt

υ =α (λ∞
υ − λt

υ )dt + βυυdNt
υ + βυ pdNt

p + βυ p
(− )dNt

p(− ) .		 (24) 

The	sizes	of	volatility	jumps,	  Zt
υ , 	are	exponentially	distributed.	The	absolute	magnitudes	of	

price	 jumps	 have	 a	 log-normal	 distribution	 with	mean	 proportional	 to	 volatility;	 the	 jump	
signs	(+1	or	-1)	are	determined	independently	by	a	simple	Bernoulli	probability.	

A discretized version of the model, having many parameters, is applied to daily open-to-close 
log-return of S&P 500 from 1996 to 2014. It is supplemented by intra-day measures based on 5-
minute data, calculating volatility as measured by Bipower Variation (BV) and identifying at most 
one jump per day in terms of BV, realized variation (RV) and tripower quarticity as described in 
Barndorff-Nielsen and Shephard (2004, 2006). A Bayes analysis is calibrated by a hybrid of Gibbs 
and Hasting-Metropolis MCMC algorithms. 

There is significant self-excitation of both return jumps and volatility jumps, but the cross-
excitement from return jumps to volatility jumps is small. Volatility jumps tend to occur more 
frequently in periods of high volatility, notably in well-known crisis periods.  

Using Bayes factors to compare the overall fit of the full model with 9 sub-models of the full 
model, together with two GARCH models, strongly supports the inclusion of Hawkes jumps. 
However, omitting the effect of price jumps on the intensity of volatility jumps gives a slightly 
better overall fit.  

In terms of 1-step-ahead prediction of returns, jumps and volatility (log-bipower variation), 
models including Hawkes jumps predominate. However a simple log-RGARCH model is overall 
best at predicting returns, but not volatility, and is unable to predict anything at all about jumps. 

The authors have completed a major exercise in data analysis, and the broad conclusions seem 
reasonable. However, the use of BV to estimate volatility and identify simply 0 or 1 jumps each day 
is very dubious in data, like S&P 500, which has contagious jumps that not infrequently lead to 
having several price jumps in a day (see Corsi et al, 2010).  

5.5	Default	risk	

Errais, Giesecke and Goldberg (2010) is different from other work discussed in this paper: they start 
with a jump process and then add diffusion. The Hawkes process satisfies the equation 

	   
λt = c + e−αt (λ0 − c)+ β e−α (t−s) dLss=0

t

∫ ,		 (25)	
or 

	   dλt =α (c − λt )dt + βdLt .		 (26)	
 
L

s 
 is the cumulative loss from defaulting companies in a large portfolio of companies, therefore it 
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jumps at the same time as the jump count N
s
, which has intensity   λs — so this is actually a marked 

Hawkes process with exponential kernel. The	 main	 part	 of	 the	 paper	 obtains	 various	
distributions	 associated	 with	 this	 process	 and	 then	 discusses	 pricing	 of	 index	 swaps	 and	
tranche	swaps. 

Then it generalizes by adding some diffusion. It is simplest to see this from the differential form 
of the above equation, which now becomes 
	   dλt =α (c − λt )dt + βdLt .+σ λt dWt .		 (27) 
The diffusion represents some macroeconomic fluctuation. So in this model it is the jumps, 
representing defaults, that are important; the diffusion, instead of representing some observable 
such as log-price, contributes to the variation in the intensity of defaults. In that sense it is just a 
particular example of equation (6).	
	
5.6	Interest	rate	models	
	
In	this	section	we	discuss	two	papers	on	interest	rate	models.		
	
Hainaut	 (2016b)	 introduces	 a	model	 to	 reproduce	 the	 clustering	 of	 shocks	 on	 the	 Euro	

overnight	 index	average	 	 (EONIA)	between	2004	and	2014,	 so	data	are	observed	at	 a	daily	
frequency.		These	jumps	are	mainly	caused	by	successive	adjustments	of	rates	for	deposit	and	
marginal	lending	facilities	offered	by	the	central	banks.	The	clustering	of	these	adjustments	is	
partly	explained	by	the	emergency	of	such	decisions	in	periods	of	economic	crisis.		
The	short-term	interest	rate	rt	is	assumed	to	satisfy		

	
  
drt =α (θ(t)− rt )dt +σ dWt + d Jii=1

Nt∑( ), 		 (28) 

where	  θ(t) 	is	 the	mean	 level	 to	which	 interest	 rates	 tend	 to	revert;	Wt		is	a	Wiener	process	
with	volatility	σ; Nt is a Hawkes process of  jumps whose jump sizes Ji  are assumed to be i.i.d. 
with a double exponential distribution. The intensity of the Hawkes jumps is assumed to be 

	
  
λt = c + e−κ t (λ0 − c)+δ e−κ (t−s) dLs ,∫ 		 (29)	

 where   Lt = Jii=1

Nt∑   is the sum of the absolute jump sizes up to time t. 

Theory	 is	developed	 for	a	 class	of	measures	under	which	 the	 features	of	 the	process	are	
preserved.	In	particular	the	prices	of	bonds	and	their	dynamics	under	a	risk	neutral	measure	
are	obtained	and	derivative	pricing	is	obtained	under	a	forward	measure.	
The	model	 is	 fitted	 to	 EONIA	 data	 using	 a	 peaks-over-threshold	 analysis,	 which	 enables	

filtration	 of	 jumps	 and	 the	 intensity	 of	 their	 arrival	 process:	 the	 threshold	 is	 obtained	 by	
fitting	the	original	reverting	diffusion	without	jumps,	i.e.	a	Vasicek	model.	Then	the	Brownian	
process,	 the	 jump	 intensity	process	and	the	 jump	distribution	were	 fitted	by	 three	separate	
log-likelihood	maximisations.		
The	clustering	of	 jumps	was	clearly	 illustrated,	showing	the	 importance	of	 including	self-

exciting	 jumps	 in	 the	model.	 A	 variety	 of	 other	 conclusions	 for	 the	EONIA	data	 include	 the	
reduction	of	EONIA	and	the	reversion	level	  θ(t) 		since	2010;	The	average	amplitude	of	jumps	
has	 also	 decreased	 over	 time,	 reducing	 the	 overall	 volatility	 of	 rates	 under	 the	 pricing	
measure.	
Sun	 et	 al	 (2019)	 approached	 the	problem	with	 a	 slightly	different	model	 and	 a	different	

mathematical	approach.	The	basic	model	equations	were	
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drt = a1(t,rt )dt + b1(t,rt )dW1(t)+ c1(t,rt∫ ,x)N (dt,dx)

dλt = a2(t,λt )dt + b2(t,λt )dW2(t)+ c2(t,λt∫ ,x)N (dt,dx),		 (30)	
where	W1(t),	W1(t)	are	 independent	 standard	Brownian	motions	and	 the	model	 	 coefficient	
functions	 a1,	 b1,	 c1,	 a2,	 b2,	 c2	 are	 fairly	 general	 functions.	  N (t, A) 		 is	 the	 number	 of	 jumps	
whose	 jump	 times	 are	 less	 than	 or	 equal	 to	 t	 and	 the	 jump	 sizes	 are	 in	 the	 region	A.	 This	
differs	 from	 equations	 (28),	 (29)	 in	 a	 having	 more	 general	 set	 of	 coefficients;	 in	 having	 a	
Brownian	component	to	the	dynamic	of	 jump	intensity;	also	the	self-exciting	effect	of	 jumps	
on	jump	intensity	is	proportional	to	jump	size	rather	then	absolute	value	of	jump	size.	
Girsanov’s	 Theorem	 is	 used	 to	 obtain	 the	 dynamics	 of	   rt ,λt 		 under	 an	 equivalent	

martingale	measure	 Q 	.	Then	the	price	at	time	t	of	a	zero-coupon	bond	expiring	at	time	T	is	
given	by	

	
    
P(t,T ) = EQ exp − rs ds

t

T

∫⎛
⎝

⎞
⎠ | Ft

⎡
⎣⎢

⎤
⎦⎥
, 		 (31)	

	
where	expectation	is	taken	under	the	equivalent	martingale	measure	 Q 	.	It	is	shown	that	this	
has	a	unique	solution		
	   P(t,T ) = exp A(t,T )+ B(t,T )rt +C(t,T )λt⎡⎣ ⎤⎦ ,		
where	A,	B,	C	are	determined	by		a	set	of	three	ordinary	differential	equations.	These	usually	
have	 no	 analytic	 solution	 but	 are	 solved	 by	 standard	 numerical	 methods	 for	 differential	
equations.	
The	 paper	 contains	 no	 data,	 therefore	 no	 test	 of	 whether	 the	 model	 is	 a	 reasonable	

representation	 of	 any	 particular	 process,	 but	 ends	 with	 a	 numerical	 study	 that	 illustrates	
some	properties	of	the	model.		
	

5.7	A	C.I.R.	process	with	exogenous	and	endogenous	jumps	

Dassios	 et.	 al.	 (2019)	 introduced	 a	 generalised	 C.I.R.	 process	 that	 might	 be	 suitable	 for	
describing	 aggregate	 losses	 for	 insurance	 companies	 or	 interest	 rates	 in	 the	 fixed-income	
markets.	The	dynamics	are	supposed	to	follow	

	 	
  

St = a + (S0 − a)e−δ t +σ e−δ (t−s) Ss dWs0

t

∫
+ Xie

−δ (t−Ti
( X ) )

0≤Ti
( X )<t
∑ + Yje

−δ (t−Tj
(Y ) )

0≤Tj
(Y )<t
∑ ,

		 (32) 

where		the	symbols	in	the	diffusive	part	are	those	used	throughout	this	review;	
   

Xi{ }i=1,2,…
		is	

a	 sequence	 of	 i.i.d.	 positive	 sizes	 of	 exogenous	 jumps,	 with	 distribution	 function		

  H (x),  x > 0, 	that	occur	at	random	times	
   

Ti
( X ){ }i=1,2,…

	following	a	Poisson	process	  Nt
( X ) 			of	

constant	 rate	 ρ; 
   

Yj{ }
j=1,2,…

 is	 a	 sequence	 of	 i.i.d.	 positive	 jump	 sizes,	 with	 distribution	

function		  G( y),  y > 0, 	that	occur	at	random	times	
  

Tj
(Y ){ } 	of	a	point	process	 Nt 		

that	has	a	stochastic	intensity	
	   λt = St .	 (33)	
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From	 equation	 (32)	 we	 see	 that	 the	 intensity	 of	 Nt is	 driven	 by	 the	 diffusion	 and	 the	

marked	 point	 processes	  Nt
( X ) 	and	 Nt 	itself,	 so	 it	 is	 self-exciting	 and	 is	 also	 excited	 by	 the	

exogenous	jumps.	
By	 applying	 standard	 martingale	 theory,	 the	 joint	 Laplace	 transform	 of	  St 	and	 its	

integrated	process	
  
Zt = Su du

0

t

∫ 		is	obtained.	This	enables	calculation	of	means	and	variances	

of	losses,	and	hence	premiums,	for	a	variety	of	insurance	models	that	are	special	cases	of	the	
general	model.	 An	 application	 to	 finance	 is	 to	 calculate	 prices	 for	 default-free	 zero-coupon	
bonds.	Numerical	examples	with/without	jumps	and	with/without	diffusion	are	presented.		It	
is	recognized	that	estimating	parameters	of	the	models	is	difficult,	so	that	no	applications	to	
real	data	are	presented.	
	

5.8	Variance	swaps	
	
Liu	and	Zhu	(2019)	added	Hawkes	jumps	to	a	Heston	model	

	
  

dSt

St−

= (r − mλt )dt + Vt dBt
S + JtdNt

dVt =κ (θ −Vt )+ξ Vt dBt
V

dλt = β(λ∞ − λt )dt +αdNt ;

		 (34) 

where	 St 		is	the	price	of	an	asset	and	 Vt 		its	instantaneous	variance.	The	Brownian	terms	for	
price	 and	 variance	 may	 be	 correlated.	 The	 jump	 occurrences	 form	 a	 simple	 exponential	
Hawkes	process	and	m	=  E(J ) 		is	the	mean	jump	size.		They	further	assume	that	  Jt = eZt −1, 	 

where	  Zt ~ N (µz ,σ z
2 ) 		are	i.i.d.		so	that	  m = eµz+

1
2σ z

2

−1. 		
The	main	object	of	the	paper	is	to	obtain	a	relatively	simple	formula	for	pricing	a	variance	

swap	using	a	discretized	version	of	the	model.	The	idea	is	to	balance	a	lump	sum	payment	at	a	
fixed	future	time	and	accumulated	payments	at	regular	intervals	that	are	a	given	multiple	of	
the	realized	volatility	over	each	interval.		
Equivalent	 results	 are	 easily	 obtained	 as	 special	 cases	 of	 the	 above	model,	 including	 for	

classical	models	 such	 as	 Black-Scholes;	Merton	 process	with	 Poison	 jumps,	Heston	 process	
with	or	without	Poisson	jumps.	Jump	clustering	that	occurs	with	Hawkes	processes	naturally	
leads	to	higher	prices	for	variance	swaps,	emphasising	the	need	to	identify	the	best	model	for	
your	data	in	order	to	obtain	realistic	prices.	
	

5.9		Exchange options 

Ma	 et	 al	 (2020)	 discuss	 exchange	 options.	 These	 offer	 the	 holder	 the	 right,	 but	 not	 the	
obligation,	 to	exchange	one	 risky	asset	 for	another.	This	basic	 idea	 is	 incorporated	 in	 some	
way	 in	many	 financial	 arrangements.	 For	 example,	 in	mergers	 and	 acquisitions	 the	bidding	
firm	often	offers	to	exchange	some	of	its	own	stocks	for	those	of	the	target	firm.	In	the	case	of	
a	 possible	 exchange	 between	 a	 stock	 and	 a	 market	 index,	 the	 exchange	 option	 price	 will	
include	information	about	the	correlation	between	them	—	hence	a	measure	of	beta.	
The	 prices	 of	 the	 two	 assets	 are	 assumed	 to	 follow	 geometric	 Brownian	 motions	 with	

Hawkes	process	jumps,	so	the	dynamics	are	given,	in	the	usual	notation,		by		
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S j ,t = S j ,0 exp(µ jt + X j ,t ),

dX j ,t = − 1
2σ j

2 −ξ jλ j ,t( )dt +σ jdWj ,t + dJ j ,t ,   j = 1,2,
		 (35)	

where	  dJ j ,t = ε j ,tdN j ,t ,   N j ,t 		are	counting	processes	for	number	of	jumps	and	  ε j ,t 		

are	random	jump	sizes	from	a	distribution	function	  Fj ( y); 		
  
ξ j = (ey −1)dFj ( y)

−∞

∞

∫ 	are	the	

mean	price	jump	sizes.	The	two	Brownian	terms	are	assumed	correlated.			
The	 jump	 occurrence	 times	  N j ,t ,  j = 1,2, 	are	 assumed	 to	 be	 mutually-exciting	 Hawkes	

processes	in	which	the	intensities	may	take	one	of	two	possible	forms,	with	or	without	jump	
sizes.	Then		

	

  

dλ j ,t =η j (λ j ,∞ − λ j ,t )dt + θ j ,ldNl ,t
l=1

2

∑ ,   or

dλ j ,t =η j (λ j ,∞ − λ j ,t )dt + θ j ,ldJl ,t .
l=1

2

∑
		 (36)	

In	these	equations	all	symbols	not	previously	defined	are	constants.	In	general,	under	either	
assumption,	 when	 a	 jump	 occurs	 in	 one	 asset	 price	 the	 jump	 intensity	 of	 both	 processes	
increase	immediately	then	decay	exponentially	at	rate	  η j ,  j = 1,2. 			
Theoretical	expressions	are	obtained	for	the	joint	characteristic	function	of	the	processes	

  ( X1,t , X2,t ) 		 that	depends	on	 functions	A(t),	B(t)	 that	 satisfy	 a	 set	of	ODEs.	These	generally	
have	 no	 analytical	 solution	 but	 can	 be	 solved	 numerically	 using	 standard	 Runge-Kutta	
methods.	
	These	functions	also	appear	 in	a	Fourier	transform	approach	to	pricing	an	exchange	option	
under	 a	 risk	 neutral	 measure.	 The	 paper	 then	 obtains	 the	 optimal	 mean-variance	 hedging	
strategy	and	a	set	of	Greeks	(Delta,	Theta,	Vega,	Gamma).	Simulation	is	used	to	study	the	effect	
of	model	parameters	on	option	prices.	
Next	an	option-implied	beta	is	obtained	when	the	exchange	option	is	between	an	asset	and	

a	market	index.	Again	simulation	is	used	to	study	the	effect	of	model	parameters	on	implied	
betas	 from	 the	 Hawkes	 jump	 diffusion,	 Poisson	 jump	 diffusion	 and	 Black-Scholes	 diffusion	
models.	
Finally,	data	from	stocks	of	eight	large	financial	companies	were	compared	with	S&P	500	

index.	It	was	concluded	that	the	prediction	performance	of	the	Poisson-diffusion	implied	beta	
was	better	than	the	beta	of	historical	data	and	the	implied	beta	of	the	Hawkes	jump-diffusion	
model	 was	 better	 still.	 This	 was	 especially	 so	 during	 financial	 crisis	 of	 2008-2009	 when	
clustering	 of	 jumps	 was	 particularly	 obvious.	 It	 was	 concluded	 that	 superior	 prediction	 of	
implied	 beta	 under	 the	 Hawkes	 jump-diffusion	 model,	 especially	 during	 a	 financial	 crisis,	
would	enable	investors	to	manage	portfolios	and	systematic	risk	more	effectively.	
	

6.	Summary	
	
This paper has discussed some examples of jump-diffusion processes in finance, in which the jumps 
are self-exciting or mutually-exciting Hawkes processes. They show that, compared to traditional 
jump-diffusions, this may improve model fit, forecasting, pricing, hedging or portfolio 
management. There are clearly many more financial problems that could be treated in this way.  
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The Hawkes processes used in the models in this review generally have exponential kernels, 
with or without marks. This is understandable in view of their relative simplicity. When using 
Hawkes process in finance it has often been found that power law kernels fit better than 
exponential: however, this may not be true in the diffusion environment and the extra mathematical 
complexity in an already complex problem is probably not worth it. 

 A variety of mathematical methods have been used to solve the problems in this review, 
including Laplace or Fourier transforms, martingale theory, changes of measure, numerical solution 
of ordinary differential equations, simulation, etc. Then there is the problem of estimating model 
parameters when you want to apply the model to actual data. Various possibilities include method 
of moments, maximum likelihood (usually difficult), simulation, peaks-over-threshold, particle 
filters etc. A systematic comparison of the efficiency of various mathematical and statistical 
methods would be interesting. Bayes methods, including statistical learning, are perhaps heavy on 
computation but offer a systematic way of following changes over time in the process dynamics that 
occur due to changes in economic conditions and market technology.     

Incorporating Hawkes processes into diffusion models usually tends to make the resulting 
mathematics and computation considerably more difficult: Thus it is a good idea to check whether 
your particular data shows obvious signs of jump-clustering. If not, you may well be better off 
using simple Lévy or Poisson jumps, or perhaps no jumps at all.  However, the papers discussed in 
this review clearly demonstrate that when jumps show clustering or contagion effects, including 
Hawkes processes into the model usually leads to significant improvements. It is hoped that 
research in this area will continue to advance and develop efficient computer programs that could 
be used on a routine commercial basis.  
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