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Abstract

This paper aims to further increase the reliability of optimal results by setting the simulation

conditions to be as close as possible to the real or actual operation to create a Cyber-Physi-

cal System (CPS) view for the installation of the Fractional-Order PID (FOPID) controller.

For this purpose, we consider two different sources of variability in such a CPS control

model. The first source refers to the changeability of a target of the control model (multiple

setpoints) because of environmental noise factors and the second source refers to an anom-

aly in sensors that is raised in a feedback loop. We develop a new approach to optimize two

objective functions under uncertainty including signal energy control and response error

control while obtaining the robustness among the source of variability with the lowest

computational cost. A new hybrid surrogate-metaheuristic approach is developed using

Particle Swarm Optimization (PSO) to update the Gaussian Process (GP) surrogate for a

sequential improvement of the robust optimal result. The application of efficient global opti-

mization is extended to estimate surrogate prediction error with less computational cost

using a jackknife leave-one-out estimator. This paper examines the challenges of such a

robust multi-objective optimization for FOPID control of a five-bar linkage robot manipulator.

The results show the applicability and effectiveness of our proposed method in obtaining

robustness and reliability in a CPS control system by tackling required computational efforts.

1. Introduction

Nowadays, developing processes in the engineering world is strongly associated with computer

simulations. These computer codes can collect appropriate information about the characteristics
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of engineering problems before actually running the process. Computer simulations can provide

a rapid investigation of various alternative designs to decrease the required time to improve the

system. In addition, most numerical analyses for engineering problems make a well-suited use

of mathematical programming. The main goals of simulation include what-if study of a model

or sensitivity analysis and optimization and validation of the model [1]. The essential benefit of

simulation is its ability to cover complex processes, either deterministic or random while elimi-

nating mathematical sophistication [2]. Clearly, because of the complexity of mathematical

formulation analyzing in many real-world optimization problems, simulation-optimization

methods become necessary to find more interest and popularity than other optimization meth-

ods [3–5].

Cyber-Physical System (CPS) combines physical objects or systems with integrated compu-

tational facilities and data storage [6]. CPS is a key enabling technology in systems intelligence.

In CPS embedded computers and networks, the physical processes are controlled usually with

feedback loops where physical processes affect computations and vice versa [7–10]. CPS is a

multidimensional and complex system that integrates the cyber world with the dynamic physi-

cal world. Integrating physical processes with computer systems is the main challenge pre-

sented in CPS as the computational cyber part continuously senses the state of the physical

system and applies decisions and actions for its control [11]. The integration and collaboration

of three terms including computing, communication, and control are known as “3C” [12, 13],

CPS provides sensing, real-time optimization, information feedback, dynamic control, and

other services, see Fig 1. In recent years, the application of CPS has been widely considered in

different fields such as aerospace [14–16], defense [17, 18], energy systems [19, 20], healthcare

[21–24], vehicle [25–27], and others [28–30].

In industrial practice, many CPS systems have been designed by decoupling the control sys-

tem design. In this way, CPS and real-time interaction are achieved in order to monitor and

control physical entities in a reliable, safe, collaborative, robust, and efficient way [12, 13].

Using precise calculations to control a seemingly unpredictable physical environment is a

great challenge [31]. After the CPS control system is designed and modeled by extensive simu-

lation, tuning methods need to be expanded to address uncertainty and random disturbances

in the system. In addition, ignoring the impact of uncertainty on the optimization model, the

obtained optimal results may be far from the true optimum settings [32]. One of the main fea-

tures in a reliable CPS design is the stability feature (robustness), which means no matter how

the environment generates noise and uncertain factors, the control system should always reach

a stable decision result eventually [33]. Robustness in the CPS control system seeks to achieve

a certain level of performance with possible modeling errors in the forms of parametric or

nonparametric uncertainties [34]. However, considering uncertainty and random distur-

bances, while keeping the function and operation of the system, has been computationally

time-consuming and costly.

Because of uncertainty, more complexity in the real-time control implementation of CPS is

unavoidable. So, looking for less expensive computational methods of optimization consider-

ing uncertainties has become interesting among most engineering applications [35]. To over-

come such computational difficulties, researchers have applied surrogate-based learning

methods (e.g. polynomial regression, GP, and radial basis function) [36–39]. Surrogate-based

methods can ‘learn’ the problem behaviors and approximate the function value. These approx-

imation models can accelerate the function evaluation as well as the estimation of the function

value with acceptable accuracy. Also, they can improve the optimization performance and pro-

vide a better final solution. Various types of real-world engineering optimization problems

have been developed by applying surrogate-based methods. These optimization problems

include dynamic and stochastic control system design, sub-communities in machine learning
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problems, discrete event systems (e.g. queues, operations, and networks), manufacturing,

medicine and biology, engineering, computer science, electronics, transportation, and logis-

tics, see [3, 5, 38, 40–42]. However, several studies have systematically illustrated the applica-

tions of surrogate-based optimization algorithms [38, 39, 43–45].

In this paper, a new outline of robust real-time optimization in the CPS control model

under the effect of environmental factors (also known as noise factors or uncertainty, see [4,

5]), and variability in feedback loop due to sensor’s anomaly is studied. The main contribu-

tions of this study are as follows:

1. In this paper, we propose a new CPS framework of the control system for a five-bar linkage

robot manipulator by considering the effect of uncertainty (sources of variability) in the sto-

chastic model. The first source is related to a real-time setpoint that is predicted by learning

from collected data (e.g. surrogate) over CPS environmental factors and the second vari-

ability is found in output’s feedback due to anomaly in sensors. Besides, energy consump-

tion and response error are optimized as a robust multi-objective optimization model by

Pareto frontier estimation in the real-time computational part of the CPS model.

Fig 1. Overall representation of Cyber-Physical System (CPS).

https://doi.org/10.1371/journal.pone.0242613.g001
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2. A new hybrid surrogate/metaheuristic algorithm for robust tuning of FOPID controller

in the stochastic control system is proposed. The proposed hybrid GP/PSO algorithm has

the advantages of both GP surrogates in learning the behavior of the model in an efficient

global optimization with PSO metaheuristic in convergence searching for optimum results.

We apply the straightforward jackknife leave-one-out technique to estimate surrogate pre-

diction error applied in efficient global optimization.

3. The proposed algorithm can analyze the sensitivity of the obtained optimal results in

such stochastic environments using the same collected data obtained among optimization

procedure and simulation doesn’t need to be run anymore for computing the confidence

intervals of robust optimal results (i.e. this algorithm does not to increase the number of

function evaluations for sensitivity analysis).

The rest of this paper is organized as follows. Section 2 provides more details about real-

time FOPID control when two types of uncertainties (noises) including environmental factors

and sensor anomaly are considered in a CPS framework. Materials and methods of the pro-

posed algorithm to handle robust multi-objective optimization of a CPS control system are

elaborated in Section 3. In Section 4, the applicability and effectiveness of the proposed

approach are examined to provide robustness and reliability in the robust optimal design of

the FOPID controller in the CPS framework of a five-bar linkage robot manipulator. Finally,

this paper is concluded in Section 6.

2. Point of view

The existing uncertainties and anomalies in the cyber environment have resulted in emerging

concerns about the traditional control system [34]. In real-time control of CPS, physical pro-

cess variables are monitored and processed by intelligent controllers for keeping the values of

safety parameters between the given thresholds. Environmental conditions can affect system

dynamics and also the controller function [9]. The precision of computing must interface with

the uncertainty and the noise in the physical environment [46]. The physical world, however,

is not entirely predictable. Normally, the CPS does not operate in a controlled environment.

So, it must be robust to uncertainty (unexpected conditions) and adaptable to subsystem fail-

ures [8].

2.1 Nomenclature

The main parameters and symbols used in the proposed algorithm are revealed in Table 1.

2.2 FOPID controller

In this paper, for better control, a fractional-order PIλDμ controller is used. Currently, frac-

tional-order controllers are being extensively used by many scientists to achieve the most

robust performance of the systems [47]. The main reason for choosing FOPID controllers

is their additional degrees of freedom that result in a better control performance [48, 49]. A

generalized FOPID controller was first introduced by [50] which proposed PIλDμ controller

involving a λ order integer and a μ order differentiator. The differential equation of a frac-

tional-order PIλDμ controller is defined by:

uðtÞ ¼ KpeðtÞ þ KiD
� l

t eðtÞ þ KdD
m

t eðtÞ ð1Þ
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where e(t) calculates an error value as the difference between a desired setpoint and a mea-

sured process output in the time moment t. The controller attempts to minimize the error

over time by adjustment of a control variable u(t). The reliability of the FOPID controller

depends on the optimal design of three gain parameters (Ki, Kp, Kd) and two order parameters

(λ, μ). However, we try to further increase the reliability of the tuning result by setting the traits

of the simulation model to be as close as possible to the practical condition to make a CPS

outline for the FOPID controller. The FOPID control system with a single setpoint does

not express the aspects of the behavior that are essential to the system in the context of CPS.

Moreover, we challenge the robust control to achieve CPS stability when the uncertainty in

environmental conditions is the source of variability of the setpoints in the control system. In

addition, an uncertain anomaly in sensors causes the noise (variability) in the control feedback

loop. Moreover, we aim to tune the FOPID controller robustly in such a CPS control system

with real-time setpoints and noise in the model’s feedback. Fig 2 shows the control outline of

CPS with real-time setpoints and noise in the model’s feedback. The application of the integer-

order and fractional-order of the PID controller in CPSs has been studied in [49, 51–53].

Table 1. The table of nomenclature.

Notation Description

Ki, Kp, Kd,

λ, μ
FOPID gain parameters (decision variables in an optimization model in this study).

e(t) The error of the control system in the time moment t (distance between the output of the system

with the desired set point in time moment t).
bsðtÞ Desired setpoint in the control system (first uncertain variable in this study).

~a Percent of variability in the feedback loop of the control system (second uncertain variable in this

study).

Ls, Us The lower and upper limit for the uncertain variablebsðtÞ.
Lα, Uα The lower and upper limit for the uncertain variable ~a.

y(t) The output of the plant in a control system in the time moment t.
SEC Signal Energy Control

REC Response Error Control

F1, F2, OF First, second, and overall objective functions in the optimization model respectively.

θ A user-defined weighting factor used in overall function formulation and shows the tendency of the

model toward F1 or F2 functions.

Means, Stds Mean and standard deviation of sth input combination. Regarding the crossed array design, these

statistical parameters are computed through repetitions of sth input combination over different

uncertainty scenarios.

SNRs Signal to noise ratio of sth input combination and computed by

SNRs ¼ 10log½Means 2þo � Stds 2�.

ω A weighting parameter that is introduced to allow for individual emphasis on the minimization of

variations in SNRs formulation.

l × m The number of simulation experiments regarding the structure of crossed array design with l input

combinations and m uncertainty scenarios.

EI(c) The expected improvement that can be considered for the candidate point c from the best point so

far.

γ Type I error and shows the probability of becoming infeasible from estimated confidence intervals.

Rp,s Performance measure criteria

CIs Confidence intervals for optimal result using the augmented bootstrapping technique (employ the

same set of data used for optimization procedure).

bSc
GP surrogate prediction error used in expected improvement EI(c) formulation. In this paper, the

surrogate prediction error computed by the Jackknife leave-one-out approach.

https://doi.org/10.1371/journal.pone.0242613.t001
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2.3 Uncertainty in the CPS control model

Assume ~z1ðtÞ; ~z2ðtÞ; . . . ; ~znðtÞ are the environmental (uncertain) factors in such a CPS control

outline. It should be noted that a real-time setpoint of the control system at time moment t is

affected by variability on the environmental (uncertain) factors. Furthermore, the decision pol-

icy needs to be able to predict real-time setpoints regarding the data collected from the uncer-

tain environmental factors so far. Here, we use supervised learning of data collected so far

from the environment (e.g. polynomial regression function, bf ½~z1ðtÞ; ~z2ðtÞ; . . . ; ~znðtÞ�Þ and

predict the real-time setpointbs tð Þ ¼ dbf
dt ;bs tð Þ 2 Ls;Us½ � in the control system. In addition, an

anomaly in the sensor to convey response feedback is assumed as uncertainty that causes the

variability in the tuning of the FOPID controller. Assume that the true response of model y(t)
is varied by ~a% where ~a is uncertain variable ð~a 2 ½La;UaÞ�, thus ~yðtÞ ¼ yðtÞ � ð1þ ~aÞ is a

true response that is transmitted to the controller at time-step t. Fig 3 shows a block diagram

representation of the CPS control system by considering both types of uncertainty including

environmental factors, and sensor anomaly.

Fig 2. The control framework of CPS with real-time setpoints and noise in model’s feedback. The environmental factors would be predicted and

applied as a real-time setpoint and anomaly in sensor is estimated in feedback loop. Gain parameters and order parameters in FOPID controller are

tuned to be robust against source of variability.

https://doi.org/10.1371/journal.pone.0242613.g002
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2.4 Objective functions

This study aims at optimizing a robust multi-objective model of the FOPID tuning in the CPS

framework by considering two different objective functions (e.g. performance criteria). The

authors in [54] considered the amount of energy consumed to control the plant. They applied

this measure to compare the optimal results obtained by different methods. However, they

don’t use the energy consumption factor for the tuning procedure. Here, we define the Signal

Energy Control (SEC) as the first objective function to optimize the energy that is consumed

in the time domain 0� t� T:

F1 ¼
logðSEC þ 1Þ

M1

ð2Þ

and

SEC ¼
Z T

0

juðtÞjdt ¼
Z T

0

jKpeðtÞ þ KiD
� l

t eðtÞ þ KdD
m

t eðtÞjdt ð3Þ

where M1 is a big value that is defined by user and is used to normalize the first objective func-

tion in [0,1], so that M1 > log(max0�t�T SEC).

We define the second objective function, namely Response Error Control (REC) inspired

by common integral absolute error criteria [47, 48] as below:

F2 ¼
logðREC þ 1Þ

M2

ð4Þ

and

REC ¼
Z T

0

jeðtÞjdt ¼
Z T

0

j~yðtÞ � bsðtÞjdt ð5Þ

Fig 3. The block diagram of robust FOPID control in CPS framework with real-time setpoints and noise in model’s feedback. Real-time

setpoint is estimated by approximation function of environmental factors (~z 1ðtÞ; ~z 2ðtÞ; . . . ; ~znðtÞ). Anomaly in sensor’s feedback is function of

uncertain variable ~α . FOPID gain parameters and order parameters are tuned robustly in such a way to make CPS insensitive against sources of

variability in system.

https://doi.org/10.1371/journal.pone.0242613.g003
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where M2 shows a big value that is defined by user and is used to normalize the second objec-

tive function in [0,1], so that M2 > log(max0�t�T REC). Notably, we use a logarithmic scale for

both objective functions to smooth the large differences between the values (i.e. cases in which

one or a few points are much larger than the bulk of the data). As mentioned earlier, the real-

time setpointbsðtÞ in Eq (5) can be predicted on-time by easy-to-apply supervised learning like

polynomial regression as a function of environmental uncertain factor(s).

2.5 Overall objective function

To combine both objective functions including the signal energy control (see Eq (2)) with

response error control (see Eq (4)) to be used as a single objective model, we apply Lp-mertic

approach by p = 2 (i.e. for more information about Lp-mertic approach in multi-objective opti-

mization, refer to [55]). Assume s = (1,2, . . ., l) is the vector of input combination, then we

define the Overall Function (OF) as below:

OF ¼ fyðF1Þ
2
þ ð1 � yÞðF2Þ

2
g

1
2 ; for s ¼ 1; 2; . . . ; lð Þ ð6Þ

where θ is a user-defined weighting factor (0� θ� 1) that indicates the tendency of the model

toward optimization based on each objective function F1 and F2, see Eqs (2) and (4). Fluctuat-

ing this magnitude (θ) provides the capture of Pareto frontier (also called Pareto optimal effi-

ciency) to make a trade-off between each objective function. This approach is a classical

method to solve optimization problems when the model is faced with multiple criteria [56]. In

fact, the set of optimal solutions obtained from fluctuating θ in [0,1] provides an estimate of

the Pareto frontier.

3. Proposed algorithm

In this section, we propose a promising technique for optimization under uncertainty using

augmented efficient global optimization using the jackknife leave-one-out technique to esti-

mate GP prediction error hybrid GP/PSO method. For this purpose, we first explain the main

materials and methods used in the proposed algorithm briefly and then sketch the algorithmic

steps in the proposed approach.

3.1 Materials and methods

3.1.1 Gaussian Process (GP) surrogate. GP which is also known as kriging is a non-

parametric Bayesian approach to supervised learning [57]. GP is an interpolation method that

can cover deterministic data and is highly flexible due to its ability to employ various ranges of

correlation functions [58]. In a GP model, a combination of a polynomial model and the reali-

zation of a stationary point are assumed by the form of:

y ¼ f ðXÞ þ ZðXÞ þ ε ð7Þ

f ðXÞ ¼
Xk

p¼0

bbpfpðXÞ ð8Þ

where the polynomial terms of fp(X) are typically the first or the second-order response surface

approach and coefficients bbp are regression parameters (p = 0,1, . . ., k). This type of GP

approximation is called the universal GP, while in the ordinary GP, instead of f(X), the

constant mean μ = E(y(x)) is used. The term ε describes the approximation error and the

term Z(X) represents the realization of a stochastic process which in general is a normally
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distributed Gaussian random process with zero mean, variance σ2, and non-zero covariance.

The correlation function of Z(X) is defined by:

Cov½ZðxkÞ;ZðxjÞ� ¼ s
2Rðxk; xjÞ ð9Þ

where σ2 is the process variance and R(xk, xj) is the correlation function that can be chosen

from different correlation functions which were proposed in the literature (e.g. exponential,

Gaussian, linear, spherical, cubic, and spline), see [59, 60]. Today, GP surrogate has been used

as a widespread global approximation technique that is applied widely in control engineering

design problems [40, 61].

3.1.2 Particle Swarm Optimizer (PSO). The canonical PSO algorithm was proposed by

[62] and is inspired by the social behavior of swarms such as bird flocking or fish schooling.

The parameters of PSO consist of the number of particles, position of agent in the solution

space, velocity, and neighborhood of particles (communication of topology). The PSO algo-

rithm begins with initializing the population. The second step is to calculate the fitness values

of each particle, followed by updating individual and global bests as the third step. Then, veloc-

ity and the position of the particles become updated (step four). The second to fourth steps are

repeated until the termination condition is satisfied [63, 64]. The PSO algorithm is formulated

as follows [62–64]:

vtþ1
id ¼ w:vt

id þ c1:randð0; 1Þ:ðpt
id � xt

idÞ þ c2:randð0; 1Þ:ðpt
gd � xt

idÞ

and xtþ1
id ¼ xt

id þ vtþ1
id

ð10Þ

where w is the inertia weight factor, vt
id and xt

id are particle velocity and particle position respec-

tively. d is the dimension in the search space, i is the particle index, and t is the iteration num-

ber. Expressions c1 and c2 represent the speeds of regulating the length when flying towards

the most optimal particles of the whole swarm and the most optimal individual particle. The

term pi is the best position achieved by particle i so far and pg is the best position found by the

neighbors of particle i. The expression rand(0,1) shows the random values between 0 and 1.

The exploration happens if either or both of the differences between the particle’s best ðpt
idÞ

and previous particle’s position ðxt
idÞ, and between the population’s all-time best ðpt

gdÞ and pre-

vious particle’s position ðxt
idÞ are large. In addition, exploitation occurs when these two values

are both small. PSO has attracted wide attention in control engineering design problems due

to its algorithmic simplicity and powerful search performance [54, 65]. However, PSO algo-

rithm that requires a large number of fitness evaluations before locating the global optimum is

often prevented from being applied to computationally expensive real-world problems [66].

Therefore, surrogate-assisted PSO metaheuristic optimization algorithms have been focused in

the literature, see [66–68].

3.1.3 Uncertainty management. Here, we follow [39, 69, 70] and inspire Taguchi’s over-

view of robust design [71] for dealing with uncertainty as a source of variability in the model.

However, we expand Taguchi’s robust design terminology and apply its definition for environ-

mental noise factors in such a CPS control system. But in this study, we replace the statistical

approach of Taguchi viewpoint with augmented efficient global optimization using jackknife

leave-one-out technique and hybrid GP/POS approach. Furthermore, we first intersect two

sampling design sets. One sampling design is for decision variables (inner array) and another

is for uncertain variables (outer array). Given that s = (1, 2, . . ., l) is the vector of sample points

over decision variables, and r = (1, 2, . . ., m) is the vector of uncertainty scenarios, so l ×m
input combinations are designed, and the real model (or true simulation model) are evaluated

l ×m times to collect relevant simulation outputs, see Fig 4. Assume Y is the l ×m matrix of

simulation outputs (i.e. in this study the simulation outputs include OF values that can be
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obtained regarding Eq (6)), thus mean and standard deviation (Std) for each arrow in Y can be

computed by the following equations:

Means ¼
1

m

Xm

r¼1

ysr ; for s ¼ 1; 2; . . . ; lð Þ ð11Þ

Stds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

Xm

r¼1

y2
sr �

1

m

Xm

r¼1

ysr

 !2
v
u
u
t ; for s ¼ 1; 2; . . . ; lð Þ ð12Þ

Signal-to-Noise Ratio (SNR) as introduced by Taguchi [71, 72] is a robustness criterion

based on the mean and the Std of a system response Y. Given that, Y is the smaller the better

type, Taguchi assumed zero as the minimal possible response value. Accordingly, he formu-

lated the following SNR as the robustness criterion:

SNRs ¼ 10 log½Means2þ o � Stds2� ; for ðs ¼ 1; 2; . . . ; lÞ ð13Þ

Since we performed a minimization of the model’s output (here is the overall function, see

Eq (6)) to find the optimal parameters of the FOPID controller, the formulation of the SNR in

Eq (13) has the opposite sign by Taguchi formulation. Additionally, a weighting parameter ω
is introduced to allow for individual emphasis on the minimization of variations. The smallest

value of SNR in Eq (13) depicts the better point with smaller relevant simulation output and

higher insensitivity to the source of variability (robustness).

3.1.4 Efficient global optimization using a jackknife leave-one-out strategy. A common

formulation of efficient global optimization has been developed in the outline of the expected

Fig 4. Crossing two sets of DOE dealing with uncertainty in a model, one DOE (l samples) over decision variables of the model and second DOE

(m samples) over uncertain variables in the model.

https://doi.org/10.1371/journal.pone.0242613.g004
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improvement criterion, see [73, 74]. The expected improvement (EI) method has been devel-

oped in engineering design problems to adaptively improve the local and global search of opti-

mal points (i.e. control a trade-off between exploration and exploitation properties) [75]. This

method has been combined with two main parts. The first statistical part consists of the design

of experiments and surrogate techniques and the second part involves evolutionary algorithms.

If SNRc is considered for the arbitrary point c, an improvement function over the best point

that is so far computed with SNRb is defined as max{0, (SNRb − SNRc)}. A common formula-

tion of efficient global optimization in term of expected improvement creation is constructed

as below:

EIðcÞ ¼ ðSNRb �
dSNRcÞF

SNRb �
dSNRc

bSc

 !

þ bSc ;
SNRb �

dSNRc

bSc

 !

ð14Þ

where bSc indicates the estimation of GP perdition’s error on candidate point c. The expres-

sion SNRb shows the value of the best signal to noise ratio that is obtained from true data of

the original simulation model, and dSNRc is GP surrogate prediction on candidate point c.

The terms F and ; depict the cumulative distribution function (CDF) and probability den-

sity function (PDF) of a standard normal distribution respectively. The first phrase (F) in

Eq (14) is related to the local search and the second phrase (;) is related to a global search.

In the search for the next best point among all the candidate points, the point with maxi-

mum EI term in Eq (14) is selected and replaced with the best point so far obtained. This

procedure is continued until Max REI − 0� ε, where ε is a user-defined threshold, or an

allocated computational cost (e.g. fixed number of repetitions) is reached. However, to find

the neighbor points (candidate points) around the current best point, different strategies of

sampling design methods can be used such as factorial designs [76] and space-filling design

[77]. Here, we apply PSO global optimizer to investigate the maximum EI among the whole

design space.

In order to estimate the surrogate prediction error for cth candidate point ðbScÞ in Eq (14),

simulation experiments can be resampled [73, 74]. The authors in [77] have used the boot-

strapping technique to obtain perdition error for a GP surrogate using resampling to refit sur-

rogate and obtain prediction error. However, resampling imposes extra computational cost

due to the additional number of required simulation experiments (function evaluations).

Here, to estimate the surrogate prediction error for each candidate point, we apply the jack-

knife leave-one-out approach. This approach applied an available set of I/O data and doesn’t

need resampling and extra simulation experiments.

3.1.5 Jackknife leave-one-out approach. Jackknife was first introduced by Quenouille

(1949) [78] and named by Tukey (1958) [79]. The application of the jackknife method involves

a leave-one-out strategy for the estimation of a parameter (e.g. the variance) in a dataset [80].

In this study, we are motivated to use the jackknife leave-one-out approach to estimate surro-

gate prediction error ðbScÞ required in Eq (14) formulation, because this method uses an exist-

ing data and does not require to re-run the expensive simulation model. Here, this method is

used to predict GP prediction error while it can be used for other surrogates as well. Let dSNRc

denotes the prediction of GP surrogate that fitted over all l samples (input combinations),

therefore the GP perdition error in cth candidate point ðbScÞ can be estimated through the jack-

knife leave-one-out approach as the steps in Algorithm 1.
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3.2 Algorithmic framework

In this study, we develop a new hybrid surrogate/metaheuristic method applied in robust effi-

cient global optimization and optimization under uncertainty. We apply a PSO metaheuristic

to update a GP surrogate for sequential investigation of a robust optimal point. The proposed

algorithm can handle robust efficient global optimization by the exhaustive search method

that can be applied in real operation of CPS control frameworks. The algorithmic representa-

tion of the proposed approach is presented in Fig 5. The main steps involved in the proposed

algorithm are presented in Algorithm 2. Note that, we assume the approximation function fit-

ted over environmental factors bf ð~z1ðtÞ; ~z2ðtÞ; . . . ; ~znðtÞÞ can be used to estimate upper (Us)

and lower bound (Ls) forbsðtÞ by varying ~z1ðtÞ; ~z2ðtÞ; . . . ; ~znðtÞ in their relevant ranges (upper

and lower bounds of each relevant environmental factor) in time-step t. Here, these bounds

are predefined and existed as inputs of the program.

Algorithm 1. Jackknife leave-one-out approach.
Input: Set of input combinations and relevant output (SNR).
Output: Estimation of surrogate prediction error for cth candidate
point.
begin
Step 1. Select lc samples from the complete set of l combinations

(s = 1, 2, . . .,l) when ic = l − k and k is a set of samples located in
vertices (i.e. we aim to avoid extrapolating of GP surrogate).

Fig 5. Algorithmic representation of proposed approach for hybrid GP-PSO based robust simulation-optimization under uncertainty.

https://doi.org/10.1371/journal.pone.0242613.g005
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Step2: Drop uth samples (simulation experiment) and relevant SNR
output when (u = 1, 2, . . ., ic).
Step 3: Fit a new GP surrogate over (lc − 1 + k) remaining samples.

Step 4: Predict output for cth candidate point (dSNR � uc Þ using the GP
surrogate constructed from the previous step.
Step 5: Implement three previous steps for all lc samples computing

lc relevant predictions.
Step 6: Apply the jackknife estimator to obtain the estimation of

surrogate prediction error for cth candidate point as below:

bSc �
1

lc

Xlc

u¼1

ðdSNRc �
dSNR � u

c Þ
2

( )1=2

End
Algorithm 2. Proposed robust simulation-optimization approach.

Input: Estimated upper (Us) and lower bound (Ls) for system’s setpoint
bsðtÞ 2 ½Ls;Us� and upper (Uα) and lower bound (Lα) for ~a due to anomaly in
sensor feedback.
Output: The estimation of the Pareto frontier by a set of robust opti-
mal points found by the proposed approach.
begin
Step 1. Design crossed array (using the space-filling design) by

crossing two sets of experiments with dimensions l × m as below:

• An inner array matrix with dimension (l × nx) where l is the number of sample points for

decision variables and nx is number of decision variables (e.g. in FOPID tuning nx = 5 deci-

sion variables including three gain Ki, Kp, Kd and two order λ, μ parameters).

• An outer array matrix with dimension (m × nz) where m is the number of sample points

(uncertainty scenarios) for nz uncertain variables (e.g. here in represented CPS control sys-

tem nz = 2 includingbsðtÞ and ~a).

Step 2. Run the CPS model (i.e. here we use simulation model) for
each crossed (l × m) combination and obtain the relevant output bysr

regarding each objective function, when s = (1, 2, . . ., l) and r = (1,
2, . . ., m).
Step 3. Compute overall function (OF) values for all l × m input com-

binations using Eq (6).
Step 4. Compute Means and Stds of overall function using Eqs (11) and

(12) for each s = (1, 2, . . ., l) sample point in inner array and compute
relevant SNRs using Eq (13).
Step 5. Fit a GP surrogate over sets of I/O data (with l input combi-

nations and relevant SNRs values).
Step 6. Define an initial best point among the set of I/O data obtained

from Step 4 (the point with the smallest SNR regarding Eq (13)).
Step 7. Set expected improvement criterion (see Eq (14)) as an objec-

tive function in PSO optimizer algorithm (i.e. with minimizing of −EI
(c)) and obtaining a winner point.
Step 8. Run the real CPS model (e.g. original simulation model) in

the winner point for m combinations of uncertainty (scenarios)
designed in Step 1 and obtain relevant outputs for each objective
function.
Step 9. Obtain OF values for the winner point regarding m uncertainty

scenarios.
Step 10. Compute mean and Std of the winner point using Eqs (11) and

(12).
Step 11. Update the set of I/O data s = (1, 2, . . ., l + i), when i is

the number of the sequential runs.
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Step 12. Fit a new GP surrogate over an updated set of I/O data (with
l + i training points and SNR as outputs).
Step 13. Update (if needed) the best point obtained so far to a point

with smallest SNR ratio among all the sample points (including initial
training points and points which are added so far for updating of sur-
rogate, see Step 11) and repeat Step 7 till Step 12 until stopping
rules are satisfied (e.g. stop sequential updating if Max EI − 0 � ε,
or i � k, where ε and k are user-defined thresholds).
Step 14. If stopping rule(s) is satisfied, then set the best point

obtained so far as a robust optimal point of the model. The best point
so far has the smallest SNR value among all sample points including
initial samples and updating sample points.
Step 15. Obtain estimation of Pareto frontier by varying the weight

scale θ in [0,1] (see Eq (6)) and repeating Step 1 to Step 14.
end

In this study, we use a common space-filling design method named Latin hypercube sam-

pling (LHS) with the desired correlational function to design simulation experiments. LHS

was first introduced by McKay and colleagues [81]. It is a strategy to generate random sample

points while guaranteeing that all the portions of the design space are depicted. LHS has been

commonly defined for designing computer experiments based on the space-filling concept. In

general, for n input variables, m sample points are produced randomly in m intervals or sce-

narios (with equal probability). Inspired by [82] in the case of non-independent multivariate

input variables, the desired correlation matrix can be used to produce distribution-free sample

points in LHS. For more information, refer to [39, 83].

In the represented CPS control system in this study, outputs for two separate F1 and F1

objective functions need to be obtained regarding response error control and signal energy

control, see Eqs (2) and (4). Notably, in Step 4, each s = (1,2, . . ., l) sample point is repeated m
times through m different combinations (scenarios) of uncertain variables, see the framework

of uncertainty management in Section 3.1.3. In Step 7, the fitted GP surrogate over SNR con-

structed in Step 5 is used to approximate the relevant SNR of each search point produced by

PSO.

3.3 Augmented bootstrapping approach (sensitivity analysis)

In this study, the main idea behind the proposed algorithm is to perform sensitivity analysis

to expand the information obtained from robust efficient global optimization. Estimating a

single optimal point using a particular response may be inaccurate because of variability in

the surrogate. Thus, we derive a series of possible responses that take into account a degree of

uncertainty by providing confidence regions or prediction intervals. The author in [84] has

mentioned two alternative strategies for bootstrapped resampling as follows:

• In each set of bootstrapping, both sets of input (design) combination (X) and noise (uncer-

tain) combination (Z) are resampled randomly.

• The resampling is adapted to noise or uncertain component (Z) only while keeping the

deterministic input combination (X) fixed.

Here, to find the bootstrapped set of data, a model is resampled B times (b = 1,2, . . ., B)

(sampling with replacement), while B is the number of resampled or bootstrapped sample size.

Moreover, B separate surrogates are fitted on B different sets of sample points with the same

size (n design points). It is assumed that d+ is a robust optimal solution which is obtained from

the original (non-bootstrapped) surrogate. All output values in point d+ are estimated using all

the B bootstrapped surrogates. The distribution-free bootstrapped Confidence Intervals (CIs)
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can be computed as below, [59, 85]:

Pðdþ�ðbBðgÞcÞ � dþ � dþ�ðdBð1� ðg=2ÞeÞÞ ¼ 1 � g ð15Þ

The superscript ‘�’ is a common symbol for bootstrapped values [59]. The expression γ
gives two-sided CIs. Bonferroni’s inequality suggests that Type I error rate for each interval

per output is divided by the number of outputs (here is SNR). If the values of bootstrap esti-

mate SNR(d+)� are sorted from low to high, then b.c and d.e respectively denote floor and ceil-

ing function to achieve the integer part and round upwards.

Here, inspired by [70, 86], the particular augmented bootstrapping approach is used for

costly simulation running. In such a case, assume the set of sample points is fixed and only old

data to fit surrogate with enough replication is available and new simulation replicating is very

expensive. This augmented bootstrapping approach does not imply extra computational cost

because of resampling and required simulation running to find a bootstrapped set of data. xs
(s = 1,2, . . ., l) denotes the set of sample points and each xs is repeated m times (r = 1,2, . . ., m).

We assume that the original set of data obtained from the original simulation model is avail-

able (size l ×m) when m is the number of scenarios for uncertainty and l is the number of

input combinations. Moreover, the augmented bootstrapping procedure is sketched in Algo-

rithm 3.

Algorithm 3. The augmented bootstrapping procedure.
Input: Set of I/O data, and robust optimal point.
Output: Estimation of CIs.
begin
Step 1. Set s = 1 and r = 1.
Step 2. Choose (with replacement) one random number from the collec-

tion of {r� = 1, 2, . . ., m}.
Step 3. Replace the rth original output ys,r (selected from the old

data) with the bootstrap outputy�s;r ¼ ys;r�.
Step 4. Set r = r + 1 and continue Step 3 and Step 4 till r = m.
Step 5. Set s = s + 1 and continue Step 3, Step 4 and Step 5 till

s = l.
Step 6: Compute Mean�s ; Std

�

s, and SNR� using Eqs (11), (12) and (13)
respectively for (s = 1, 2, . . .l) and fit a GP surrogate over new set of
I/O data.
Step 7: Continue resampling B times (b = 1, 2, . . ., B) where B is

the number of resampling or bootstrap sample size and compute
SNR�b ¼ ðSNR�

1
; SNR�

2
; . . . ; SNR�bÞ.

Step 8: Compute bootstrapped CIs using Eq (15) for the robust optimal
point obtained by the proposed algorithm as elucidated in Section
3.2).
end

Note that, regarding the Step 1 till Step 5, it can be seen that a random number with replace-

ment in [1, m] is selected, and regarding the selected number, we choose the relevant response

in an outer array (see the structure of the crossed array design explained in Section 3.1.3) that

was previously collected from the original simulation model and has the same column num-

ber. For the same input combination, we repeat this procedure m times and collect m different

responses or may have the same responses (i.e. because the random selection is done with

replacement). This procedure is also repeated for other input combinations. Therefore, the

data matrix with l row and m column is constructed.
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4. Numerical example

Here, the proposed algorithm is specified for the robust optimal design of FOPID controller

in CPS control of five-bar linkage robot manipulators. In the continue, we first explain the

dynamics of the five-bar linkage robot manipulators. Next, the robust optimal design of

FOPID controller in the CPS framework of a five-bar linkage robot manipulator is obtained

using the proposed algorithm in this paper.

4.1 Dynamics of a five-bar linkage robot manipulator

Robotic manipulators, classic examples of nonlinear systems, are extensively used in the indus-

try to automate various aspects of the production process of goods, thereby improving the

quality of human life [87]. With the changing dynamics of these manipulators and their

increasing complexity arising from their greater use, there has been considerable interest in

their control technique fields. Robotic manipulators are Multi-Input Multi-Output (MIMO)

systems with highly coupled nonlinear dynamics, posing a challenge to the development of

their control scheme [88]. A five-bar linkage manipulator is a special class of parallel manipu-

lators where a minimum of two kinematic chains control the motion of end-effectors [89].

The mechanism of a five-bar linkage is shown in Fig 6 [90].

Even though there are four links being moved, there are in fact only two degrees-of-free-

dom that are defined as q1 and q2. qi and τi are the joint variable and torque of the ith motor

Fig 6. Five bar linkage robot manipulator.

https://doi.org/10.1371/journal.pone.0242613.g006
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respectively. Likewise, Ii, li, lci, and mi are the inertia matrix, length, distance to the center of

gravity, and mass of the ith link respectively. In addition, if m3l2lc3 = m4l1lc4, then the inertia

matrix is diagonal and constant. As a consequence, the dynamic model of the manipulator is

derived by the following equations [90]:

t1 ¼ d11
€q1 þ g cos q1ðm1lc1 þm3lc3 þm4l1Þ

t2 ¼ d22€q2 þ g cos q2ðm1lc1 þm3lc3 þm4l1Þ
ð16Þ

where g is gravitational constant and d11 and d22 are as follows:

d11 ¼ m1l2c1 þm3l2c3 þm4l21 þ I1 þ I3

d22 ¼ m2l2c2 þm4l2c4 þm3l22 þ I2 þ I4

ð17Þ

It should be noted that τ1 depends only on q1 but not on q2. Similarly, τ2 depends only on

q2 but not on q1. This discussion helps to explain the popularity of the parallelogram configu-

ration in industrial robots. If m3l2lc3 = m4l1lc4, then two angles q1 and q2 can be adjusted inde-

pendently without worrying about interactions between the two angles.

4.2 Simulation and algorithm setup

Here, the main goal is to obtain a robust optimal design of FOPID controller in such a CPS

control model as elucidated in Section 2. We simulate the five-bar linkage robot manipulator

using Eq (16) in Matlab1/Simulink environment. Simulink does not have a library for the

FOPID. Therefore, the controller from the library of FOMCON: a Matlab1 toolbox for frac-

tional-order system identification and control [91], which allows for the computation of the

fractional-order derivative and integration is used. Numeric values of the parameters of the

five-bar manipulator dynamics are taken from [54, 92] as shown in Table 2. From the data that

are driven in Table 2, it is revealed that m3l2lc3 = m4l1lc4, thus we can perform robust optimal

design of controller for one motor, where the same results are also valid for the second motor.

In FOPID tuning, five decision variables including Ki, Kp, Kd, λ, and μ are considered as deci-

sion variables. The search procedure for the robust optimal result is done in the ranges as [54]:

Kp 2 ½0; 30�;Ki 2 ½0; 5�;Kd 2 ½0; 5�; m 2 ½0; 1�and l 2 ½0; 1�

Two performance criteria are considered as outputs of the model including Eqs (2) and (4)

in time-step t (here the size of time-step is fixed at 0.01) and time domain (simulation time)

T = 20. In addition, for uncertain variables, we assume thatbsðtÞ varies in [0.5,2.5] and ~a varies

in [−0.05,0.05]. However, we implement the proposed algorithm in CPS control framework of

a five-bar linkage robot manipulator.

The following process is done to determine the robust optimal values of the FOPID param-

eters (Ki, Kp, Kd, λ, and μ) using the proposed algorithm. First, we design a set of experiments

with the size of l = 15 samples using LHS. Another sampling design is constructed for

Table 2. Numeric values of the parameters of the five-bar manipulator dynamics.

Link Mass (Kg) Length (m) C of g (m) Inertia (Kgm2)

1 0.2880 0.33 0.166 1

2 0.0324 0.12 0.060 2

3 0.3702 0.33 0.166 1

4 0.2981 0.45 0.075 2

https://doi.org/10.1371/journal.pone.0242613.t002
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uncertain factorsbsðtÞ and ~a (here we choose m = 9 samples as the size of uncertainty scenar-

ios). Two Matlab1 functions “lhsdesign” and “gridsamp” are used to design training sample

points with minimum correlation and to design uncertainty scenarios (different combinations

of uncertain factors) respectively. We cross both sets of experiments to follow the crossed

array design framework as elaborated in Section 3.1.3. Each input combination in the inner

array s = (1,2, . . ., l = 15) including designed values of Ki, Kp, Kd, λ, and μ are sent to Simulink

block for m times regarding each uncertainty scenarios r = (1, 2, . . ., m = 9) and the values of

SEC and REC in time domain are collected. So, 15 × 9 simulation outputs are collected accord-

ing to 135 simulation runs (function evaluations). We, use the collected data to obtain F1, F2,

and, OF regarding Eqs (2), (4) and (6) respectively. We set both M1 and M2 parameters equal

to 10 used in Eqs (2) and (4). Regarding m uncertainty scenarios, we repeat each input combi-

nation m times, and compute the relevant mean and Std of OF using Eqs (11) and (12). Then,

we calculate SNRs for each input combination s = (1,2, . . ., l = 15) using Eq (13) while assume

ω = 3. Afterwards, we fit a GP surrogate over set of input combinations and set of SNRs out-

puts. The DACE [93], Matlab1 toolbox has been employed to construct GP surrogate. In

the current study, first-order polynomial regression and Gaussian correlation functions are

adjusted to fit GP surrogate. The correlation parameter is fixed on 0.1 (i.e. in the DACE tool-

box, the correlation parameter is forced to vary in the range between 0.01 to 20).

Next, we perform the procedure of sequential expected improvement to estimate the robust

optimal point after n sequential EI iterations. Among all the SNR values in the set of SNRs, a

sample with the smallest SNR value and its relevant input combination including the relevant

vector of [Ki, Kp, Kd, λ, μ] is considered as an initial best point. Regarding our proposed algo-

rithm, we apply the PSO optimizer to search for a winner point in each sequential EI iteration.

For setting the PSO parameters, the maximum iteration number is fixed 200 and the swarm is

initialized with 30 particles. Notably, as we use GP surrogate instead of the true (original) sim-

ulation model as an objective function in PSO, thus we don’t worry about the computational

cost due to running of a true simulation model. At the end of any sequential EI iteration, the

program checks the stopping rule(s). Here, we stop the EI procedure when the EI criterion

becomes smaller than 0.01, or the number of sequential runs reaches 15 iterations. Also, at the

end of any sequential EI iteration, two terms of the program are updated, i) the set of training

sample points by adding a winner point and relevant SNR output that is computed accordingly

from the original simulation model, ii) the best sample point obtained so far with the smallest

SNR among all the training points and updating points. Moreover, according to an updated

set of training samples, a new GP surrogate is constructed after each sequential EI iteration. It

is important to note that we avoid extrapolation of GP surrogate in each sequential iteration

by setting two different rules, i) we consider a death penalty for any point that is investigated

by PSO and is located out of bounds of training points, ii) to estimate GP prediction error

using jackknife leave-one-out approach, we only remove input combination’s rows that don’t

locate on the margin of design space (see Section 3.1.5). The obtained results from the pro-

posed algorithm and relevant sensitivity analysis are discussed in the following sections.

4.3 Robust optimal results

We perform the proposed algorithm for three different values of θ = 0.25, θ = 0.5, and θ = 0.75

in computing OF (see Eq (6)). To evaluate the effect of randomness in sampling design meth-

ods, each optimization set was repeated 10 times. Tables 3–5 show the obtained results using

the proposed algorithm for estimating robust FOPID optimal design over 10 different repeti-

tions for θ = 0.25, θ = 0.5, and θ = 0.75 respectively. As mentioned in Section 4.2, the obtained

SNR values are computed by repeating each set of FOPID gain parameters over 9 different
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uncertainty scenarios designed by the grid sampling method. In those tables, two expressions

“In.sa” and “Up.sa” indicate the initial sampling design and updating samples that are added

to the training set through the procedure of sequential improvement respectively.

As can be seen, for θ = 0.25, the best SNR (−20.621) is obtained through the fifth repetition

with a total of 207 function evaluations (15 × 9 runs regarding initial crossed sampling design

Table 3. Robust FOPID optimal results using proposed algorithm for 10 repetitions for θ = 0.25 (the results obtained over 9 different uncertainty scenarios).

Repeat No FOPID Optimal Parameters Simulation Experiments Optimum SNR value

Kp Ki Kd μ λ Total In.sa Up.sa SNR (ω = 3) Ave Std

1 4.133 1.411 1.839 0.967 0.967 171 135 36 -20.564 -20.263 0.219

2 1.000 2.638 2.925 0.033 0.790 180 135 45 -20.209

3 3.321 1.911 3.875 0.033 0.804 198 135 63 -19.911

4 1.000 4.494 2.854 0.875 0.831 171 135 36 -20.143

5 1.000 2.250 2.559 0.387 0.852 207 135 72 -20.621

6 3.311 2.387 3.206 0.305 0.896 207 135 72 -20.119

7 1.509 0.167 2.922 0.458 0.615 216 135 81 -20.208

8 1.000 2.182 3.430 0.575 0.726 198 135 63 -20.527

9 3.311 2.387 3.206 0.305 0.896 207 135 72 -20.119

10 1.509 0.167 2.922 0.458 0.615 216 135 81 -20.208

https://doi.org/10.1371/journal.pone.0242613.t003

Table 5. Robust FOPID optimal results using proposed algorithm for 10 repetitions for θ = 0.75 (the results obtained over 9 different uncertainty scenarios).

Repeat No FOPID Optimal Parameters Simulation Experiments Optimum SNR value

Kp Ki Kd μ λ Total In.sa Up.sa SNR (ω = 3) Ave Std

1 8.238 2.300 3.748 0.426 0.919 261 135 126 -23.868 -24.041 0.140

2 1.267 3.101 3.332 0.525 0.835 270 135 135 -24.238

3 4.285 1.998 3.510 0.612 0.938 189 135 54 -24.032

4 7.803 3.239 3.257 0.944 0.918 216 135 81 -24.191

5 1.025 2.144 3.072 0.567 0.860 270 135 135 -24.151

6 6.113 1.314 3.039 0.709 0.967 243 135 108 -24.022

7 5.775 2.308 3.689 0.348 0.913 234 135 99 -23.879

8 5.201 2.485 4.124 0.823 0.794 261 135 126 -24.213

9 5.775 2.308 3.689 0.348 0.913 234 135 99 -23.879

10 11.00 1.833 2.833 0.900 0.967 270 135 135 -23.939

https://doi.org/10.1371/journal.pone.0242613.t005

Table 4. Robust FOPID optimal results using proposed algorithm for 10 repetitions for θ = 0.5 (the results obtained over 9 different uncertainty scenarios).

Repeat No FOPID Optimal Parameters Simulation Experiments Optimum SNR value

Kp Ki Kd μ λ Total In.sa Up.sa SNR (ω = 3) Ave Std

1 3.321 1.549 2.634 0.967 0.967 225 135 90 -21.838 -21.840 0.245

2 1.000 0.713 2.017 0.802 0.726 261 135 126 -22.249

3 1.000 2.668 3.604 0.575 0.832 225 135 90 -21.879

4 1.000 1.228 2.436 0.657 0.844 189 135 54 -22.120

5 1.000 2.667 3.947 0.696 0.757 225 135 90 -21.949

6 3.429 1.782 3.410 0.298 0.861 243 135 108 -21.562

7 7.000 1.833 2.833 0.433 0.967 198 135 63 -21.448

8 1.000 1.964 3.909 0.775 0.705 180 135 45 -22.003

9 3.740 1.702 2.151 0.033 0.915 189 135 54 -21.551

10 2.233 1.624 2.000 0.318 0.967 180 135 45 -21.803

https://doi.org/10.1371/journal.pone.0242613.t004
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and 8 × 9 simulation runs regarding sequential updating of the training sample set). For θ =

0.5, the best SNR (-22.249) is obtained from the second repetition and with a total of 261

simulation experiments (135 initial samples plus 126 updating samples). The best SNR value

(-24.238) for θ = 0.75 is obtained through the second repetition by a total of 270 function eval-

uations (15 initial input combinations and 15 update combinations that are crossed by 9

uncertainty scenarios). We consider all the three best points over all 10 repetitions as robust

optimal points for the FOPID controller using the proposed algorithm for each θ = 0.25, θ =

0.5, and θ = 0.75 separately. Fig 7 shows the magnitudes of the EI criterion and the best SNR

obtained by sequential expected improvement over 10 different repetitions of the proposed

algorithm for θ = 0.25, θ = 0.5, and θ = 0.75. Also, the mean and Std of OF related to the best

point so far (smaller SNR) in each sequential EI iteration are shown in Fig 8. It should be

noted that two stopping rules are adjusted, the EI value becomes smaller than 0.01, or the

sequential procedure reaches 15 sequential iterations. Fig 9 shows the step responses of

the robot manipulator with 9 different uncertainty scenarios (bsðtÞ ¼ ½0:5; 1:5; 2:5� and

~a ¼ ½� 0:05; 0;þ0:05�) for θ = 0.25, θ = 0.5, and θ = 0.75.

4.4 Sensitivity analysis

To analyze the sensitivity of robust optimal results obtained by the proposed algorithm and

estimate the variability which occurred due to randomness in designing sample points, we

used the augmented bootstrapping method explained in Section 3.3. Here, based on the

obtained results from the original GP surrogate, the FOPID parameters in robust optimum

point (d+) for θ = 0.25, θ = 0.5, and θ = 0.75 are defined as below:

Fig 7. EI criterion magnitudes and best SNR obtained by sequential expected improvement over 10 different repetition of proposed

algorithm for θ = 0.25, θ = 0.5 and θ = 0.75. Two stopping rules are adjusted, EI value becomes smaller than 0.01 or reach 15 sequential

iterations.

https://doi.org/10.1371/journal.pone.0242613.g007
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• For, θ = 0.25

dþ ¼ fKp ¼ 1:00;Ki ¼ 2:250;Kd ¼ 2:259;m ¼ 0:387 and l ¼ 0:852g

SNRðdþÞ ¼ � 20:621

• For θ = 0.5

dþ ¼ fKp ¼ 1:00;Ki ¼ 0:713;Kd ¼ 2:017;m ¼ 0:802 and l ¼ 0:726g

SNRðdþÞ ¼ � 22:249

• For θ = 0.75

dþ ¼ fKp ¼ 1:267;Ki ¼ 3:101;Kd ¼ 3:332;m ¼ 0:525 and l ¼ 0:835g

SNRðdþÞ ¼ � 24:238

With B predicted values from B bootstrapped GP surrogates, we can quantify the CIs (boot-

strapped confidence intervals) for d+. For the current case, we selected the bootstrapped size

B = 50. We predicted SNR by each B = 50 bootstrapped surrogates in the robust optimal point

which are obtained by original GP surrogates. From these 50 values for SNR, we estimated

CIs for SNR by applying Eq (15). We quantified these confidence regions for γ = 0.05 (i.e. γ

Fig 8. Mean and Std of overall function (OF) related to best point so far (smaller SNR) obtained by sequential expected improvement over 10

different repetition of proposed algorithm for θ = 0.25, θ = 0.5 and θ = 0.75. Two stopping rules are adjusted, EI value becomes smaller than 0.01 or

reach 15 sequential iterations.

https://doi.org/10.1371/journal.pone.0242613.g008
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denotes type I error and shows the probability of becoming infeasible from estimated confi-

dence regions). As we estimated the robustness as a consequence of the uncertainty in the

model, it becomes important to implement further analyses of the statistical variation. The CIs

shows that the original estimated SNR may still give variety regarding its threshold due to the

variability of surrogates’ predictions. However, 95% two-sided approximations of CIs obtained

by bootstrapped GP surrogates for SNR values in robust optimal points of FOPID controller

regarding θ = 0.25, θ = 0.5, and θ = 0.75 are as follows:

PðEðdþÞ�
ðb50ð0:05=2ÞcÞ

� EðdþÞ � EðdþÞ�
ðd50ð1� ð0:05=2ÞeÞ

Þ ¼ 0:95

• For θ = 0.25

Lower bound: EðdþÞ�
ðb50ð0:05=2ÞcÞ

¼ � 21:566

Upper bound: EðdþÞ�
ðd50ð1� ð0:05=2ÞeÞ

¼ � 20:060

• For θ = 0.5

Lower bound: EðdþÞ�
ðb50ð0:05=2ÞcÞ

¼ � 23:431

Upper bound: EðdþÞ�
ðd50ð1� ð0:05=2ÞeÞ

¼ � 21:585

Fig 9. The step responses of the robot manipulator with 9 different uncertainty scenarios (bsðtÞ ¼ ½0:5; 1:5; 2:5� and ~a ¼ ½� 0:05; 0;þ0:05�) for θ =

0.25, θ = 0.5 and θ = 0.75.

https://doi.org/10.1371/journal.pone.0242613.g009

PLOS ONE Robust optimal design of FOPID controller: A new simulation-optimization approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0242613 November 30, 2020 22 / 35

https://doi.org/10.1371/journal.pone.0242613.g009
https://doi.org/10.1371/journal.pone.0242613


• For θ = 0.75

Lower bound: EðdþÞ�
ðb50ð0:05=2ÞcÞ

¼ � 25:152

Upper bound: EðdþÞ�
ðd50ð1� ð0:05=2ÞeÞ

¼ � 23:517

Figs 10–12 show the sensitivity analysis obtained by bootstrapping for θ = 0.25, θ = 0.5,

and θ = 0.75 respectively regarding FOPID gain parameters (Kp, Ki, Kd) and order parameters

(μ, λ).

4.5 Proposed algorithm versus three common optimizers in FOPID tuning

In this section, we compare the results obtained by a proposed algorithm with three common

FOPID optimization methods including the PSO metaheuristic [62] (i.e. when directly used in

optimization procedure), Grey Wolf Optimizer (GWO) [94], and Ant Lion Optimizer (ALO)

[95]. These methods have been widely used in the literature for optimal control systems [49,

54, 96, 97]. We compare both levels of accuracy (lower objective function) and the robustness

of each method in the tuning of stochastic controllers. Here, we assume that the model is lim-

ited to only 270 simulation experiments (function evaluations) to obtain a robust optimal

design of stochastic FOPID controller for θ = 0.25, θ = 0.5, and θ = 0.75. So, we let each opti-

mizer employ a maximum of 270 simulation experiments. It should be noted that we also

allowed our proposed algorithm to use maximum 270 simulation experiments to search for

the optimal point, see Section 4.2. The parameters settings for all the three optimizers (PSO,

GWO, and ALO) are as follows:

Fig 10. Sensitivity analysis via 50 bootstrapped GP surrogate and 95% Confidence Intervals (CIs) over robust optimal point obtained by original

GP surrogate for θ = 0.25. Augmented parametric bootstrapping is performed using on hand set of input/output data provided among original

optimization program.

https://doi.org/10.1371/journal.pone.0242613.g010
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The number of iterations is considered to be 30 and initial papulation is adjusted to 9. The

other parameters for PSO [62, 63] are also selected as follows:

Min of inertia weight equals to 0.4; max of inertia weight equals to 0.9; all the three factors

of velocity clamping factor, cognitive constant, and social constant are set to 2. To run each of

the three mentioned optimizers in each relevant iteration by optimizer, we randomly (with

replacement) produce a scenario of uncertainty and compute output of the original simulation

including SEC and REC and compute OF as an objective (fitness) function of optimizer. To

make a fair comparison between the proposed algorithm and three optimizers (PSO, GWO,

and ALO) in the stochastic FOPID control system, we repeat each of the three optimizers 10

times (as mentioned in Section 4.2 and 4.3, we repeated the proposed algorithm 10 times). To

compare the obtained results using proposed algorithm and the three global optimizers (PSO,

GWO, and ALO), we produce 100 different combinations (scenarios) of two uncertain factors

includingbsðtÞ and ~a using grid sampling design approach. Afterwards, for each set of optimal

FOPID parameters according to the obtained results by proposed algorithm and three global

optimizers, we run true simulation model regarding each uncertainty scenario (total 100 simu-

lation runs for each set of FOPID optimal point).

4.5.1 Comparison results. Tables 6–8 provide the statistical comparison results between

the proposed algorithm and three common optimizers in 10 separate repetitions for θ = 0.25,

θ = 0.5, and θ = 0.75 respectively. In these tables, the level of accuracy (lower objective func-

tion) and robustness for the stochastic FOPID tuning are compared. The FOPID tuning results

using different methods are obtained over 100 different uncertainty scenarios. Note that the

expression “SE” in the tables indicates the total number of simulation experiments (function

evaluations) employed for the optimization procedure. It should be also noted that we allow

Fig 11. Sensitivity analysis via 50 bootstrapped GP surrogate and 95% Confidence Intervals (CIs) over robust optimal point obtained by original

GP surrogate for θ = 0.5. Augmented parametric bootstrapping is performed using on hand set of input/output data provided among original

optimization program.

https://doi.org/10.1371/journal.pone.0242613.g011
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each optimizer to use a maximum of 270 function evaluations. For the proposed algorithm, we

consider two stopping rules for the relevant procedure of sequential improvement. The EI cri-

terion becomes smaller than 0.01 or the algorithm reaches 15 sequential iterations (See Section

4.2).

As can be seen from Table 6, the lower SNR is obtained by GWO with -20.944, and it

is followed by our proposed algorithm with -20.499. The PSO and ALO optimizers also pro-

vided competitive results. Regarding the effect of randomness on 10 repetitions (stochastic

Fig 12. Sensitivity analysis via 50 bootstrapped GP surrogate and 95% Confidence Intervals (CIs) over robust optimal point obtained by original

GP surrogate for θ = 0.75. Augmented parametric bootstrapping is performed using on hand set of input/output data provided among original

optimization program.

https://doi.org/10.1371/journal.pone.0242613.g012

Table 6. Comparison results for FOPID tuning using different methods over 100 different uncertainty scenarios for θ = 0.25.

Repeat No Proposed algorithm PSO GWO ALO

SNR Ave / Std SE SNR Ave / Std SE SNR Ave / Std SE SNR Ave / Std SE

1 -20.806 -20.499 / 0.238 1971 -19.325 -20.404 / 0.630 2700 -21.351 -20.944 / 0.545 2700 -20.666 -20.205 / 0.642 2700

2 -20.450 -20.620 -21.338 -18.721

3 -20.112 -20.337 -21.076 -20.131

4 -20.349 -19.647 -20.877 -20.066

5 -20.894 -20.352 -19.477 -20.742

6 -20.329 -21.162 -21.484 -20.736

7 -20.470 -20.841 -20.695 -20.217

8 -20.782 -19.806 -21.036 -20.460

9 -20.329 -21.426 -20.841 -20.875

10 -20.470 -20.524 -21.260 -19.434

https://doi.org/10.1371/journal.pone.0242613.t006
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optimization), the proposed algorithm shows the most robustness behavior (Std = 0.238) in

comparison to the other three optimizers. The GWO, PSO, and ALO optimizers are the sec-

ond, third, and fourth robust methods respectively.

From the results in Table 7, it is clear that the proposed algorithm provides competitive

result in obtaining the lower SNR value with -22.112 compared to the lowest SNR value

(-22.165) by GWO. The ALO and PSO are ranked third and fourth in obtaining lower objec-

tive function (SNR). In Table 7, it is readily apparent that the most robust method against ran-

domness in the model is the proposed algorithm with Std = 0.280 compared to the other three

optimizers. The next robust methods are GWO, ALO, and PSO optimizers respectively.

It is apparent from Table 8 that the lower SNR value (objective function) with -24.292 is

obtained by the proposed algorithm compared to the other three optimizers. The ALO, GWO,

and PSO optimizers are ranked second, third, and fourth respectively in obtaining lower SNR

value. Regarding robustness against randomness in the stochastic optimization model, the pro-

posed algorithm also shows the most robust behavior compared to the other three methods.

The PSO optimizer shows a weak performance to obtain robustness (see Std statistics) in the

current case study.

To perform further comparison of the proposed algorithm with three different optimizers

including PSO, GWO, and ALO, we apply two common statistical tests including the t-test

Table 8. Comparison results for FOPID tuning using different methods over 100 different uncertainty scenarios for θ = 0.75.

Repeat No Proposed algorithm PSO GWO ALO

SNR Ave / Std SE SNR Ave / Std SE SNR Ave / Std SE SNR Ave / Std SE

1 -24.094 -24.292 / 0.150 2448 -23.774 -23.198 / 1.675 2700 -24.012 -24.028 / 0424 2700 -24.004 -24.032 / 0.424 2700

2 -24.523 -19.045 -24.262 -23.300

3 -24.295 -24.050 -24.607 -24.253

4 -24.395 -24.077 -23.667 -24.608

5 -24.471 -21.273 -23.075 -24.596

6 -24.276 -24.416 -24.504 -23.998

7 -24.136 -24.385 -23.845 -24.064

8 -24.444 -22.591 -23.855 -24.191

9 -24.136 -24.384 -24.258 -24.004

10 -24.153 -23.986 -24.198 -23.300

https://doi.org/10.1371/journal.pone.0242613.t008

Table 7. Comparison results for FOPID tuning using different methods over 100 different uncertainty scenarios for θ = 0.5.

Repeat No Proposed algorithm PSO GWO ALO

SNR Ave / Std SE SNR Ave / Std SE SNR Ave / Std SE SNR Ave SE

1 -22.076 -22.112 / 0.280 2115 -20.915 -21.101 / 1.066 2700 -22.376 -22.165 / 0.377 2700 -21.801 -21.824 / 0.562 2700

2 -22.616 -21.053 -22.470 -21.903

3 -22.136 -19.600 -21.797 -21.780

4 -22.448 -19.120 -22.417 -22.017

5 -22.201 -20.193 -21.358 -21.806

6 -21.810 -22.173 -22.372 -21.824

7 -21.653 -22.005 -22.550 -22.540

8 -22.262 -21.965 -22.257 -20.281

9 -21.821 -22.057 -22.338 -22.216

10 -22.096 -21.929 -21.714 -22.077

https://doi.org/10.1371/journal.pone.0242613.t007
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and the Wilcoxon signed ranks test [98]. Inside the field of inferential statistics, hypothesis

testing [99] can be employed to draw inferences about one or more populations from given

samples (results). In order to do that, two hypotheses, the null hypothesis H0 and the alterna-

tive hypothesis H1, are defined. The null hypothesis is a statement of no effect or no difference,

whereas the alternative hypothesis represents the presence of an effect or a difference (in our

case, significant differences between algorithms). Table 9 provides the p-values using the t-test

and the Wilcoxon signed ranks test. These statistical test results computed for all the pairwise

comparisons concerning the proposed algorithm compared with three optimizers of PSO,

GWO, and ALO. In general, the Wilcoxon signed ranks test is safer than the t-test because it

does not assume normal distributions. Also, the outliers (exceptionally good/bad perfor-

mances of an algorithm in a few repetitions) have less effect on the Wilcoxon test than on the

t-test [100]. As Table 9 states, the proposed algorithm shows a significant improvement over

GWO for θ = 0.25 with a level of significance α = 0.05 regarding the t-test and with α = 0.01

regarding the Wilcoxon test. For θ = 0.5, the results for both types of test indicate an improve-

ment of proposed algorithm over PSO with a level of significance α = 0.01 and an improve-

ment over ALO with α = 0.1. The statistical comparison results for θ = 0.75 using t-test shows

an improvement of proposed algorithm over PSO with a level of significance α = 0.05 and

over GWO and ALO with α = 0.1. The Wilcoxon test also for θ = 0.75 indicates a significant

improvement of proposed algorithm over PSO with a level of significance α = 0.01, an

improvement over GWO with α = 0.1, and an improvement over ALO with α = 0.05.

4.5.2 Performance measure. In many studies on optimization, the strength of an optimi-

zation technique is measured by comparing the final solution achieved by different algorithms

[101, 102]. This approach only provides information about the quality of the results and

neglects the speed of convergence which is a very important measure for expensive optimiza-

tion problems. Comparing the convergence curves (number of function evaluations) is also

one of the common benchmarking approaches [103]. A convergence curve provides good

information about the final quality of the optimization results in terms of computational cost,

even though it can be used to compare the performance of several algorithms only for one

problem. Moré and Wild [104] have suggested performance measure for any pair (p, s) of

problem p and solver s to analyze the performance of any optimization algorithm as below:

rp;s ¼
tp;s

minftp;s0 g
; s; s0 2 S and p 2 P ð18Þ

where P is a set of problems, S is a set of solvers, and tp,s is the required number of the function

evaluations for solver s 2 S to solves a particular problem p 2 P. In Eq (18), larger values of tp,s

indicate a worse performance. The convention rp,s =1 is used when solver s fails to satisfy the

convergence test on problem p. However, Eq (18) considers the required budget to solve the

expensive optimization problem. In this study, inspired by [104], a new performance measure

is used to consider two aspects of the algorithm’s performance including the level of accuracy

Table 9. p-values of the t-test and the Wilcoxon signed rank test for pairwise comparison of proposed algorithm with three common stochastic optimizers over 10

repetitions.

Optimizer t-test Wilcoxon signed rank test

θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.25 θ = 0.5 θ = 0.75

PSO 0.339826 0.00999 0.04112 0.5 0.00778 0.00955

GWO 0.02200 0.36948 0.05283 0.00408 0.24815 0.07546

ALO 0.11113 0.09626 0.05497 0.16288 0.08681 0.04815

https://doi.org/10.1371/journal.pone.0242613.t009
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and computational cost as below:

Rp;s ¼ b
tp;s

minftp;s0 g
þ 1 � bð Þ

lp;s
minflp;s}g

8
<

:

9
=

;
; s; s0; s00 2 S and p 2 P ð19Þ

where lp,s indicates the level of accuracy (i.e. lower objective function) for solver s in an expen-

sive problem p and β(0� β� 1) is the weight scale. Note that the best solver for a particular

problem p obtains the lower bound Rp,s = 1. In β = 1, Eq (19) makes the same measure with

suggested rp,s based on [104] in Eq (18). For β = 0, only the accuracy of solver in obtaining

lower objective function is considered as a performance measure for comparing all the optimi-

zation methods. However, the computational cost (i.e. the number of the function evaluation)

is not attended. Here, we measure the performance of the proposed algorithm and other solv-

ers for both average and standard deviation of the optimal results obtained for 10 repetitions

regarding the results presented in Tables 6–8. Moreover, we apply the Eq (19) when β varies in

[0,1] to obtain performance measures. The results are shown in Fig 13. This figure reports an

appropriate performance (Rp,s) of the proposed algorithm for the stochastic FOPID tuning or

robot manipulator compared to the other solvers when the budget of optimization for an

expensive control system is limited to a small number of function evaluations. As mentioned

before, in the current case we assume a maximum of 270 function evaluations.

5. Discussion

This paper followed two main purposes i) sketching a new framework of a stochastic control

system for robot FOPID control under uncertainty in a CPS framework ii) developing a new

optimization algorithm associated with such stochastic control systems. Regarding the second

purpose, there are some rationales including:

• Most existing methods have been developed to apply in the deterministic control systems

rather than the stochastic or random models [47, 54, 96]. Moreover, we firstly developed a

new straightforward algorithm that can handle uncertainty for any stochastic behavior of

control systems [35]. Notably, here we show the applicability of the proposed method for

robust FOPID tuning of a robot manipulator in a CPS framework.

• Most practical control systems in CPS are complex in terms of dynamic mathematical

sophistication or time-consuming simulation experiments [36, 47]. Therefore, we aimed to

propose a new less-expensive method for complex black-box simulation models when a lim-

ited (small) number of input-output data needs be applied in the control system (i.e. the

model is limited to a few numbers of simulation experiments or function evaluations).

• Besides optimal design (lower objective function) and robustness against sources of variabil-

ity (uncertainty) with a small number of simulation experiments, we are also interested to

perform the sensitivity analysis (bootstrapping) for the obtained results in the stochastic

(random) control system. The proposed algorithm in this study can compute the two-sided

confidence intervals for the obtained optimal results using the same set of data produced

among optimization procedure and it doesn’t need extra simulation experiments (function

evaluations) for sensitivity analysis.

• As elucidated in the No Free Lunch (NFL) theorem by [105], a particular optimization

method may show very promising results on a set of problems, but the same algorithm may

show poor performance on a different set of problems [94]. This is also another motivation

for conduction this study.
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The proposed hybrid algorithm has been compared with the three most well-known opti-

mizers (PSO, GWO, and ALO, see [49, 54, 96, 97] that are commonly used in control tunings.

The comparison results have been provided in Section 4.5. The performance of the proposed

algorithm can be evaluated by three factors as below:

• Level of accuracy (lower objective function): The proposed algorithm provides competitive

results to obtain a lower objective function with three aforementioned optimizers.

Fig 13. The performance comparison of proposed algorithm with other three solvers in the literature for tuning of stochastic FOPID controller.

The performance criterion Rp,s measured based on two terms, accuracy of solution (lower objective function) and number of function evaluations

(computational cost), see Eq (19).

https://doi.org/10.1371/journal.pone.0242613.g013
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• Robustness: The proposed algorithm shows a higher robustness behavior against random-

ness in the stochastic model of the control system.

• The number of simulation experiments (computational cost) that are required for optimiza-

tion procedure.

The proposed hybrid algorithm has multi-disciplinary applications. In other words, the

proposed algorithm can be applied in a variety of engineering design problems under the effect

of uncertainty with expensive black-box simulation models. In this paper, we show the applica-

tion of the proposed algorithm in the stochastic robot control system (robust tuning of FOPID

controller for five-bar linkage robot manipulator).

The main limitations of the current study are as below:

• The proposed algorithm employed a Gaussian process (Kriging) surrogate to train the con-

trol system using space-filling sampling strategies. Therefore, the approximate errors could

not be ignored when solving simulation-based optimization problems particularly with com-

plex function and nonlinear structure. It is well known that GP is an ideal choice for smooth

models. If the functions are non-smooth or noisy, it is likely that GP surrogate degrades

rapidly and overfits due to its interpolating behavior. A challenge for optimization under

restricted budgets will be to find the right degree of approximation (smoothing factor) from

a limited number of samples [102].

• In this study, the proposed algorithm was evaluated in a stochastic control system with

five design variables and two uncertain variables. The proposed algorithm should be evalu-

ated more in other practical stochastic problems with a higher dimension and degree of

uncertainty.

• Here, the two main weight-scale parameters including θ in Eq (6) and ω in Eq (13) mostly

influenced the performance of the proposed algorithm in obtaining the robust optimal solu-

tion. The range of parameter θ was between zero and one (0� θ� 1) and any positive value

could be assigned to the parameter ω. In this study, we considered three different values for

θ including θ = 0.25, θ = 0.5, and θ = 0.75 and performed the optimization procedure sepa-

rately. While the parameter ω was assumed to be a fix value ω = 3 for all the values of θ. This

paper was limited to evaluate the effect of parameter θ only in obtaining the robust optimal

solutions by the algorithm. However, more analysis is required to study the effect of both

parameters of θ and ω at the same time and in the same platform of problem.

6. Conclusion

In this paper, a new CPS framework of fractional-order PID controller is developed by consid-

ering uncertainty in the control system. To optimize such a stochastic control system, a new

hybrid surrogate/metaheuristic-based robust simulation-optimization algorithm is proposed

that possesses the advantages of both GP surrogate in learning the behavior of the model for

efficient global optimization and PSO metaheuristic in convergence searching of optimum

results. We smooth the application of PSO using GP surrogate instead of the original simula-

tion model to diminish computational cost due to a large number of fitness evaluations

required for the global optimizer when used individually. Also, this simple modified algorithm

is developed in such a way to handle computational complexity to obtain optimal and robust

FOPID design in the CPS control system. In such a system, we also consider the conflict

between multiple objective functions and uncertainty in the model. The proposed algorithm

can analyze the sensitivity of the computed robust optimal results (i.e. it obtains two-sided
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confidence intervals). Here, we apply this approach to the robust optimal control design of a

five-bar linkage robot manipulator to depict the applicability and effectiveness of the proposed

algorithm. Comparative simulation results reveal that the proposed hybrid GP/PSO-based

robust efficient global optimization algorithm can effectively and robustly tune the parameters

of the FOPID controllers. From an application point of view, the introduced technique is sim-

ple and fast and has a suitable control over the error and energy of a system and it can be easily

implemented in real-world applications of CPS control systems. Future research may address

the issues regarding the limitations of the current study mentioned in Section 5.
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