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Abstract

The past few decades have witnessed an explosive synergy between physics and the life sci-
ences. In particular, physical modelling in medicine and physiology is a topical research area.
The present work focuses on the inverse problem, more specifically on the parameter inference
and uncertainty quantification in a 1D fluid-dynamics model for quantitative physiology: the
pulmonary blood circulation. The particular application is pulmonary hypertension, requiring
an analysis of the blood pressure, whose measurement in the pulmonary system can only be ob-
tained invasively for patients. The ultimate goal is to develop a non-invasive disease diagnostica-
tion method. This could be accomplished by combining non-invasively obtained haemodynamic
data (blood flow measured with MRI) with imaging data (CT scans of the lung structure), to be
used in conjunction with mathematical and statistical modelling. This will provide a decision-
making support mechanism in the clinic, ultimately aiding in personalised medicine.

This thesis adopts a Bayesian approach to uncertainty quantification in physiological mod-
els, allowing to assess the credibility of these models. The danger with using overly confident
models is that they could produce biased predictions, ultimately leading to the wrong disease di-
agnosis and treatment. Inference of unknown and immeasurable parameters of several 1D fluid-
dynamics models, expressed through partial differential equations, is performed with Markov
Chain Monte Carlo. These parameters act as bio-indicators for the disease, e.g. vessel wall
stiffness, which is high in pulmonary hypertension patients. In addition, the uncertainty in the
model form and the data measurement process (jointly called model mismatch) is captured, and
the model mismatch is represented with Gaussian Processes. Given that the mathematical model
is not a perfect representation of the reality, and that the data measurement process is prone to
errors, this introduces an extra layer of uncertainty. If unaccounted for, the result is biased and
overly confident parameter estimates and model predictions. Yet another source of uncertainty
modelled in this study is the variability in the vessel network geometry, connectivity and size,
which is shown to introduce variability in the model predictions, and must be accounted for. The
uncertainty in the model parameters, model form, data measurement process and vessel network
propagates through to the model predictions, which is also quantified.

Lastly, this thesis is concerned with accelerating the computational efficiency of the statis-
tical inference procedure, aiming to make the methods suitable for use in the clinic. Statistical
emulation is used in conjunction with a series of efficient Hamiltonian Monte Carlo algorithms,
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particularly adapted to computationally expensive models. A comparative evaluation study is
carried out to identify the algorithm giving the best trade-off between accuracy and efficiency
on a set of representative benchmark differential equation models.
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addition, the vessel-specific stiffness scenario was not pursued due to the in-
teraction between the parameters p1 and γ in eq (2.4), requiring vessel-specific
(p1,γ). This would lead to a very large number of parameters being estimated,
requiring extremely high computational efforts (simulations would most likely
take months to complete). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Models analysed for the measured data: the constitutive models (linear and non-
linear, as indicated in Table 2.1) with model parameters ( f1, f2, f3,γ,r1,r2,c)
prior ranges. It is indicated whether the model mismatch is incorporated (by yes
or no), and if it is, the hyperparameters w and b for the GP model mismatch are
given. In the second column from the right, the symbol ’+’ indicates that the
emulator was used to accelerate the MCMC simulations, while ’-’ indicates that
the standard MCMC was used. The stiffness relation used is given in eq (2.5).
Legend: * in column f3 indicates that 90% prior probability has been placed on
these bounds as part of a Bayesian hierarchical scheme (Figure 4.1) to infer 21
individual vessel stiffness parameters. . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results obtained when allowing for or ignoring model mismatch, defined in
eq (4.6), on synthetic data generated from model E in Table 4.2 with correlated
errors. First row: standard approach ignoring model mismatch; second row: the
proposed new method, where a GP mismatch model has been introduced. The
relative sum of squared errors (SSE), as well as the median posterior distribution
of the true parameter vector, θ = ( f1, f2, f3,r1,r2,c), under the assumed model
are presented (median calculated from 20 data sets). Marginal and joint pos-
teriors were obtained from the MCMC samples with kernel density estimation
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Parameters were scaled to the same order of magnitude. . . . . . . . . . . . . . 79
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4.4 Inference results obtained using synthetic data, to which additive, correlated
Gaussian errors were added, from 1 vessel (MPA), 3 vessels (MPA and its two
daughter vessels) and all 21 vessels. The model mismatch was included in the
analysis, and the data were generated using the linear wall model with expo-
nential stiffness, s( f1, f2, f3), given in eq (2.5). The median marginal and joint
posterior density, of the true parameter vector, θ = ( f1, f2, f3,r1,r2,c) are pre-
sented for each of the three scenarios (median calculated from 20 data sets).
Joint and marginal posteriors were computed using the MCMC samples with
kernel density estimation. Parameters were scaled to the same order of magnitude. 87

4.5 Summary of MCMC results on measured data for the constitutive models con-
sidered (linear and non-linear, as indicated in Table 2.1) with model parameters
( f1, f2, f3,γ,r1,r2,c). Whether model mismatch, defined in eq (4.6), was incor-
porated is indicated by yes or no, and for yes, the parameters w and b for the GP
model mismatch are given. The right-most column shows whether emulation
was used (’+’ is yes, while ’-’ is no). 5000 MCMC iterations were run for the
models using emulation (models A, B and H); 300,000 for the vessel-specific
stiffness models not using emulation (models F and G); and 150,000 MCMC
iterations for the rest of the models not using emulation (models C, D, E, I). The
median posterior distribution value and the 95% credible interval from the pos-
terior distribution are shown, as well as the WAIC score calculated from 1000
MCMC samples and the Euclidean distance obtained from the posterior median
parameter values. If 21 individual stiffness parameters were inferred, marked by
* in the table, the stiffness values are listed in the Appendix (Section B.6). . . . 89

5.1 Forward uncertainty quantification results. Statistics based on the pressure and
flow predictions in the first pulmonary bifurcation are displayed when studying
total variation, geometric parameter variation, and network variation. Predic-
tions from the total variation include simulations in the 25 segmented networks.
The geometric parameter variation is based on 10,000 Monte Carlo realisations.
Lastly, the network variation is based on 219 vessels reduced iteratively to three
vessels in the network (MPA, LPA, and RPA). Figure taken from our study in [37].111

6.1 Parameter estimates and standard deviations for the sinusoidal example for each
of the methods compared. The mean and standard deviation of the posterior
medians for 10 data sets, calculated using eq (6.29) is shown. The true parameter
values are also displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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6.2 Parameter estimates and standard deviations for the FitzHugh-Nagumo example
for each of the methods compared (note that the noise variances were sampled
using Gibbs sampling). The mean and standard deviation of the posterior me-
dians for 10 data sets, calculated using eq (6.29) is shown. The true parameter
values are also displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Hamiltonian Monte Carlo (HMC) results for two GP models (zero mean vs
quadratic mean GP) of the log unnormalised posterior for the biochemical sig-
nalling pathway model in eq (6.21). The acceptance rate and effective sample
size (ESS) normalised by the number of HMC iterations N is the median over
10 algorithm initialisations for one data set. . . . . . . . . . . . . . . . . . . . 156

6.4 Parameter estimates and standard deviations for the biochemical pathway ex-
ample for each of the methods compared (note that the noise variances were
sampled using Gibbs sampling). The mean and standard deviation of the pos-
terior medians for 10 data sets, calculated using eq (6.29) are shown. The true
parameter values are also displayed. . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Accuracy in parameter and functional space for the statistical inference per-
formed on the fluid-dynamics pulmonary application. The parameter posterior
medians and 95% credible interval are shown for all the emulation methods em-
ployed (note that the noise variance was sampled using Gibbs sampling). R2,
computed as in eq (6.32), is also displayed. . . . . . . . . . . . . . . . . . . . 164

6.6 Number of model evaluations (ODEs/PDEs) required to obtain one single HMC
sample drawn using conventional HMC versus emulation HMC (GPHMC) al-
gorithm (mean and standard deviation) for all test examples considered in this
study. The number of model solves for the conventional HMC is L(d+1), where
L is the number of leapfrog steps and d is the parameter dimensionality. The
term d + 1 is the sum of one model evaluation to find the log likelihood, and
d model evaluations to find its numerical derivatives by a first-order differenc-
ing scheme with respect to each of the d parameters. For the sinusoidal model
d = 3 and optimum L = 39, for the FitzHugh-Nagumo model d = 3 and opti-
mum L = 141, for the biochemical pathway model d = 5 and optimum L = 407,
and for the fluid-dynamics model, d = 4 and optimum L = 44. The optimum L

value was obtained with Bayesian optimisation. HMC was run with the number
of leapfrog steps drawn from a uniform distribution with lower bound being 1
and upper bound being optimum L [208]. For the sinusoidal, FitzHugh-Nagumo
and biochemical pathway model, optimum L and number of model evaluations
are reported for a random data set. . . . . . . . . . . . . . . . . . . . . . . . . 166
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B.1 Summary of the MCMC simulation results on measured data for each of the
models considered, see Table 4.2 also for a summary. For each of the 21 blood
vessels the average value over time of the median pressure waveform is shown,
as well as the average value over time of the 2.5th and 97.5th noise-free pressure
waveform, which is the average 95% explanatory credible interval (CI) for the
pressure data, and the 2.5th and 97.5th noisy pressure waveform, which is the
average 95% predictive CI for the pressure data. While the explanatory CI is
calculated based on the PDE model predictions, the predictive CI includes the
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.2 Comparison of efficiency for models B and C in Table 4.2 obtained with stan-
dard MCMC (model C) and MCMC with emulation – N-steps ahead Adaptive
Metropolis with emulation, see Algorithm 1g (model B). Results for model B
are based on 5000 iterations (i.e. PDE evaluations), and 150,000 for model C.
The acceptance rate and the median ESS (across all parameters) normalised by
the number of PDEs evaluated are shown. . . . . . . . . . . . . . . . . . . . . 218
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4.3 (a) Marginal posterior distributions (top) and pairwise scatterplots (bottom) of
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match (bottom), i.e. model I in Table 4.2. For the non-linear model, s( f1, f2, f3)
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4.7 Pressure predictions obtained using the MCMC posterior samples for the pa-
rameters from all the models considered – see Section 4.3.3 and Tables 4.2 and
4.5 for a summary of the models, which are denoted by A-I in the figure legend.
The median pressure signal for seven of the 21 blood vessels in time is shown
(see Figure B.2 for all the other vessels). The measured pressure data in the
MPA is superimposed (top right). Examples of pressure residuals, that is, the
difference between the predicted and measured blood pressure, are shown in the
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4.8 Flow (left side) and pressure-area (right side) predictions obtained using the
MCMC posterior sample for the parameters from all the models considered –
see Section 4.3.3 and Tables 4.2 and 4.5 for a summary of the models, which are
denoted by A-I in the figure legend. The median flow predictions and pressure
versus standardised cross-sectional area predictions are shown for seven of the
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Ai is standardised per vessel i to lie between [0,1] using the expression: Ai−li

ui−li
,

where li,ui are the maximum and minimum area value for vessel i, listed in
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4.9 Synthetic data results obtained by agglomeration of MCMC posterior samples
over 20 data instantiations. Marginal posterior densities for the parameters
f1, f2, f3,r1,r2,c of the linear wall model with exponential stiffness, s( f1, f2, f3)
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5.1 Workflow for uncertainty quantification of haemodynamics. Multiple segmenta-
tions were performed to construct the segmented networks (SNs), of which one
network was selected as the representative network (RN), see Section 5.2.6 for
details. Inverse uncertainty quantification (UQ) was performed on the 25 SNs
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agate uncertainty in the parameter variation study of a representative network.
Lastly, the structure of the representative network was changed to understand
the variation induced by network connectivity. Pressure and flow predictions
are compared from the three sources of variation. Figure taken from our study
in [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



LIST OF FIGURES xxi

5.2 ITK-SNAP interface for prescribing pre-segmentation parameters (lower thresh-
old, smoothness). Voxel intensities (x-axis) are converted to probabilities via the
threshold function (y-axis). Different pre-segmentation parameters change the
form of the red curve, based on which discrimination between the foreground
and background is done. Here, a lower threshold on image intensities was as-
sumed, as shown by the constant value of one in the threshold function for all
values greater than the lower threshold. Figure taken from our study in [37]. . . 99
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The 3D rendering of the vascular foreground; c) Centrelines obtained using
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5.6 Density estimates (a) and (b) and inverse cumulative distribution functions (c)
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5.7 Gaussian Process (GP) regression using non-constant variance for the relation-
ship between length and radius and their coefficient of variation (cv). The GP
means and standard deviations were computed from the cv data obtained from
the 32-vessel subset (asterisks) and plotted against the analytical bound of the
image resolution (dash-dot curve), as given in [202]. The mean of the GPs and
± one and two standard deviations (s.d.) from the mean are shown in (a) and (b)
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variance (dashed curve) for the variance estimate. Both mean curves in (a) and
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Chapter 1

Introduction

1.1 Cardiovascular circulation: insight into physiology

The cardiovascular circulation is composed of the systemic and the pulmonary circulation, and
they both connect to the heart (see Figure 1.1) ensuring continuous blood flow across the en-
tire body. The systemic circulation transports the oxygenated blood from the left ventricle to
the rest of the body (organs, tissues, muscles receive oxygen O2) through the systemic arteries
and the blood returns to the right atrium through the systemic veins. The pulmonary circulation
transports the de-oxygenated blood from the right ventricle to the lungs through the pulmonary
arteries and capillaries, where CO2 is removed and the blood receives oxygen, and back to the
left atrium through the pulmonary veins; a new cycle, called cardiac cycle then starts. During a
cardiac cycle the heart contracts (systolic phase) and relaxes (diastolic phase). During contrac-
tion blood is pumped by the heart in a pulsatile manner, i.e. waves of blood flow and pressure get
propagated along the arterial circulation due to the pulsatile rhythm of the heart and the elasticity
of the vessel wall. The form of this pulse wave through the systemic and pulmonary vessels is
influenced by multiple factors, such as properties of the blood (e.g. viscosity, density), or of the
arterial walls (e.g. stiffness). Thus, an assessment of the health of the circulation haemodynam-
ics requires an analysis of the pulse waveforms’ characteristics (e.g. speed, magnitude, shape)
[150].

Pulmonary hypertension (PH) is characterised by elevated blood pressure in the pulmonary
circulation (mean pressure larger than 25mmHg in the main pulmonary artery), including the
pulmonary arteries, capillaries and veins [192]. Causes for PH include left heart disease, lung
disease, hypoxia, pulmonary embolism [181]. PH often occurs with remodelling of pulmonary
arteries, e.g. increased vessel wall stiffness (and decreased compliance), and vessel wall thick-
ening (narrowing of the vessels), and if left untreated, PH eventually leads to right ventricle
failure [192].

Currently the diagnosis of PH is performed based on a series of medical tests including inva-
sive right-heart catheterization for pulmonary blood pressure measurement, non-invasive mag-
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Figure 1.1: Depiction of the cardiovascular blood circulation. Source: https://www.
studocu.com.

netic resonance imaging for pulmonary blood flow measurement, and non-invasive computed
topography (CT) imaging of the heart and lungs [110]. Diagnostic protocols interpret each data
source independently to make an ultimate decision about the disease classification and severity
[63].

1.2 Pulmonary circulation: computational modelling

1.2.1 Mathematical modelling

Computational haemodynamics models are emerging as powerful tools to increase knowledge of
cardiovascular disease progression for treatment [187] and surgery purposes [127, 191]. Compu-
tational modelling of the blood flow allows an in-depth understanding of the underlying disease
mechanism, providing important metrics about the blood flow, which could not be obtained
from in-vivo experiments [98], e.g. pulmonary blood flow and pressure predictions in vessels
beyond the point where measurements can be taken, pulmonary blood pressure prediction to
eliminate the invasive measurement procedures, relation between blood pressure and material
properties of the vessels which cannot be measured in-vivo (e.g. vessel wall stiffness). Compu-

https://www.studocu.com
https://www.studocu.com
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tational haemodynamic models can be combined with imaging and haemodynamic data with the
ultimate goal of achieving personalised medicine, allowing patient-specific care and treatment.

1.2.2 Statistical modelling

Before using the mathematical models for decision-making in the clinic, the credibility of the
models must be rigorously tested by analysing and incorporating all sources of uncertainty (Fig-
ure 1.2) into the analysis in a statistical modelling framework. Uncertainty can be caused by
variability, e.g. in model inputs (material parameters: vessel wall stiffness, or boundary con-
dition parameters: Windkessel parameters, both of which are inferred from data, or arterial
network geometry, size and connectivity, which are found through image segmentation), in
model form/structure (i.e. model discrepancy, inability of the model to faithfully capture the
real-system), in measurement process (resulting in noisy experimental data), in simulator output
(e.g. numerical errors due to tolerances, grid resolution, convergence, time steps in equation
solving, or emulator approximations), in residuals, or the uncertainty can be caused by lack of
information, e.g. insufficient amount of experimental data [124]. These uncertainties are de-
pendent on each other, for example quantifying uncertainty of parameters of a mathematical
model which has been mis-specified without accounting for the model discrepancy leads to bi-
ased parameter inference results. All these types of uncertainty (summarised in Figure 1.2) thus
combine and lead to uncertainty in the model output (Figure 1.3), which is ultimately interpreted
for diagnosis and treatment. Therefore, performing uncertainty quantification (UQ) is vital, and
can be performed by assigning a probability density function (pdf) to the unknown quantities
(rather than fixed values). UQ is of two types: inverse UQ and forward UQ (see Figure 1.4). In-
verse UQ deals with estimating pdfs of the model inputs, also called model parameters, based on
the measured data, e.g. inferring vessel wall stiffness from pulmonary blood pressure. Inverse
UQ can be achieved by sampling from the parameter posterior distribution. Posterior sampling
also enables performing model selection, i.e. which model, out of a number of possible mathe-
matical models, is most likely under the data? Forward UQ is concerned with deriving pdfs of
the data based on the model inputs, e.g. propagate uncertainty in model inputs through to model
outputs – see Figure 1.3. If the output is a time series, e.g. pulmonary blood pressure throughout
an entire cardiac cycle, then the output at each time point is assigned a pdf. A related concept
is sensitivity analysis [38], which quantifies how sensitive model outputs are to changing model
inputs, and is of two types: local and global, with the latter type requiring the pdf of the model
inputs. Sensitivity analysis can identify model parameters to which the output is most sensitive
to, hence these parameters should be inferred from the data (or, if possible, measured in the
experiment), while parameters for which the sensitivity is low could be assigned fixed values
(e.g. based on literature knowledge).
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Figure 1.2: Illustration of sources of uncertainty for the computational model describing the
pulmonary circulation: different sources of uncertainty (from data, residual, input, model-form,
simulator) combine to produce output uncertainty. Continuous dashes indicate the direct depen-
dence between types of uncertainty (e.g. the noise model chosen influences the model parame-
ters estimated), while dashed arrows give the indirect dependence (e.g. ignoring the model-form
uncertainty biases parameter estimates). The sources of uncertainty modelled in the analysis
presented in this thesis are indicated by asterisks. Legend: MPA - main pulmonary artery, PDE
- partial differential equations. Figure adapted from [124].

Figure 1.3: Example of 1D model input uncertainty characterised by a probability density func-
tion (pdf). Input values are sampled from the pdf. Each input value sampled is inserted into
the mathematical model to produce a multi-output (pulmonary blood pressure output during a
cardiac cycle). The ensemble of multi-outputs illustrated with colors ranging from black to red
give a measure of output uncertainty. Figure adapted from [124].

1.3 Work overview

The current work focuses on the inverse UQ problem, and adopts a Bayesian approach to quan-
tifying the uncertainty of the parameters of a 1D fluid-dynamics model of the pulmonary blood
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Figure 1.4: Discriminating between forward and inverse uncertainty quantification (UQ) -related
concepts. Forward UQ deals with deriving probability distributions for the data based on varying
the mathematical model parameters; sensitivity analysis identifies which parameters the model
output is most sensitive to. Inverse UQ is concerned with inferring model parameter distributions
from the data; parameter estimation with no UQ is also possible, and model selection selects the
best mathematical model consistent with the data.

circulation described through coupled non-linear partial differential equations (PDEs). The em-
phasis is on the inference of haemodynamic parameters (e.g. vessel wall stiffness and Wind-
kessel parameters, respectively) from measured blood pressure data in a fixed pulmonary arterial
network (coming from one single image segmentation). This study also investigates the variabil-
ity of the arterial network parameters obtained from segmentation of the CT scan of a lung, i.e.
network geometry (vessel radius and length), network size (e.g. number of pulmonary vessels)
and network connectivity (e.g. location of the pulmonary vessel bifurcations or trifurcations)
based on multiple image segmentations. Moreover, the mis-specification of the mathematical
model and of the error (noise) model is incorporated into the analysis, and the effect of ignoring
the model mismatch is analysed. Additionally, discrimination between competing mathematical
models (e.g. with different vessel wall properties, or vessel wall stiffness assumptions) is carried
out, with the purpose of identifying the model that is best supported by the measured data.

Although covered at a much lesser extent, forward UQ is also performed, by propagating
parameter and model-form uncertainty through to the model output of blood flow and pressure.

In addition, this study places great emphasis on computational efficiency, since Bayesian
methods are computationally expensive due to repeated numerical integrations of the PDEs.
The use of computationally affordable approximations (emulators) to the mathematical model
are adopted, and an extensive comparison of Bayesian algorithms coupled with emulation is per-
formed in the context of the 1D fluid-dynamics model to identify the most efficient and accurate
method. The algorithm comparison is extended to toy problems described by ordinary differen-
tial equations (ODEs) for method accuracy checking (i.e. can the ground-truth parameter values
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be correctly inferred?) and method robustness checking (can the methods perform well across
problems of different complexity?).

This thesis is organised into seven chapters.

Chapter 1 gives a brief physiological insight into the cardiovascular circulation, with a focus
on pulmonary hypertension. It also introduces the motivation behind using mathematical mod-
elling to describe the pulmonary circulation. Additionally, it emphasizes the need for rigorous
testing of the validity of the mathematical models by incorporating all sources of uncertainty
into the analysis in a statistical modelling framework.

Chapter 2 reviews relevant methodology used throughout this thesis, such as Bayesian
methods (Markov Chain Monte Carlo, MCMC), Gaussian Processes and model selection crite-
ria. In addition, it describes the mathematical model describing the pulmonary blood circulation
based on which the statistical inference is performed.

Chapter 3 describes a Bayesian approach to estimation and UQ of parameters characterising
the haemodynamic equations of the mathematical model described in Chapter 2.

Chapter 4 adopts a Bayesian approach to investigate the importance of modelling the model
form uncertainty. Additionally, model selection is performed to choose the mathematical model
which is best supported by the measured data out of a number of models making different stiff-
ness and vessel wall elasticity assumptions.

Chapter 5 investigates the uncertainty of model predictions to changes in network geome-
try, size and connectivity based on multiple image segmentations.

Chapter 6 focuses on methodological aspects of emulation-accelerated MCMC methods as
a viable parameter estimation and UQ tool in computationally expensive models described by
non-linear differential equations (DEs). Proofs of convergence for these novel methods are pro-
vided and results from an empirical method comparison on several DEs systems are shown.

Chapter 7 concludes with a discussion of the work presented in this thesis and offers avenues
for improvement.



Chapter 2

Materials and Methods

This chapter first introduces the experimental data, i.e. the pulmonary blood flow and pressure
measurements (Section 2.1) based on which the statistical analysis was carried out. Section 2.2
offers a description of the mathematical models providing haemodynamic predictions. These
predictions are compared to the measurements by using Bayesian statistical methods based on
MCMC, described in Section 2.3. Several concepts related to MCMC are reviewed, such as
random-walk and gradient-based MCMC type algorithms, as well as MCMC convergence, ef-
ficiency and consistency diagnostics. Additionally, the concept of Gaussian Processes is in-
troduced in Section 2.3, which will be jointly used with MCMC in Chapters 4 and 6. Lastly,
model selection criteria are reviewed, which will be used to discriminate between competing
mathematical models in Chapters 3 and 4.

2.1 Experimental data

This study compares model predictions to measured MPA blood pressure data from a control
mouse lung (Figure 2.1). The experimental protocols used to extract the haemodynamic and
image data are summarised in our recent study [151], and a more detailed experimental protocol
is found in [188] and [202]. Here a brief overview of the data used in this study is provided.

A 3D segmentation of the vessel geometry was obtained from micro-CT images of excised
mice lungs as described in detail by Vanderpool et al. [202]. After the image data were seg-
mented, a 1D directional graph was obtained using the Vascular Modeling ToolKit (VMTK,
vmtk.org, [5]) and custom algorithms presented in [38]. The analysis in Chapter 3 assumed
non-zero radial tapering, which was inferred from data. For reasons discussed in our previous
study [38], as well as Chapters 3 and 5, the radial tapering was assumed negligible in Chapters 4,
5 and 6.

Dynamic pressure and flow waves were measured in-vivo in the MPA. Pressure was mea-
sured using a 1.0-F pressure-tip catheter (Millar Instruments, Houston, TX) and recorded on a
haemodynamic workstation (Cardiovascular Engineering, Norwood, MA) at 5 kHz. MPA flow

7

vmtk.org
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velocity was simultaneously measured during catheterisation on the same workstation via ultra-
sound (Visualsonics, Toronto, Ontario, CA) at a rate of 30 MHz [188]. The haemodynamic data
include wave forms averaged over 20 cardiac cycles, using a fiducial point from simultaneously
recorded ECG data. The raw data over 20 heart beats were not available. Consequently, it was
not possible to estimate heart beat-to-beat variability in the pressure and flow waveforms.

MPAq
in

Figure 2.1: 3D smoothed segmented network from a micro-CT image of a healthy mouse lung
(left) and the directional graph of the same network with vessel numbers attached (right). At the
network inlet a flow waveform taken from measurements is specified, and at the outlet of each
terminal vessel three-element Windkessel model with two resistors and a capacitor are attached.

2.2 Mathematical modelling

2.2.1 Fluid-dynamics model

This study uses a 1D fluid-dynamics model developed by my collaborators, Qureshi et al. [151],
to simulate pressure, flow, and cross-sectional area in the pulmonary arterial network shown
in Figure 2.1. This section summarises the model; the reader is referred to the study [151] in
which it was proposed for details. The 1D model is derived under the assumptions that blood
is incompressible and that the flow is Newtonian, laminar and axisymmetric, and has no swirl.
Under these assumptions, the Navier-Stokes equations describing conservation of mass and
momentum reduce to

∂A
∂ t

+
∂q
∂x

= 0,

∂q
∂ t

+
∂

∂x

(
q2

A

)
+

A
ρ

∂ p
∂x

=−2πµr
ρδ

q
A
,

(2.1)
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where x (cm) and t (s) denote the distance (along each vessel) and time, p (mmHg) denotes the
blood pressure, q (ml/s) denotes volumetric blood flow, and A (cm2) denotes the cross-sectional
area. A(x, t) = πr(x, t)2, where r(x, t) (cm) is the vessel radius. ρ = 1.055 g/ml is the blood den-
sity and µ = 0.049 g/(cm s) is the blood viscosity, assumed constant. Lastly, a Stokes bound-
ary layer was applied with a linearly decreasing boundary layer thickness, parameterised by
δ =

√
µT/2πρ (cm), where T (s) is the length of the cardiac cycle.

2.2.2 Vessel wall elasticity model

To close the system of equations, a constitutive equation relating pressure and area was added.
Two types of wall models were investigated:

• Linear elastic wall model [167] in two forms:

1. Linear A

p =
4
3

Eh
r0

(
1−
√

A0

A

)
, (2.2)

2. Linear B

p =
4
3

Eh
r0

(√
A
A0
−1
)
, (2.3)

where Eh
r0

(mmHg) denotes the vessel stiffness defined in terms of Young’s modulus E

(mmHg) in the circumferential direction, the wall thickness h (cm), and the reference ves-
sel radius r0 (cm) corresponding to the cross-sectional area A0 (A0 = πr2

0). The reference
vessel radius r0 is obtained from the image segmentation process, see Chapter 5 for details.

• Non-linear elastic wall model [151] given by

p = p1 tan
[

π

γ

(
A
A0
−1
)]

, (2.4)

where p1 > 0 (mmHg) is the pressure that achieves the half-maximum compliance (equiv-
alent of parameter Eh

r0
for the linear model), and γ > 0 (dimensionless) is a scaling param-

eter specifying the maximal lumen area A∞ for p→ ∞.

In both wall model formulations, as originally proposed by Olufsen [139] using data from the
systemic circulation, the stiffness, i.e. Eh

r0
or p1 is assumed to be expressed by

s( f1, f2, f3) = f1 exp( f2r0)+ f3, (2.5)

where, f1 (mmHg), f2 (cm−1), f2 ≤ 0, and f3 (mmHg).
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2.2.3 Boundary conditions

At the inlet to the network (shown in Fig. 2.1), a flow taken from measurements was specified.
At each junction it was assumed that flow is conserved and pressure is continuous, i.e.

pp(Lp, t) = pd1(0, t) = pd2(0, t), ∀t ≥ 0

qp(Lp, t) =
2

∑
i=1

qdi(0, t), ∀t ≥ 0
(2.6)

where p denotes the parent vessel, d1 and d2 are the daughter vessels, and Lp (cm) is the length of
the parent vessel. Finally, at the terminal vessels, pressure and flow were related via a 3-element
Windkessel model (represented by a RCR circuit), and the relation can be expressed either in
frequency or time domain, as follows:

• Frequency domain:

Z(L,ω) =
P(L,ω)

Q(L,ω)
= R1 +

R2

1+ iωCR2
=⇒ p(L, t) =

1
T

∫ T

0
q(L, t− τ)z(L,τ)dτ, (2.7)

• Time domain:

d p(L, t)
dt

−R1
dq(L, t)

dt
= q(L, t)

(
R1 +R2

R2C

)
− p(L, t)

R2C
, (2.8)

where Z(L,ω) is the impedance, P(L,ω) and Q(L,ω) are the pressure and flow in frequency

domain, T (s) is the length of the cardiac cycle, ω =
2π

T
is the angular frequency, R1 and

R2 (mmHg s/ml) are the two resistances (proximal and distal), C (ml/mmHg) is the capacitance,
and 1+ iωCR2 is a complex number. Equations (2.7) and (2.8) are equivalent.

2.2.4 Model parameters

The haemodynamics modelling parameters include those describing the vascular structure (ves-
sel radius, length, and stiffness), the fluid dynamics (including viscosity, density, and the bound-
ary layer thickness), and the inflow and outflow boundary conditions. The inflow, viscosity,
density, and boundary layer thickness were assumed known (see Section 2.2.1). Parameters
specifying the vessel stiffness, radius, length, and Windkessel outflow boundary conditions were
allowed to vary. The vessel radius and length were inferred from multiple segmentations of a CT-
scan image of a mouse lung. The vessel stiffness was estimated from the MPA pressure data. The
three Windkessel elements (R1,R2,C) vary across the different terminal arteries. Nominal (ini-
tial) values for these parameters were computed using the junction conditions and Poiseuille’s
flow as described in detail in our previous studies [38, 151], and briefly summarised here. The
nominal total compliance C j

0 for every terminal vessel j can be determined from the diastolic
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pressure decay [151], i.e.
C j

0 =
τ

R j
T

, (2.9)

where τ is a constant pressure diastolic decay time (computed based on the MPA data) and R j
T

is the total vascular resistance for the jth vessel, calculated as:

R j
T =

p̄
q̄ j , (2.10)

where p̄ is the mean MPA pressure and q̄ j is the mean flow in the jth terminal vessel. To find
the mean flow distribution relationship (hence find q̄ j), the junction conditions in eq (2.6) can
be used together with Poiseuille’s law [37, 151] to give:

q̄d1 = q̄p
ψd1

ψd1 +ψd2

, q̄d2 = q̄p
ψd2

ψd1 +ψd2

, (2.11)

where ψi =
r4

i
li

, where r and l are the vessel radius and length, and i stands for d1 or d2. Eq (2.11)

is repeatedly applied from the MPA down the tree, to the terminal vessels.
After R j

T in eq (2.10) is found, the nominal (initial) resistance values for each terminal vessel
are computed by setting

R j
01 = 0.2R j

T, R j
02 = 0.8R j

T. (2.12)

Once nominal resistance and compliance estimates are found for every terminal vessel, global
scaling factors r1,r2,c for these estimates were introduced, and they were kept constant across
all 11 terminal arteries (since estimating 33 Windkessel parameters from MPA data would most
likely lead to parameter non-identifiability). Two alternative scaling methods were used:

R j
1 = (1−0.5r1)R

j
01, R j

2 = (1−0.5r2)R
j
02, C j = (1−0.5c)C j

0, (2.13)

and
R j

1 = r1R j
01, R j

2 = r2R j
02, C j = cC j

0. (2.14)

The three Windkessel scaling factors r1,r2,c were inferred from the MPA pressure data.

2.2.5 Overview of models

An overview of the models considered throughout this thesis is given in Table 2.1.
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Chapter Model Windkessel scaling

3 (first part)(∗) & 6(∗) Linear A (eq (2.2)) eq (2.13)
5(∗∗) Linear A (eq (2.2)) eq (2.14)

3 (second part)(∗) & 4(∗∗) Linear B (eq (2.3)) eq (2.14)
3 (second part)(∗) & 4(∗∗) Non-linear (eq (2.4)) eq (2.14)

Table 2.1: Summary of models used in the chapters of this thesis. The linear A model was
used in early work, while the linear B model was used in later stages of the work, as numerical
instabilities were encountered with the linear A model. (*) signifies that the Windkessel equa-
tions were solved in frequency domain (see eq (2.7)), while (**) stands for the time domain (see
eq (2.8)).

2.3 Statistical methods

2.3.1 Approach to Bayesian inference in ODEs/PDEs

An ODE describes the dynamics of a system state for any 1D variable, which in this thesis is
taken to be time, and takes the form:

dm(t)
dt

= f (m(t),θ), (2.15)

where m represents the time-dependent state of the system, t is time, θ are some unknown
parameters, and f (.) is a potentially non-linear vector-valued function.
In contrast, a PDE may describe the dynamics of a state for a 2D variable, which in this thesis
is taken to be time t and space x:

∂m(t,x)
∂ t

= ft(m(t,x),θ),
∂m(t,x)

∂x
= fx(m(t,x),θ), (2.16)

Noisy measurements (assumed for now to be independent and identically distributed, additive
Gaussian) may be recorded at certain time points (and locations). For simplicity, the time and
location indices are suppressed and the solution (output) from the ODEs/PDEs denoted as m(θ),
since this solution depends on the unknown parameters θ :

y = m(θ)+ ε, ε ∼MV N (0,σ2I), (2.17)

which can be equivalently expressed as

y|θ ∼MV N (m(θ),σ2I), (2.18)

where MV N stands for the multivariate normal distribution. This defines the data likelihood,
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and can be further expressed as:

p(y|θ ,σ2) =

(
1√

2πσ2

)n

exp
(
−∑

n
i=1(yi−mi(θ))

2

2σ2

)
=

(
1√

2πσ2

)n

exp
(
−S (θ)

2σ2

)
,

(2.19)
where m(θ) = (m1(θ), . . . ,mn(θ)) is the vector of predictions from the ODEs/PDEs,
y = (y1, . . . ,yn) is the vector of measurements, and n is the number of data points.

Bayes Theorem can be used to combine the data likelihood with the prior distribution, p(θ)

(encoding knowledge about the parameters prior to seeing the data) to form the posterior distri-
bution, p(θ |y):

p(θ |y) = p(y|θ)p(θ)∫
θ

p(y|θ)p(θ)dθ
, (2.20)

However, the integral in the denominator, which is simply a normalisation constant (obtained
based on all possible values of the parameters), denoted by C =

∫
θ

p(y|θ)p(θ)dθ here, is usu-
ally intractable due to being multidimensional or for models with complicated forms for the
posterior distribution1. Hence, the exact posterior distribution cannot be explicitly obtained, and
numerical schemes based on Markov Chain Monte Carlo (MCMC) sampling may be used to
approximate the posterior distribution:

p(θ |y) =C−1 p(y|θ)p(θ) ∝ p(y|θ)p(θ), (2.21)

thus for the MCMC sampling only the terms p(y|θ) and p(θ) are needed, while the normalisa-
tion term can be ignored. The samples drawn converge in distribution to the normalised posterior
distribution nevertheless, and an explanation of this is given below. In MCMC a Markov chain
is set up that has as stationary distribution the (normalised) posterior distribution that one would
like to sample from. If the Markov chain satisfies detailed balance with respect to a distribution,
then that distribution is its stationary distribution. By defining by T (.) the transition probability
of the chain, and g(θ) = p(y|θ)p(θ) one can immediately see that the following equivalence
holds:

g(θ)T (θ ∗|θ) = g(θ ∗)T (θ |θ ∗) ⇐⇒ p(θ |y)T (θ ∗|θ) = p(θ ∗|y)T (θ |θ ∗) (2.22)

Hence the Markov chain with transition probability T (.) has the normalised distribution p(.) as
a stationary distribution.

For non-linear differential equations, a second layer of intractability further complicates the
analysis, i.e. the non-linear differential equations do not have an analytical solution, hence nu-
merical schemes (e.g. Runge-Kutta [163] for ODEs, or Lax-Wendroff scheme [113] for PDEs)
must be employed, which may result into numerical errors.

1For simple models with a low number of parameters and conjugate priors, the normalisation constant can be
easily obtained, e.g. a Beta-Binomial model, see Section 5.3.2 in [128].
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MCMC can be based on a random-walk, and can also be gradient-based. Both types are
summarised below.

2.3.2 Random-walk MCMC

Metropolis-Hastings

In a Metropolis-Hastings (M-H) algorithm [83], given the current point, θ , a new point θ
∗ is

generated from a proposal density q(θ ∗|θ). By denoting a∧ b = min(a,b), the proposed point
is accepted with the following acceptance probability:

α(θ ∗|θ) = 1∧ p(θ ∗|y)q(θ |θ ∗)
p(θ |y)q(θ ∗|θ)

, (2.23)

where p(θ |y) is the posterior distribution of θ given the data y, expressed as:

p(θ |y) = p(θ)p(y|θ)
p(y)

, (2.24)

where p(θ) is the prior distribution, p(y|θ) is the data likelihood, and p(y) =
∫

p(θ)p(y|θ)dθ

is the marginal likelihood.
If the new point is accepted, it becomes the current point and the algorithm proposes a new

point. If a symmetric proposal distribution is used, e.g. q(θ ∗|θ k−1) = MV N (θ k−1,V), then
the ratio of the proposal distributions is 1.

The size of the step taken to move from the current to the proposed point (i.e. defined through
the covariance matrix of the proposal distribution) controls the efficiency of the algorithm. A
poor proposal distribution results in high rejection rate.

DR

To overcome the difficulty of choosing an optimal step size, upon rejection of θ
∗, instead of

retaining θ
k−1, one can make a second attempt to move [193]. The 2nd stage proposal can be

generated from a different distribution [78], e.g. MV N (θ k−1,β T
βV), where β is a scaling

matrix used to alter the step size of the sampler. Studies in [78, 81] suggest reducing the variance
upon rejection of a proposal, as this can result in estimators with a lower asymptotic variance.

The 2nd stage proposal is accepted with the following probability:

α2(θ
∗(2)|θ ∗,θ k−1) = 1∧ p(θ ∗(2)|y)q1(θ

∗|θ ∗(2))q2(θ
k−1|θ ∗,θ ∗(2))[1−α1(θ

∗|θ ∗(2))]
p(θ k−1|y)q1(θ

∗|θ k−1)q2(θ
∗(2)|θ ∗,θ k−1)[1−α1(θ

∗|θ k−1)]
. (2.25)

The acceptance probability in eq (2.25) is calculated in a way that ensures detailed balance
is preserved, see A.1 for a proof.
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The Delayed Rejection (DR) algorithm may have a higher acceptance rate than M-H, which
implies higher efficiency and smaller asymptotic variance of the estimates compared to the M-H
algorithm [123].

AM

The Adaptive Metropolis (AM) [82] brings an improvement to the M-H algorithm by adapting
the proposal covariance matrix based on past chain samples. This enables learning the shape
of the target distribution, while ensuring that detailed balance is satisfied (ergodicity is ensured
by assuming diminishing adaptation and that the target is bounded from above and has bounded
support) [82]. The proposal covariance matrix in the AM algorithm is Gaussian centred at the
current point. The covariance matrix is adapted at given intervals, after possibly some non-
adaptation time tad, as follows:

Vk =

V0, if k ≤ tad

sdCov(θ 0, . . . ,θ k−1)+δ Id, if k > tad,
(2.26)

where V0 is the initial proposal covariance matrix, sd is a parameter that depends on the dimen-
sion d of the target (sd = 2.382/d has been shown to be optimal for Gaussian targets in terms
of mixing [82]), δ > 0 is a small constant (e.g. 10−9) that ensures that Vk does not become
singular, θ

0, . . .θ k−1 are the past chain samples, and their covariance is given by

Cov(θ 0, . . .θ k−1) =
1

k−1

(
k−1

∑
i=0

θ iθ
T
i − kθ̄ k−1θ̄

T
k−1

)
, (2.27)

where θ̄ k−1 =
1
k ∑

k−1
i=0 θ i and θ i is a d×1 vector.

DRAM

The DR and AM algorithms can be married to produce the DRAM algorithm, which satisfies de-
tailed balance [81]. In the first stage of DRAM, the proposal distribution is MV N (θ k−1,Vk),
where the proposal covariance matrix Vk is calculated according to AM (eq (2.26)). In the 2nd

stage of DRAM, the proposal distribution is MV N (θ k−1,β T
βVk), i.e. the proposal covari-

ance matrix is a scaled version of the covariance matrix in the first stage.
DRAM is superior to M-H in terms of efficiency due to local adaptation based on rejected

proposals within each MCMC iteration in the DR step and global adaptation based on all previ-
ously accepted samples in the AM step [81].
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2.3.3 Gradient-based MCMC

HMC

HMC [132] is a powerful MCMC scheme which suppresses the random walk behaviour of
Metropolis-Hastings MCMC by introducing an auxiliary variable, the ‘momentum’ variable,
r ∈Rd×1, with density p(r) =MV N (r|0,M), which guides the search towards high posterior
density regions. HMC simulates Hamiltonian dynamics by using gradient information from the
log target density.

Defining H: Hamiltonian, r: ‘momentum’ vector, and θ : ‘position’ vector (representing the
parameters that need inferring), the Hamiltonian dynamic equations are:

dθi

dt
=

∂H
∂ ri

,
dri

dt
=−∂H

∂θi
. (2.28)

The Hamiltonian dynamics are:

• reversible – the mapping from the current to the proposed point is reversed by negating the
time derivative equations (2.28), thus, the dynamics leave the target distribution invariant.

• leave the Hamiltonian invariant, i.e. H(θ ∗,r∗) = H(θ ,r),

dH
dt

=
d

∑
i=1

(
∂H
∂ ri

dri

dt
+

∂H
∂θi

dθi

dt

)
=

d

∑
i=1

(
∂H
∂ ri

(
−∂H

∂θi

)
+

∂H
∂θi

∂H
∂ ri

)
= 0. (2.29)

• preserve volume in phase space, hence the determinant of the Jacobian matrix is 1, and no
adjustment is needed in the M-H acceptance probability.

Further defining M: ‘mass matrix’ for the ‘momentum’ (its covariance matrix), E: ‘potential
energy’, K: ‘kinetic energy’,

E(θ) =−(log p(θ)+ log p(y|θ)); K(r) =
rT M−1r

2
; H(θ ,r) = E(θ)+K(r), (2.30)

where log p(θ) and log p(y|θ) are the log prior distribution of the parameters and the log data
likelihood.

Note that the terms ‘mass matrix’, ‘momentum’, as well as ‘kinetic’ and ‘potential energy’
are used for their mathematical equivalence to the corresponding terms in Hamiltonian mechan-
ics.

In statistical terms, the joint distribution is

p(θ ,r|y)= p(θ |r,y)p(r)= p(θ |y)MV N (r|0,M)∝ exp(−E(θ))exp(−K(r))∝ exp(−H(θ ,r)).
(2.31)
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Thus, by denoting the log posterior of the parameters that need inferring θ as log p(θ |y), the
negative log auxiliary joint distribution is given by:

H(θ ,r|y) =− log p(θ |y)+ 1
2

log((2π)d|M|)+ rT M−1r
2

+ logZ, (2.32)

where Z is a normalising constant and |M| is the determinant of the ‘mass matrix’ M.
The Hamiltonian dynamics (eq (2.28)) are numerically integrated for a specified fictitious

time. The Leapfrog integrator [132] is used, in which time is discretised using a small step size,
ε > 0, and the trajectory is run for a number of leapfrog steps, L.

r
(

t +
ε

2

)
= r(t)+

ε

2
dr
dt

, (2.33)

θ (t + ε) = θ(t)+ ε
dθ

dt
, (2.34)

r(t + ε) = r
(

t +
ε

2

)
+

ε

2
dr
dt

, (2.35)

where using equations (2.28) and (2.32), we have:

dθ

dt
= M−1r,

dr
dt

=
d log p(θ |y)

dθ
. (2.36)

The Leapfrog integrator ensures reversibility (by negation of the time derivative eqns) and

unit determinant of the Jacobian matrix (since (r,θ)→
(

r+
ε

2
d log p(θ |y)

dθ
,θ

)
and (r,θ)→

(r,θ + εM−1r)).
However, the numerical integration induces an error, which implies that H(θ ∗,r∗) no longer

equals H(θ ,r). This bias is corrected by the M-H accept/reject step, which ensures convergence
to the correct target distribution.

In HMC, at the end of each leapfrog trajectory (defined as a segment between two subsequent
acceptance steps), a new point is proposed and accepted with probability

α(θ ∗,r∗|θ ,r) = 1∧ exp(−H(θ ∗,r∗|y)+H(θ ,r|y). (2.37)

If the error from the numerical integration of the Hamiltonian dynamics in eq (2.28) is small,
then the acceptance probability will be high. If the new point is rejected, the current point is
kept. The next trajectory is then simulated, and each trajectory starts with the resampling of
the ‘momentum’ variables from their marginal distribution MV N (r|0,M), to allow properly
being integrated out from the joint distribution, i.e.

p(θ |y) =
∫

p(θ |r,y)p(r)dr. (2.38)
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The HMC algorithm produces an ergodic, time reversible Markov chain which satisfies de-
tailed balance (see proof in Section A.2 in the Appendix) and whose stationary distribution is
the marginal distribution p(θ |y).

In the classical HMC algorithm, M is kept fixed at the identity matrix, and the HMC hyper-
parameters, ε and L, are hand-tuned to get an acceptance rate > 65% [132] and a large effective
sample size. Throughout this thesis the hyperparameters are optimised using Bayesian optimi-
sation, see Section 2.3.3 for details.

Below extensions to the HMC algorithm are summarised, and they are aimed at improving
the algorithm’s performance by automatic tuning of the HMC hyperparameters or of the mass
matrix M, to which the algorithm is known to be highly sensitive.

RMHMC

Riemann Manifold HMC (RMHMC) [74] is an improved version of HMC, as it exploits the
Riemannian geometry of the parameter space. RMHMC sets M based on the curvature of the
(approximate) target distribution. M is the metric tensor of the Riemann space and is calculated
based on the expected Fisher information matrix plus the negative Hessian log prior:

Mi, j = Ey|θ

[
−∂ 2log p(y,θ)

∂θi∂θ j

]
= Ey|θ

[
−∂ 2log p(y|θ)

∂θi∂θ j

]
+

(
−∂ 2log p(θ)

∂θi∂θ j

)
. (2.39)

The first term in the equality above is the expected Fisher information matrix, and the second
term is the negative Hessian log prior. The expected Fisher information matrix can be taken to

be the covariance of the vectors
∂ log p(y|θ)

∂θ
:

Cov
(

∂ log p(y|θ)
∂θi

,
∂ log p(y|θ)

∂θ j

)
= Ey|θ

[
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θ j

]
= Ey|θ

[
−∂ 2log p(y|θ)

∂θi∂θ j

]
.

(2.40)

The mass matrix M changes within every trajectory to adapt to the target density curvature
(M→M(θ) in equation (2.32)), and eqns (2.39) and (2.40) ensure that the covariance matrix
M is always positive definite. In the Appendix, Section A.6, the equality in eq (2.40) is proven
to hold.

The joint distribution in equation (2.31) is no longer factorisable. An implicit integrator is
used (the Generalised Leapfrog algorithm), as proposals generated from the Leapfrog integrator
no longer satisfy detailed balance in HMC: M(θ(t)) 6= M(θ(t + ε)). The integrator ensures
reversibility and unit determinant of the Jacobian matrix. The implicit integrator incurs high
numerical costs. The resulting RMHMC algorithm can be proved to satisfy detailed balance,
see proof in SectionA.3 in the Appendix. In the classical RMHMC, ε and L are fixed, however
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in the current work they are optimised with Bayesian optimisation, see details in Section 2.3.3.

LDMC

To overcome the increased computational costs in RMHMC associated with iteratively solving
the equations of the implicit integrator, Lagrangian dynamics can be used instead of Hamiltonian
dynamics. This leads to the Lagrangian Dynamical Monte Carlo algorithm - LDMC [109].
LDMC uses an explicit geometric integrator that replaces the ‘momentum’ variable in RMHMC
by ‘velocity’ (used in analogy with classical mechanics), which improves the computational
efficiency. However, the volume in phase space is no longer preserved, hence the Jacobian
transformation is needed to adjust the acceptance probability to ensure detailed balance [109],
and a proof can be found in Section A.4 in the Appendix. In LDMC, M is adjusted to the
curvature of the posterior distribution at every step throughout the trajectory, and ε and L are
traditionally kept fixed, however in this work they are optimised with Bayesian optimisation, see
Section 2.3.3 for details.

NUTS

The No U-turn sampler (NUTS), proposed in [87], chooses L recursively by moving in parameter
space until the HMC trajectory starts to double back and retrace its steps. This is achieved via
a tree doubling process which implicitly builds a binary tree whose leaf nodes correspond to
the position-momentum states. The points collected along the way are sampled in a way that
ensures detailed balance (see proof in SectionA.5 in the Appendix). The algorithm adapts ε in
the burn-in phase by means of a stochastic optimisation algorithm (the primal-dual averaging).
M is kept fixed at the identity matrix.

Bayesian optimisation for hyperparameter tuning

Throughout this work Bayesian optimisation [125, 208] is utilised to tune the hyperparameters
of HMC, RMHMC and LDMC (the step size ε and number of steps L). ε and L are optimised by
maximising an objective function, which, following [208], is taken to be the expected squared
jumping distance (ESJD) normalised by the number of leapfrog steps:

Eε,L
p(.)||θ

(t+1)−θ
(t)||2

√
L

. (2.41)

In a random walk the average distance travelled in space is proportional to
√

L as the algorithm
moves backward and forward, while in HMC the average distance is proportional to L as the
algorithm moves in one direction following the gradient of the log posterior distribution. Thus,
the normalisation term in ESJD could be anywhere between

√
L and L. This study follows [208]
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and takes
√

L to allow for the possibility that the HMC algorithm has not properly suppressed
the random-walk behaviour.

The normalised ESJD contains an intractable expectation with respect to the target distribu-
tion p(.) which is approximated by an empirical estimator based on the MCMC posterior sam-
ples. The idea of emulation and Bayesian optimisation [175] is adopted; the normalised ESJD is
maximised by constructing a surrogate objective function using Gaussian Processes (reviewed
in Section 2.3.7), called acquisition function. The problem is turned into the maximisation of
this computationally cheap acquisition function. Following [208], the Upper Confidence Bound
is taken as the acquisition function.

2.3.4 MCMC convergence diagnostics

Several MCMC convergence diagnostics are available to test whether the Markov chains result-
ing from running MCMC algorithms have converged in distribution to the posterior distribution.
In this chapter a few such convergence tests are reviewed, with an emphasis on those used
throughout this work.

Gelman Rubin test

Gelman-Rubin test [69] assesses convergence of a scalar (univariate) parameter for a number of
chains run in parallel. The test computes the potential scale reduction factor (PSRF) based on
the within and between variance of the posterior samples. Suppose m chains are run in parallel,
and θ k

i is the scalar parameter drawn at the kth iteration, k = 1, ...N from the ith chain, i = 1, ...m.
The within and between chain variance can be computed as follows:

W =
1

m(N−1)

m

∑
i=1

N

∑
k=1

(θ k
i − θ̄i.)

2 (2.42)

and

B =
N

m−1

m

∑
i=1

(θ̄i.− θ̄..)
2 (2.43)

PSRF is given by

R̂PSRF =
N−1

N
+

m+1
m

B
W

1
N
. (2.44)

If the chains have converged to the stationary distribution, then R̂PSRF→ 1 for N → ∞ and
W ≈ B.

Brooks Gelman Rubin test

Brooks Gelman-Rubin test [18] is a multivariate extension to the Gelman-Rubin test [69], as-
sessing convergence of the parameters simultaneously for a number of chains run in parallel. It
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computes the multivariate potential scale reduction factor (MPSRF), which is an approximate
estimate of the maximum upper bound of the univariate SRF for every parameter. Suppose m

chains are run in parallel, and θ
k
i is the vector of parameters drawn at the kth iteration, k = 1, ...N

from the ith chain, i = 1, ...m. The within and between covariance matrices are given by

W =
1

m(N−1)

m

∑
i=1

N

∑
k=1

(θ k
i − θ̄ i.)(θ

k
i − θ̄ i.)

T (2.45)

and

B =
N

m−1

m

∑
i=1

(θ̄ i.− θ̄ ..)(θ̄ i.− θ̄ ..)
T (2.46)

MPSRF is given by:

R̂MPSRF =
N−1

N
+

m+1
m

λ1, (2.47)

where λ1 is the largest eigenvalue of the symmetric and positive definite matrix W−1B/N.
If the chains have converged to the stationary distribution, then R̂→ 1 for N → ∞, W ≈ B

and λ1→ 0.
If W is singular, MPSRF in eq (2.47) is incalculable. If solely W is singular, this means

that one or more of the parameters have not moved away from the starting values, pointing to
problems with the sampler. However, if both W and B are singular, it indicates that the problem
is ill-posed, e.g. some of the parameters are very highly correlated.

In deciding how many independent chains to run and how to select the starting parameter
values for each chain, the following can be noted. Cowles et al. [46] advise to run 10 inde-
pendent chains if the posterior distribution is unimodal, and more for multi-modal distributions.
Generally, as proposed in the study by Gelman and Rubin [69], an optimisation, mode-finding
algorithm may be used to find regions of high density, and the starting values can be generated
by sampling from a mixture of t-distributions centred at these modes.

Geweke convergence test

The Geweke convergence test [70] performs hypothesis testing to formally test for equality of
the mean of two sub-chains (typically the first 10% and last 50% of the iterations within the
chain). A p-value < 0.05 implies rejecting the null hypothesis of equal means in favour of the
null hypothesis of different means, which suggests non-convergence of the sampler.

2.3.5 Sampler efficiency (mixing)

The sampler efficiency is defined as the ratio of the variance under iid sampling of the estimator
(sample mean: θ̄ = 1

N ∑
N
i=1 θi, with N: number of MCMC samples), to the variance of the
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estimator under MCMC sampling [68], i.e.

Eff(θ̄) =
Varπ(θ̄)

Varp(.)(θ̄)
=

1
1+2∑

∞
l=1 ρl

, (2.48)

where Varπ denotes the variance under independent sampling, Varp(.) denotes the variance under
MCMC sampling, and ρl =

1
N−l ∑

N−1
l=1 θlθN−l measures the autocorrelation between the chain

samples at lag l. Highly efficient samplers give an efficiency close to 1, while less efficient
samplers have high autocorrelations, thus larger variance of the estimator:

Varp(.)(θ̄) = Varπ(θ̄)+2
∞

∑
i=2

Covπ(θ1,θi), (2.49)

where Covπ denotes the covariance under the stationary distribution.
The effective sample size ESS [95] can be calculated, which gives an estimate of the number

of independent samples out of the total number of MCMC samples, and is defined as:

ESS =
N

1+2∑
∞
l=1 ρl

. (2.50)

The denominator of eq (2.50), τ = 1+ 2∑
∞
l=1 ρ i

l is called the integrated autocorrelation time
(IACT) [34]. ESS estimates in this thesis are calculated based on the monotone positive sequence
estimator of Geyer [72], and low values can indicate inefficiency, hence poor mixing or lack of
convergence of the sampler. For a d-dimensional parameter space, ESS can be defined per
parameter i, i = 1, . . .d:

ESSi =
N

1+2∑
∞
l=1 ρ i

l
. (2.51)

2.3.6 Geweke consistency test: convergence to the correct posterior distri-
bution

The mathematical and coding correctness of the MCMC samplers, i.e. convergence to the correct
posterior distribution is assessed using the Geweke consistency test [71], as described below:

S.1 Draw samples from the prior distribution: θ
(i) ∼ p(θ) for i = 1, . . .M, where M→ ∞

S.2 For every prior sample θ
(i), generate a noisy data set D(i), θ

(i)→ D(i)

S.3 For every data set D(i), run an MCMC simulation to obtain the corresponding posterior
distribution, p(θ |D(i))←MCMC

(
p(θ), p(D(i)|θ)

)
S.4 The mathematical correctness of the sampler is verified by checking if the following holds:

ED(p(θ |D)) =
∫

p(θ |D)p(D)dD =
∫

p(θ)p(D|θ)dD = p(θ)
∫

p(D|θ)dD = p(θ)1 = p(θ).

(2.52)
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In practice S.4 is checked by comparing the prior distribution to the ensemble of posterior dis-
tributions thus obtained by following steps S.1-S.3. This can be achieved by investigating the
quantiles of the prior distribution and of the ensemble of posterior distributions via a QQ plot.
The sampler is considered mathematically correct if the two distributions agree, i.e. points lie
on the equality line in the QQ plot, and thus eq (2.52) holds. Note that for every data set D(i), a
number of MCMC posterior samples are obtained, and for the QQ plot, the last chain posterior
sample can be used.

2.3.7 Gaussian Processes

This section gives a brief overview of Gaussian Processes (GPs). For a detailed introduction to
GPs, the reader is referred to [157].

GPs for regression

Definition: A stochastic process f = f (x)x∈X is defined as a Gaussian process (GP) if the ran-
dom variables f= ( f (x1), . . . f (xn)) are jointly normal for any inputs xi ∈Rd×1, with i= 1, . . .n,
f∼MV N (m,K), where m = (m(x1), . . . ,m(xn)) is the mean n-vector and K = [k(xi,x j)]

n
i, j=1

is the n×n variance-covariance matrix of f. In GP models [157, 54], inputs X = [x1, . . .xn]
T (X

is an n×d matrix) are mapped into outputs y = (y1, . . .yn) (y is an n-vector) by means of latent
noiseless functions f. A GP prior is placed on the distribution of these functions as a way to
account for the uncertainty in the functional form. Assuming iid Gaussian noisy observations y:

y|f∼MV N (f,σ2I),

f(X)|γ ∼ G P(m(X),K|γ),

γ,σ2 ∼ p(γ)p(σ2),

(2.53)

where γ contains the covariance function (kernel) hyperparameters, and σ2 is the observation
noise variance.

Covariance functions (kernels): The covariance function k(x,x′|γ) gives the smoothness and
variability of the latent functions. Several covariance functions are available, stationary (e.g.
squared exponential, Matèrn class, periodic) or non-stationary (e.g. neural network), see Chap-
ter 4 in Rasmussen’s book [157] for a review.

The squared exponential kernel has the form:

k(x,x
′
|γ) = σ

2
m exp

(
−||x−x′||2

2l2

)
, (2.54)

where γ = (σ2
m, l), with σ2

m being the marginal variance of the function or response variable,
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equivalent to the signal variance, and l being the lengthscale, which controls the flexibility of
the function on the x-axis (the explanatory or input variable).
If there is more than one input variable (i.e. d ≥ 2), each variable can have its own lengthscale
(automatic relevance determination, ARD) [157], and eq (2.54) turns into

k(x,x
′
|γ) = σ

2
m exp

(
−0.5

d

∑
j=1

(x j− x
′
j)

2

l2
j

)
. (2.55)

The Matèrn class kernel takes the form:

k(x,x
′
|γ) = σ

2
m

21−ν

Γ(ν)
(r
√

2ν)νKν(r
√

2ν), r =

√√√√ d

∑
j=1

(x j− x′j)2

l2
j

, (2.56)

where Kν is a modified Bessel function, and the parameter ν controls the smoothness of the GP
functions. Examples of Matèrn kernels include:

• Matèrn 3/2:
k(r) = σ

2
m(1+

√
3r)exp(−

√
3r), (2.57)

• Matèrn 5/2:

k(r) = σ
2
m

(
1+
√

5r+
5r2

3

)
exp(−

√
5r). (2.58)

Additionally, the neural network kernel has the form:

k(x,x
′
|γ) = 2

π
arcsin

(
2x̂TΣx̂′√

(1+2x̂TΣx̂)(1+2x̂′TΣx̂′)

)
, (2.59)

where x̂ = (1 x)T is an augmented vector (T superscript denotes the transposition of the vec-
tor), and Σ is a diagonal matrix containing the kernel hyperparameters, Σ = diag(b,w), and
γ = (b,w) with b controlling the amount of offset of the functions from the origin and w con-
trolling the scaling on the x-axis (equivalent of the inverse lengthscale in stationary kernels).

The kernel hyperparameters γ and the observation noise variance σ2 can be placed a prior
on and integrated out from the joint posterior distribution p(f,γ,σ2|X,y), or they can be found
in a so-called empirical Bayes approach by maximisation of the log marginal likelihood, see
eqns (2.64) and (2.79).

Kernel differentiability: Differentiation is a linear operator, hence the derivative of a GP is
another GP with the following covariance function

Cov

(
∂ f (x)

∂xi
,
∂ f (x′)

∂x′j

)
=

∂ 2k(x,x′)
∂xi∂x′j

. (2.60)
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Thus, the covariance function of a process
∂ f (x)

∂xi
is given by

∂ 2k(x,x′)
∂xi∂x′j

. For a stationary process

f (x), if the 2Mth order partial derivative
∂ 2Mk(x,x′)

∂x1 . . .∂xM∂x′1 . . .∂x′M
exists and is finite for x = x′ ,

i.e. at ||x− x′||= 0, then the Mth order partial derivative
∂ M f (x)

∂x1 . . .∂xM
exists for all x ∈ Rd×1,

and f (x) is said to be Mth order mean square (MS) differentiable. Thus, it is the properties of
the kernel k around 0 that determines the MS differentiability, thus smoothness of a stationary
process f (x).

The GP defined by a squared exponential kernel (eq (2.54)) is infinitely differentiable in a
MS sense with respect to x [157] (thus highly smooth), since by denoting q = x− x′ , one can
check that

lim
q→0

∂ 2Mk(x,x′)
∂q1 . . .∂q2M

(2.61)

exists for M→ ∞, implying that, by using the chain rule, the expression

∂ 2Mk(x,x′)
∂x1 . . .∂xM∂x′1 . . .∂x′M

= (−1)M ∂ 2Mk(x,x′)
∂q1 . . .∂q2M

(2.62)

exists for x = x′ .
The GP defined by Matèrn kernels is ([ν ]−1) MS differentiable with respect to x, e.g. the

process is once differentiable with respect to xi for Matèrn 3/2 (defined in eq (2.57)) and twice
differentiable with respect to xi,x j for Matèrn 5/2 (defined in eq (2.58)). This can be proved by
showing that the limit in eq (2.61) for M > 1 does not exist in the case of Matèrn 3/2 and for
M > 2 in the case of Matèrn 5/2 by making use of the right-hand side of eq (2.56) and applying
the chain rule of standard calculus.

Posterior distribution The posterior distribution of the latent functions can be constructed by
using Bayes theorem:

p(f|X,y,γ,σ2) =
p(f|X,γ)p(y|f,σ2)∫
p(f|X,γ)p(y|f,σ2)df

=
p(f|X,γ)p(y|f,σ2)

p(y|X,γ,σ2)
. (2.63)

Zero mean GP: Typically, the mean of the GP is set to zero (m(X) = 0), i.e. the data are
standardised to zero mean. In this case, the log marginal likelihood is found by integrating out
the latent functions f:

log p(y|X,γ,σ2) =−n
2

log(2π)− 1
2

log|K+σ
2I|−1

2
yT (K+σ

2I)−1y. (2.64)

The aim of constructing a probabilistic model using GPs is prediction at unseen input values.
The predictive distribution of a new function, f̃ = f (x̃), is available in closed form, i.e. it is
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Gaussian [157]:

f̃ |x̃,X,y,γ,σ2 ∼N (mp(x̃),kp(x̃, x̃
′
|γ)), (2.65)

mp(x̃) = k(x̃,X|γ)(K+σ
2I)−1y, (2.66)

kp(x̃, x̃
′
|γ) = k(x̃, x̃

′
|γ)− k(x̃,X|γ)(K+σ

2I)−1k(X, x̃
′
|γ), (2.67)

where k(x̃,X|γ) is a vector valued kernel function, k(x̃,X) : Rd×1×Rd×n→ R1×n
+ , k(X, x̃|γ) is

a vector valued kernel function, k(X, x̃) : Rd×n×Rd×1→ Rn×1
+ , and the hyperparameters γ and

σ2 have been obtained based on the training data (X,y). Additionally, the predictive distribution
of a new observation ỹ can be obtained by integrating out f̃ :

p(ỹ|x̃,X,γ,σ2) =
∫

p( f̃ |x̃,X,y,γ,σ2)p(ỹ| f̃ ,σ2)d f̃ , (2.68)

thus,
p(ỹ|x̃,X,γ,σ2)∼N (mp(x̃),kp(x̃, x̃

′
|γ)+σ

2), (2.69)

where mp and kp(x̃, x̃
′|γ) are given by eqns (2.66) and (2.67).

Mean functions GP: In certain scenarios a zero mean assumption may not be appropriate
(e.g. when the behaviour of the model outside the data range becomes important, more details
on this can be found in Chapter 6). Instead a mean function may be used, and the idea is that a
GP with zero mean is placed on the difference between the observations and the mean function.

A mean function can take the form of a weighted sum of basis functions:

m(x) = h(x)T
β , (2.70)

where h(x) are the basis functions for the input vector x and β are the weights. The model
becomes:

f (x) = h(x)T
β +g(x),

g(x)∼ G P(0,K).
(2.71)

By placing a Gaussian prior on the weights:

β ∼MV N (b,B), (2.72)

they can be integrated out from the model to obtain a new GP prior:

f(x)∼ G P(h(x)Tb,k(x,x′)+h(x)TBh(x′)). (2.73)

The new predictive equations build upon the zero mean GP predictive equations (see eqns (2.66)
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and (2.67)) [157] as follows:

m∗p(x̃) = mp(x̃)+RT
β̄ , (2.74)

k∗p(x̃, x̃
′
|γ) = kp(x̃, x̃

′
|γ)+RT(B−1 +H(K+σ

2I)−1HT)−1R, (2.75)

where

β̄ = (B−1 +H(K+σ
2I)−1HT)−1(B−1b+H(K+σ

2I)−1y), (2.76)

R = h(x̃)−H(K+σ
2I)−1k(X, x̃), (2.77)

HT =


h(x1)

h(x2)
...

h(xn)

 . (2.78)

The log marginal likelihood becomes:

log p(y|X,b,B,σ2) =−1
2

LTP−1L− 1
2

logdet(K+σ
2I)− 1

2
logdet(B)− 1

2
logdet(Q)− n

2
log2π,

(2.79)

L = HTb−y, P = (K+σ
2I)+HTBH Q = B−1 +H(K+σ

2I)−1HT.

(2.80)

GPs for classification

GPs can also be applied in classification problems, where the response is a binary variable,
λ = (λ1, . . .λn), with λi ∈ {0,1}, associated with inputs X = {xi}n

i=1, where 0: failure and 1:
success (see Chapter 6 for an example). A GP classification model places a GP prior over the
distribution of noiseless latent functions f, as follows:

λi| f (xi)∼ Bernoulli(p(λi = 1| f (xi))),

f(X)|γ ∼ G P(m(X),K|γ),

γ ∼ p(γ),

(2.81)

where γ contains the kernel hyperparameters.
The binary observations (class labels) λ are drawn from a Bernoulli distribution with a suc-

cess probability p(λi = 1| f (xi)), and likelihood shown in eq. (2.83). The success probability is
related to the function f (xi) via the sigmoid function, sig( f (xi)) = (1+exp(− f (xi)))

−1, which
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transforms the probability into the unit interval [0,1], as shown in eq. (2.82):

p(λi = 1| f (xi)) = sig( f (xi)); p(λi = 0| f (xi)) = 1− p(λi = 1| f (xi)), (2.82)

Likelihood : p(λi| f (xi)) = (sig( f (xi)))
λi(1− sig( f (xi)))

(1−λi) for a binary outcome λi ∈ {0,1}.
(2.83)

The latent functions f can be integrated out from the conditional posterior distribution given
the hyperparameters γ to obtain the marginal likelihood (eq. (2.84)), which has no closed-form
solution:

p(λ |X,γ) =
∫

p(λ , f|X,γ)df =
∫

p(λ |f)p(f|X,γ)df. (2.84)

With a non-Gaussian likelihood, MCMC [88] can be run, or the conditional posterior distribution
can be approximated by a Gaussian form using the Laplace approximation [214], variational
inference [134] or expectation propagation (EP) [105].

2.3.8 Model selection

This thesis also presents work on model discrimination between competing models - see Chap-
ters 3 and 4. A more complex model is not necessarily favoured although it provides a better fit
to the data, which can be quantified using the log predictive density. Penalising for parameter
complexity (too many parameters) is a necessary adjustment to prevent from choosing an over-
parameterised model that overfits the existing data and is not generalisable to future data. Model
selection can be performed based on various criteria, which are summarised below.

AICc and BIC

AIC(c) [1, 23] and BIC [172] can be used for model selection in a maximum likelihood frame-
work. These criteria use the maximum log likelihood (or minimum residual sum-of-squares)
as a measure of goodness of fit, and overfitting is avoided by applying a penalty based on the
model complexity (i.e. number of model parameters, or effective number of parameters, where
the latter may depend on the nature of the model or the data). AIC applies a lower penalty than
BIC, thus the latter chooses simpler models (with a lower number of parameters). AICc is a
modification of AIC [1] by adding a correction for finite sample sizes, hence applying a higher
penalty. AIC(c) and BIC are defined as:

AIC =−2log(y|θ̂ MLE)+2d,

AICc =−2log(y|θ̂ MLE)+2d +
2d(d +1)
n−d−1

,

BIC =−2log(y|θ̂ MLE)+d logn,

(2.85)
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where log(y|θ̂ MLE) is the maximum log likelihood (i.e. log likelihood for the maximum likeli-
hood estimate, MLE), d is the number of parameters in the model and n is the total number of
observations.
The model which gives the lowest AIC(c) or BIC score is the favoured model.

DIC

DIC [185] is a partially Bayesian version of AIC, where the maximum likelihood estimate θ̂ MLE

is replaced by the posterior mean θ̂ Bayes = E(θ |y) and the penalisation is data-driven. DIC is
defined as

DIC =−2log p(y|θ̂ Bayes)+2pDIC, (2.86)

pDIC = 2
(
log p(y|θ̂ Bayes)−Eθ |y(log p(y|θ))

)
, (2.87)

where Eθ |y(log(y|θ)) is the expectation of the log posterior predictive density, which in practice
is calculated by replacing the expectation with the average over the posterior draws [67], as
follows:

computed pDIC = 2

(
log p(y|θ̂ Bayes)−

1
S

S

∑
s=1

log p(y|θ s)

)
, (2.88)

where the sum is over the set of parameters θ
s,s = 1, . . .S, that have been drawn approximately

from the posterior distribution with MCMC (i.e. θ
s is the sth MCMC sample).

The posterior mean of θ , E(θ |y) can also produce the maximum log predictive density if it
is also the mode of the posterior distribution. pDIC reduces to d for linear models with uniform
prior distributions [185], and p(y|θ̂ Bayes) = p(y|θ̂ MLE), making DIC equivalent to AIC [67].
The model which gives the lowest DIC score is the favoured model.

WAIC

WAIC [209] is fully Bayesian in the sense that it is calculated using the whole posterior distri-
bution – see eq. (2.89). It takes the log posterior predictive density (first term) and adjusts for
overfitting by adding a correction for the effective number of parameters (second term) [67],

WAIC =−2
n

∑
i=1

log
∫

p(yi|θ)p(θ |y)dθ +2
n

∑
i=1

varθ |y(log p(yi|θ)), (2.89)

which in practice is computed as follows:

computed WAIC =−2
n

∑
i=1

log

(
1
S

S

∑
s=1

p(yi|θ s)

)
+2

n

∑
i=1

V S
s=1(log p(yi|θ s)), (2.90)
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where θ
s,s = 1, ...S, are posterior samples from p(θ |y), and the following holds: V S

s=1as =
1

S−1 ∑
S
s=1(as− ā)2.

The model which gives the lowest WAIC score is the favoured model.

AIC(c), DIC and WAIC are adjusted in-sample predictive accuracy measures. Given that
they are calculated on the data on which the model is trained, the adjustment is necessary to
avoid biased estimates of the predictive accuracy. However they can only provide unbiased re-
sults in expectation (i.e. scores based on the estimator of the discrepancy between the true and
predictive data distribution are computed for a large number of data sets generated under the
same conditions, and the average score is unbiased, see e.g. [28]); this is not guaranteed to
hold for an individual specific data set. In the absence of multiple data sets, unbiased predic-
tive accuracy of AIC(c), DIC and WAIC can only be obtained asymptotically, for number of
observations, n→ ∞ in one single data set. Under some conditions, AIC and DIC have been
shown to be asymptotically equal to leave one out cross-validation [179, 186], while WAIC is
asymptotically equivalent to Bayesian leave-one-out cross-validation (LOO-CV) [209].

While AIC(c), DIC and WAIC are predictive measures, BIC (and WBIC [210]) are explana-
tory measures. BIC was constructed as a method of approximating the marginal probability
density of the data y under a model M, p(y|M) to be used in calculating the posterior probability
of the model M:

p(M|y) ∝ p(y|M)p(M), (2.91)

required for model comparison via Bayes factors in a discrete model comparison setting [204].
AIC and BIC tend to be unreliable for small sample data sets. DIC is not suitable for singular

posterior models, including mixture or hierarchical models (i.e. models for which the Fisher in-
formation matrix plus the negative second-order derivative of the log prior is not strictly positive
definite, hence is semi-positive definite, thus singular2) or multimodal models (e.g. for a bi-
modal posterior distribution the posterior mean would lie between the modes) [209]. WAIC has
better small-sample behaviour than AIC and unlike DIC, works for singular models. Compared
to AIC(c), BIC and DIC, WAIC averages over the posterior distribution instead of conditioning
on a point estimate, thus the parameter uncertainty is naturally incorporated.

In this study AIC(c), BIC, DIC and WAIC criteria are used. The marginal likelihood method
[13] performing model selection by comparing the posterior probabilities of every model given
the data (see eq (2.91)) was not considered as it entails high computational complexity when nu-
merically stable procedures are used, such as thermodynamic integration [62, 111], and numer-
ical instability of computationally affordable schemes like the harmonic mean estimator [154].
However, the advantage of the marginal likelihood is that the method is exact, in the sense of
not relying on the asymptotics. Moreover, WBIC was not used as it would require running

2In that case the matrix has zero eigenvalues, hence its determinant, given by the product of its eigenvalues, is
zero, making the matrix singular.
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additional MCMC simulations for an annealed likelihood, incurring additional computational
overheads (see [210] for details). In addition, Bayesian LOO-CV was not used as it incurs high
computational costs. Bayesian LOO-CV proceeds by removing one data point at a time from the
data set of n points, running MCMC on the model with n− 1 observations and calculating the
log predictive density of the held-out data point conditional on the resulting posterior samples
(the model with a higher LOO-CV is preferred):

n

∑
i=1

log p(yi|y−i) =
n

∑
i=1

log
∫

p(yi|θ)p(θ |y−i)dθ =
n

∑
i=1

log

(
1
S

S

∑
s=1

p(yi|θ s)

)
, (2.92)

where the second equality shows how Bayesian LOO-CV is computed in practice, and θ
s is the

sth posterior sample drawn approximately from p(θ |y−i). Bayesian LOO-CV does not rely on
asymptotics, and by partitioning the data, it avoids overfitting, however, it is computed based on
one data set, thus only providing unbiased results in expectation [59].

All of these measures help compare between models, however they do not assess the quality
of the models, i.e. out of a set of candidate models, the best model chosen does not necessarily
provide a faithful description to the data (model checking diagnostics can be employed for that
purpose, e.g. based on residuals for frequentist methods, or posterior predictive checks for
Bayesian approaches, see Chapter 6 in [66]).



Chapter 3

Uncertainty of haemodynamic parameters

This study performs inference of parameters describing the haemodynamic equations of a 1D
fluid-dynamics model of the pulmonary blood circulation. The fluid-dynamics model takes
selected parameter values and aims to mimic the behaviour of the pulmonary haemodynam-
ics under normal physiological and pathological (hypoxia) conditions. The Delayed Rejection
Adaptive Metropolis (DRAM) algorithm is jointly used with constraint non-linear optimisation
to learn the parameter values and quantify the uncertainty in the parameter estimates. To ac-
commodate for different magnitudes of the parameter values, an improved parameter scaling
technique is introduced in the DRAM algorithm. In addition, model selection using different in-
formation criteria, including the Watanabe Akaike Information Criteria is performed to discrim-
inate between a model including or excluding a vessel tapering factor. Differences in parameters
and model predictions between the control and hypoxic mice are investigated. The results from
the analysis assuming independent and identical (iid) measurement errors is presented in the first
part of this chapter. In the second part, correlated measurement errors are incorporated into a
model selection analysis to discriminate between a linear and non-linear wall model.

Note: This chapter is adapted based on two papers: one study by Paun et al. [141] (first
part) and a study by Qureshi et al. [151] (second part), on which I am the third author. In the
second part of the chapter I present those results which I obtained and for which I take full
responsibility, for the full set of results, the reader is referred to the original paper [151].

3.1 Introduction

The cardiovascular circulation is composed of the systemic circulation and the pulmonary cir-
culation. Extensive work has been done to model the systemic circulation [178], however pul-
monary hypertension is one of the leading causes of right heart failure [136]. The current work
focuses on predicting the observed haemodynamic behaviour in the pulmonary circulation under
normal and pathological conditions (hypoxia). Hypoxia is a pathological condition in which the
body tissues are not sufficiently well oxygenated, leading to pulmonary hypertension.

32
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Pulmonary hypertension (PH) is characterised by high mean blood pressure in the lungs
(above 25 mmHg in the main pulmonary artery). PH leads to vascular remodelling, including
stiffening, thickening, constriction of the small and large pulmonary arteries and microvascular
rarefaction (microvascular rarefaction is a pathological condition in which there are fewer cap-
illaries per unit volume of body tissue [206]). A reliable predictive model for the pulmonary
haemodynamics can assist clinicians in diagnosing and treating PH by offering additional infor-
mation which is otherwise immeasurable, e.g. blood flow and pressure predictions beyond the
location where it can be measured. In addition, it helps reduce the number of invasive proce-
dures for the patients as, currently, pulmonary pressure is measured invasively via right-heart
catheterisation [188]. The model is tested in the context of mice data, however the work can be
extended to human data.

Inferring key parameters for disease diagnosis and treatment planning is an essential, yet
challenging step in predicting the observed haemodynamics. One such parameter is the arterial
stiffness, which is significantly higher for patients having PH. However, such parameters cannot
be measured in-vivo, which creates the need for them to be learnt indirectly from the observed
pulmonary blood flow and pressure. This poses several challenges due to a number of reasons:
e.g. the non-linear partial differential equations (PDEs) by which the mathematical model is
defined need to be numerically integrated a large number of times (tens of thousands of times),
using a multi-scale and multi-components mathematical model results in a potentially large
number of parameters being estimated, and the data are noisy and insufficient.

In this chapter statistical techniques for inference of haemodynamic parameters (vessel wall
stiffness and boundary conditions parameters) of a 1D fluid-dynamics model of the pulmonary
circulation are implemented to predict blood pressure and flow in a fixed arterial network com-
ing from one single image segmentation, and zero vessel tapering, as well as non-zero tapering
is assumed. A few restrictive assumptions about the parameters characterising the vessels’ ge-
ometry or the boundary conditions in the PDEs allowed reducing the parameter dimension from
a 55D problem to 5D (details offered in Section 3.2.3). Additionally, to combat the high compu-
tational costs of the inference procedure, non-linear constraint optimisation was first employed
to find the maximum likelihood estimates. Subsequently, the uncertainty in these estimates
was quantified by approximately sampling parameters from their posterior distribution using the
DRAM algorithm and the Adaptive Metropolis (AM) algorithm using the Matlab MCMC tool-
box [107]. Pseudocode is provided showing how to deal with different parameter magnitudes
by incorporating a parameter scaling technique in the MCMC Matlab toolbox [107] (details in
Section 3.3). The importance of incorporating the parameter scaling in the inference procedure
is emphasized, and the consequences of not allowing for scaling are shown. This code is tested
on real data coming from a healthy and a hypoxic mouse.

In addition, this study investigates whether vessel tapering is consistent with the measured
data by performing model selection using different information criteria, including the Watanabe
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Akaike Information Criteria [209].
The analysis was initially performed assuming independent and identically distributed errors,

and the assumption was subsequently relaxed to incorporate the correlation of the measurement
errors.

3.2 Materials and Methods

3.2.1 Experimental data

The experimental data are described in Section 2.1.

3.2.2 Mathematical model

The mathematical model used in this chapter is a linear wall model, as indicated in Table 2.1
and described in Section 2.2.

3.2.3 Parameterisation

The coupled model contains a total of 100 parameters used to determine pressure and flow in the
network, and they are associated with the vessel fluid dynamics (24 parameters), the geometry
(43 parameters), and the outflow boundary conditions (33 parameters). Of these, 45 parameters
describing physical properties are fixed (e.g. vessel blood and viscosity which are measured thus
known, or geometry radii and lengths extracted from the lung micro-CT image). The remaining
55 parameters characterise vessel stiffness (21 parameters - one per vessel), outflow boundary
conditions (33 parameters, 3 parameters per terminal vessel), and a tapering factor.

To reduce the dimension of the parameter space, it was assumed that the vessel stiffness is
constant throughout the network [103] (reducing the dimension by 20). Second, as described in
[151] and in Section 2.2.4, the nominal (i.e. initial) outflow boundary condition were predicted
for each vessel from estimates of total resistance and compliance and a constant scaling factor
was used to adjust the terminal vessel-specific resistances and capacitances in the Windkessel
models (reducing the dimension by 30). The reduction of the parameter space could have been
performed with sensitivity analysis [36], which identifies the parameters that affect the output
the most, and constitutes future work. To account for the physiologically observed tapering in
large arteries, a tapering factor ξ was introduced via a linear relation between top and bottom
vessel radii:

rB = rT(1−0.5ξ ), (3.1)

where rT and rB are the inlet and outlet radii of the vessels.
The above assumptions allowed reducing the dimension of the free parameters from 55 to 5.

The parameters to be estimated included: the vessel stiffness s – see eq (2.5), where to impose
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constant stiffness, f1 was set to 0 (i.e. parameter f3 only was inferred), scaling factors r1,r2,c

and the tapering factor ξ .

Two network configurations were analysed:

Network with straight vessels (4D model): θ = {s,r1,r2,c}

Network with tapered vessels (5D model): θ = {s,r1,r2,c,ξ}
(3.2)

The univariate ranges for the θ parameter vectors were chosen to be biologically meaningful:
s ∈ [104,106],r1,r2,c ∈ [−3,2.5],ξ ∈ [0,0.5]. The range for s is in Torr units (not mmHg).

3.2.4 Statistical methods

Statistical model

The statistical model is defined as

yq
i = mq(x;θ)+ ε

q
i , ε

q
i ∼N (0,σ2

1i),

yp
i = mp(x;θ)+ ε

p
i , ε

p
i ∼N (0,σ2

2i),
(3.3)

where

• yq = [yq
1,y

q
2, ...,y

q
n] are the noisy MPA-measured flow data (a time series of n = 1024

points), and yp = [yp
1 ,y

p
2 , ...y

p
n ] are the noisy MPA-measured pressure data,

• mq(.) is an n×1 vector containing the MPA-predicted flow output from numerically solv-
ing the PDEs, and mp(.) is an n×1 vector containing the MPA-predicted pressure,

• θ is a d-dimensional parameter vector to be inferred from the haemodynamic data (see
eq (3.2)).

• x denote other input variables (e.g. inflow into the MPA, or network properties such as
vessel radius and length measurements coming from the image segmentation),

• εi are the measurement errors, which initially were assumed to be additive iid Gaussian.
They have a different variance for flow and pressure due to different measurement tech-
niques (i.e. flow is measured with ultra-sound, and pressure is measured with right-heart
catheterisation).

In this study, the MPA-measured flow is used as inflow boundary condition for the PDEs,
and the MPA-measured pressure is used for parameter inference.
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Parameter estimation and uncertainty quantification

This study employs MCMC methods, in particular the DRAM algorithm [81] to sample param-
eters approximately from their posterior distribution; these methods are reviewed in Chapter 2.
Since MCMC used for non-linear PDEs problems is too slow to converge when started from
random points in parameter space (MCMC with emulation is explored in later chapters, see
Chapter 6), point estimates were first obtained using the maximum likelihood approach, and
these estimates were used as initial values in the DRAM algorithm.

Non-linear constraint optimisation was used to find the global or local optimum of the ob-
jective function, chosen to be the residual sum of squares (RSS), which measures the deviation
of the simulated signal from the measured signal and is given by:

S (θ) = (y−m(θ))2 =
n

∑
i=1

(yi−mi(θ))
2, (3.4)

where for simplicity the index x and the superscript p from m(.) in eq (3.3) have been dropped.
Non-linear constraint optimisation was chosen since there was evidence of the RSS func-

tion being unimodal (see Section 3.5.1) and because the objective function is non-linear in the
(bounded) parameters. The optimisation minimised RSS by solving the problem defined by
eq (3.5)):

minimize S (θ),

subject to g(θ) = 0, equality constraints,

h(θ)≤ 0, inequality constraints.

(3.5)

where functions g(θ) and h(θ) define the equality and inequality relations between the param-
eters.

To run DRAM, the likelihood, prior, proposal and posterior distribution must be first defined.

Data likelihood:
yi|θ ∼N (mi(θ),σ

2), (3.6)

i.e.

p(y|θ ,σ2) =

(
1√

2πσ2

)n

exp
(
−∑

n
i=1(yi−mi(θ))

2

2σ2

)
(3.7)

If θ is outside the biological boundaries or the PDEs produce no output due to biologically
unrealistic parameter combinations, RSS is assigned a large value, i.e. 1010, leading to a zero
value likelihood for the particular θ parameter vector.

Prior distribution:
θ ∼ Truncated MV N (µ,T), (3.8)
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i.e.
p(θ) = det(2πT)−

1
2 exp

(
−1

2
(θ −µ)

′
T−1(θ −µ)

)
, (3.9)

where T is a positive definite covariance matrix, chosen to be diagonal (i.e. independent pri-
ors) with high variance entries (1010), making the prior non-informative between the biological
ranges due to lack of prior knowledge,

σ
2 ∼I G (a,b), (3.10)

i.e.
p(σ2) =

ba

Γ(a)
(σ2)−a−1 exp

(
− b

σ2

)
, (3.11)

where I G stands for the Inverse-Gamma distribution. The default settings in the DRAM
MCMC toolbox [107] were used, i.e. shape and scale parameters: a = ns

2 > 0, b =
nsγ

2
s

2 > 0,
with γ2

s being the prior value for σ2 and ns the prior accuracy for γ2
s – a large value of ns means

high certainty in the prior, i.e. the prior dominates, and so the posterior samples are close to γ2
s .

This prior was chosen for conjugacy reasons (i.e. for a Gaussian likelihood and Inverse-Gamma
prior, the conditional posterior distribution is also Inverse-Gamma), allowing to draw posterior
samples from its full conditional distribution in a Gibbs step. A weakly informative prior for σ2

was assumed by setting ns = 1, and γ2
s was taken to be the initial noise variance σ2 chosen by

the user (the defaults in the toolbox).

Proposal distribution:

q(θ ∗,θ k−1) = Truncated MV N (θ k−1,V), (3.12)

where the proposal covariance matrix V is obtained as explained in the paragraph discussing
DRAM in Section 2.3.2. For θ

∗ inside boundaries:

q(θ ∗,θ k−1) = det(2πV)−
1
2 exp

(
−1

2
(θ ∗−θ

k−1)
′
V−1(θ ∗−θ

k−1)

)
, (3.13)

Posterior distribution:
p(θ ,σ2|y) ∝ p(y|θ ,σ2)p(θ)p(σ2), (3.14)

which yields:

p(θ ,σ2|y) ∝ (σ2)−
n
2−a−1 exp

(
−0.5∑

n
i=1(yi−mi(θ))

2 +b
σ2

)
×

exp
(
−0.5(θ −µ)

′
T−1(θ −µ)

)
.

(3.15)

DRAM was used to sample the parameters θ in a Metropolis-Hastings step since the marginal
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posterior distribution for θ is not available in closed form. The θ parameters were then fixed
to the sample value drawn and the noise variance σ2 was sampled from an Inverse-Gamma
distribution in a Gibbs step:

σ
2|y,θ ∼I G

(
0.5n+a,0.5

n

∑
i=1

(yi−mi(θ))
2 +b

)
. (3.16)

Hence, when going from the prior to the posterior for σ2, the distribution is modified to include
the contribution from the data 0.5∑

n
i=1(yi−mi(θ))

2, and the accuracy increases when data be-
come available (0.5n is added to the prior shape parameter - the more data points, the higher the
accuracy).

3.3 Methodological contribution

This work builds on and further improves on existing literature by allowing for a novel parameter
scaling technique in the DRAM algorithm with informative priors for the parameters.

A pseudocode of the DRAM algorithm [81, 107] can be found on pages 175–176 of the book
by Smith [183]. In practice, the algorithm is implemented by making use of the Matlab DRAM
toolbox [107]. However, the toolbox does not offer the option to scale parameters if they differ
by orders of magnitude, and so the code had to be appropriately modified. The pseudocode for
DRAM with an informative prior, together with the parameter scaling adjustment is novel and
can be found in Algorithms 1a-1d. Algorithms 8.8 and 8.10 in [183] were therefore modified
to allow using an informative prior and the parameter scaling was improved. The improvement
concerns the way that the acceptance probabilities are calculated. More precisely, the jump
densities should be calculated for the transformed parameters (see step 12 in Algorithm 1d).
Using the original parameters can cause the ratio of the jump densities become very large if
one or more parameters have high magnitude values. Occasionally, in the second DR try, the
proposed value for the high magnitude parameter may be much smaller than the current value.
Hence, the numerator becomes much larger than the denominator in the jump ratio in eq (2.25),
which encourages wrongly accepting the proposals. The jump ratio is

q1(θ
∗|θ ∗(2))q2(θ

k−1|θ ∗,θ ∗(2))
q1(θ

∗|θ k−1)q2(θ
∗(2)|θ ∗,θ k−1)

. (3.17)

In simplifying terms, for a symmetric Gaussian proposal density, the log jump ratio is propor-
tional to:

−
(

θ
∗−θ

∗(2)
)2
−
(

θ
k−1−θ

∗(2)
)2

+
(

θ
∗−θ

k−1
)2

+
(

θ
∗(2)−θ

k−1
)2

(3.18)

=−
(

θ
∗(2)−θ

∗
)2

+
(

θ
k−1−θ

∗
)2

, (3.19)
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hence if θ
∗(2) << θ

k−1, the jump ratio in the acceptance probability in eq (2.25) is dominated by
a large magnitude value of θ

k−1, thus the ratio becomes very large, encouraging to falsely accept
θ
∗(2). This however does not represent a problem for the first stage acceptance probabilities

when a symmetric proposal distribution is used, as the proposals cancel out in the ratio. Hence,
the correction only affects the DRAM and DR algorithms, while no correction is needed for the
AM algorithm.
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Algorithm 1a Delayed Rejection Adaptive Metropolis Algorithm (DRAM) with informative
prior (fixed hyperparameters)

1: Initialise design parameters: M: number of chain iterations, β : scaling factor for proposal
covariance matrix in DR, ndr: number of DR tries, tad: adaptation interval, bs: burn-in scale,
bt: burn-in time, γ2

s : prior for σ2 (error variance), ns: prior accuracy for γ2
s

2: Compute θ
0 = argminθ ∑

n
i=1[yi−mi(θ)]

2, where a j ≤ θ j ≤ b j, j = 1...d, d: number of
parameters, using non-linear constraint optimisation with 20 overdispersed starting values
generated from a Sobol sequence

3: Initialise σ2
0 = S0

n , where S0: optimised residual-of-squares value, n: number of observa-
tions

4: Assume that the prior distribution for θ is a Multivariate Normal distribution (independent
priors θs), θ ∼MV N (µ,T) (i.e. T diagonal)

5: Set initial S 0
prior = ∑

d
j=1

(θ 0
j−µ j)

2

t2
j

, where t j: jth diagonal term in matrix T
6: Either set the initial covariance matrix V0 to be the Hessian matrix from optimisation or set

V0 via monitoring of acceptance rate (i.e. decrease variance if acceptance rate too low, e.g.
below 5%, and increase variance if acceptance rate too high, e.g. above 95%)

7: Set R0 = chol(V0), where "chol" stands for the Choleski factorisation, as an efficient nu-
merical solution of V0 = RT

0 R0
8: for k = 1, ... M do
9: Sample uk ∼MV N (0,I), where I: identity matrix

10: Construct candidate from Gaussian proposal: θ
∗ = θ

k−1 +Rk−1uk
11: if a j ≤ θ j ≤ b j for any j then . outside boundaries
12: Jump to DR Algorithm 1c for iteration k
13: else
14: Calculate Sθ

∗ = ∑
n
i=1[yi−mi(θ

∗)]2, S ∗
pri = ∑

d
j=1

(θ∗ j−µ j)
2

t2
j

15: end if
16: Calculate the acceptance probability,

α1(θ
∗|θ k−1) = min

(
1,exp

[
−0.5

(
Sθ

∗−S
θ

k−1

σ2
k−1

+S ∗
pri−S k−1

pri

)])

17: Sample uα1 ∼U (0,1)
18: if uα1 < α1 then
19: θ

k = θ
∗, S

θ
k = Sθ

∗, S k
pri = S ∗

pri
20: else
21: Enter DR Algorithm 1c for iteration k
22: end if
23: Update σ2

k |θ
k ∼I G

(
ns+n

2 ,
nsγ2

s+S
θ

k

2

)
24: Enter AM Algorithm 1b for iteration k
25: end for
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Algorithm 1b Adaptive Metropolis Algorithm (AM)
1: if k < bt then . during burn-in time, no adaptation, just scaling R
2: Rk← Rk−1/bs, . decrease R if rejection rate > 0.95
3: Rk← bsRk−1, . increase R if rejection rate < 0.05
4: else
5: if mod(k, tad) = 1 then
6: Set Vk = sdCov(θ 0,θ 1, ...θ k) + δ Id and use eq (2.27), sd = 2.382/d, δ =

10−9, Rk = chol(Vk)
7: else
8: Vk = Vk−1, Rk = Rk−1
9: end if

10: end if
11: Output Rk

Algorithm 1c Delayed Rejection Algorithm (DR) for ndr = 2, i.e. for 2nd stage proposals

1: Sample uk ∼MV N (0,I)
2: Construct 2nd stage candidate from Gaussian proposal: θ

∗(2) = θ
k−1 +βRk−1uk

3: if a j ≤ θ j ≤ b j for any j then
4: θ k = θ k−1, S

θ
k = S

θ
k−1, S k

pri = S k−1
pri

5: and jump to AM Algorithm 1b
6: else
7: S

θ
∗(2) = ∑

n
i=1[yi−mi(θ

∗(2))]2, S
∗(2)

pri = ∑
d
j=1

(θ∗
(2)
j −µ j)

2

t2
j

8: end if
9: Calculate the acceptance probability,

α2(θ
∗(2)|θ ∗,θ k−1)=min

(
1,

p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))q2(θ

k−1|θ ∗,θ ∗(2))[1−α1(θ
∗|θ ∗(2))]

p(θ k−1|y)q1(θ
∗|θ k−1)q2(θ

∗(2)|θ ∗,θ k−1)[1−α1(θ
∗|θ k−1)]

)

10: Sample uα2 ∼U (0,1)
11: if uα2 < α2 then,
12: θ

k = θ
∗(2), S

θ
k = S

θ
∗(2), S k

pri = S
∗(2)

pri
13: else
14: θ

k = θ
k−1, S

θ
k = S

θ
k−1, S k

pri = S k−1
pri

15: end if
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Algorithm 1d Delayed Rejection Adaptive Metropolis (DRAM) with scaled parameters

1: Denote θ s = θ ./s, where s are the scaling factors
2: In Algorithm 1a:
3: DRAM 2: Compute θ

0 = argminθ ∑
n
i=1[yi−mi(θ .× s)]2

4: DRAM 10: Construct candidate from Gaussian proposal:

θ
∗

s = θ
k−1
s +Rk−1uk

and set
θ
∗ = θ

∗
s.× s

5: DRAM 14: Set

S ∗
pri =

d

∑
j=1

(θ ∗ j−µ j)
2

t2
j

+ log(det(J))

where J is the Jacobian matrix of the parameter transformation. If the parameters are as-
sumed independent and s is a vector of constants, then log(det(J)) = ∑

d
j=1 log(s j)

6: DRAM 16: Calculate the acceptance probability in the scaled parameter space α1(θ
∗

s|θ k−1
s )

7: Note: if a non-informative prior is used and s is a vector of constants,
then only the likelihood contribution is left in the acceptance probability, i.e.

min
(

1,exp
(
−0.5

[
S

θ
∗

s
−S

θ
k−1
s

σ2
k−1

]))
. In the likelihood calculations, the unscaled parame-

ters are always used, whereas the prior and proposal are calculated in transformed parameter
space.

8: DRAM 19: In addition, set θ
k
s = θ

∗
s

9: In Algorithm 1c:
10: DR 2: Construct 2nd stage candidate from Gaussian proposal:

θ
∗(2)

s = θ
k−1
s +βRk−1uk,

and set
θ
∗(2) = θ

∗(2)
s .× s

11: DR 7: Set

S
∗(2)

pri =
d

∑
j=1

(θ
(2)
j −µ j)

2

t2
j

+ log(det(J))

12: DR 9: Calculate the acceptance probability in the scaled parameter space,
α2(θ

∗(2)
s |θ ∗s,θ k−1

s ).
13: DR 12 or DR 14: In addition, set θ

k
s = θ

∗(2)
s or θ

k
s = θ

k−1
s
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Note: If a non-informative prior is used, then Spri = 0 in Algorithms 1a, 1c and 1d.

3.4 Simulations

3.4.1 Software

The statistical methods were implemented in Matlab (Mathworks, Natick, MA) and simulations
were run on a RedHat Enterprise Linux 6 machine with Intel(R) Xeon(R) CPU E5-2680 v2
2.80GHz and 32GB RAM. The DRAM algorithm and the convergence diagnostics made use of
functions from the Matlab MCMC toolbox [107]. The PDEs of the 1D fluid-dynamics model
in Section 2.2 were numerically integrated using a two step Lax-Wendroff scheme [113] imple-
mented in C++ by Olufsen et. al. [139, 151]. The two-step Lax-Wendroff scheme used is second
order accurate in space and time. To ensure an appropriate spatial and temporal resolution was
used, several discretizations in space and time were tested, ensuring that the Courant-Fredrich-
Levy (CFL) condition

∆t
∆x
≤ |u± c|−1 (3.20)

where u is the fluid velocity and c is the wave speed, which is dependent on the wall model
used (see [152] for details). The analysis revealed that ∆x = 0.025 (mm) and ∆t = 1.34×10−5

(s) provide sufficient resolution. In addition, the PDE system was solved over multiple periods
until a converged, steady-state solution was reached (pressure difference between cycles was
less than 0.001 mmHg). A typical model evaluation requires 20s elapsed time on the hardware
mentioned above.

3.4.2 Method implementation details

Optimisation

To perform non-linear constraint optimisation, the sequential quadratic programming (SQP) al-
gorithm [11] was used, and was iterated until it satisfied the convergence criterion ||θ k−θ

k−1||<
10−11. The SQP algorithm was started from 20 different parameter vector values, which were
uniformly drawn from a Sobol sequence to ensure a good coverage of the multidimensional
parameter space [16].

AM

The length of the adaptation interval for the AM algorithm was chosen to ensure good mixing,
leading to optimal acceptance rate, e.g. 23%, see Chapter 12 in Gelman’s book [66]. The value
used was 1000. This value produced better mixing and higher acceptance rate by up to 5% than
AM run with other adaptation values, e.g. 100 or 500.
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DR

Two tries were attempted for the DR algorithm, i.e. if the first stage proposal was rejected, a
second proposal was made. Two attempts were enough to double the acceptance rate (from 20%
to 40%) at the cost of an extra PDE evaluation at every MCMC iteration.

3.4.3 Parameter transformation

To improve numerical stability and reduce round-off errors, the original parameters θi were

scaled in the order of one when used in the SQP and DRAM algorithms: θi ∈ [li,ui]→
θi

si
∈

[−1,1], where si is a scaling factor which ensures
θi

si
∈ [−1,1]. The transformed parameters

were then mapped back via the inverse transformation into the original domain θi ∈ [li,ui] before
being inserted into the PDEs.

3.5 Results

This analysis was performed on two mice, a control and a hypoxic mouse. For each mouse, two
models were compared: a 5D and a 4D model (see eq (3.2)), including or excluding the tapering
factor.

3.5.1 Exploration results

The analysis was started by an exploration of the objective function, the residual sum-of-squares
(see eq (3.4)), calculated for the MPA-measured pressure. Figures 3.1 and 3.2 illustrate RSS in
2D, i.e. two parameters were varied at a time while the other parameters were kept fixed, for the
4D and 5D models for the control mouse. RSS exhibits unimodality and it is highly skewed in
2D (similar behaviour is obtained for the hypoxic mouse, plots not shown here). In some of the
figures, there is a sudden jump to a region with RSS values of 1010 (yellow patch). This region
marks the parameter domain that produces no PDE output because the physical assumptions of
the mathematical model were violated.

3.5.2 Optimisation results

The unimodality in RSS motivates applying the non-linear constraint optimization to find the
set of parameters that minimise RSS. Results indicate that regardless of the starting value, the
optimisation algorithm reaches the same parameter values, suggesting that RSS is unimodal in
4D or 5D. The algorithm converges to the parameter estimates summarised in Table 3.1.

Table 3.1 shows that for both 4D and 5D models, the hypoxic mouse has a larger vessel
stiffness, the resistance adjustment factors are larger and the compliance adjustment factor is
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(a) s vs r2 with S : (100,65000) (b) r1 vs r2 with S : (100,130000) & a few S = 1010

(c) r2 vs c with S : (100,23000) (d) s vs r2 with S : (100,130000)

Figure 3.1: Contour plots of the objective function (residual sum-of-squares) in 2D, decreasing
in the direction towards the inner dark blue slices for the 4D model corresponding to a control
mouse. The yellow patches in the (b) panel figure show a region with RSS values of 1010. The
red trajectories in the innermost slice indicate parameter samples from the posterior distribution
obtained using the Delayed Rejection Adaptive Metropolis algorithm. For graphical visibility,
the innermost slice was not further resolved with additional contour lines. Here s is the ves-
sel stiffness parameter (expressed in g/cm/s2 units) and r1,r2,c are the Windkessel adjustment
parameters (dimensionless). Figure adapted from our study in [141].

Mouse type Model type s r1 r2 c ξ RSS
Control 4D 100398 1.69 0.17 -1.30 0 126.5
Hypoxic 4D 243645 0.52 0.13 -0.24 0 80.3
Control 5D 85529 1.96 0.25 -2.03 0.26 104.5
Hypoxic 5D 228383 0.59 0.14 -0.22 0.09 80

Table 3.1: Optimisation results for the 4D and 5D models (see eq (3.2)) for a control and hypoxic
mouse. Legend: s: vessel stiffness (expressed in g/cm/s2 units), r1,r2,c: resistances and com-
pliance adjustments (dimensionless), ξ : vessel tapering factor (dimensionless), RSS: residual
sum-of-squares.

smaller for the control mouse compared to the hypoxic, implying that the control mouse has a
smaller resistance and higher compliance than the hypoxic mouse (see eq (2.13)). In addition,
the quantitative fit to the control mouse data is better when the tapering factor is included (since
RSS is smaller for the 5D model than for the 4D model), and the quantitative fits for the two
models are very similar for the hypoxic mouse.

Next the parameter estimates in Table 3.1 were used to predict the pressure signal which is
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(a) r1 vs ξ with S : (100,126000) & a few S = 1010 (b) r1 vs r2 with S : (100,110000) & a few S = 1010

(c) s vs ξ with S : (100,165000) (d) s vs r2 with S : (100,115000)

Figure 3.2: Contour plots of the objective function (residual sum-of-squares) in 2D, decreasing
in the direction towards the inner dark blue slices for the 5D model corresponding to a control
mouse. The yellow patches in the top two figures (panels (a) and (b)) show a region with RSS
values of 1010. The red trajectories in the innermost slice indicate parameter samples from the
posterior distribution obtained using the Delayed Rejection Adaptive Metropolis algorithm. For
graphical visibility, the innermost slice was not further resolved with additional contour lines.
Here s is the vessel stiffness parameter (expressed in g/cm/s2 units) and r1,r2,c are the Wind-
kessel adjustment parameters (dimensionless), and ξ : vessel tapering factor (dimensionless).
Figure adapted from our study in [141].

compared to the measured pressure for both mice and models, see Figure 3.3. When comparing
between the 4D and 5D models, qualitatively the signals look very similar. However, when
comparing between mice, the overall model prediction appears to be better for the hypoxic
mouse. In the case of the healthy mouse, the simulated pressure closely follows the measured
pressure except near the peak, where an offset is registered. In addition, the systolic and diastolic
pressures are larger for the hypoxic mouse than the control mouse, and the diastolic pressure
decay is steeper for the hypoxic mouse, a consequence of higher vessel stiffness.

3.5.3 MCMC results

The uncertainty in the parameter estimates was quantified using the DRAM, AM and DR algo-
rithms.
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Figure 3.3: Comparison between measured pressure (solid black line) and pressure obtained
from optimisation (dashed green line) for the 4D model (left column) and 5D model (right
column) for a control and a hypoxic mouse. Figure taken from our study in [141].

AM

Table 3.2 summarises the AM results for every model and mouse type via the posterior mean
and standard deviation calculated from the posterior samples. Similar observations as for the
optimisation estimates can be made. Additionally, Figure 3.4 shows the uncertainty in the form
of traceplots of posterior parameter samples obtained with the AM algorithm for the control
mouse for the 5D model. The chains fluctuate around the optimised parameter values, which
were the starting values, suggesting that the chains have reached the high posterior probability
regions, and that the optimisation might have found the global optimum. A similar behaviour
was registered for the 4D model, plots not shown here. There are no signs of multimodality
in the objective function, which tallies with the optimisation results. Convergence appears to
have been reached after roughly 13,000 iterations. The chain for RSS is steady around the initial
optimised RSS value and the chain for σ2 does not indicate non-convergence.

Additionally, the pairwise posterior correlations in Figure 3.5 indicate that the stiffness is
(strongly) negatively correlated to the tapering factor, i.e. as the wall stiffness increases, the
vessels become less tapered (top and bottom vessel radii become similar). Another example is
the high correlation between the vessel stiffness and the compliance adjustment factor, i.e. as
the stiffness increases, the compliance adjustment factor increases, hence the vessel compliance
decreases (see eq (2.13)).

Figure 3.6 displays the traceplots for the 5D model parameter posterior samples for the hy-
poxic mouse. A pronounced skewness in the marginal distributions of the stiffness and tapering
factor can be noticed, and they are strongly correlated. The biological range for the tapering
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Mouse
type

Model
type

s r1 r2 c ξ σ2

Control 4D 100374
(391)

1.69
(0.01)

0.17
(0.005)

-1.30
(0.04)

0 0.12
(0.005)

Hypoxic 4D 243653
(1180)

0.52
(0.01)

0.13
(0.003)

-0.24
(0.01)

0 0.08
(0.003)

Control 5D 85471
(658)

1.96
(0.006)

0.25
(0.01)

-2.03
(0.07)

0.26
(0.01)

0.10
(0.004)

Hypoxic 5D 231627
(3720)

0.57
(0.02)

0.14
(0.003)

-0.23
(0.01)

0.07
(0.02)

0.08
(0.003)

Table 3.2: Posterior mean and standard deviation in brackets obtained from parameter posterior
samples drawn with the Adaptive Metropolis algorithm and noise variance drawn with Gibbs
algorithm for every mouse and model type. Legend: s: vessel stiffness (expressed in g/cm/s2

units), r1,r2,c: Windkessel resistances and compliance factors (dimensionless), ξ : vessel taper-
ing factor (dimensionless), σ2: noise variance.

factor is overly conservative. The posterior mean is different from the RSS-based optimum
estimates (the two values are similar for the 4D model, plots not shown).

DR

Figure 3.7 shows 10,000 iterations of a chain produced using the DR algorithm for the control
mouse, 5D model. Despite the acceptance rate which is close to the optimal target acceptance
rate given in literature (23% [66]), the plots reveal non-convergence of the chains, and the pa-
rameter space is explored slowly, leading to bad mixing, as judged from visual inspection. DR
seems to be affected by the strong correlations between the parameters. Therefore, the chains
would have to be run for a longer time, implying that the global adaption from the AM algorithm
is essential in reaching convergence in a reasonable time frame.

DRAM with parameter scaling

Next the DRAM algorithm was implemented for every mouse type and model type. The pos-
terior means and standard deviations for samples drawn with DRAM are extremely similar to
those obtained using the AM algorithm, so they are not shown here. This emphasizes that the
sampling algorithm is not important so long as the sampler has converged and is sampling (ap-
proximately) from the posterior distribution; the algorithms used can make a difference from
an efficiency point of view, but not from an accuracy point of view. For example, Figure 3.8
displays Markov chains obtained with DRAM for the control mouse, model 5D. The visual
inspection indicates good mixing of the chains around the optimum parameter values (formal
tests. e.g. Geweke test [70] investigating mixing are presented in Section 3.5.4). The DRAM
algorithm has a higher acceptance rate compared to the AM algorithm (the rate has increased
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Figure 3.4: Markov chains traceplots for the parameters, residual sum-of-squares and noise
variance obtained using the Adaptive Metropolis algorithm for the 5D model corresponding to
a control mouse. Starting values for the algorithm were the optimised values, superimposed in
black horizontal lines. Acceptance rate is 22% in a total of 36,000 MCMC iterations. Legend:
s: vessel stiffness (expressed in g/cm/s2 units), r1,r2,c: Windkessel resistances and compliance
factors (dimensionless), ξ : vessel tapering factor (dimensionless), S: residual sum-of-squares,
σ2: noise variance. Figure taken from our study in [141].

from 20% up to 40%). This is not surprising considering the extra DR step in the DRAM al-
gorithm, which upon rejection of the first proposal, proposes a second point at every iteration
of the algorithm. The result is a higher acceptance rate, and thus, fewer iterations are needed to
reach convergence when compared to AM. This does not necessarily incur lower computational
time, since in every DRAM iteration, if a second point is proposed, the PDEs have to be solved
twice within that iteration.

DRAM without parameter scaling

Figure 3.9 illustrates results from DRAM without allowing for parameter scaling in the proposal
density. It is obvious that several proposals with extremely large RSS values are falsely ac-
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Figure 3.5: Pairwise posterior correlations for the parameter posterior samples obtained with the
Adaptive Metropolis algorithm for the 5D model corresponding to a control mouse. Legend: s:
vessel stiffness (expressed in g/cm/s2 units), r1,r2,c: Windkessel resistances and compliance
factors (dimensionless), ξ : vessel tapering factor (dimensionless). Figure taken from our study
in [141].

Figure 3.6: Markov chains traceplots for the parameters obtained using the Adaptive Metropolis
algorithm for the 5D model corresponding to a hypoxic mouse. Starting values for the algorithm
were the optimised values, superimposed in black horizontal lines. Acceptance rate is 22% in
a total of 36,000 MCMC iterations. Legend: s: vessel stiffness (expressed in g/cm/s2 units),
r1,r2,c: Windkessel resistances and compliance factors (dimensionless), ξ : vessel tapering fac-
tor (dimensionless). Figure taken from our study in [141].

cepted, which is not the case for DRAM allowing for parameter scaling (Figure 3.8). Parameter
vector values producing extremely high RSS values are falsely accepted because the ratio of the
proposal distributions in unscaled space (see eq (3.17)) becomes large, making the acceptance
rate 1.
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Figure 3.7: Markov chains traceplots for the parameters obtained using the Delayed Rejection
algorithm for the 5D model corresponding to a control mouse. Starting values for the algorithm
were the optimised values, superimposed in black horizontal lines. Acceptance rate is 22% in
a total of 10,000 MCMC iterations. Legend: s: vessel stiffness (expressed in g/cm/s2 units),
r1,r2,c: Windkessel resistances and compliance factors (dimensionless), ξ : vessel tapering fac-
tor (dimensionless). Figure taken from our study in [141].

3.5.4 MCMC convergence and efficiency diagnostics

Visual inspection of the traceplots helped rule out algorithms producing sub-optimal mixing
of the Markov chains (DR), and MCMC convergence and efficiency diagnostics (reviewed in
Chapter 2) were implemented only for the DRAM and AM algorithms, which exhibited good
mixing. Tables 3.3 and 3.4 show the results based on the Geweke test, the Brooks Gelman Rubin
test, and the Effective Sample Size (ESS). For both DRAM and AM, the Geweke test registered
a p-value of 0.99, well above 0.05 for all model and mouse types, suggesting that there was
no evidence of a difference between the mean of the first 10% samples and last 50% samples
of the Markov chain. The MPSRF was below 1.1 for all four cases. The estimates for ESS
suggest that there is a great amount of correlation between the samples for both algorithms with
ESS normalised by the number of MCMC iterations N being much smaller than 1 (1 would
be obtained for independent sampling). Both algorithms, AM and DRAM register comparable
efficiency, and the 5D model tends to have slightly lower ESS/N than the 4D model, possibly
due to the strong correlation between the stiffness and tapering, retarding the convergence of the
algorithm.

3.5.5 Model Selection

Model selection to discriminate between two competing models: a 4D model (without tapering),
and a 5D model (with tapering) is employed. Table 3.5 shows results based on four criteria:
AICc, BIC, DIC and WAIC. WAIC was calculated based on 1000 DRAM samples. Results
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Figure 3.8: Markov chains traceplots for the parameters, residual sum-of-squares and noise
variance obtained using the Delayed Rejection Adaptive Metropolis algorithm with parameter
scaling for the 5D model corresponding to a control mouse. Starting values for the algorithm
were the optimised values, superimposed in black horizontal lines. Acceptance rate is 39% in
a total of 20,000 MCMC iterations. Legend: s: vessel stiffness (expressed in g/cm/s2 units),
r1,r2,c: Windkessel resistances and compliance factors (dimensionless), ξ : vessel tapering fac-
tor (dimensionless), S: residual sum-of-squares, σ2: noise variance. Figure taken from our study
in [141].

indicate that the scores are similar and fairly consistent across different criteria. For the control
mouse, all the scores are lower for the 5D model compared to the 4D model, implying that
in the case of the control mouse adding the tapering factor makes the model more appropriate
for the data. On the other hand, for the hypoxic mouse, the scores are very similar across the
two models, WAIC favours the 4D model, while AICc, BIC and DIC favour the 5D model.
Considering the very small difference in RSS between the 4D and 5D models, the similarity of
the scores and the fact that WAIC, which is the most reliable score (see Section 2.3.8) favours
having four parameters, the 4D model is chosen as the better model for the hypoxic mouse data.
Hence, there is evidence that the tapering factor is not significant for the hypoxic mouse, but the
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Figure 3.9: Displaying the effect of not allowing for parameter scaling: Markov chains traceplots
for the parameters, residual sum-of-squares and noise variance obtained using the Delayed Re-
jection Adaptive Metropolis algorithm with no parameter scaling for the 5D model correspond-
ing to a control mouse. Starting values for the algorithm are the optimised values, superimposed
in black horizontal lines. Acceptance rate is 30% in a total of 40,000 MCMC iterations. Legend:
s: vessel stiffness (expressed in g/cm/s2 units), r1,r2,c: Windkessel resistances and compliance
factors (dimensionless), ξ : vessel tapering factor (dimensionless), S: residual sum-of-squares,
σ2: noise variance. Figure taken from our study in [141].

opposite is true for the control mouse.

3.6 Discussion and Conclusions

This chapter performs inference and uncertainty quantification of haemodynamic parameters:
vessel wall stiffness and boundary conditions (Windkessels) parameters of a 1D fluid-dynamics
model of the pulmonary circulation in a fixed vessel network obtained from one image segmen-
tation, and a zero vessel tapering, as well as a non-zero tapering is assumed, which is inferred
from data. Unknown parameters were sampled using MCMC, namely Delayed Rejection Adap-
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Mouse type Model type Geweke test (p-values) MPSRF ESS/N
Control 4D all > 0.05 1.004 (0.07,0.07,0.07,0.06)
Hypoxic 4D all > 0.05 1.006 (0.07,0.07,0.07,0.09)
Control 5D all > 0.05 1.01 (0.05,0.03,0.04,0.05,0.05)
Hypoxic 5D all > 0.05 1.03 (0.04,0.04,0.08,0.06,0.04)

Table 3.3: MCMC convergence diagnostics: Geweke test, Multivariate Potential Scale Reduc-
tion Factor (MPSRF), and sampler efficiency: Effective Sample Size (ESS) normalised by num-
ber of samples (N = 20,000) for all parameters, corresponding to results obtained using the
Delayed Rejection Adaptive Metropolis algorithm for every mouse and model type.

Mouse type Model type Geweke test (p-values) MPSRF ESS/N
Control 4D all > 0.05 1.01 (0.05,0.05,0.05,0.05)
Hypoxic 4D all > 0.05 1.004 (0.06,0.06,0.06,0.06)
Control 5D all > 0.05 1.04 (0.03,0.02,0.02,0.04,0.02)
Hypoxic 5D all > 0.05 1.06 (0.02,0.03,0.05,0.04,0.02)

Table 3.4: MCMC convergence diagnostics: Geweke test, Multivariate Potential Scale Reduc-
tion Factor (MPSRF), and sampler efficiency: Effective Sample Size (ESS) normalised by num-
ber of samples (N = 36,000) for all parameters, corresponding to results obtained using the
Adaptive Metropolis algorithm for every mouse and model type.

Mouse type Model type AICc (AIC) BIC DIC WAIC
Control 4D 772 792 772 774
Control 5D 579 603 578 580
Hypoxic 4D 307 326 306 304
Hypoxic 5D 301 325 300 310

Table 3.5: Model selection scores (AICc, BIC, DIC, WAIC) for every mouse and model type.
AICc is very similar to AIC (up to 4 dp), since the sample size is large (1024 data points). Lower
scores (in bold) indicate the better model.
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tive Metropolis algorithm and its variations Adaptive Metropolis and Delayed Rejection. To
make the computations feasible, the MCMC algorithms were started from optimised parameter
values, which were found with non-linear constraint optimisation. The methodology proposed
builds on and further improves existing literature by combating the different parameter magni-
tudes through the use of a novel parameter scaling applied to real mouse data. Results indicated
that the DRAM, DR and AM algorithms performed similarly in terms of accuracy, DRAM and
AM had comparable performance in terms of efficiency, while visual inspection indicated that
DR was inferior.

This study found that pulmonary hypertension is associated with stiffer and less compliant
proximal and distal vasculature. In addition, model selection was performed to identify whether
there was evidence of vessel tapering from data. The AICc, BIC, DIC and WAIC model selection
criteria consistently chose the more complex model for the control mouse, i.e. tapering was
consistent with the control mouse data. For the hypoxic mouse the scores were inconsistent, but
given the difference between them was small and the most reliable score WAIC favoured the
simpler model, the conclusion was that tapering was not significant for the hypoxic mouse data.
A possible explanation for this could be that in hypoxia the vessel walls become stiff, hence
there may not be a pronounced decrease in the radii along the vessels’ length.

All these results are based on a mathematical model that looks more appropriate for the hy-
poxic mouse than for the control mouse. It was hypothesized that the slight model discrepancy
is caused by: (i) the simplicity of the model specifying the elastic behaviour of the blood vessels
and/or the boundary conditions, (ii) uncertainty of the geometry measurements which are not
specific to a given mouse, (iii) a combination of (i) and (ii). This slight model mis-specification
has the undesired effect of breaking the iid error Normality assumption. Therefore, to account
for the correlated structure in the errors, a Markov model that incorporates the correlation struc-
ture is incorporated in subsequent analysis presented in this thesis.

Making a few restrictive assumptions about the parameters allowed us to decrease the param-
eter dimension considerably from a 55D problem to a 5D problem. Some of these assumptions
are checked in the next chapter.

Finally, work in next chapters includes implementing MCMC methods which are more ef-
ficient than the random-walk DRAM algorithm, e.g. Hamiltonian Monte Carlo [132], which
suppresses the random behaviour of the algorithm by using a momentum variable guiding the
direction in which the proposals are made. To speed up simulations, HMC can be run on an
objective function emulated using Gaussian Processes [157].

In the next part of this chapter, an analysis incorporating the correlation structure of the
residuals is presented.
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3.7 Introduction and methods

The first part of this chapter presents results based on a statistical analysis which made the as-
sumption of iid residuals. However, a plot of the errors in time reveals that the iid assumption
is invalid, see Figure 3.11. Therefore, the aim of this second part is show results based on in-
corporating the correlation structure of the errors into the analysis. The error correlation is a
consequence of the model inadequacy (i.e. inability of the mathematical model to faithfully
capture the measured haemodynamics, see the peak offset in Figure 3.3, potentially due to the
simplicity of the model specifying the elasticity of the blood vessel walls, the simplifying Wind-
kessel boundary conditions, fixed inflow, or the geometry measurements, which are not mouse-
specific), of the nature of the data (i.e. haemodynamic measurements at the current time point
within the heartbeat depend on the previous time points), and on the data post-processing (i.e.
noise reduction/filtering techniques via data smoothing or averaging). The exact experimental
protocols for data measurement are unknown, which makes a direct deconvolution impossible.
A parametric assumption about the residuals is made, namely that they follow the multivariate
normal distribution. Under this assumption, the statistical model is expressed as:

y = m(θ)+ ε, ε ∼MV N (0,C), (3.21)

and the log likelihood is given by:

log p(y|θ) =−1
2

log(det(2πC))− 1
2
(y−m(θ))TC−1(y−m(θ))

=−1
2

log(det(2πC))− 1
2

r(θ)TC−1r(θ),
(3.22)

where C is the covariance matrix and r(θ) is the vector of residuals as a function of θ , given
by the difference between the measured data and the data simulated with the θ PDE parameter
vector.

In this chapter the analysis focuses on comparing two wall models: a linear wall and a non-
linear wall model, as indicated in Table 2.1 and described in Section 2.2, for the control mouse
(hypoxic mouse data were not included as our study in Qureshi et al. [151] revealed hardly any
difference in fit between the two models, see Figure 3.10). The model selection was performed
with AICc and BIC scores. The data are described in Section 2.1.

The vessel tapering factor was set to zero despite having been found significant in the pre-
vious part of this chapter. Post-analysis found that inferring vessel tapering from the MPA-
measured data can lead to unrealistic physiological characteristics (e.g. unrealistically high
pulse pressure) in distal vessels. The tapering factor interacts differently with different wall
models, hence it should be estimated from image data during the image segmentation process
rather than from haemodynamic simulations; this is beyond the scope of the current study.
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Figure 3.10: Measured pressure and flow data in the main pulmonary artery plotted alongside
the optimised pressure waveform for the linear (Linear B) and non-linear wall models described
in Chapter 2 for the control and hypoxic (hypertensive) mouse. Figure taken from our study in
[151].

3.7.1 Covariance matrix estimation

To estimate the covariance matrix C in eq (3.22), several approaches were taken to fit the time
series of residuals in Figure 3.10: an autoregressive moving average model ARMA(p,q) and
Gaussian process (GP) models with several standard kernels: a squared exponential, a Matérn
5/2, a Matérn 3/2, a neural network kernel and a periodic kernel [157].

Linear interpolation

The time series has 1024 time points that come from linear interpolation of 552 original mea-
surements. Linear interpolation can result in ill-conditioned or singular covariance matrix. If
the columns of the matrix are merely similar, the matrix is ill-conditioned, while if a column is a
linear combination of other columns, the matrix is singular. To avoid this, linear interpolation of
the 552 original measurements was done for data reduction, to obtain 512 points (the numerical
scheme integrates the Windkessel eq (2.7) in frequency domain using Fast Fourier transform and
requires 2m points).

For illustration, consider the simple case of six equidistant time points T0,T1,T2,T3,T4,T5

with associated measurements f (T0), f (T1), f (T2), f (T3), f (T4), f (T5). To reduce this to five
equidistant time points, points are spaced out at 6

5 = 1.25 units apart, instead of 1 unit apart, i.e.
T0,T1.25,T2.5,T3.75,T5. By linear interpolation: f (T1.25)= 0.75× f (T1)+0.25× f (T2), f (T2.5)=

0.5× f (T2)+0.5× f (T3), f (T3.75) = 0.25× f (T 3)+0.75× f (T4) with f (T0) and f (T5) remain-
ing unchanged. This can be generalised to downsampling 552 time points to 512.
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Figure 3.11: Residual time series in the main pulmonary artery, as given by the difference
between the measured and the simulated pressure signal corresponding to the linear and non-
linear wall model for the control mouse. Figure taken from our study in [151].

ARMA model

The residuals in Figure 3.11 indicate that the residual time series is non-stationary. In order to fit
an ARMA model, the non-stationary residual time series must be transformed into a stationary
time series. This was done by taking 2nd order differences, where the order was chosen based
on a formal statistical test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [106], which tests for
stationarity of the residual time series. Denoting by rt the t th element of the residuals vector,
second order differences are calculated as: B2(rt) = B(rt− rt−1) = (rt− rt−1)− (rt−1− rt−2) =

rt−2rt−1 + rt−2, where B denotes the lag operator. The result of this is a stationary time series,
as seen in the left panel of Figure 3.12. The middle panel shows the autocorrelation function
(ACF) of the stationary time series, and the right panel displays the partial autocorrelation func-
tion (PACF). ACF and PACF figures help identify if the differenced residuals can be modelled
using either AR or MA models. If the ACF is significantly different from zero for the first q lags
only (for small q), then an MA(q) model is appropriate. If the PACF is significantly different
from zero for the first p lags only (for small p), then an AR(p) model is appropriate. Figure 3.12
suggests that the process is neither an AR nor an MA model, and the two components need to be
combined into a more complex ARMA model. The ARMA model was fitted to the twice differ-
enced residuals, which is the equivalent of fitting an autoregressive integrated moving average
model (ARIMA) model with difference parameter d = 2 to the original residuals.

An ARMA(p,q) process is the stationary solution to:

Ap(B)rt =Cq(B)et , (3.23)

where et is white Gaussian noise, and Ap and Cq are polynomials of order p and q, respectively.
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An ARIMA(p,d,q) process is defined by:

Ap(B)(1−B)drt =Cq(B)et . (3.24)

In order to select the order p&q of the ARIMA model, a few p&q values were tried, the
ARIMA(p,d,q) was fitted to the original residuals, and the BIC score was computed for each
ARIMA(p,q) model. The model with the lowest BIC score was taken forward.

Computation of the covariance matrix was done following the standard procedure proposed
by Box & Jenkins [15, 120]. The analysis was carried out in R Studio, and the correlation
function at lag l, ρ(l) was computed with the ARMAacf inbuilt function (or TacvfARMA) in
the FitARMA package [121]. The residual variance was estimated as σ̂2 = ∑

n
i=1(ri−r̄)2

n−1 , and the
covariance function was found by multiplying σ̂2 and ρ̂(l), where l is the lag, l = 0, ...,n− 1.
The covariance matrix was computed based on the covariance function between any two residual
points, as follows:

C =



Cov(r1, r1) Cov(r1, r2) Cov(r1, r3) ... Cov(r1, rn)

Cov(r2, r1) Cov(r2, r2) Cov(r2, r3) ... Cov(r2, rn)

. . . ... .

. . . ... .

. . . ... .

Cov(rn, r1) Cov(rn, r2) Cov(rn, r3) ... Cov(rn, rn)


(3.25)

Hence,

C = σ
2



ρ̂(0) ρ̂(1) ρ̂(2) ... ρ̂(n−1)
ρ̂(1) ρ̂(0) ρ̂(1) ... ρ̂(n−2)
. . . ... .

. . . ... .

. . . ... .

ρ̂(n−1) ρ̂(n−2) ρ̂(n−3) ... ρ̂(0),


(3.26)

where σ2ρ̂(0) = σ̂2 is the estimated noise variance, and C is a symmetric matrix with constant
diagonals under the assumption that the twice differenced residual time series is stationary.

GP models

Gaussian process (GP) models were also fitted to the time series of original residuals using a
variety of standard kernels: a squared exponential, a Matérn 5/2, a Matérn 3/2, a neural network
kernel and a periodic kernel [157] (Matlab GPstuff toolbox [203] was used). The hyperparame-
ters of the GP covariance function were estimated from the residuals time series in Figure 3.11 by
maximisation of the log marginal likelihood using standard optimisation algorithms (see [157]
and Chapter 2). Using the optimum covariance function hyperparameters, the covariance matrix
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Figure 3.12: Twice differenced residual time series for the non-linear wall model - left, and
the corresponding autocorrelation function (ACF) - middle and partial autocorrelation function
(PACF) - right. Figures were obtained by using the arma function in R Studio.
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can be obtained by integrating out the latent functions from the joint posterior distribution (see
Chapter 2 for more details).

Since the correlation structure of the noise depends on the experimental protocol and is in-
dependent of the type of the mathematical model, the hyperparameter optimisation was carried
out under the constraint that the covariance matrices for both wall models had to be the same1.
Two approaches were taken. For the first, for each GP model the log marginal likelihood of
each wall model was maximised separately, resulting in two covariance matrices that were av-
eraged, and the average covariance matrix was the estimated covariance matrix. For the second
approach, the log marginal likelihood for both wall models was jointly maximised, subject to the
constraint of equal covariance matrices, yielding one single covariance matrix. Both approaches
returned the same model ranking for the model selection, thus, for simplicity the first approach
was applied to the ARMA model to obtain the covariance matrix.

3.7.2 Covariance matrix inversion

Obtaining the log likelihood in eq (3.22) requires inverting the covariance matrix, which was
performed by Choleski decomposition in combination with the numerically more stable back-
slash operator. For a triangular matrix, the backslash operator employs a forward substitution
algorithm. For example, suppose L is a lower triangular matrix with non-zero diagonal elements,

Lx = b⇔ x = L−1b⇔ x = L\b. (3.27)

The forward substitution algorithm proceeds as follows:
L1,1 0 . . . 0
L2,1 L2,2 . . . 0

...
... . . . ...

Ln,1 Ln,2 . . . Ln,n




x1

x2
...

xn

=


b1

b2
...

bn


the system can be solved using the forward substitution algorithm:

x1 =
b1

L1,1
,

x2 =
b2−L2,1x1

L2,2
,

...

xn =
bn−Ln,1x1−Ln,2x2−·· ·−Ln,n−1xn−1

Ln,n
.

(3.28)

1Early analysis made the assumption that the factor with the main contribution to the error correlation was
independent of the wall model used, this assumption is relaxed in Chapter 4.
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The covariance matrix C can be expressed as

C = LLT, (3.29)

where L is a lower triangular matrix and inversion of C is given by:

C−1 = (LT)−1L−1. (3.30)

Thus the computation of the Mahalanobis distance in eq (3.22) follows as

rTC−1r = (rT/LT)(L\r) = (L\r)T(L\r), (3.31)

where \ represents the backslash operator and / is the right matrix division operator.
For the log(det(C)) calculation in eq (3.22), the following can be noted. If the covariance

matrix C is high-dimensional, e.g. n = 500, and the matrix entries are between [0,1], naively
calculating the determinant det(C) can be prone to numerical instabilities, i.e. numerical under-
flow leading to a zero determinant, and hence log(det(C)) =−∞. This can easily be avoided by
computing

log(det(C)) = 2log(det(L)) = 2(log(L1,1L2,2...Ln,n) = 2(log(L1,1)+ log(L2,2)+ ... log(Ln,n)),

(3.32)
which is the sum of the log main diagonal entries (eigenvalues) of the lower triangular matrix L.

3.7.3 Parameter optimisation

For model selection with AICc and BIC, the maximum likelihood estimates need calculating,
see eq (2.85). This would require an iterative optimisation scheme, where for each parameter
adaptation, the covariance matrix would have to be re-computed, and the procedure repeated
until convergence. As this would lead to a substantial increase in the computational costs, the
maximum likelihood parameters were approximated by the parameters that minimise the resid-
ual sum-of-squares error.

3.8 Results and Conclusions

An ARIMA(3,2,3) was fitted to the original residuals of the linear wall model residuals, and an
ARIMA(3,2,5) to the residuals of the non-linear wall model. The AICc and BIC scores for the
linear and non-linear wall model with covariance matrix obtained with the ARIMA and the five
GP models are displayed in Table 3.6. All six models consistently indicate lower (better) AICc
and BIC scores for the linear wall model compared to the non-linear wall model.
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Model Score ARIMA GP SqExp GP Mat3/2 GP Mat5/2 GP NN GP periodic

Linear AICc -4418 -4260 -4304 -4396 -4436 -4252
Non-linear AICc -4279 -4152 -4198 -4251 -4352 -4150

Linear BIC -4401 -4243 -4288 -4380 -4420 -4236
Non-linear BIC -4254 -4131 -4177 -4230 -4330 -4129

Table 3.6: AICc and BIC scores for the linear and non-linear wall model with the covariance
matrices obtained using the ARIMA model and five Gaussian Process (GP) models with squared
exponential, Matérn 3/2, Matérn 5/2, neural network and periodic covariance kernels. Lower
AICc and BIC values (in bold) indicate the better wall model.

Therefore, based on the analysis carried out, the control mouse data seems to support the
linear wall model better than the non-linear wall model. These findings are based on possibly
sub-optimal parameter estimates since the maximum likelihood parameters were approximated
by the parameters that minimise the residual sum-of-squares error. In addition, by employing
an optimisation procedure the uncertainty in the PDE parameters and error covariance hyper-
parameters is ignored. In the next chapters these issues are tackled by jointly sampling the
haemodynamic and error parameters using MCMC, which allows calculating a more reliable
model selection criteria, WAIC.



Chapter 4

Assessing model mismatch and model
selection

This chapter emphasizes an often neglected, though important source of uncertainty: in the
mathematical model form due to the discrepancy between the model and the reality, and in the
measurements due to the wrong noise model (jointly called ‘model mismatch’). The model con-
sidered is a 1D fluid-dynamics model of the blood pulmonary circulation, whose haemodynamic
parameters are estimated with Bayesian methods. This approach allows a natural quantification
of the uncertainty in the parameter values, which is propagated through to the model (pulmonary
blood flow and pressure) predictions. The focus is on investigating the impact of minimising the
mean squared error between the measured and the predicted data (the conventional method) in
the presence of model mismatch, which is represented with Gaussian Processes. Additionally,
several vessel stiffness relations, as well as a linear and a non-linear wall model are considered,
and the Watanabe Akaike Information Criterion is used to select the model that best predicts
pulmonary haemodynamics.

Note: This chapter is based on the paper ‘Assessing model mismatch and model selection
in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood
circulation’ (submitted to J. R. Soc. Interface) on which I am the first author.

4.1 Introduction

Emanating from the right ventricle, the main pulmonary artery (MPA) bifurcates to the left
and right pulmonary arteries, and continues to branch in rapid succession until reaching the
capillary beds surrounding the alveoli. This intricate network transports blood to the lungs at
a low pressure (8 to 30 mmHg). Clinical monitoring of pulmonary health includes analysis
of blood pressure, measured invasively via catheterisation, imaging data, such as computed
tomography (CT), and ventilation perfusion scans [97]. While such data are routinely analysed,
they are not measured simultaneously nor integrated. To understand the interaction between

64
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the pulmonary circulation and the right ventricle in both healthy and disease environments it
is essential to combine imaging data with haemodynamic data. To do so, a 1D fluid-dynamics
model (described in Section 2.2) is used in combination with statistical inference, providing
predictions of blood pressure, blood flow, and vessel area, along with parameter estimates and
measures of uncertainty in model predictions. Haemodynamic predictions are computed in an
arterial network model constructed from micro-CT images from a control mouse and compared
to dynamic pressure data in the MPA.

Several previous studies, e.g. [35, 38, 114, 152, 151] have developed 1D fluid-dynamics
models which predict pulmonary blood flow and pressure. A few of these studies [38, 151]
aimed at devising subject-specific predictions requiring estimation of model parameters, which
was performed by minimising the least squares error between the predictions and the measure-
ments. While these studies provided valuable insight into the physiology, they did not analyse
predictions in a statistical framework.

Similar to previous studies [38, 151], the 1D model analysed here has two types of pa-
rameters: specifying the vessel network (i.e. radius, length, and connectivity of arteries in the
network), and the haemodynamics (i.e. pressure and flow). This study focuses on analysing
parameters intrinsic to the haemodynamics, i.e. model predictions in a fixed network geometry
obtained from one image segmentation are investigated.

The haemodynamic equations have three types of parameters specifying the characteristics
of the blood, the vessel tissue properties, and the boundary conditions. The blood viscosity and
density are measured [215], and therefore assumed known and constant. The vessel stiffness can
only be measured ex-vivo via stress-strain tests, and while it is possible to determine a stiffness
value in the large vessels, it is difficult to do so in smaller vessels. This makes it challenging
to validate the hypothesis that the smaller pulmonary vessels are stiffer than the large vessels
[12]. The final parameter types specify the boundary conditions at each terminal vessel, as finite
resolution in the imaging data requires premature truncation of the arterial network. From the
pressure and flow data, the total resistance and compliance in the system can be approximated,
and by assuming a given flow distribution at each junction, initial boundary condition estimates
at each terminal vessel [151] can be provided (see Section 2.2.4). Here, the focus is on analysing
the influence that parameters describing the vessel stiffness and boundary conditions have on
model predictions.

To understand the influence of these parameters, several sub-models are examined. Moti-
vated by results in our previous studies [114, 151] two constitutive equations relating pressure
and area via a linear and a non-linear wall model are compared. Furthermore, it is investigated if
the vessel stiffness is constant over the entire network (as suggested by Dawson et al. [103]), if
it depends on the radius (as suggested by Olufsen et al. [139]), or if the vessel stiffness should be
estimated for each vessel separately. In addition, as suggested in our previous studies [38, 151],
global scaling factors are introduced for the boundary condition parameters at the terminal ar-
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teries, which are estimated.
This model potentially gives rise to parameter correlations and non-identifiability problems,

i.e. not all parameters can be estimated uniquely given the model and the available data. To
tackle these issues, a Bayesian approach was adopted, with the aim to obtain the posterior dis-
tribution of the parameters. This is analytically intractable, so Markov Chain Monte Carlo
(MCMC) was used to sample parameters approximately from the posterior distribution (with
an asymptotic convergence guarantee). The MCMC samples were then used to estimate the
uncertainty of model predictions throughout the arterial network.

While several recent studies have incorporated Bayesian parameter estimation (e.g. [38,
141, 151, 170, 171]) and uncertainty quantification (UQ) [55, 122], most studies ignore the
model mismatch. The current study assumes that the model mismatch stems from two sources:
1) inadequate mathematical model (i.e., model discrepancy, since the mathematical model is not
a perfect representation of the real system) [96] and 2) incorrect noise model (i.e., erroneously
assuming independence when the errors are, in fact, correlated). A few studies have investigated
the former, i.e. the assumption of independent and identically distributed (iid) errors. In an anal-
ysis of viscoelestic models, Valdez et al. [199] showed that by scaling the least squares error, the
residual vector is close to iid. Yet this study only obtained point estimates and did not estimate
uncertainty of model predictions. Konukoglu et al. [101] included an inhomogenous variance,
informed by the authors’ experience with the data, in an electrophysiology model, and the au-
thors noticed that the noise model greatly influences the inference results. Additionally, Qureshi
et al. [151] accounted for correlated errors in a point estimate analysis of a fluid-dynamics model.
Another study [205] uses a multifidelity approach, and the model discrepancy between the high-
fidelity model and the low-fidelity models is investigated in an application of computational
fluid dynamics. In contrast, the current study uses solely high-fidelity models, and instead asks
about model-form uncertainty, which is quantified from available data. The work in [216] en-
hanced fluid velocity predictability of a Reynolds-averaged Navier Stokes (RANS) model by
including shear tensor model uncertainty via a Kalman update scheme. These results showed
that model predictions can be improved by adding a discrepancy term, even when predicting
quantities where data are unavailable for calibration. Furthermore, Whittaker et al. [211] and
Mirams et al. [124] discuss model discrepancy in a review of cardiac model calibration. Finally,
Lei et al. [115] explore model discrepancy in electrophysiology, which they model with GPs
and ARMA models; the authors show through synthetic studies that ignoring the model-form
uncertainty leads to biased predictions and uncertainty underestimation. Despite of this, most
cardiovascular modelling studies do not account for model discrepancy [45, 93].

In this study, a Bayesian approach is adopted, which quantifies the model structure uncer-
tainty by incorporating a data-driven error model. The measurement and model error is ex-
plicitly included and modelled using Gaussian Processes (GPs) [157] following Kennedy et
al. [96], with the aim that biophysical parameters are not misadjusted to compensate for the
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model mismatch [52]. The proposed Bayesian inference framework jointly samples the math-
ematical model parameters and the error model parameters from the posterior distribution with
MCMC. Thus, uncertainties associated with parameters, measurements and model discrepancy
are all accounted for in the analysis [218]. An alternative approach accounting for the model un-
certainty is Bayesian model averaging [86] or dynamic model averaging [153], which combines
all candidate models; a weighted average of the posterior distribution of the parameters under
each model is taken, where the weights are given by the model posterior probability. However,
the resulting averaged model lacks physiological interpretation, i.e. focuses on predictive, rather
than explanatory performance, hence this approach is not pursued in the current work.

Physiological and synthetic pressure data are utilised to examine the consequence of infer-
ring parameters when suspected model mismatch is unaccounted for. Results show that ignoring
model mismatch biases parameter estimates and underestimates uncertainty in parameter space
and output space, and the proposed method allows to correct this bias. In addition, a synthetic
study is carried out displaying the effect of using data from multiple vessels on the parameter
inference and UQ.

Finally, model selection is performed to discriminate between two constitutive models (a
linear and non-linear wall model), with a number of parameter constraints (related to the vessel
stiffness). The model selection analysis is based on a recent information criterion, the Watanabe
Akaike Information Criterion (WAIC) [209], which can be directly computed from the MCMC
samples.

4.2 Data

4.2.1 Physiological Data

This study compares model predictions to measured MPA blood pressure data from a control
mouse lung (Figure 2.1). The experimental data are summarised in Section 2.1.

4.2.2 Synthetic data

For the control mouse, synthetic data obtained from a forward simulation of the mathematical
model were also used. The synthetic, error-free data in all 21 vessels were generated using a
linear wall model with a radius-dependent exponential stiffness (see Table 4.1) with parameter
values consistent with the physiological data. To these data non-stationary, additive Gaussian
correlated errors were added, which were generated using the same error parameters for all the
vessels, assuming that the pressure transducer provides measurements that are independent of
the measurement location. The error correlation induces a model mismatch if the wrong error
model is utilised. To make the synthetic data physiologically realistic, a signal-to-noise ratio
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of approximately 100 was used (see Figure 5 in [194]), while ensuring that the pressure mono-
tonicity constraint was satisfied (i.e. that pressure decreases as it approaches the periphery).

4.3 Model

4.3.1 Fluid-dynamics model of the pulmonary circulation

The mathematical models used are a linear wall model and non-linear wall model, as indicated
in 2.1 and described in Section 2.2.

4.3.2 Model parameters

The vessel geometry, including vessel connectivity, and vessel radius and length, was assumed
fixed and known from micro-CT images, as obtained based on one image segmentation (this
uncertainty is quantified in Chapter 5). The vessels were assumed straight, i.e. radial tapering is
negligible. Additionally, the viscosity and density were assumed known and constant, leaving
the vessel stiffness and outflow boundary condition parameters to be inferred.

As noted earlier, two constitutive models relating pressure and area are compared: a linear
wall model – see eq (2.3) and a non-linear wall model – see eq (2.4). For the linear wall model
one parameter Eh (Young’s modulus times the wall thickness) was estimated, while for the non-
linear model two parameters, p1 and γ were estimated. For each model two scenarios were
investigated, that the vessel stiffness is constant, i.e. Eh and p1 are constant, and that they
increase as vessel radii decrease. For the latter, the dependence of Eh and p1 on r0 is expressed
in eq (2.5).

The parameters are constrained to lie within physiologically plausible bounds in a univariate
sense, but the parameters’ behaviour in the joint space is unknown prior to carrying out the
statistical analysis. Table 4.2 shows the univariate parameter ranges.

4.3.3 Overview of models: physiological hypotheses and model mismatch
scenarios

Table 4.1 outlines the different models considered in this work, which help explore several
physiological hypotheses and model mismatch scenarios. By analysing these models, the aim
is to test if for the physiological data described in Section 2.1, the wall model is linear or non-
linear, if the vessels share or have independent vessel stiffness, or if the vessel stiffness depends
on the radius. Furthermore, it is examined if it is important to account for the model mismatch.
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Linear
wall model

Constant stiffness and no model mismatch
Constant stiffness and model mismatch

Radius-dependent stiffness and no model mismatch
Radius-dependent and model mismatch

Vessel-specific stiffness and no model mismatch
Vessel-specific stiffness and model mismatch

Non-linear wall
model

Constant stiffness and model mismatch
Radius-dependent stiffness and model mismatch

Table 4.1: Models investigated: two constitutive models relating pressure-area (linear & non-
linear, as indicated in Table 2.1) with several stiffness relations: constant (common to all ves-
sels), radius-dependent (via eq (2.5)), vessel-specific (in a Bayesian hierarchical model), and
model and measurement error assumptions via including or ignoring model mismatch. For
the non-linear wall model, the no model mismatch scenario was not considered based on con-
clusions drawn from the linear model, clearly supporting modelling the model mismatch. In
addition, the vessel-specific stiffness scenario was not pursued due to the interaction between
the parameters p1 and γ in eq (2.4), requiring vessel-specific (p1,γ). This would lead to a very
large number of parameters being estimated, requiring extremely high computational efforts
(simulations would most likely take months to complete).

4.4 Statistical methods

4.4.1 Data likelihood

Normally distributed errors were assumed, with two scenarios: iid and correlated errors. Under
these assumptions, the likelihood function can be expressed as:

• Iid errors: y∼MV N (m(θ),σ2I), i.e.

p(y|θ ,σ2) =

(
1√

2πσ2

)n

exp
(
−∑

n
i=1(yi−mi(θ))

2

2σ2

)
, (4.1)

where
n

∑
i=1

(yi−mi(θ))
2 = (y−m(θ))T(y−m(θ)) (4.2)

is the Euclidean distance, and m(θ) is the vector of temporal pressure predictions from
the mathematical model, y is the vector of temporal pressure measurements, and n is the
number of time points. Lastly, MV N stands for Multivariate Normal distribution.

• Correlated errors: y∼MV N (m(θ),C), i.e.

p(y|θ ,C) = det(2πC)−
1
2 exp

(
−1

2
(y−m(θ))TC−1(y−m(θ))

)
, (4.3)
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where
(y−m(θ))TC−1(y−m(θ)) (4.4)

is the Mahalanobis distance.

4.4.2 Using GPs for model mismatch

The model mismatch is incorporated into the UQ analysis following the approach by Kennedy
et al. [96]. The model mismatch stems from two sources: correlated measurement errors (when
the iid assumption is wrongly made) and model discrepancy between the real system and the
mathematical model as per eq (4.5) [96],

y(t) = m(θ , t)+ζ (t)+ ε(t), (4.5)

where y(t) = (y(t1), . . .y(tn)) are the measurements at every time point in the vector t, m(θ , t) is
the simulator output in time (i.e. the prediction from the mathematical model evaluated at time
points t with parameters θ ), ζ (t) is the model discrepancy function, and ε(t) is the measurement
errors vector. Note that there is a distinction between model discrepancy and model mismatch in
the way described above, so these words are not used synonymously.

Possible causes for the measurement error correlation are: the nature of the data (i.e. the
blood flow or pressure measurements at the current time point depend on measurements at pre-
vious time points), and smoothing and averaging of the data. Possible causes for the model
discrepancy are: numerical errors (e.g., numerical integration of the PDEs), model assumptions
(e.g., purely elastic vessel walls, or the 1D model simplification), pressure and flow waveforms
that do not have a direct physical relationship (due to the data smoothing and averaging), by the
strict periodicity assumption of the measured pressure and flow (eqns (2.7) and (2.8)), uncer-
tainty of the network geometry (kept fixed), and inconsistency between network geometry and
haemodynamic data (e.g., the network geometry and the blood flow data do not come from the
same mouse).

Due to the limited data, the lack of prior knowledge on the model discrepancy function, the
unknown smoothing and averaging technique applied to the raw data, and the unknown machine
precision for data measurement, both contributions from the measurement error and model error
(model discrepancy) are modelled with one single GP model. Thus, the model mismatch is
defined as in eq (4.6)

y(t) = m(θ , t)+Γ(t),

Γ(t) = ζ (t)+ ε(t),
(4.6)

where Γ(t) is the model mismatch, represented by residuals.
While Kennedy’s formulation of eq (4.6) allows for model discrepancy (modelled with a

GP), it makes the assumption of iid measurement errors, i.e. assumes that ε ∼MV N (0,σ2
n I).
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The formulation in this chapter generalises this by allowing correlated measurement errors, and
the iid errors term are included into the GP (which helps obtain the limiting case of iid errors),
as explained in Section 4.4.3.

To help with the GP set-up for the model mismatch (i.e. for the residuals), the model mis-
match is further expressed in terms of latent functions f as

Γ(t) = f(t)+u(t),

u(t)∼MV N (0,σ2
n I),

(4.7)

where σ2
n is the noise variance of the residuals, assumed iid Gaussian.

Next, a GP prior is placed on the latent functions f, which following eq (2.53), is given by

f(t)|γ ∼ G P(0,K|γ). (4.8)

This GP captures the correlation stemming from both the model discrepancy ζ (t) and the mea-
surement errors ε(t) (when iid errors are wrongly assumed), defined in eq (4.6). In principle
one could place a GP prior on the model discrepancy function ζ , i.e. ζ (t)∼ G P(0,K1|γ1), and
another GP prior on the measurement errors, i.e. ε(t) ∼ G P(0,K2|γ2), but due to the limited
pressure data, these two terms cannot be distinguished and separately modelled; instead, a GP
prior is placed on the sum of the two terms, and in eq (4.8), K = K1+K2, assuming that the cor-
relation between the model mismatch processes (i.e. measurement error and model discrepancy)
is zero.

4.4.3 Using GPs to obtain the pressure data likelihood

In the likelihood functions above (eqns (4.1) and (4.3)), the iid errors scenario corresponds to
neglecting model mismatch, defined in eq (4.6), while the correlated errors scenario allows for
model mismatch. C in eq (4.3) is the covariance matrix of the residuals, i.e. C = K+σ2

n I.
Eq (4.7) allows to obtain the limiting case of iid errors, i.e. no model mismatch, by constraining
the kernel hyperparameters. For example, for the squared exponential kernel in eq (2.54), by
making the lengthscale, l→ 0, C = (σ2

m +σ2
n )I is obtained, hence by setting σ2 = σ2

m +σ2
n , the

iid errors scenario is obtained, which allows getting the pressure data likelihood under iid errors,
see eq (4.1). This approach is however not numerically stable (due to obtaining 0

0 in eq (2.54)).
The issue can be alleviated by placing a prior with zero mass on 0 for the lengthscale, or sampling
1
l

, which in practice never approaches ∞. Another approach that does not pose such problems

and is numerically stable is to set σ2
m to 0 in eq (2.54) (making the covariance matrix K1 +K2 a

zero matrix), which implies that σ2 = σ2
n . For the neural network kernel in eq (2.59), the same

can be accomplished by setting w = 0 and b = 0.
In the current work, the neural network kernel with hyperparameters w and b, and noise



CHAPTER 4. ASSESSING MODEL MISMATCH AND MODEL SELECTION 72

variance of the residuals σ2
n is used for the GP model representing the residuals to capture the

non-stationarity in the residual series (Figure 4.7).

4.4.4 Prior distributions

The following prior distributions for the biophysical and error parameters were chosen.

Biophysical parameters

Constant or radius-dependent stiffness models. For all models with constant or radius-
dependent stiffness (Table 4.1), a rescaled Beta distribution for the biophysical parameters
was used to ensure positive support within physiologically realistic ranges ([li,ui]) [103, 151],
θi ∼ Rescaled Beta(1,1), li ≤ θi ≤ ui, where i = 1, . . .d, with d being the parameter dimen-
sionality.
Vessel-specific stiffness in a Bayesian hierarchical model. Different pulmonary arteries may
have different vessel wall stiffness values, but since all vessels have similar tissue composition,
the parameters are related. A Bayesian hierarchical model [66] is needed to incorporate the prior
notion that the vessel stiffnesses are similar, and this model provides a mechanism of informa-
tion sharing among the vessel stiffness parameters. The dependence of these parameters can be
captured by using a common "population" prior distribution, from which each stiffness parame-
ter is sampled. Next, to allow the stiffness parameters to influence each other, a layer of priors
for the hyperparameters for the population distribution is introduced. This construct enables the
hyperparameters to be variable, ensuring a dependency between the stiffness parameters while
the hyperparameters’ uncertainty is naturally incorporated into the modelling procedure. The
result is a Bayesian hierarchical model (shown in Figure 4.1), which tends to avoid overfitting
the existing data by allowing information sharing between the stiffness parameters. This model
subsumes two simpler models as limiting cases: the model where all vessels have the same stiff-
ness (when the prior distribution of the vessel-specific stiffness parameter collapses to a delta
spike), and the model of independent vessel-specific stiffness parameters without information
sharing (when the prior distribution of the stiffness parameters is the uniform distribution).

When employing the hierarchical model, apriori, all parameters are assumed conditionally
independent given ms and σ2

s , but marginally (after integrating out ms,σ
2
s ) dependent. Addition-

ally, the parameters are assumed to come from a "population" Normal distribution, N (ms,σ
2
s ),

and ms ∼N (m∗,σ2∗) and σ2
s ∼ I G (α∗,β ∗) (where I G stands for the Inverse-Gamma dis-

tribution). The hyper-hyperparameters m∗,σ2∗,α∗,β ∗ take fixed values and are set such that
there is roughly 90% prior probability that the stiffness parameters are within the physiolog-
ically plausible range. Since ms and σ2

s are not fixed, the random variables s1, . . .sd are not
d-separated (see Section 10.5.1 in [128]), which enables information coupling. The choice of
the priors is motivated by conjugacy, and leads to closed-form posterior distributions (more
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y

s1 s2 . . . sd r1 r2 c

ms σ2
s α β

m∗ σ2∗ α∗ β ∗

y∼MV N (m(θ),C)

s j ∼N (ms,σ
2
s )

ms ∼N (m∗,σ2∗)

σ2
s ∼I G (α∗,β ∗)

r1,r2,c∼ R-Be(α,β )

Figure 4.1: Bayesian hierarchical model used for vessel-specific stiffness analysis. The data,
denoted by y, are assumed to follow a multivariate normal distribution MV N with mean
m(θ) and covariance matrix C. If iid errors are assumed (i.e. model mismatch is ignored), C is
a diagonal matrix, C = σ2I (where σ2: error variance and I: identity matrix), and if correlated
errors are assumed (i.e. model mismatch is incorporated), C is a full matrix. The biophysical
parameters, θ = (s1, . . .sd,r1,r2,c), and the hyperparameters, ms,σ

2
s , are apriori drawn from the

distributions indicated in the graphical model (where N : Normal distribution, I G : Inverse-
Gamma, R-Be: rescaled Beta distribution). The circle represents variable quantities, which are
inferred using MCMC, and the rectangle stands for fixed quantities. Inference in this model
is analytically intractable, thus a Gibbs sampling scheme is employed, as showed in equations
(4.11)-(4.12). A modification of this model, where an additional edge is introduced from σ2

s
to ms, allows these two parameters to be integrated out in closed form, potentially leading to a
more efficient sampling scheme. See Section B.2 for details.

details in Section 4.4.5).
This model assumes exchangeability apriori (see Section 5.2 in [66]), so parameters (s1, . . .sd)

are exchangeable in their joint distribution, which means that swapping the ith and jth vessel
stiffness leads to the same joint distribution. This is a limitation of the current work, as vessel
stiffness may depend on the vessel radius. However, the independence of the stiffness from the
radius is only assumed apriori, and is most likely overruled aposteriori if a radius dependence
exists.

Under this model (Figure 4.1), the three Windkessel parameters r1,r2,c are assumed com-
mon to all the vessels, and to ensure positive support (within physiological ranges) for them, a
rescaled Beta distribution was used.

Error parameters

For the error correlation analysis, the hyperparameters of the GP neural network kernel w,b,
were given a log uniform distribution with the range being chosen based on maximising the
profile log likelihood (see Section B.4 for more details). For the iid errors analysis, a conjugate
weakly informative Inverse-Gamma prior was placed on the error variance: σ2 ∼ I G (a,b),
with a = 0.001 and b = 0.001, leading to an I G posterior distribution.
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4.4.5 Posterior inference with Bayesian methods

The posterior distribution is computed as

p(θ ,φ |y) ∝ p(y|θ ,φ)p(θ ,φ), (4.9)

where θ are the biophysical parameters and φ are the error parameters.
This study pursues Bayesian inference based on sampling the biophysical parameters from

their posterior distribution. This posterior is unavailable in closed form, hence MCMC tech-
niques were employed, i.e. the Adaptive Metropolis (AM) algorithm [82], summarised in Sec-
tion 2.3.2.

In the correlated errors analysis, the GP neural network hyperparameters were jointly sam-
pled with the biophysical parameters from their joint posterior distribution using the AM algo-
rithm. The noise variance of the residuals was set to a very small value (10−6), as supported by
preliminary analysis findings, to avoid numerical instabilities from the matrix inversion C−1 in
eq (4.3).

In the iid errors analysis, the noise variance σ2 was sampled in a Gibbs step [26] from the
conditional posterior distribution, p(σ2|θ ,y), which is available in closed form:

p(σ2|θ ,y) = I G

(
n
2
+a,0.5

n

∑
i=1

(yi−mi(θ))
2 +b

)
. (4.10)

The choice of the priors in the Bayesian hierarchical model leads to closed-form posterior
distributions for the hyperparameters ms,σ

2
s , see eqns (4.11) and (4.12), which can be sampled

using the Gibbs algorithm [26]. Thus, posterior inference in the hierarchical model, summarised
in Algorithm 1e, proceeds by iterative sampling from eqns (4.11), (4.12) and (4.13) (see Sec-
tion B.3 for more details).

p(ms|m∗,σ2∗,s,σ2
s ) = N

 m∗

σ2∗ +
1

σ2
s

∑
d
i=1 si

1
σ2∗ +

d
σ2

s

,

[
1

σ2∗ +
d

σ2
s

]−1
 , (4.11)

p(σ2
s |α∗,β ∗,s,ms) = I G

(
α
∗+

d
2
,β ∗+0.5

d

∑
i=1

(si−ms)
2

)
, (4.12)

p(s,r1,r2,c|ms,σ
2
s ,y,α,β ) (4.13)

where the sampling of s,r1,r2,c cannot be done analytically and follows a Metropolis-Hastings
within Gibbs scheme. Also, d = |s| is the cardinality of the stiffness parameter vector. A slight
modification of this Bayesian hierarchical model, with an additional edge introduced in the graph
of Figure 4.1 allows ms and σ2

s to be integrated out in closed form, potentially leading to a more
efficient sampler. The resulting equations are less intuitive though, and due to space restrictions,
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the details have been relegated to Section B.2.
The Bayesian hierarchical framework can reveal if vessel-specific stiffness parameters are

needed: if σ2
s → 0, then all stiffness parameters take values close to ms with high probability,

encouraging a common stiffness parameter, while σ2
s → ∞ will be evidence that the stiffness

parameters are statistically independent of each other, implying vessel-specific stiffness values.

4.4.6 Bayesian Model Selection: WAIC

WAIC, described in Section 2.3.8 was used for model selection.

4.5 Simulations

4.5.1 Code

The statistical methods were implemented in Matlab (Mathworks, Natick, MA) and simulations
were run on a RedHat Enterprise Linux 6 machine with Intel(R) Xeon(R) CPU E5-2680 v2
2.80GHz and 32GB RAM. The simulated pressure waveforms were obtained by numerically
solving the PDEs of the fluid-dynamics models in Section 2.2 using a two step Lax-Wendroff
scheme [113] implemented in C++ by Olufsen et al. [139, 151]. The GP models were im-
plemented using the GPstuff toolbox [203] and the MCMC convergence dignostics using the
MCMC toolbox [107].

4.5.2 Set-up

The simulations were split into two categories. The simulations in the first category use the
measured MPA pressure data for all the models summarised in Section 4.3.3 and Table 4.2.
Simulations in the second category use synthetic data generated in 1, 3 or 21 vessels from the
linear wall model with radius-dependent stiffness and correlated errors created using a neural
network kernel.

4.5.3 Computational efficiency

Given the high computational complexity from repeated numerical integrations of the PDEs in
the Bayesian analysis, simulations were also set up with a focus on computational efficiency,
i.e. MCMC with a GP surrogate (emulator) for the posterior distribution [140] on a few of the
models (A, B, H), see Table 4.2. This approach, called the N-steps ahead Adaptive Metropolis
with emulation, briefly described in Section B.1 (details in [140]), significantly speeds up com-
putationally expensive simulations, which is essential if the analysis performed here is translated
to analysis of a large quantity of human data. Models with a high number of parameters (D, E, F,
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G, I) used a numerical integration of the PDE model in every step of the MCMC simulation. As
shown in Section 4.6, some of the stiffness parameters are unidentifiable, with posterior samples
covering the entire prior parameter space. This implies that an emulator would need to cover a
large region in the parameter space. While this could potentially be achieved by using a larger
number of training points, it was decided to focus less on the development of the surrogate
model, and more on the exploration of different mathematical models and hypotheses.

Algorithm 1e Adaptive Metropolis with Gibbs sampling for the hyperparameters of the hierar-
chical model

1: Define N: number of MCMC samples.
2: for i=1:N do
3: Given m(i−1)

s and σ2(i−1)
s , use the AM algorithm to draw (s(i),r(i)1 ,r(i)2 ,c(i)) from the

approximate posterior distribution derived from eqns (4.13) and (4.9) with the likelihood in
Section 4.4.1 and priors in Section 4.4.4

4: Given s(i) and σ2(i−1)
s , draw m(i)

s in a Gibbs step [26] using the conditional distributions
in eq (4.11)

5: Given s(i) and m(i)
s , draw σ2(i)

s in a Gibbs step [26] using the conditional distributions in
eq (4.12)

6: end for
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viation

Model No. of
parame-

ters

f1
(×103)

f2 f3
(×104)

γ r1 r2 c Model
mis-

match

w
(×104)

b Emulator

A linear 4 0 any (2, 10) - (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

no - - +

B linear 6 0 any (2, 10) - (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

yes (1, 9) (1,
500)

+

C linear 6 0 any (2, 10) - (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

yes (1, 9) (1,
500)

-

D linear 6 (1,
104)

(-300,
-50)

(3, 6) - (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

no - - -

E linear 8 (1,
104)

(-300,
-50)

(3, 6) - (0.05,
2.50)

(0.050,
2.50)

(0.05,
2.5)

yes (1, 9) (1,
500)

-

F linear 24 0 any (2,
10)*

- (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

no - - -

G linear 26 0 any (2,
10)*

- (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

yes - - -

H non-
linear

7 0 any (3, 50) (1,2π) (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

yes (1, 9) (1,
500)

+

I non-
linear

9 (5,
102)

(-200,
0)

(1, 50) (1,2π) (0.05,
2.50)

(0.05,
2.50)

(0.05,
2.50)

yes (1, 9) (1,
500)

-

Table 4.2: Models analysed for the measured data: the constitutive models (linear and non-linear, as indicated in Table 2.1) with model parameters
( f1, f2, f3,γ,r1,r2,c) prior ranges. It is indicated whether the model mismatch is incorporated (by yes or no), and if it is, the hyperparameters
w and b for the GP model mismatch are given. In the second column from the right, the symbol ’+’ indicates that the emulator was used to
accelerate the MCMC simulations, while ’-’ indicates that the standard MCMC was used. The stiffness relation used is given in eq (2.5). Legend:
* in column f3 indicates that 90% prior probability has been placed on these bounds as part of a Bayesian hierarchical scheme (Figure 4.1) to
infer 21 individual vessel stiffness parameters.



4.6 Results

4.6.1 Importance of correcting for model mismatch

Inference results based on MCMC are compared between the conventional method ignoring
model mismatch and the proposed approach, which explicitly incorporates the model mismatch,
defined in eq (4.6), with GPs. The results are shown for both synthetic and physiological data.
Convergence of MCMC methods (described in Section 2.3.4) was tested using the Geweke test
[70] (the p-values from the Z test were greater than 0.05) and the Brooks Multivariate Potential
Scale Reduction Factor (MPSRF) [18] (ensuring that MPSRF≤ 1.1).

Synthetic data

Using model E (Table 4.2) synthetic data with additive, correlated Gaussian errors were gen-
erated in the MPA (20 different data instantiations), which mimics the physiological data (as
described in Section 4.2.2). Two MCMC simulations were than run: one which incorporates the
model mismatch, and another simulation which does not. Parameter estimates obtained from
these two simulations are compared to the ground truth parameter values in Table 4.3 using the
relative sum of squared errors (SSE),

d

∑
i=1

(
θi− θ̂i

θi

)2

, (4.14)

which is the relative deviation in Euclidean space of the estimated values from the true parameter
values. Table 4.3 also shows the median marginal and joint posterior density value of the true
parameter vector, θ = ( f1, f2, f3,r1,r2,c), under the assumed model, as found from 20 synthetic
realisations. To obtain the marginal posterior density of the true parameter vector, the kernel
smoothing function estimate for univariate data with the optimal bandwidth for normal densities
[14] was used. To check for consistency of the results, the joint posterior density was obtained
in two ways: using the multivariate kernel density estimation with the bandwidth estimated with
Silverman’s rule [180], and using Chib’s method (see Section 2.1 in [32]). The parameters were
scaled to the same order of magnitude, as both methods were affected by having parameters with
different orders of magnitude.

From Figure 4.2, showing the marginal posterior density values of the parameters for three
of the 20 data sets, it can be noticed that with the standard method neglecting model mismatch,
the ground truth parameter value lies in the tail of the posterior distribution for most cases inves-
tigated, and the uncertainty is underestimated. In contrast, with the proposed method allowing
for model mismatch, the distribution contains the true parameter and the uncertainty is wider.
For the complete set of results, see Table 4.3, which shows that neglecting model mismatch leads
to a lower (better) relative SSE for the parameter estimates. However, as seen from Figure 4.2,
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a small SSE does not rule out the possibility of seriously underestimating the uncertainty. A
better measure, to capture both estimation accuracy and UQ, is the marginal posterior density
of the true parameters. Here it is obvious that the median marginal posterior density value of
the true parameter with the standard method is substantially lower (worse) for the identifiable
parameters f3,r1,r2.

Allow for model mismatch SSE Median p(θi|y) Median p(θ |y)
No 0.02 (9.8e-08, 0.004, 0, 0, 0, 0) 0, 0
Yes 0.03 (9.7e-08, 0.004, 0.0001, 4.36, 5.25, 1.30) 1037, 648

Table 4.3: Results obtained when allowing for or ignoring model mismatch, defined in eq (4.6),
on synthetic data generated from model E in Table 4.2 with correlated errors. First row: stan-
dard approach ignoring model mismatch; second row: the proposed new method, where a GP
mismatch model has been introduced. The relative sum of squared errors (SSE), as well as the
median posterior distribution of the true parameter vector, θ = ( f1, f2, f3,r1,r2,c), under the
assumed model are presented (median calculated from 20 data sets). Marginal and joint poste-
riors were obtained from the MCMC samples with kernel density estimation (first entry in last
column) and Chib’s method [32] (second entry in last column). Parameters were scaled to the
same order of magnitude.

Physiological data

For the physiological data, Table 4.5 shows comparative results from the MCMC analysis for
the nine models explored. Table 4.5 contains the median posterior density value (50th posterior
quantile) for each of the models’ parameters, and the associated 95% posterior credible interval
obtained from the 2.5% and 97.5% quantiles of the MCMC posterior samples. WAIC scores,
calculated from 1000 random MCMC samples, are compared to the Euclidean distance (eq (4.2))
obtained with the median posterior parameter value. A lower WAIC score indicates a better
model.

Models incorporating the model mismatch, defined in eq (4.6), record a lower (better) WAIC
and a higher (worse) Euclidean distance in output space compared to models which ignore it,
implying that the former are better supported by the data, and that minimising the Euclidean
distance, which is equivalent to minimising the mean squared error (MSE), is a sub-optimal in-
ference procedure. The reason is that the MSE does not take the error correlation into account
and does not penalise models for poor UQ. This is illustrated in Figure 4.3 showing that the pos-
terior uncertainty in parameter space is much wider when allowing for model mismatch, which
aligns with findings from the synthetic study. Moreover, parameters f3 and r1 have different
posteriors depending on whether the model mismatch is incorporated (Figure 4.3). Addition-
ally, Figure 4.4 displays the posterior uncertainty in output space for pressures in several vessels
using the linear model with constant stiffness ignoring or correcting for the model mismatch
(models A and B in Table 4.2). Alike the posterior uncertainty in parameter space, the posterior
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Figure 4.2: Inference results for three synthetic data sets generated from model E in Table 4.2
with correlated errors using (a) the standard method, which ignores model mismatch, defined
in eq (4.6), and (b) a GP introduced to allow for model mismatch. Marginal posterior densities
for the parameters of the exponential radius-dependent stiffness linear model ( f1, f2, f3,r1,r2,c),
where the stiffness is given by eq (2.5), are shown. The different density per parameter corre-
spond to three random data sets out of 20 (for complete results, see Table 4.3). The black dashed
vertical line marks the ground truth parameter values which generated these data.
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uncertainty in output space is much wider when correcting for the model mismatch, which is
also shown in Table B.1 in the Appendix containing the time-averaged 95% explanatory and
predictive credible interval width for the pressure data from every model.

4.6.2 Vessel wall stiffness

Table 4.5 also shows a lower WAIC score for the linear wall model with vessel-specific stiffness
relative to the other linear models, which assume constant or radius-dependent stiffness. The
exponential radius-dependent stiffness model has the same WAIC score as the constant stiffness
model, suggesting that the exponential radius dependence is not consistent with the data, as the
f1 and f2 parameters are non-influential (their marginal posterior distributions are uniform on
the prior range), see the left panel of Figure 4.5. In addition, the 21 stiffness model reveals
that the median posterior stiffness values are somewhat similar for most of the 21 vessels (right
panel of Figure 4.5). However, the stiffness becomes increasingly variable for small-radius
vessels, which is also evident from the 95% credible interval width presented in Section B.6.
This suggests that the Bayesian hierarchical model should allow for vessel-specific variance,
thus the common variance σ2

s in Figure 4.1 should be replaced by a variance-covariance matrix.
This method extension will lead to a substantial increase in the computational complexity due to
higher parameter space dimension, and thus, it is subject to future work. Almost all the stiffness
values are of 104 order, which is the regime where the MPA pressure is sensitive to changes
in stiffness (see Figure 4.6). This figure depicts the the systolic, diastolic and pulse pressures
(systolic minus diastolic pressure) against the constant stiffness f3 for the linear wall model.
It is clear that beyond a certain threshold (3× 105 mmHg), the change in pressure is minimal,
as the vessels become very rigid. The plot is produced with a set of Windkessel parameters
consistent with the physiological data. In addition, a slight radius-dependent stiffness is needed
for the non-linear model, as the term f2r0 in the stiffness expression f1 exp( f2r0)+ f3 is close to
0 (compare prior range in Table 4.2 to posterior uncertainty interval in Table 4.5).

4.6.3 Vessel wall model

Next the linear and non-linear wall models are compared. The WAIC scores in Table 4.5 indicate
that the non-linear wall model outperforms the linear wall model. More specifically, results
suggest that the non-linear model with radius-dependent stiffness is preferred, as it registers the
lowest WAIC score.

Based on the WAIC scores in Table 4.5 the conclusion is that out of all the models inves-
tigated, the best linear wall model is that with vessel-specific stiffness, and the best non-linear
model is that with an exponential radius-dependent stiffness, incorporating the model mismatch
in both models. The non-linear model has not been applied with vessel-specific stiffness due
to the interaction between the parameters p1 and γ in eq (2.4), requiring vessel-specific (p1,γ).
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Figure 4.3: (a) Marginal posterior distributions (top) and pairwise scatterplots (bottom) of the
posterior sample (obtained with MCMC) for the constant stiffness linear wall model with the
standard method ignoring the model mismatch (eq (4.6)), (black) vs the proposed GP mismatch
model (grey), i.e. models A and B in Table 4.2. (b) Pairwise scatterplots between the MCMC
posterior parameter samples of the linear model with constant stiffness and model mismatch
(top), i.e. model B in Table 4.2, and non-linear model with radius-dependent stiffness and model
mismatch (bottom), i.e. model I in Table 4.2. For the non-linear model, s( f1, f2, f3) in eq 2.5 is
expressed instead of individual parameters f1, f2, f3 due to parameter identifiability issues – see
Section 4.6 for a discussion on this. Here the distribution of s( f1, f2, f3) in eq (2.5) is shown for
radius r0 corresponding to vessel 1, the MPA, but the pattern of the distribution is similar for the
other vessels.
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Figure 4.4: 95% credible intervals (C.I.) and prediction intervals (P.I.) for the pressure prediction
from the linear model with one stiffness and ignoring model mismatch in eq (4.6) (left) (model
A in Table 4.2), the linear model with one stiffness and model mismatch correction (centre)
(model B in Table 4.2), and the non-linear model with radius-dependent stiffness and model
mismatch correction (right) (model I in Table 4.2), obtained from MCMC posterior samples.
The measured pressure data in the MPA and the median prediction are superimposed, and plots
in three other vessels are shown (for all the other vessels see Figures B.5, B.6 and B.7).

This would lead to a very large number of parameters being estimated, requiring extremely high
computational efforts (simulations would most likely take months to complete).

4.6.4 Model fits

The model fits for all the models analysed (Figures 4.7 and 4.8) are investigated. The first ob-
servation is that the median pressure predictions obtained using the MCMC-simulated posterior
parameter values (Figure 4.7) are qualitatively similar for all nine models investigated. Pressure
predictions in the MPA are compared between all models, and they all produce a waveform
similar to the measured data. The best linear model (model G) fits the measured data better in
the diastolic phase, but gives a peak shift in the systolic phase (Figure 4.4). On the other hand,
the best non-linear model (model I) provides a better fit in the systolic phase, but has a slight
discrepancy in diastole. Generally, the pressure increases more steeply in the systolic phase for
the non-linear model compared to the linear model. Figure 4.7 also shows that the pressure
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Figure 4.6: Relation between the radius-constant stiffness and the systolic, diastolic and pulse
pressure for the linear wall model. Here f3 is varied within the range [104,106], f1 is set to
0, f2 can take any value in the exponential radius-dependent expression in eq (2.5), and the
Windkessel parameters r1,r2,c are kept fixed to 0.3, 0.97, 1.23, which are plausible values for
the measured data. A similar trend is observed when the Windkessel parameters are fixed to
other values, or when the non-linear wall model is used. The cross point marks the f3 stiffness
value estimated from the measured data using the constant stiffness linear model.

predicted with the non-linear model is slightly higher than that predicted with the linear model
for all 21 vessels. In addition, the predictions obtained with the linear model with 21 individual
stiffnesses while ignoring model mismatch (model F) provides fits similar to the other models in
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the proximal arteries, but predicts downstream pressure waves with slightly different shape and
increased oscillatory behavior. This suggests that assuming a vessel-specific stiffness and ignor-
ing the model mismatch provides poor extrapolation performance. When analysing the median
flow predictions obtained from the parameter posteriors (Figure 4.8), it can be noticed that all
are again very similar in shape, except for the outlier model F. An unequal flow distribution
between the right and left side of the tree for all the models except model F is observed.

Figure 4.8 shows pressure-area relations obtained by using the posterior median parameter
values. The best non-linear model (model I) consistently predicts larger areas than the best
linear model (model G) for the large proximal vessels (see predictions in MPA and vessels 2 and
3), and the opposite trend is observed for most terminal vessels (see predictions in Figure B.4).
Furthermore, the non-linear model with constant stiffness gives systematically larger area values
than the non-linear model with radius-dependent stiffness except in vessels 1 and 3, which aligns
with the former model having a smaller stiffness than the latter (Table 4.5). The linear model
with 21 individual stiffnesses while ignoring model mismatch gives drastically different results
than the other models for some of the vessels (e.g. vessels 4, 8, 12 in Figure B.4), which further
indicates that this model can lead to drastic changes in downstream predictions.
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Figure 4.7: Pressure predictions obtained using the MCMC posterior samples for the parameters
from all the models considered – see Section 4.3.3 and Tables 4.2 and 4.5 for a summary of the
models, which are denoted by A-I in the figure legend. The median pressure signal for seven of
the 21 blood vessels in time is shown (see Figure B.2 for all the other vessels). The measured
pressure data in the MPA is superimposed (top right). Examples of pressure residuals, that is,
the difference between the predicted and measured blood pressure, are shown in the bottom right
panel.
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The median flow predictions and pressure versus standardised cross-sectional area predictions
are shown for seven of the 21 blood vessels (see Figures B.3 and B.4 for all the other vessels).
The area, Ai is standardised per vessel i to lie between [0,1] using the expression: Ai−li

ui−li
, where

li,ui are the maximum and minimum area value for vessel i, listed in Figure B.4.

4.6.5 Parameter posteriors

The posterior correlations and the marginal posterior distributions are investigated for the linear
models A and B and non-linear model I (Figure 4.3). The marginal posterior distributions have
one clear mode and correlations between the parameters are negligible for the linear models.
When the non-linear model is used, s( f1, f2, f3) in eq (2.5) is plotted rather than the individual
f1, f2, f3 parameters, since the term f2r0 is close to 0 (compare prior range in Table 4.2 to
posterior uncertainty interval in Table 4.5), leading to unidentifiability of f1 and f3.

4.6.6 Future experimental design

It is tested by a synthetic study if parameters f1 and f2 in the linear model with exponential
radius-dependent stiffness eq (2.5) become influential as complementary data from downstream
vessels are added. Synthetic data from this model (model E in Table 4.2) were generated, and, as
described in Section 4.2.2, additive correlated Gaussian errors were added to them. Thus 20 data
sets were created with different error instantiations, and MCMC was applied to infer the data-
generating parameter values. Figure 4.9 shows the agglomerated MCMC posterior distributions
from all 20 data instantiations, and the true parameter values were superimposed (if the inference
procedure is correct, the peak of the agglomerated distributions should coincide with the true
parameter values). This is purely for visualisation purposes, since agglomerated results over
different data sets is a non-conventional Bayesian approach. For a fully Bayesian approach, the
marginal posterior distribution was calculated, as well as the joint posterior distribution of the
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Data Median p(θi|y) Median p(θ |y)
1 vessel (9.8e-08, 0.004, 0.0001, 4.30, 5.22, 1.30) 2.8e+03
3 vessels (9.9e-08, 0.004, 0.0003, 6.78, 9.61, 2.61) 3.4e+04

21 vessels (9.9e-08, 0.004, 0.001, 38.4, 27.0, 6.39) 3.9e+06

Table 4.4: Inference results obtained using synthetic data, to which additive, correlated Gaussian
errors were added, from 1 vessel (MPA), 3 vessels (MPA and its two daughter vessels) and all 21
vessels. The model mismatch was included in the analysis, and the data were generated using the
linear wall model with exponential stiffness, s( f1, f2, f3), given in eq (2.5). The median marginal
and joint posterior density, of the true parameter vector, θ = ( f1, f2, f3,r1,r2,c) are presented for
each of the three scenarios (median calculated from 20 data sets). Joint and marginal posteriors
were computed using the MCMC samples with kernel density estimation. Parameters were
scaled to the same order of magnitude.

true parameter for each of the data sets, and the median over the data sets was found, as shown
in Table 4.4. For the joint posterior distribution the multivariate kernel density estimation was
used. Figure 4.9 shows that the peak of the agglomerated distributions aligns with the ground
truth parameter values for the influential parameters, which provides validation of the inference
procedure. Even with data from more than one vessel (3 or 21 vessels), f1 and f2 parameters
remain non-influential (close to uniform marginal posterior density). The uncertainty for all the
other parameters ( f3, r1, r2 and c) is reduced and the distributions become increasingly focused
around the true parameter values as more complementary data are used. Additionally, in Table
4.4 it is quantified how the marginal and joint posterior density values of the true parameters
increase with the amount of vessel data.

4.6.7 Accuracy of emulator

The accuracy of the emulation approach results (model B) has been checked by a comparison
with the conventional method (model C), confirming that the emulator does not introduce any
bias in the results.
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Model
Abbre-
viation

Model f1
(×105)

f2 f3
(×104)

γ r1 r2 c Model
mis-

match

w
(×104)

b WAIC Euclidean
distance

Emulator

A linear 0 any 5.17
(5.09,
5.25)

- 0.21
(0.19,
0.23)

0.88
(0.88,
0.89)

1.44
(1.39,
1.49)

no - - 408 66 +

B linear 0 any 4.31
(3.91,
4.72)

- 0.28
(0.18,
0.42)

0.87
(0.73,
1.00)

1.35
(0.98,
1.96)

yes 5.36
(4.32,
7.09)

137
(102,
197)

-
4515

551 +

C linear 0 any 4.31
(3.91,
4.71)

- 0.29
(0.18,
0.41)

0.87
(0.73,
1.00)

1.34
(0.97,
1.94)

yes 5.41
(4.27,
7.09)

138
(101,
198)

-
4515

571 -

D linear 52.6
(2.59,
97.8)

-162
(-293,
-51.1)

5.17
(5.10,
5.25)

- 0.21
(0.19,
0.23)

0.89
(0.88,
0.89)

1.45
(1.40,
1.50)

no - - 397 64 -

E linear 51.1
(2.80,
97.4)

-171
(-293,
-56.6)

4.32
(3.91,
4.72)

- 0.29
(0.18,
0.42)

0.87
(0.74,
1.01)

1.34
(0.96,
1.93)

yes 5.39
(4.28,
7.08)

138
(102,
200)

-
4515

552 -

F linear 0 any * - 2.45
(2.33,
2.50)

0.21
(0.17,
0.26)

2.08
(0.11,
2.48)

no - - -107 26 -

G linear 0 any * - 0.46
(0.19,
1.05)

0.86
(0.72,
1.10)

1.12
(0.45,
1.86)

yes 4.65
(3.72,
6.25)

161
(115,
262)

-
4522

242 -

H non-
linear

0 any 9.17
(6.66,
12.1)

5.18
(4.38,
6.07)

0.37
(0.27,
0.47)

0.94
(0.80,
1.06)

1.60
(1.15,
2.27)

yes 4.91
(3.97,
6.44)

178
(126,
286)

-
4522

384 +

I non-
linear

0.58
(0.20,
0.97)

-6.00
(-18.0,
-2.13)

2.00
(1.09,
3.40)

5.09
(4.43,
6.13)

0.34
(0.24,
0.43)

0.97
(0.82,
1.09)

1.58
(1.16,
2.27)

yes 4.45
(3.62,
5.76)

196
(130,
320)

-
4530

417 -

Table 4.5: Summary of MCMC results on measured data for the constitutive models considered (linear and non-linear, as indicated in Table 2.1)
with model parameters ( f1, f2, f3,γ,r1,r2,c). Whether model mismatch, defined in eq (4.6), was incorporated is indicated by yes or no, and for
yes, the parameters w and b for the GP model mismatch are given. The right-most column shows whether emulation was used (’+’ is yes, while
’-’ is no). 5000 MCMC iterations were run for the models using emulation (models A, B and H); 300,000 for the vessel-specific stiffness models
not using emulation (models F and G); and 150,000 MCMC iterations for the rest of the models not using emulation (models C, D, E, I). The
median posterior distribution value and the 95% credible interval from the posterior distribution are shown, as well as the WAIC score calculated
from 1000 MCMC samples and the Euclidean distance obtained from the posterior median parameter values. If 21 individual stiffness parameters
were inferred, marked by * in the table, the stiffness values are listed in the Appendix (Section B.6).
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4.7 Discussion

In this study, several mathematical models of the pulmonary circulation are explored: a linear
and a non-linear wall model with different vessel wall stiffness assumptions, and two error
models capturing or ignoring the model mismatch, as defined in eq (4.6), and Bayesian analysis
is used to find the model that can best predict the measured MPA blood pressure, while providing
UQ associated with that pressure prediction. The validity of the parameter inference procedure
is tested by a synthetic study.

4.7.1 Importance of correcting for model mismatch

Neglecting the model mismatch by obtaining point estimates based on MSE minimisation, bi-
ases parameter estimates and underestimates uncertainty in parameter and output space. This
finding is based on synthetic data, for which the gold standard is known, and it tallies with re-
sults from the physiological data. The model mismatch is a consequence of making the wrong
assumption about the measurement errors (i.e. iid for correlated measurement errors) and not
allowing for model discrepancy between the real system and the mathematical model. This
study proposes to use a method based on GPs to assess the model mismatch, which circumvents
the limitations outlined above. Figure 4.2 clearly illustrates that the uncertainty in parameter
space is under-dispersed when the standard method neglecting the model mismatch is used, and
the true (data-generating) parameter values lie in the tail of the posterior distribution for most
data sets; however, this is not the case for the proposed method of model mismatch. This is in
line with results from the measured data, as evident in panel (a) of Figure 4.3, that also shows
very narrow uncertainty bounds in parameter space and in output space (Figure 4.4). Moreover,
the model selection criteria (WAIC in Table 4.5), clearly and consistently favouring the models
which correct for the model mismatch, further strengthens this statement.

Most studies in the literature rely on minimising the Euclidean distance (i.e. MSE) in
eq (4.2), which implicitly ignores the model mismatch. This approach is equivalent to max-
imising the likelihood in eq (4.1) under the assumption of additive Gaussian iid noise. However,
in the presence of a model mismatch, the estimates that minimise the MSE are different from the
estimates which maximise the likelihood in eq (4.3). The current work demonstrates that using
the standard approach ignoring model mismatch, leads to biased point estimates, thus incorrect
predictions, and uncertainty underestimation. Wider uncertainty bounds in output space, as seen
in Figure 4.4, reflect more adequately variations in pulmonary pressure due to the natural inter-
subject factors (e.g., effects of the respiratory cycle). These are well known [35] and should be
contained within the uncertainty bounds of the model.

In this work, due to the limited data, the measurement and model errors are jointly captured
with a single GP mismatch model. In principle, these two contributions could be disentangled by
the use of a strongly informative prior on the model discrepancy function or data measurement
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process [20], however, this information is not available.
The current study is one of the first to focus on parameter estimation in cardiovascular mod-

elling that has explicitly incorporated the model mismatch. A notable exception is Lei et al.
[115] who explore model discrepancy in cardiac electrophysiology, and the authors also show
through synthetic studies that ignoring the model-form uncertainty produces biased predictions
and uncertainty underestimation, which agrees with the findings here.

4.7.2 Vessel wall stiffness

Results suggest that a linear wall model with vessel-specific stiffness outperforms, according
to WAIC, all the other linear models assuming constant or exponential radius-dependent stiff-
ness. As expected physiologically, an increased wall stiffness leads to increased systolic and
pulse pressures (Figure 4.6), with more dynamic changes in these values occurring at a lower
stiffness range. Table 4.5 shows that the linear models predict stiffness values within this range,
suggesting accurate depiction of healthy haemodynamics, regardless of model type. Results in-
dicate that the estimation of individual stiffnesses in a model mismatch framework (right panel
of Figure 4.5) is best supported by the MPA-measured data in the context of the linear wall
model, and that an exponential radius dependence of the stiffness is inconsistent with the data,
as the exponential stiffness parameters are non-influential, obtaining a nearly flat posterior (Fig-
ures 4.5 and 4.9). Additionally, the model selection results support a slight radius dependence
stiffness in the non-linear model (a vessel-specific stiffness for this model is not pursued as it
requires vessel-specific (p1,γ) parameters (see eq (2.4)), leading to a large number of parame-
ters being estimated, hence extremely high computational efforts). Previous investigations [195]
have shown that both wall thickness (h) and tissue properties (E) are drastically different in pul-
monary arteries in pulmonary hypertension. This encourages future investigations into whether
the model selection results are consistent in specimens with pulmonary hypertension.

4.7.3 Vessel wall model

A further finding, based on WAIC scores, is that the non-linear wall model is better supported
by the physiological data compared to the linear wall model. Results indicate that, out of all the
models investigated, the model that is most likely under the data is the non-linear model with a
slight dependence on the vessel radius (the term f2r0 in the stiffness expression f1 exp( f2r0)+ f3

is close to 0, see Table 4.5). This finding agrees with other studies in the literature – e.g. the
study by Valdez et al. [198] on pressure area dynamics in systemic arteries of control sheep
and the study by Pilhwa et al. [114] analysing distensibility of pulmonary arteries in control
mice. The study in [207] provided experimental stress-strain relations in control and hypoxic
pulmonary arteries, illustrating a predominant viscoelastic effect and further suggesting that a
non-linear elastic wall is more appropriate for modeling pulmonary haemodynamics.
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4.7.4 Model fits

The pressure predictions shown in Figure 4.7 deviate from model to model in arteries distal to
the left and right pulmonary artery (vessels 2 and 3, respectively). While predictions may look
qualitatively similar, it is clear that the model used can lead to significant changes in downstream
predictions. An understanding of how model type affects predictions down the pulmonary ar-
teries is critical for future use of mathematical models in disease prognostication. For instance,
pulmonary diseases like pulmonary hypertension remodel smaller arteriolar segments initially,
making vessel stiffness a critical parameter in the development of disease [97, 116, 219]. The
flow and pressure-area graphs show a more dramatic change between model types, which is to
be expected as distal flow and dynamic area data are not available. This variability is impor-
tant when considering the effects of blockages, i.e. pulmonary embolism, that can lead to ob-
structions in the pulmonary arteries, limiting perfusion to the alveoli for blood re-oxygenation.
The pressure-area relations in Figure 4.8 show that the inferred parameters for the non-linear
wall-model provide a nearly linear pressure-area curve, contrary to the findings in [207]. It is
expected that the addition of dynamic area data in the likelihood function will lead to a bigger
dissimilarity between the two wall models, and should be considered in future studies.

4.7.5 Parameter unidentifiability

The analysis of the linear model with exponential radius-dependent stiffness shows that using
complementary data from vessels beyond MPA does not resolve the unidentifiability of some
of the parameters (see Figure 4.9). Thus, additional pressure data do not carry information
about the non-influential parameters. If the model has structural unidentifiabilities, subsequent
predictions are unreliable, and can lead to spurious diagnoses or sub-optimal treatments [165,
166]. For this reason, it is imperative that in the exponential radius-dependent models, the entire
expression s( f1, f2, f3) in eq (2.5) is interpreted, and not the individual parameters, f1, f2, f3.

4.7.6 Future experimental design

The analysis further reveals that when complementary data are used, the parameter values are
more accurately estimated (Figure 4.9) and a quantification of the uncertainty reduction in pa-
rameter space is provided (Table 4.4). These findings may be used in future experimental design,
when deciding whether to record measurements in vessels beyond MPA. Furthermore, results in
Figure 4.9 show that the gold standard parameter values are accurately inferred, validating the
inference procedure.
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4.7.7 Real-time treatment planning

A long-term goal of this project is real-time, personalised treatment planning. Therefore, once
the model selection procedure finds the "best" model, predictions from that model should be
computationally efficient. This work shows that this can be accomplished using efficient sur-
rogate models in place of the computationally expensive PDE model (see Table B.2 in the Ap-
pendix).

4.8 Limitations and future directions

The WAIC model selection results based on which the non-linear model is preferred over the
linear model is only valid using the MPA-measured data in the particular control mouse anal-
ysed. Moreover, it would be interesting to compare the performance of the asymptotically-based
WAIC approach for model selection to an approach which does not rely on asymptotics, e.g.,
marginal likelihood [62], whose calculation, however, comes at a significantly higher compu-
tational cost. Additionally, as discussed in [20], the correction for model mismatch can be im-
proved by using more informative priors than the standard GP smoothness prior that was applied
in the current study. Mathematical model improvement is an ongoing process, with models be-
coming ever more detailed and complex. Multi-scale vessel wall models that include fluid-tissue
interactions at individual cell level may be too complex for inference, but could also help refine
prior knowledge. Running forward simulations with both high and medium fidelity models for
space filling design in parameter space and then fitting a GP to the differences in output space
can give a more realistic prior for future inference applications.

This study only analyses two parameter types, the vessel stiffness and boundary conditions.
Several vessel wall models were investigated, but only one boundary condition model, estimat-
ing scaling factors that adjust Windkessel parameters in each terminal vessel. However, these
methods can be carried out using other boundary conditions, such as the structured tree model
[139, 152, 219]. The process used for analysing the stiffness in 21 vessels could also be ap-
plied to a more detailed analysis of vessel-specific boundary condition parameters. Moreover,
there are several sources of uncertainty unaccounted for in the analysis: network geometric pa-
rameters (vessels’ radii and lengths), network connectivity (location of vessel bifurcations and
trifurcations), and network size (number of vessels), which use fixed values from the image seg-
mentation process [38] (the uncertainty in the network is quantified in Chapter 5). Additionally,
the MPA inflow boundary condition could be replaced by a coupling of the MPA with a right
ventricle model [130].
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4.9 Conclusions

The focus of this study was on parameter inference and UQ using state-of-the-art Bayesian
analysis techniques in a 1D fluid-dynamics model of the pulmonary circulation, with geometry
extracted from micro-CT images.

An important contribution is the thorough exploration of several mathematical models (a
linear and a non-linear wall model with different vessel wall stiffness assumptions: constant,
radius-dependent or vessel-specific stiffness), and error models (via the inclusion of a model
mismatch). A Bayesian model selection tool (WAIC) was implemented to find the model that
can most accurately predict the MPA pressure and provide the UQ in the pressure predictions.

This study clearly demonstrates that the widely used approach focusing on least-squares
fit, thus ignoring the model mismatch, biases parameter estimates and model predictions, and
underestimates the uncertainty in parameter and output space. These issues were circumvented
by incorporating the model mismatch using GPs.

Additionally, results indicate that the MPA-measured pressure data best supports the non-
linear wall model with a weak exponential radius-dependent stiffness.

Lastly, the synthetic study validates the inference procedure, and demonstrates that utilising
complementary data distal to the MPA increases the parameter estimation accuracy. Addition-
ally, the analysis quantifies the uncertainty reduction when complementary data are used, which
may help better design future experiments.
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Chapter 5

Uncertainty of network geometry,
connectivity and size

Computational fluid dynamics (CFD) models are emerging tools for assisting in diagnostic as-
sessment of cardiovascular disease. Recent advances in image segmentation has made subject-
specific modelling of the cardiovascular system a feasible task. Uncertainty in image segmen-
tation propagate to CFD model predictions, making quantification of segmentation-induced
uncertainty crucial for subject-specific models. This study quantifies the variability of one-
dimensional (1D) CFD predictions by propagating the uncertainty of network geometry and
connectivity to blood pressure and flow predictions. Multiple segmentations of a single excised
mouse lung using different pre-segmentation parameters are analysed. A custom algorithm ex-
tracts vessel length, vessel radii, and network connectivity for each segmented pulmonary net-
work. Probability density functions are computed for vessel radius and length and then sampled
to propagate uncertainties to haemodynamic predictions in a fixed network. In addition, the
uncertainty of model predictions to changes in network size and connectivity is computed.

Note: This chapter is adapted from a study by Colebank et al. [37] on which I am the second
author. Here I present methods implemented by myself (GP methods in the inverse uncertainty
quantification analysis, for which I take full responsability) and collaborators (everything else),
to which I actively participated through discussions in weekly Skype meetings and in a 2-week
visit to NC State University. Partial results are presented, with an emphasis on results that I
obtained. The reader is referred to the original paper [37] for full details and results.

5.1 Introduction

Definitive diagnosis of pulmonary hypertension (PH), defined as a mean pulmonary arterial
blood pressure ≥ 25 mmHg, requires a series of medical tests including invasive right-heart
catheterization and non-invasive computed topography (CT) imaging of the heart and lungs
[110]. Diagnostic protocols interpret each data source independently to make an ultimate deci-
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sion about disease classification and severity [63], but recent studies [151, 190] have proposed
assimilation of haemodynamics and imaging data with CFD modelling, providing insight into
the structure and function of the pulmonary system.

Medical imaging and image segmentation have emerged as powerful non-invasive tools for
disease diagnostics [5, 49, 142], providing an abundance of data for analysing the structure and
function of the cardiovascular system under physiological and pathological conditions [110].
Advances in image segmentation include semi- and fully-automated algorithms for geometric
reconstruction of complex vascular regions [84, 201]. However, inherent uncertainty is present
as most image segmentation software require manual specification of the image intensity thresh-
olds (pre-segmentation parameters) between background and foreground.

Haemodynamic predictions (e.g., cross-sectional averaged flow and pressure) [98] in the pul-
monary vasculature are often computed using either three-dimensional (3D) or one-dimensional
(1D) [151] CFD models. 3D models predict local flow patterns with more precision [190] but
are computationally expensive, making it difficult to perform multiple forward model evalua-
tions for uncertainty quantification, i.e. UQ [90]. For instance, Sankaran et al. [168] computed
3D CFD model sensitivity to coronary stenosis diameters, using surrogate model approxima-
tions to combat high computational cost. However, they did not account for possible changes
in network connectivity (i.e. location of bifurcations or trifurcations) nor for the uncertainty
from the initial segmentations of the vasculature. In contrast, 1D models are more computation-
ally efficient, reducing the need for surrogates and allowing for investigations into variability
of network connectivity. Moreover, a recent study [2] of the coronary vasculature showed that
1D models attain similar haemodynamic predictions as 3D when using appropriate boundary
conditions. Recent studies analysed 1D systemic arterial models [161, 200] to understand how
uncertainty in network structure impacts haemodynamics. Fossan et al. [60] devised an optimi-
sation strategy to determine the number of vessels needed to match haemodynamic predictions
in the coronary arteries, and Huberts et al. [90] used polynomial chaos expansion to quantify
the sensitivity of flow predictions to variations in vessel radius. In contrast to the systemic cir-
culation, the pulmonary vasculature is more compliant, branches more rapidly, and operates at
a much lower mean pressure, indicating that results from the systemic circulation may not be
valid for comparison.

The total uncertainty in the haemodynamic prediction is a combination of uncertainty in the
model parameters and uncertainty from the modelling framework. As noted above, several pre-
vious studies have studied uncertainty with respect to prescribed haemodynamic parameters and
the 1D approximation, but to our knowledge this is the first known investigation of the impact
of uncertainties in network reconstruction on CFD simulations in the pulmonary vasculature.
Specifically, in this chapter it is examined how pre-segmentation parameters impact estimated
vessel radius, vessel length, and network connectivity, and this uncertainty is propagated to
haemodynamic predictions in the pulmonary circulation. To do so, multiple segmentations of a
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microcomputed tomography (micro-CT) image from a mouse pulmonary arterial tree are anal-
ysed. The uncertainty resulting from the multiple segmentations is propagated using a 1D CFD
model by constructing the model domain from each segmentation. Inverse UQ is performed
by constructing probability density functions (pdfs) for vessel radii and lengths from network
segmentations, and then propagating their uncertainty through to the model outputs, pulmonary
blood flow and pressure (forward UQ) via Monte Carlo sampling. Uncertainty in haemody-
namic predictions is quantified by analysing three sets of predictions (depicted in Figure 5.1); 1)
predictions using 25 segmented networks (total variation); 2) predictions from a representative
network with fixed connectivity when drawing realisations of length and radius perturbations
(geometric parameter variation); and 3) predictions from the same representative network when
geometric parameters are fixed, but connectivity and network size are varied (network variation).
UQ is an essential component of the model analysis when computational models are integrated
into clinical protocols. The animal dataset used here [202, 188] serves as a preliminary step in
understanding disease progression and has potential for extrapolation to human PH.

5.2 Materials and methods

5.2.1 Experimental data

The experimental data are described in Section 2.1.

5.2.2 Image analysis

The image analysis was performed by Colebank with no input from me, however it is sum-
marised here for clarity of the analysis to follow.

Image segmentation

The micro-CT image is a gray-scale image (shown in panel (a) of Figure 5.4) which is trans-
formed to a binary map identifying the vascular (“foreground”) and non-vascular (“background”)
regions using global thresholding and image segmentation in ITK-SNAP [221]. Global thresh-
olding is a pre-segmentation technique requiring a priori selection of thresholds to specify the
image intensity bounds of the foreground. Threshold bounds are traditionally selected in an
ad-hoc manner to ensure that the foreground is captured [56, 133, 151]. In addition, ITK-SNAP

requires specification of a smoothing parameter to determine the boundary between the fore-
ground and background (see Figure 5.2). Due to the experimental protocol and use of perfused
contrast, the image segmented in this study did not contain high intensity voxels from other
anatomical features (e.g., the veins or the heart) within the region of interest. Therefore, only
the lower threshold (θ1) and smoothing (θ2) pre-segmentation parameters required specification.
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Figure 5.1: Workflow for uncertainty quantification of haemodynamics. Multiple segmentations
were performed to construct the segmented networks (SNs), of which one network was selected
as the representative network (RN), see Section 5.2.6 for details. Inverse uncertainty quantifica-
tion (UQ) was performed on the 25 SNs by constructing probability density functions (pdfs) for
vessel radius and length measurements. The 25 SNs were used in model simulations to under-
stand the total variation, while the pdfs for the vessel radii and lengths were used to propagate
uncertainty in the parameter variation study of a representative network. Lastly, the structure of
the representative network was changed to understand the variation induced by network connec-
tivity. Pressure and flow predictions are compared from the three sources of variation. Figure
taken from our study in [37].

Acceptable intervals for (θ1,θ2) were determined to preserve the foreground for the large ves-
sels across segmentations. 25 realisations of pre-segmentation parameter sets were drawn from
a uniform distribution, i.e. θ1 ∈ [20,45],θ2 ∈ [3,8], where these ranges were chosen based on
qualitative inspection of the vasculature images. As shown in Figure 5.3, the foreground for
distal vascular segments changes significantly when (θ1,θ2) are varied, but maintains features
for the large, proximal vessels. Different combinations of (θ1,θ2) give rise to different vessel
radii or lengths, number of vessels and vessel connectivity.

To segment the micro-CT image, a semi-automated segmentation algorithm available in ITK-

SNAP (active contour evolution) was used, while ensuring that the largest arteries carrying the
majority of the blood volume were captured.
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Figure 5.2: ITK-SNAP interface for prescribing pre-segmentation parameters (lower threshold,
smoothness). Voxel intensities (x-axis) are converted to probabilities via the threshold function
(y-axis). Different pre-segmentation parameters change the form of the red curve, based on
which discrimination between the foreground and background is done. Here, a lower thresh-
old on image intensities was assumed, as shown by the constant value of one in the threshold
function for all values greater than the lower threshold. Figure taken from our study in [37].

Network reconstruction

Segmented geometries were exported as surface meshes and converted to VTK polygonal files
using Paraview [197] (Kitware, Clifton Park, NY, USA). Surface mesh VTK files were imported
into VMTK (www.vmtk.org) [5] to extract vessel segment centrelines, lengths, and radii using
native scripts. Custom Matlab algorithms, which can be found in https://github.com/
mjcolebank/Segmentation_CFD were used to extract the network connectivity from the
extracted quantities and identify all the vessels in each network. Subsequently, a connectivity
matrix identifying the geometry of the tree was constructed and used in the 1D fluid-dynamics
model. Figure 5.4 illustrates the workflow starting from the micro-CT image segmentation and
ending with the connected network representation.

Figure 5.5 shows an example network with radii estimates at each point along the network
and within a single vessel. To proceed with calculations, the vessel radius was fixed to be the
mean over the centre 80% of the individual estimates, which mitigates the impact of extreme di-
ameters in the ostium regions at either end of each segment. Connected graphs were constructed
using the centreline data and a connectivity matrix was created by linking vessels, represented
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Figure 5.3: Qualitative differences in foreground (white) of distal vascular segments when
changing the lower threshold for the voxel intensities (θ1) and the smoothing parameter (θ2).
Top: changes in foreground with θ1; bottom: changes in foreground with θ2. Figure taken from
our study in [37].

Figure 5.4: Image to network workflow. a) The foreground visible in the image file; b)
The 3D rendering of the vascular foreground; c) Centrelines obtained using VMTK; d) A
graph representation of the network used in the 1D model with vessels (edges) and bifurca-
tions (nodes) identified using custom MATLAB algorithms, which can be found in https:
//github.com/mjcolebank/Segmentation_CFD (the different colours are used to
distinguish where the vessels begin and end). Figure taken from our study in [37].

by their length and radius, and bifurcations. The CFD model used for haemodynamics mod-
elling assumes a binary structure, with each generation of the tree being formed by a new set of
vessels.
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Figure 5.5: Components of an arterial tree. a) 3D segmentation of network; b) centreline repre-
sentation of a tree with the 32 vessel-subset (red and blue); c) magnification of the vessel in blue
depicting radius estimates; d) radius estimates along the vessel in blue, where the centre 80% of
points were used to calculate the mean radius. Figure taken from our study in [37].

5.2.3 Mathematical model

The mathematical model used is indicated in Table 2.1 and described in Section 2.2.

5.2.4 Parameterisation

The haemodynamics modelling parameters include those describing the vascular structure (ra-
dius, length, and stiffness), the fluid dynamics (including viscosity, density, and the bound-
ary layer thickness), and the inflow and outflow boundary conditions. The inflow, viscosity,
density, and wall stiffness were assumed fixed (the inflow came from measurements, the kine-
matic viscosity was fixed to 0.0462 cm2s−1, the blood density to 1.057 g cm−3 and the stiffness
to 37.5 mmHg based on literature [151, 159, 215]) and independent of the network geometry
[103, 152, 151], while parameters specifying the vessel radius, length, and Windkessel outflow
boundary conditions were allowed to depend on the network structure [60, 151].
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5.2.5 Inverse uncertainty quantification

Inverse UQ was employed to estimate vessel length and radius pdfs over the 25 segmented
networks. To compare measurements across segmentations, pdfs were computed for radius and
length from a 32-vessel subset after data standardisation. Two estimation techniques, kernel
density estimation (KDE) [180] and Gaussian process (GP) density estimation [160], were used
to compare estimated pdfs. I implemented the GP density estimation technique, while Colebank
implemented the KDE technique. In this chapter both techniques are summarised and results
from both are presented for comparison. In addition, to investigate the variation in radius and
length measurements across the 32 vessels, I implemented a GP regression model with input-
dependent noise to remedy the issues of non-constant variance, i.e. heteroscedasticity, across
vessels.

Data standardisation

A subset of 32 pulmonary vessels of various calibre (see panel (b) of Figure 5.5) was selected
from the 25 segmented networks. The 32 vessels were visible in all 25 networks and contained
radius and length measurements that encompass the full range of measurements in the networks.
Length and radius measurements were standardised using

s∗i, j =
si, j− s̄i

σsi

(5.1)

where si, j, s = r, l are the measured radii or lengths from the ith vessel and jth segmentation, and
si and σsi are the mean and the standard deviations of the radii or lengths of the ith vessel across
the 25 networks.

Note that it is the measured vessel radius from the image segmentation process that is taken
to be the reference radius r0 in eqns (2.2) and (2.3).

Density estimation

The pdfs for radius and length were estimated using density estimation. These pdfs, constructed
from the 32-vessel subset, capture the overall variation in the length and radius across all the
segmented networks.

Logistic GP density estimation: A number (n) of independently-obtained measurements s∗1, . . .

s∗n allows to construct a probability density p in a finite region Ω. An estimate for the unknown
probability density p could be obtained by maximising the log likelihood function:

L(p) =
n

∑
i=1

log p(s∗i ), (5.2)
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constrained to: ∫
Ω

p(s∗)ds∗ = 1, (5.3)

p(s∗)> 0 for any s∗ ∈Ω. (5.4)

Optimising the log likelihood in eq (5.2) leads to a limiting solution of a mixture of Dirac delta
functions located at the measurements, hence a prior about the unknown density is needed for
realistic estimates to be obtained [160]. By defining f to be an unconstrained latent function,
logistic density transform [160] may be employed, and is defined as:

p(s∗) =
exp( f (s∗))∫

Ω
exp( f (a))da

, (5.5)

which satisfies the constraints in eq (5.3). A GP prior can be placed on the latent functions f to
smooth the density estimates, and the smoothness can be controlled via the covariance functions
for the GP model. Following [160], this study uses a GP model which favours density estimates
for which the tails of the distribution (i.e. outside the domain of the data) eventually go to zero:

f (s∗) = h(s∗)T
β +g(s∗),

g(s∗)∼ G P(0,K).
(5.6)

where h(s∗) are the basis functions for the input s∗: h(s∗) = (s∗ s∗2) (i.e. h(s∗) is an l×1 vector,
where l = 2 for 1D input) and β are the weights (an l×1 vector). The coefficient of s∗2 should
be negative to make the estimates in the tails of the distribution go to zero, however the prior
alone cannot impose this [160]. By placing a Gaussian prior on the weights:

β ∼MV N (b,B), (5.7)

they can be integrated out from the joint prior distribution to obtain:

f (s∗)∼ G P(h(s∗)Tb,k(s∗,s∗
′
)+h(s∗)TBh(s∗

′
)). (5.8)

The Ω space is discretised into m sub-regions (or intervals in 1D), and the coordinates of
the sub-regions are stored into a matrix X: m× d (d: parameter dimensionality, i.e. d = 1 in
this case), where the ith row stores the centre point of the ith sub-region. Given X, the GP prior
model in eq (5.8) becomes:

p(f|X,γ) = MV N (f|Hb,K+HBHT), (5.9)

where f is a column-vector of size m× 1 containing the latent functions for each of the m sub-
regions, K is an m×m covariance matrix determined by the input points in X and by the co-
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variance hyperparameters γ , H is an m× l matrix containing the basis functions evaluated at
the input points. Following [160], the following settings were used: b = 0 (an l× 1 vector)
and B = 102I (an l× l matrix), i.e. β ∼MV N (0,102I), and the number of grid points m

was set to 400. In addition, the covariance function for the GP model was taken to be the non-
stationary neural network (a non-stationary kernel was needed as numerical instabilities caused
by a high condition number of the covariance matrix which needs inverting were encountered
with stationary kernels, such as squared exponential or Matérn).

After the discretisation (assuming a regular grid), the likelihood of an observation belonging
to the ith sub-region is:

Li =
exp( fi)

∑
m
j=1 exp( f j)

. (5.10)

The number of observations in the ith sub-region is denoted by yi, thus y is an m× 1 vector
containing the observation count from all m sub-regions, i.e. ∑

m
i=1 yi = n. The overall likelihood

based on all n points from the m regions is based on the Multinomial distribution, and the log
likelihood is given by:

log p(y|f) = log

(
m

∏
i=1

(
exp( fi)

∑
m
j=1 exp( f j)

)yi
)

(5.11)

=
m

∑
i=1

(
yi log(exp( fi))− yi log

(
m

∑
j=1

exp( f j)

))
(5.12)

=
m

∑
i=1

(yi fi)− log

(
m

∑
j=1

exp( f j)

)
m

∑
i=1

yi (5.13)

= yTf−n log

(
m

∑
j=1

exp( f j)

)
(5.14)

Therefore, the overall likelihood is:

p(y|f) = exp

(
yTf−n log

(
m

∑
j=1

exp( f j)

))
. (5.15)

The prior in eq (5.9) and the likelihood in eq (5.15) can be combined using Bayes’ theorem to
obtain the conditional posterior distribution of the latent functions, i.e.

p(f|y,X,γ) =
p(f|X,γ)p(y|f)∫
p(f|X,γ)p(y|f)df

. (5.16)

With a GP prior (eq (5.9)) and a non-Gaussian likelihood (eq (5.15)), the posterior distribution
(eq (5.16)) is non-Gaussian, thus it was approximated using Laplace approximation [160] (the
default approximation method in the toolbox).
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Kernel density estimation: Kernel density estimation (KDE) [180] is a non-parametric tech-
nique for estimating unknown probability distributions. KDE constructs the pdf p(.) for vessel
length and radius using

p(s∗) =
1

nH

n

∑
i=1

k
(

s∗− s∗i
H

)
(5.17)

where s∗i denotes the standardised measurement of the ith vessel, n is the number of samples
used for the density estimate, H is the bandwidth parameter (giving the smoothness of the den-
sity estimate, playing the role of the lengthscale in the GP covariance function), and k is the
kernel function, assumed to be a Gaussian kernel, i.e. a Gaussian kernel is placed (centred)
on each of the data points, and these kernels are summed to give the kernel density estimate.
Two approaches for finding the optimal KDE bandwidth were considered: Silverman’s rule-of-
thumb [180] and maximum likelihood leave-one-out cross-validation (MLCV) [79]. The former
calculates the bandwidth under the assumption that the underlying density being estimated is
Gaussian, by using the median absolute deviation, and has been shown to minimise the inte-
grated mean squared error of the density estimate. These estimates were calculated using the ks-

density function from Matlab’s Statistics and Machine Learning Toolbox. The latter (MLCV)
leaves one point out at a time and computes the probability density estimate for the point left
out based on all the other points (see eq (5.18)). Leaving one point out affects the calculation
of the standardised quantities and requires re-calculation of the standardised measurements for
each iteration.

p(s∗−i) =
1

(n−1)HMLCV

n

∑
j=1 j 6=i

k
(s∗j − s∗−i

HMLCV

)
(5.18)

where s−i denotes the data point which was left out of the sample. The optimal bandwidth
parameter HMLCV is that that maximises the log-likelihood of the KDE:

HMLCV = max
H>0

(
1
n

n

∑
i=1

log

(
n

∑
j=1 j 6=i

k
(s∗j − s∗−i

H

))
− log((n−1)H)

)
. (5.19)

The bandwidth parameter determines the smoothness of the probability density.

GP regression with input-dependent noise

Given that the standard deviations of the vessels’ radii and lengths, i.e. σli and σri , have different
magnitudes from vessel to vessel, the coefficient of variation was used

csi
v =

σsi

s̄i
, (5.20)

to compare the variability of the radius and length measurements between vessels (the higher
the coefficient of variation, the higher the variability around the mean). The variance of the
measurements exhibits heteroscedasticity, as smaller vessel segments are more sensitive to pre-
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segmentation parameters leading to non-constant variance. Hence, a GP regression model with
input-dependent noise was used, following an approach by Goldberg et al. [75]. This model
assumes Gaussian-distributed noisy data with both the mean and the variance as latent functions,
modelled using two independent GPs (to be compared to standard GP which only assumes a GP
on the mean and the noise variance is constant across the input range).

y|X, f(1), f(2) ∼MV N (f(1)(X),σ2 exp(f(2)(X)),

f(1)(X)|γ(1) ∼ G P(m(1)(X),K(1)|γ(1)),

f(2)(X)|γ(2) ∼ G P(m(2)(X),K(2)|γ(2)),

γ
(1)

γ
(2) ∼ p(γ(1))p(γ(2)),

(5.21)

where γ(i) contains the covariance function hyperparameters for the ith GP, and σ2 is a con-
stant observation noise variance which the model simplifies to for input-independent noise
(σ2 exp(0)). The formulation for the noise variance in eq (5.21), i.e. a GP prior is placed
on the log of the noise variance, ensures that the variance stays always positive.

The noisy data (y) are the coefficient of variation csi
v , whose mean and variance across the

vessels’ radii and lengths (X) are latent functions on which two independent GP prior models
are placed. The Matérn 5/2 covariance function was used as a kernel for both GPs (as chosen
based on the data, e.g. cross-validation, see Section C.1 in the appendix for details), and their
hyperparameters were found by optimisation of the log marginal likelihood.

5.2.6 Forward uncertainty quantification

Forward UQ propagates model and parameter uncertainties to simulated quantities of interest.
To analyse the variability in model predictions, three sets of simulations were set up that deter-
mine (i) the total variation of haemodynamic predictions associated with segmentation, (ii) the
variation to changes in vessel radius and length (geometric parameters), and (iii) the variation to
changes in network size and connectivity. The first set of simulations (i) used the 25 segmented
networks, whereas the last two (ii-iii) were conducted in a representative network. This part of
the work was carried out entirely by Colebank, and the methodology is summarised here.

Total variation

The haemodynamics predicted for each of the 25 segmented networks were used to quantify the
total variation of flow and pressure predictions across the networks in the MPA, LPA, and RPA.
The observed variation is attributed to several sources of uncertainty, including the model geo-
metric parameters and the network size and connectivity. Once the total variation was calculated,
the relative contributions from the geometric parameter and network variation were obtained.
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Representative network

A representative network was used to examine the variation in vessel radius and length (geomet-
ric parameters) and changes in network size and connectivity. The MPA pressure waveform for
each of the 25 segmented networks was computed, then the point-wise average MPA pressure
across the 25 networks was obtained. The network with the smallest least squares cost between
its MPA pressure waveform and the averaged waveform was designated as the representative
network.

Geometric parameter variation

Cumulative distribution functions (cdfs, strictly increasing functions defined on the interval
[0,1]) and their inverse (icdfs) can be computed from the pdfs of the geometric parameters:
(standardised) length and radius measurements. Given a random variable X with pdf fX(x), its
cdf FX(x) is given by:

FX(x) =
∫ x

−∞

fX(u)du, (5.22)

and can be obtained by numerical integration if f does not have an analytical form. In addition,
the inverse cdf F−1

X (u), where u = FX(x) can be found by root-finding algorithms [144] if f

does not have an analytical form (i.e. find the unique root x of the equation u−FX(x) = 0).
Having cdf and icdf allows inverse transform sampling of the (standardised) radius and length
measurements.

Given a random variable X , its cdf FX(x) and icdf F−1
X (u) are strictly increasing functions,

and the inverse transform sampling proceeds as follows:

• Generate a draw from the uniform distribution: u∼U (0,1).

• Compute x = F−1
X (u).

Below an explanation as to why this works is given. Let us check if we can find a a strictly
monotone transformation T : [0,1]→ R such that T (U)

d
= X , i.e. T−1 : R→ [0,1] such that

U d
= T−1(X)∼U (0,1).

FX(x) = p(X ≤ x) = p(T (U)≤ x) = p(U ≤ T−1(x)) = T−1(x) for u∼U (0,1), (5.23)

So FX(x) is the inverse function of T (x). Next we check if we can prove if T (u) = F−1
X (u) holds.

We know that
T−1(T (u)) = u. (5.24)

Replacing x in eq (5.23) by T (u) we obtain

FX(T (u)) = T−1(T (u)). (5.25)
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Thus, by combining eqns (5.24) and (5.25), we obtain

FX(T (u)) = u. (5.26)

By applying F−1
X on both sides of eq (5.26), we get

T (u) = F−1
X (u), (5.27)

as desired. Thus,
F−1

X (u) = T (u) = x. (5.28)

Hence we can generate X from the strictly increasing function F−1
X (U).

Thus, we can apply the inverse transform sampling approach (Monte Carlo sampling) to
draw samples for the (standardised) radius and length measurements which are subsequently
used for obtaining model predictions (enabling forward UQ), as follows:

1. Draw u∼U (0,1).

2. Obtain the standardised measurements s∗, thus the original measurements s as:

s∗ = F−1
s∗ (u) =⇒ F−1

s∗ (u) =
s− s̄
σs

=
s− s̄
cs

vs̄
, (5.29)

=⇒ s = s̄(cs
vF−1

s∗ (u)+1), (5.30)

by using eqns (5.1) and (5.20).

3. Run 1D CFD model with new s, i.e. new radius and length measurements for every
vessel, and new Windkessel parameters (outflow boundary conditions) as they depend on
the newly drawn measurements, see Section 2.2.4 and [37] for the mathematical details
on this.

4. Repeat steps 1-3 M = 104 times.

Network variation

The effect of network variation (i.e. truncation) was simulated by iteratively eliminating ter-
minal vessel pairs from the representative network, i.e. starting at the smallest branches and
moving towards the proximal vasculature, vessels with the smallest volume (V = πr2l) were
eliminated, while ensuring that Windkessel boundary conditions were adjusted for each simula-
tion, mathematical details are in [37].
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5.3 Results

A selection of results are presented, with an emphasis on the results that I produced, for a full
set of results, please see [37].

5.3.1 Inverse uncertainty quantification

Figure 5.6 shows the length and radii KDE for the 32 representative vessels computed using
Silverman’s rule, maximum likelihood cross-validation, and GPs. Computations using Silver-
man’s rule exhibit overfitting, while the maximum likelihood cross-validation over-smooths the
density relative to the GP. In summary, the GP density estimation provides the most robust ap-
proximation for the KDE, which is therefore chosen in the forward uncertainty propagation in
Section 5.3.2.

In addition, Figure 5.7 (top panels) shows the GP regression for the coefficient of variation
for the radius and length measurements, i.e. cr

v and cl
v, while bottom panels depict the latent

variance. The value for the coefficient of variation increases as vessels get smaller (i.e. as the
radius and length decrease). The mean variance for cl

v increases as the length decreases, yet the
mean variance of cr

v has a sharp decrease for the smallest vessels. Both GP models stay above
the minimum variability of 20µm (image resolution), as given in the study by Vanderpool et al.
[202].

5.3.2 Forward uncertainty quantification

The MPA flow data were used as an inflow boundary condition, hence it does not change in any
of the simulations. The average pressure prediction (over over 25 networks) is shown for the
MPA, LPA, and RPA along with ± two standard deviations in the left column of Figure 5.8.
Mean, systolic, diastolic and pulse pressure and max flow, min flow, and total volume, are given
in Table 5.1. The flow distribution to the LPA is much larger than the RPA, a consequence of
the larger radius of the LPA that allows for greater fluid flow.

The middle column of Figure 5.8 shows the variation in the model predictions due to the
parameter variation in the representative network. That is, Figure 5.8 displays the 10,000 model
predictions (obtained via forward UQ as part of the Monte Carlo sampling of the vessel radii and
lengths, presented in Section 5.2.6), along with the mean and ± two standard deviations from
the mean. The variation in the MPA, LPA, and RPA systolic and pulse pressures is significantly
larger than the variation in the diastolic and mean pressures (see Table 5.1). The flow predictions
in the LPA and RPA have larger variability in mean and max flow in comparison to the minimum
flow.

The variation attributed to network size and connectivity was calculated by fixing each ves-
sel’s radius and length in the representative network before reducing the full network iteratively,
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Figure 5.6: Density estimates (a) and (b) and inverse cumulative distribution functions (c) and
(d) for the standardised radius and length values, respectively, measured in the 32-vessel subset.
The bandwidth parameters used for the length and radius KDEs were determined using Silver-
man’s rule (blue, dash dot) and maximum likelihood cross-validation (MLCV, red, dashed). The
Gaussian process (GP) mean and 95% confidence interval are shown as a solid curve with grey
bands. Standardised values are denoted by the black tick marks in panels (a) and (b). Figure
taken from our study in [37].

and can be seen in the right column of Figure 5.8. Overall, reducing the number of vessels from
219 (largest network) to 3 (smallest network) introduces a pressure drop of approximately 10
mmHg in the pressure predictions of all three pulmonary arteries.

5.4 Discussion

Recent advances in image segmentation have made subject-specific modelling of PH feasi-
ble, yet the modelling process still comprises segmentation-induced uncertainty that propagates
through to simulation results. This is the first known study to explicitly quantify the variability
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Table 5.1: Forward uncertainty quantification results. Statistics based on the pressure and flow
predictions in the first pulmonary bifurcation are displayed when studying total variation, geo-
metric parameter variation, and network variation. Predictions from the total variation include
simulations in the 25 segmented networks. The geometric parameter variation is based on 10,000
Monte Carlo realisations. Lastly, the network variation is based on 219 vessels reduced itera-
tively to three vessels in the network (MPA, LPA, and RPA). Figure taken from our study in
[37].
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Figure 5.7: Gaussian Process (GP) regression using non-constant variance for the relationship
between length and radius and their coefficient of variation (cv). The GP means and standard
deviations were computed from the cv data obtained from the 32-vessel subset (asterisks) and
plotted against the analytical bound of the image resolution (dash-dot curve), as given in [202].
The mean of the GPs and ± one and two standard deviations (s.d.) from the mean are shown in
(a) and (b) in black, dark grey, and light grey, respectively. The variance of the GPs in (c) and (d)
were predicted using an additional GP and provided a mean (black) and variance (dashed curve)
for the variance estimate. Both mean curves in (a) and (b) are above the uncertainty bound of
the imaging protocol. Figure taken from our study in [37].

of 1D CFD blood flow and pressure predictions arising from uncertainty in pre-segmentation
parameterisation. Three types of segmentation-induced variations were investigated: the to-
tal variation arising from changes in pre-segmentation parameters, variation due to changes in
vessel length and radius (geometric parameter variation), and variation with respect to network
connectivity and size (network variation). Results suggest that variation in network structure
is the greater contributor to uncertainty in haemodynamic predictions, consistent with what is
known of the pulmonary vascular physiology. Moreover, the methodology developed herein can
be used to generate a 1D model network for any vascular system.

5.4.1 Inverse uncertainty quantification

KDEs and GPs are commonly used techniques for density estimation [122, 160], but this study
is the first to use GPs in density estimation for vascular measurements. Typically, prior assump-
tions are forced on the unknown parameter distributions by assuming a parametric parameter
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Figure 5.8: Pressure and flow predictions in the first pulmonary bifurcation when studying total
variation, parameter variation, and network variation. Predictions from the total variation (1st

column) include simulations in the 25 segmented networks (SNs), the representative network
(RN, in red), and ± two standard deviations (s.d.) from the mean (blue, dash-dot). The parame-
ter variation plots (2nd column) show the 10,000 Monte Carlo realisations (grey) along with the
mean (black) ± two s.d. from the mean (blue, dash-dot). Lastly, the network variation predic-
tions (3rd column) show the predictions when using 219 vessels in the network (bright red) up
until the network is reduced to the MPA, LPA, and RPA (black). Figure taken from our study in
[37]. 113



distribution. By estimating the density directly from repeated measurements, a non-parametric
density was constructed, describing the uncertainty of the measurements across segmentations
without prior assumptions. As shown in Figure 5.6, the three density estimates are similar in
the mode of the distribution (approximately zero); however the GP density estimation allows
for additional UQ in both the pdf and cdf estimates [160]. The pdfs for radius and length were
constructed independently, thus ignoring any correlation between the radius and length mea-
surements. A pdf estimation method that accounts for correlation between the measurements of
the two quantities should be investigated further, e.g. 2D GP density estimation [160] could be
used to find the joint pdf for the radius and length measurements, and rejection sampling [27]
could be subsequently employed for sampling the measurements from the joint pdf.

The GP regression analysis of the coefficient of variation against the (standardised) mea-
surements of radius and length revealed that the coefficient of variation for the measurements
increased as the measurements decreased in value. This suggests that smaller vessels are subject
to larger fluctuations in measurements when varying pre-segmentation parameters, i.e. across
different segmentations. Similar conclusions have been made in simulations of coronary arteries
[200], as the smaller regions of the vasculature were susceptible to higher segmentation error.

5.4.2 Forward uncertainty quantification

The total network size obtained from the segmentation procedure has several effects on the
model output. As shown in Table 5.1, changes in network topology due to segmentation induced
a variation in systolic pressure that was nearly 6 times larger than the variation of diastolic pres-
sure. Moreover, the total variation for the systolic and pulse pressure was larger in comparison
to the mean pressure and the diastolic pressure. These pressure metrics are typically used in
diagnostic tools of diseases such as PH [63], as well as for risk assessment in patients with con-
genital heart disease [100]. This further indicates a need for UQ when using these models for
cardiovascular disease diagnostics and risk assessment.

The standard deviation of the diastolic pressure resulting from geometric parameter (radius
and length) variation was greater than that resulting from network (size and connectivity) vari-
ation. This suggests that changes in vessel dimensions and nominal boundary conditions can
ultimately raise the diastolic pressure of the system, which is expected in the case of chronic
vascular remodelling [63]. Geometric parameter (radius and length) variation only accounted
for approximately 30% of the total variation in the pulse pressure and had less of an effect on
all other pressure and flow quantities when compared to the network variation. Larger networks
encompassing the entire pulmonary tree correspond to more vessels, thus more uncertain esti-
mates of radius and length, which leads to higher uncertainty of the haemodynamic parameter
estimates [168].

The largest effects on pressure and flow waveform predictions in the network are attributed to
changes in network connectivity and size (Figure 5.8). Network variation produces larger stan-
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dard deviations in systolic and pulse pressures vs geometric parameter variation (see Table 5.1),
suggesting that the configuration of vessels in the pulmonary system may play an important role
in haemodynamic predictions. It is known that network remodeling is common with pulmonary
vascular disease [63, 190].

Changes in network size will lead to changes in optimal values of the parameters describing
stiffness, compliance, and vascular resistance during parameter inference, as these estimated
parameters depend on the size of the network used in CFD simulations. This further indicates
that uncertainty in the network structure must be taken into account when using 1D CFD models
for clinical decision making [38].

5.4.3 Limitations and future work

Several potential limitations of this study can be addressed in future investigations. First, negli-
gible tapering is assumed in each vessel, which could play a role in proximal artery dynamics.
Second, the CFD model assumptions ignore radius dependent stiffness, which may be important
in pulmonary arteries [207] and could change the model sensitivity to network size and vessel
dimensions. However, the focus of this study was to quantify how changes in the model domain
attributed to pre-segmentation parameters impact haemodynamic predictions for fixed material
parameters. The imaging process has inherent uncertainties that affect the image intensities in
the data, which subsequently affect the ability to accurately segment and reconstruct the vas-
culature. These uncertainties ultimately propagate to the 3D meshing and estimation of vessel
centerlines, including the radius and length in the 1D model. Previous work has quantified the
uncertainty in 3D coronary artery geometry using both stochastic collocation methods and ma-
chine learning, showing that uncertainty in stenosis severity can alter predictions in fractional
flow reserve [168]. Future studies will integrate uncertainty at the level of segmentation and
propagate this uncertainty to the radius estimation.

Conventional mean and standard deviation calculations were provided as familiar metrics for
comparison. An alternative approach is to perform formal global sensitivity analysis. State-of-
the-art methods are based on Sobol indices defined via conditional variances of different order
[38, 90, 122, 168]; however, their computation via Monte Carlo or quasi-Monte Carlo simu-
lations is computationally expensive. This computational complexity is aggravated by the fact
that the image segmentation includes manual user input and the parameter space can therefore
only be sampled at a coarse level. A potential way to alleviate this problem is to use statistical
emulation, e.g. using GPs, to compute first order and total effects indices. This can, in princi-
ple, follow the method described in [122], by adapting and extending existing approaches and
software tools; see https://github.com/samcoveney/maGPy. However, this exploration is beyond
the scope of the present study and provides an interesting direction for future research. The
frequently-used three-element Windkessel model are considered as the boundary condition for
the 1D model, yet this model greatly simplifies the physiological resistance beyond the seg-
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mented vessels. In contrast, structured tree boundary conditions [138, 139, 152] can provide an
additional level of complexity for approximating downstream resistance and attempt to capture
network structure beyond the limits of image segmentation. In addition, the experimental pro-
tocol inhibited the same mouse from being used for both the haemodynamic and imaging data.
Nevertheless, the current methodology still captures variability in model predictions due to un-
certainty in the vessel dimensions and network structure. Future human-based studies could
incorporate non-invasive flow and imaging data from the same patient in the model. Finally,
future subject-specific models of the pulmonary vasculature would be enhanced by allowing for
more physiological traits of the network, e.g. trifurcations.

5.5 Conclusions

This chapter presents the first known investigation of the impact of uncertainties in imaging-
based network reconstruction on CFD simulations in the pulmonary vasculature. This work
identifies the uncertainties pertaining to image pre-segmentation parameters by explicitly mea-
suring the variation in radius and length measurements of a subset of vascular segments using
state-of-the-art non-parametric techniques, as well as the variation in size and connectivity of
an expansive pulmonary vascular network. Results showed that the network variation has the
most influence on predictions of blood pressure and flow, while changes in vessel length and ra-
dius have less impact on haemodynamic predictions. For example, network variation produces
roughly two times larger standard deviations in systolic and pulse pressures vs radius and length
parameter variation.
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Chapter 6

Accelerating MCMC with emulation

In this chapter MCMC with emulation of the unnormalized log posterior distribution using Gaus-
sian Processes is adopted as a viable parameter estimation and uncertainty quantification tool in
computationally expensive models described by differential equations. Such models typically
incur onerous computational costs due to repeated numerical integrations as part of an adaptive
parameter estimation procedure. Gradient-driven Hamiltonian/Lagrangian algorithms: Hamil-
tonian Monte Carlo (HMC), No U-turn sampler (NUTS), Riemann Manifold Riemann Mani-
fold Hamiltonian Monte Carlo (RMHMC) and Lagrangian Dynamical Monte Carlo (LDMC)
coupled with emulation are explored, both in a delayed acceptance framework and a standard
framework (no delayed acceptance).

In the first part of this chapter a comparative evaluation study is performed to assess the
performance of the methods proposed on a series of models described by differential equations:
ordinary and partial differential equations, including a 1D fluid-dynamics model of the pul-
monary blood circulation. In the second part of this chapter full proofs of convergence to the
asymptotically exact posterior distribution for the proposed algorithms are provided.

Note: This chapter is adapted from two papers on which I am the first author: ‘Emulation-
accelerated Hamiltonian Monte Carlo algorithms for parameter estimation and uncertainty quan-
tification in differential equation models’ (in preparation), ‘MCMC with Gaussian Processes for
fast parameter estimation and uncertainty quantification in a 1D fluid-dynamics model of the
pulmonary circulation’ (submitted to IJNMBE).

6.1 Introduction

Parameter estimation and uncertainty quantification (UQ) in systems of non-linear ordinary and
partial differential equations (ODEs/PDEs) is a topical research area given the emergence of
complex mathematical models expressed via ODEs or PDEs. Such models are heavily used
throughout all science and engineering fields to understand the underlying mechanisms behind a
process (e.g. biological systems [212], or physiology [124]). However, mathematical modelling
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on its own cannot be used in practice as the differential equations depend on unknown parame-
ters that typically cannot be measured directly, and thus need to be estimated from limited and
noisy measurements. This is when statistical inference becomes an invaluable tool, allowing
estimation of these parameters in a robust and coherent manner within a Bayesian or frequentist
framework.

Parameter estimation is however a challenging task to accomplish as the ODEs/PDEs can-
not be solved analytically, instead they must be integrated using numerical schemes. While this
may not be a problem if the numerical integration is performed only a few times, it quickly
becomes a major hindrance if incorporated within an adaptive parameter estimation procedure
requiring thousands of ODE/PDE evalutions, incurring high computational costs. In addition,
non-identifiable parameters caused either by the model formulation or the insufficient amount
of data, and any strong parameter correlations further complicates the statistical analysis. Point
estimate approaches based on maximising the match between the measurements and the data
simulated via the ODEs/PDEs (by minimising an objective function, typically the Euclidean
distance) do not allow proper exploration of all likely parameter values, thus ignoring their un-
certainty. In contrast, Bayesian methods employing probabilistic models naturally overcome
these issues by providing probability distributions over parameters. These methods combine the
data likelihood and the prior distribution into the posterior distribution using Bayes Theorem,
and MCMC algorithms can subsequently be used to sample from this distribution; the samples
drawn (generally tens of thousands) are likely to have generated the measured data. For a review
on uncertainty and variability in computational and mathematical models described by PDEs
with an application to cardiac physiology, the reader is referred to [124]. In addition, Wilkinson
[212] reviews the application of Bayesian methods to several biological systems defined us-
ing ODEs in bioinformatics (e.g. protein informatics) and computational systems biology (e.g.
quantitative network models).

The main disadvantage of the MCMC Bayesian methods is that the data likelihood can only
be calculated by a numerical integration of the ODEs/PDEs, carried out repeatedly for differ-
ent parameter values, thus rendering the sampling process slow. In addition, finding efficient
algorithms that return high effective sample sizes (ESS) in a reasonable time frame is challeng-
ing, especially if there are strong correlations between the parameters, which would retard the
convergence of standard MCMC algorithms, such as Metropolis-Hastings (M-H) [196]. The
implication of using standard MCMC algorithms on such problems is that a small step size
is needed to obtain a reasonable acceptance rate, which in turn means that low ESS (or high
auto-correlation) is obtained. This problem can be alleviated by using more advanced MCMC
algorithms, such as the HMC algorithm [132]. HMC introduces an auxiliary variable and makes
use of the gradient of the posterior distribution for more informed moves in parameter space.

However, while it has been shown on numerous occasions that the HMC algorithm outper-
forms the random-walk algorithms in terms of efficiency (e.g. for a 100-dimensional multivari-
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ate Gaussian distribution as a target density, see Ch. 5 in [17] or [174]), it has rarely been applied
to non-linear ODE or PDE models. Four noticeable exceptions are [102], where HMC is used to
infer the parameters of an ODE model of intracellular processes, [117], where HMC is applied
to a PDE-based model of tumor growth, [22], where an HMC extension, the Riemann Mani-
fold HMC (RMHMC) is employed for parameter inference in a PDE model of steady state heat
conduction, or [174], where HMC algorithms are applied to a set of ODEs describing dynamic
causal models.

The major drawback of applying HMC to ODE/PDE models is the high computational cost
associated with numerically integrating the ODEs/PDEs a large number of times. HMC trajec-
tories are simulated by following a set of deterministic Hamiltonian dynamics steps in parameter
space. Throughout each trajectory, the ODE/PDEs are evaluated multiple times (for calculating
the likelihood and its gradient) until a proposal is made, unlike the M-H algorithm, which re-
quires one single ODE/PDE evaluation for a proposal to be made. To reduce the computational
burden, several approaches have been proposed in the literature. In a special class of ODE mod-
els (steady state data models), Kramer et al. [102] make use of a special property of steady state
data to obtain output sensitivities (i.e. derivatives of the model output with respect to the un-
known parameters) required in the Hamiltonian equations through analytical calculations. Given
that most ODE/PDE models are dynamic time data models for which the output sensitivities can
only be obtained via numerical integration, the approach adopted in [102] is not generalisable to
any ODE/PDE model. Sengupta et al. [174] compare the performance in terms of computational
speed and accuracy of three methods for calculating the likelihood gradients: finite differences1,
forward sensitivities2 and the adjoint method3, and the latter was shown to be superior (specific
details of these methods can also be found in [173]). Similarly, Bui-Thanh et al. [22] apply the
adjoint method in a PDE system to compute the first, second and third order derivatives of the
likelihood as part of the RMHMC algorithm. The approaches taken in [22, 174] can nevertheless
still be too computationally expensive for large class problems.

The study in [31] introduces the stochastic-gradient HMC, and the main idea is to subsample
the data, which introduces noise, and thus the full-data gradients in the Hamiltonian equations
are replaced by stochastic gradients, which can result in reduced exploration efficiency and
accuracy [9]. Yet another approach proposed to speed up HMC involves the replacement of the
expensive likelihood (or posterior distribution) with computationally cheaper surrogate models
[156, 223] for the likelihood. Surrogate models can be split into three categories: data-driven,
projection-based reduced models, and multi-fidelity (hierarchical) models. Data-driven models
(data fit interpolation and regression models) are constructed by an input-output map for the

1 d f (x)
dx = f (x+h)− f (x)

h , where h > 0 is a small constant
2The ODE system is augmented to include the gradient of the states with respect to the parameters (called the

sensitivity derivative equation)
3Avoids solving the sensitivity derivative equation by the use of a linear adjoint equation which is easier to

numerically integrate
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original (high-fidelity) model, and methods to do this include polynomial chaos expansion [164],
Gaussian Processes (GPs), also known as Kriging, [41, 42, 43, 143, 157, 169], multivariate
adaptive regression splines [176], random basis functions [223], neural networks [30], support
vector machines [145]; for a review on data-driven surrogate models, the reader is referred to
[3, 6, 158]. Projection-based models reduce the parameter space dimensionality by projecting
the governing equations into a basis of orthonormal vectors – see [6] for a review and [61, 189]
for an application to structural dynamics, and to large-scale statistical inverse problems. Multi-
fidelity models are surrogate models created from the original (high-fidelity, complex) model by
reducing the numerical resolution, or by simplifying the physical process – see [6] for a review
and [147, 148] for applications to cardiac electrophysiology.

Given that the models considered in this chapter have a fairly low number of parameters,
a probabilistic inference method based on GPs is used to construct a surrogate for the com-
plex (high-fidelity) model. Now HMC can be coupled with the surrogate model [222], and
two main approaches can be taken to accomplish this: drawing samples from the approximate
posterior distribution defined by the surrogate model (’emulator’), or drawing samples from the
asymptotically exact posterior distribution (’simulator’). The first route, taken in multiple studies
[10, 43, 51, 57, 140, 143, 170, 213], samples from the surrogate posterior distribution, resulting
in substantial gains in computational efficiency (since the expensive model is no longer used),
however the accuracy is sacrificed. To date, no study employing this approach has presented a
way to control the error introduced by the bias (though Cotter et al. [44] theoretically show that
the bias could in principle be bounded, but no practical suggestions to do so are offered).

However, there are methods that correct for the bias by using the surrogate for the proposal
only (see studies in [156, 223]), or by incrementally refining the surrogate model as MCMC
proceeds, while the asymptotic exactness is ensured [223]. Other studies employ similar ap-
proaches guaranteeing asymptotic convergence to the posterior distribution [39, 40, 77, 217],
e.g. the study in [40] uses forward simulations from the expensive model to continually re-
fine a local approximation of the log unnormalised posterior, however the algorithm depends
on various heuristic parameters, which critically affect the computational efficiency and may
be difficult to tune in practice. The delayed acceptance (DA) scheme, introduced in [33, 76]
is another exact method, and it does not depend on any heuristically set terms. This method,
employed in [33, 47, 85, 7, 149, 177], is a two-stage acceptance procedure, with two separate
acceptance/rejection decisions. The first decision is a computationally fast pre-filter step based
on the surrogate model, which upon rejection of a proposed new parameter avoids carrying out
the computationally expensive second step based on the original model.

The current study follows an idea adopted by studies in [108, 156] and employs HMC in
combination with statistical emulation using Gaussian Processes(GPs). An emulator is thus cre-
ated for the log unnormalised posterior distribution. Throughout the trajectory, HMC runs at low
computational costs in the surrogate space, and the Metropolis-Hastings acceptance/rejection
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step at the end of the trajectory is based on the ratio of the true posterior distributions. This
requires one single numerical integration of the ODEs/PDEs throughout the HMC trajectory
(to obtain one parameter proposal), which substantially reduces the computational complexity.
The algorithm is exact in the sense of converging to the true posterior distribution asymptot-
ically, assuming no discretisation errors are introduced from the numerical integration of the
ODEs/PDEs4.

In addition, the current work extends this framework to algorithms which advance HMC: No
U-turn sampler (NUTS) [87], RMHMC [74], and Lagrangian Dynamical Monte Carlo (LDMC)
[109], with Bayesian optimisation for hyperparameter tuning [208]. RMHMC & LDMC make
use of curvature information from the posterior distribution through second-order derivatives,
which is an advantage over HMC or NUTS, that only utilise first-order derivatives. These emu-
lation Hamiltonian/Lagrangian Monte Carlo algorithms are developed within a DA framework,
and it is investigated if the DA scheme brings any computational gains over the standard algo-
rithm. The methodological contribution consists of providing proofs of converge to the correct
posterior distribution for all algorithms proposed. The correctness of the samplers’ implemen-
tation is checked using the Geweke consistency test [71]. Moreover, the performance of these
algorithms is critically assessed on a series of complex non-linear ODE/PDE models, and the
comparison focuses on finding the algorithm which gives the best trade-off in terms of accuracy
and efficiency.

6.2 Methods

6.2.1 HMC coupled with emulation using GPs

The HMC algorithm can be coupled with GPs as part of the GPHMC algorithm, an idea initially
proposed by Rasmussen in [156]. The need for using the GPHMC algorithm over the plain HMC
algorithm is illustrated in Algorithm 1f, which compares the two algorithms in terms of the total
number of expensive model (ODE/PDE) evaluations required to calculate the data log likelihood
and its gradient, which is attached in the caption of the algorithm. Specific differences between
HMC and GPHMC are marked by the text in blue colour. Algorithm 1f is just a conceptual
outline, the reader is referred to Algorithms 1h, 1i, 1j and 1k in Section D.2 for a detailed
pseudocode.

Algorithm 1f clearly illustrates that HMC run in the original log likelihood space requires
many more expensive model evaluations compared to HMC run in the surrogate log likelihood
space since the former requires the numerical integration of the differential equations at every
leapfrog step throughout the Hamiltonian dynamics (eq (2.28)), while the latter only requires

4investigation of the discretisation errors is beyond the scope of this study.
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Algorithm 1f Conceptual outline for Hamiltonian Monte Carlo (HMC) vs HMC coupled with
emulation using Gaussian Processes (GPHMC) algorithm. The total number of model evalua-
tions required for running each algorithm is: HMC – SL(d+1) vs GPHMC – S

1: Define a d-dimensional vector θ with θk
the kth element, k = 1 . . .d; S: number of
HMC samples; L: number of HMC trajec-
tory steps; p(y|θ): simulator data likeli-
hood (eq (2.19))

2: for i = 1 : S do
3: for j = 1 : L do
4: Solve ODEs/PDEs to get

log p(y|θ j) and
∂ log p(y|θ j)

∂θ
j

k
5: end for
6: Propose θ

L

7: Solve ODEs/PDEs to get log p(y|θ L)
and accept/reject in a M-H step

8: end for

Define a d-dimensional vector θ with θk
the kth element, k = 1 . . .d; S: number of
HMC samples; L: number of HMC trajec-
tory steps; p̃(y|θ): emulator data likelihood
(eq (6.2))
for i = 1 : S do

for j = 1 : L do
Use GPs to predict log p̃(y|θ j) and

∂ log p̃(y|θ j)

∂θ
j

k
end for
Propose θ

L

Solve ODEs/PDEs to get log p(y|θ L)
and accept/reject in a M-H step
end for

one single numerical integration at the end of the HMC trajectory per HMC sample. The im-
plication is excessive computational costs, which can be substantially reduced by moving the
HMC scheme to the surrogate posterior space defined by the statistical emulator:

p̃(θ |y) ∝ p̃(y|θ)p(θ), (6.1)

where p(θ) is the prior distribution, and p̃(y|θ) is the surrogate data likelihood given by

p̃(y|θ ,σ2) =

(
1√

2πσ2

)n

exp
(
−S̃ (θ)

2σ2

)
, (6.2)

where S̃ (θ) is the value of the residual sum-of-squares ∑
n
i=1(yi−mi(θ))

2 predicted by the
emulator for the particular θ .

An HMC trajectory typically has in the order of L = 100 to 1000 steps, which if carried out
in the original space would require in the order of 100× (d + 1) to 1000× (d + 1) (d: number
of parameters) expensive model evaluations per HMC sample, thus a reduction in the computa-
tional complexity by about two to three orders of magnitude is obtained. The term d +1 is the
sum of one ODE/PDE evaluation to find the log likelihood, and d ODE/PDE evaluations to find
the numerical derivatives using a first-order differencing scheme with respect to each of the d

parameters. The GPHMC algorithm is guaranteed to converge to the correct posterior distribu-
tion, see Section 6.9 for the proof. Therefore, even if the emulator is a poor representation of
the simulator, the algorithm is still mathematically guaranteed to converge to the true posterior
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distribution, though at a decreased convergence rate.

6.3 Methodological contribution

6.3.1 GPHMC extensions

The first methodological contribution is to provide a proof of convergence to the correct poste-
rior distribution for Rasmussen’s GPHMC algorithm [156] (see Section 6.9.3), since this proof
seems to have been omitted from the paper in which it was initially proposed [156], or from
subsequent studies using this algorithm [117]. Furthermore, the GPHMC algorithm is extended
to allow other HMC improvement algorithms, namely NUTS, RMHMC and LDMC, and proofs
of convergence for these algorithms are also provided (see Sections 6.9.4, 6.9.6 and 6.9.8). In
addition, a novel scheme which embeds the GPHMC algorithm into a delayed acceptance [76]
framework is proposed, to investigate whether the DA scheme can bring computational gains
over the standard GPHMC algorithm. In literature [76, 177] it has been hypothesized that the
delayed acceptance scheme could potentially speed up simulations. This scheme, proposed in
[33], and slightly modified by Sherlock et al. [76, 177], is a two-stage acceptance procedure,
with two M-H acceptance/rejection steps. The first step is a computationally fast pre-filter step,
in which proposed values are accepted/rejected based on the emulator. Detailed balance with
respect to the true posterior distribution is ensured through the second M-H step, which invokes
the original posterior distribution for the acceptance/rejection of the those samples accepted in
the first step. In other words, the scheme avoids carrying out the expensive step for samples
rejected in the first step by the emulator, which justifies the potential computational gain. As
in [76, 177], the first acceptance probability based on the emulator is given in eq (6.3) and the
second acceptance probability based on the simulator is expressed in eq (6.4):

α1(θ
∗|θ) = 1∧ p̃(θ ∗|y)q(θ |θ ∗)

p̃(θ |y)q(θ ∗|θ)
, (6.3)

α2(θ
∗|θ) = 1∧ p(θ ∗|y)

p(θ |y)
p̃(θ |y)
p̃(θ ∗|y)

, (6.4)

where p̃(.) is the approximate posterior distribution, constructed using the emulator, p(.) is the
exact posterior distribution, obtained using the simulator, and q(.) is the proposal distribution.

Proofs of convergence for the GPHMC algorithm and its improvement algorithms coupled
with DA are provided in Sections 6.9.2, 6.9.5 and 6.9.7. To check the mathematical and coding
correctness of all the samplers proposed, the Geweke consistency test [71], reviewed in Sec-
tion 2.3.6, is employed.
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6.3.2 Adapted GPHMC for unknown constraints

Furthermore, the GPHMC algorithm is extended to handle a priori unknown constraints on the
joint parameter space, which is addressed by constructing a GP classifier, that automatically
learns the infeasible parameter regions. For some complex biophysical models, there are certain
parameter values and combinations for which the underlying physical assumptions of the model
are violated, or the solver used is inappropriate for the problem, producing no outputs from the
simulation software. While the second matter can be tackled by e.g. trying a different solver,
decreasing the convergence threshold value, or increasing the number of discretisation steps,
there is no clear resolution for the first issue. This may be caused by the inappropriateness of
the parameter ranges, which are generally chosen by varying one parameter at a time, while
fixing all the other parameters to biologically realistic values. However, when parameters are
simultaneously changed, e.g. in the fluid-dynamics model, given the fixed network geometry
and inflow, the resulting parameter combinations may break physiological assumptions (e.g. a
large arterial stiffness may not be compatible with high compliance downstream). We stress that
a multivariate classifier should only be implemented upon thoroughly checking the suitability of
the solver. For parameter values in the ’invalid’ domain, different solvers may be tried. If the
crash is independent of the solver used, this suggests that the crash is of a more fundamental
nature (i.e. violation of the physical model assumptions).

In a standard MCMC simulation based on the actual model, an invalid parameter vector can
be assigned zero likelihood. Hence, if such a parameter vector is proposed, it will be rejected in
the Metropolis-Hastings acceptance/rejection step. However, dealing with such invalid regions
in the context of emulation requires some extra care. A naive and straightforward approach is to
set the likelihood for an invalid parameter vector to a very small value close to zero (i.e. the log
likelihood to a negative value with large modulus) when training the GP emulator. However, this
approach is unlikely to lead to a good emulator. A sudden shift to an extreme value will drive
the lengthscale of the GP kernel to a very small value in the hyperparameter estimation step,
which in turn will cause ripples in the GP interpolant and hence overfitting in the valid regime.
This issue is addressed by introducing a GP classifier. Let λ denote a binary variable to indicate
if the parameter vector θ falls into a valid regime (λ = 1) or invalid regime (λ = 0). Given a set
of parameter vector - label pairs obtained during the initial design and exploration phase of the
GPHMC algorithm (see below for details),

H = {(θ 1,λ1), . . . ,(θ n,λn)}

a GP classifier (reviewed in Section 2.3.7) can be trained to predict the probability p(λ =

1|θ ,H ). These probabilities can be used to modify the prior:

p̃(θ) = p(θ)p(λ = 1|θ ,H )/Z, (6.5)
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where Z =
∫

p(θ)p(λ = 1|θ ,H )dθ is a normalisation constant, which cancels out in the
Metropolis-Hastings acceptance/rejection step. When running in the emulated space, the sam-
pler uses the modified prior p̃(θ) instead of the original prior p(θ) to avoid moving into invalid
parameter regions (where the probability of success p(λ = 1|θ ,H ) is low). A similar idea of
combining a GP classifier with a GP emulator has been proposed in the context of Bayesian
optimisation with unknown constraints [65, 135].

Pseudocode for GPHMC coupled with a GP classifier can be found in Algorithm 1l. A
diagram summarising Rasmussen’s GPHMC algorithm can be seen in Figure 6.1. Figures 6.2
and 6.3 contrast HMC without and with the DA method, both of which are used within the
GPHMC algorithm [156].

Initial phase: 
Build initial emulator 
and classifier from a 
space filling design in 

parameter space

Exploratory phase: 
Run MCMC & 

continually refine 
emulator and classifier

Sampling phase: 
Run MCMC using 
existing emulator 

and classifier

Figure 6.1: Workflow of the GPHMC algorithm [156]. The emulator and classifier constructed
in the initial phase are continually refined as HMC is run in the exploratory phase. HMC in the
sampling phase proceeds by drawing samples from the asymptotically exact posterior distribu-
tion, with the use of the emulator and classifier, which are no longer updated.

Figure 6.2: Standard (no delayed acceptance) HMC algorithm used within the GPHMC algo-
rithm [156].

From current θi

follow Hamiltonian 
dynamics in 

surrogate space

Propose θ* at the 
end of HMC 
trajectory in 

surrogate space

Test acceptance 
using surrogate 

posterior distribution

Test acceptance 
using exact posterior 

distribution

Reject: θi+1 = θi

Accept: θi+1 = θ*     OR    Reject: θi+1 = θi

YES

NO

Figure 6.3: Delayed acceptance HMC algorithm used within the GPHMC algorithm [156].

GPHMC coupled with a classifier can be described as follows:

• Initial design stage. Starting from a space filling design in parameter space to capture the
compact support of the parameters, e.g. using a Latin hypercube [119] or a Sobol sequence
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[16], integrate the ODEs/PDEs numerically for each parameter vector to get the true data
log likelihood values and the success labels. Use these points to build a GP emulator and a
GP classifier. Only those parameter vectors which yield successful ODE/PDE simulations
are added to the list of training points for the GP regression model. All points regardless of
whether or not they provide a successful simulation are added to the list of training points
for the GP classifier, to enable the classifier to learn the infeasible regions that break the
biophysical assumptions.

• Exploratory phase. Gather information about the target distribution by running HMC on
the emulated surrogate log posterior of the PDE parameters, with the proposed point at
the end of the HMC trajectory being subject to a M-H step based on the true posterior
distribution (see Section 6.9 for more details on this). The emulator and classifier are
sequentially refined (i.e. optimum covariance hyperparameters are found by maximisation
of the log marginal likelihood of the GP training points – see eq (2.64) or (2.79)) as new
points are accepted. Accepted parameter vectors are iteratively added as further training
points to those used in the initial design stage. The points in the initial design stage are
gradually removed from the list of training points as they tend to come from low posterior
density regions and can bias the inference results. As HMC explores the parameter space,
it gets closer to the equilibrium distribution (burn-in phase). This ensures the algorithm
sequentially zooms into the regions of high posterior probability. Following [156], the
emulated ’potential energy’ of the HMC algorithm (see Section 2.3.3) is set to

Ẽ(θ ∗) =
E( f (θ ∗)|D)−

√
var( f (θ ∗)|D)

2σ2 +
n
2

log(2πσ
2)− log p̃(θ ∗). (6.6)

Here σ2 is the variance of the errors, p̃(θ ∗) is the modified prior distribution, see eq (6.5)
(which is common to both the emulator and the simulator), f (.) is the emulated residual
sum-of-squares function, E( f (θ ∗)|D) is the GP posterior predictive mean given the train-
ing points D (see eq (2.66) or (2.74)) and

√
var( f (θ ∗)|D) is the GP posterior predictive

standard deviation (see eq (2.67) or (2.75)) for the residual sum-of-squares of the data at
unseen parameter configurations θ

∗ conditional on the training points D. This drives the
exploration into regions of high posterior probability (low value of E(.)) or high uncer-
tainty (large value of

√
var(.)). If

√
var(.)>3 (for residual sum-of-square values standard-

ised to unit variance) along the HMC trajectory, the algorithm steps into a region of high
uncertainty, where the GP needs to be further trained, thus the simulation is stopped pre-
maturely before reaching the end of the trajectory and an expensive model evaluation is
performed at this point. This follows the same exploitation-exploration trade-off principle
as in optimistic acquisition functions used for Bayesian optimisation, see Section IV in
[175].

• Sampling phase. Use the emulator and the classifier constructed in the exploratory phase
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to draw samples from the target distribution using HMC, or any of its variants: NUTS,
RMHMC, LDMC. At this stage, the emulator and the classifier are no longer updated.
The emulated ’potential energy’ in the HMC algorithm is set to:

Ẽ(θ ∗) =
E( f (θ ∗)|D)

2σ2 +
n
2

log(2πσ
2)− log p̃(θ ∗). (6.7)

Note that the numerator in the first term is the expected sum-of-squares error, which com-
bined with the normalisation term in the middle gives the log likelihood of the data, and
the final term is the log prior. Proposed points are accepted/rejected in a M-H step ac-
cording to the simulator (see Section 6.9 for more details). If the rejection rate is too high
(e.g. above 35%), this indicates that the emulated posterior distribution is not an accu-
rate enough representation of the original posterior distribution5 and an extension of the
exploratory phase is needed.

Note that for problems where there is no evidence of constraints in parameter space, a clas-
sifier is not needed, and the original prior distribution p(θ ∗) is used in eqns (6.6) and (6.7), and
not the modified prior distribution p̃(θ ∗) expressed in eq (6.5).

In the GPHMC algorithm, derivatives of the emulated log posterior are calculated by using
the fact that GPs are closed under differentiation, i.e. the derivatives of a GP are also GPs (though
with different covariance structures), provided the kernel is differentiable, see Section 2.3.7 for
details and Section D.1 for specific derivative forms up to and including third order.

6.3.3 Setting the mass matrix for RMHMC/LDMC

For second-order algorithms (RMHMC, LDMC) obtaining the metric tensor is necessary. This
is not trivial when emulating the objective function, and this section contains a discussion on the
approach taken.

Eqns (2.39) and (2.40) show what the mass matrix can be set to to ensure that it is a proper
metric tensor, i.e. positive definite, and distances ∆θ

TM(θ)∆θ between probability distribution
functions p(y,θ) and p(y,θ +∆θ) on the Riemann manifold are coordinate-independent (see
Section 3.2 in [24] for more details, in particular eq (3.28)). Unfortunately, given that in our work
we emulate the objective function (residual sum-of-squares) instead of the model output, this
results in loss of information, and hence inability of calculating the expectation in eqns (2.39)
and (2.40). More precisely, for the model defined in eq (2.19), we may take the log to obtain

log p(y|θ ,σ2) =
(
−n

2
log(2πσ

2)
)
− ∑

n
i=1(yi−mi(θ))

2

2σ2 , (6.8)

5The accuracy of the emulator can be checked by diagnostics [8].
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and the corresponding first and second-order derivatives are:

∂ log p(y|θ ,σ2)

θ j
=

1
σ2

n

∑
i=1

(
(yi−mi(θ))

∂mi(θ)

∂θ j

)
, (6.9)

∂ 2 log p(y|θ ,σ2)

θkθ j
=

1
σ2

n

∑
i=1

(
−
(

∂mi(θ)

∂θk

∂mi(θ)

∂θ j

)
+(yi−mi(θ))

∂ 2mi(θ)

∂θk∂θ j

)
. (6.10)

By using the fact that
E(y|θ) = m(θ), (6.11)

we can negate the expression in eq (6.10) and take the expectation with respect to y|θ :

Ey|θ

(
−∂ 2 log p(y|θ ,σ2)

θkθ j

)
=

1
σ2

n

∑
i=1

(
∂mi(θ)

∂θk

∂mi(θ)

∂θ j

)
. (6.12)

Given that we emulate the expression ∑
n
i=1(yi−mi(θ))

2, we do not know the individual
terms inside the sum, hence taking the expectation of the expression in eq (6.12) is impossible.
Instead, we set M to be the observed Fisher Information matrix (the matrix of negative second-
order derivatives of the log likelihood), plus the negative Hessian matrix of the log prior, i.e.

Mi, j =−
∂ 2log p(y,θ)

∂θi∂θ j
=−∂ 2log p(y|θ)

∂θi∂θ j
+

(
−∂ 2log p(θ)

∂θi∂θ j

)
. (6.13)

However, this is not guaranteed to be positive definite, and so it is not a proper metric ten-
sor, unlike the quantity involving the expected Fisher information matrix in eqns (2.39) and
(2.40). In addition, distances ∆θ

TM(θ)∆θ between probability distribution functions p(y,θ)
and p(y,θ +∆θ) on the manifold may depend on the model parameterisation, i.e. under re-
parameterisation θ→ φ , ∆φ

TM(φ)∆θ 6=∆θ
TM(θ)∆θ . This further invalidates the term involv-

ing the observed Fisher Information matrix in eq (6.13) as a proper metric tensor on Riemann
manifolds (see Section 3.2 in [24] for more details).

We consider another form for the metric tensor:

Mi, j =
∂ log p(y,θ)

∂θi

∂ log p(y,θ)
∂θ j

, (6.14)

which makes use of the empirical Fisher information matrix for one single data set. In expecta-
tion, the terms in eqns (6.14) and (6.13) are expected to be similar for a large number of data sets
and uninformative priors. Should we have multiple data sets, the empirical Fisher information
plus the negative Hessian for the log prior is the mean over all data sets:

Mi, j =
1
K

K

∑
k=1

(
∂ log p(yk,θ)

∂θi

∂ log p(yk,θ)

∂θ j

)
. (6.15)
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The quantity in eq (6.14) is positive semi-definite by definition, however we found that its in-
version can sometimes be numerically unstable due to a high condition number of the matrix
(which can happen if the minimum eigenvalue is very close to zero, while the maximum eigen-
value is orders of magnitude larger, making their ratio, i.e. the condition number large, > 1015).
In addition, it has been shown that the convergence of the algorithm used may be negatively
affected by a small K, see Section 3.2 in [24] (for K→∞, the quantity in eq (6.15)) is the middle
term in eq (2.40)).

An alternative form which we consider for the metric tensor is a hybrid version between
forms in eqns (6.13) and (6.14):

Mi, j = λ

(
−∂ 2log p(y,θ)

∂θi∂θ j

)
+(1−λ )

(
∂ log p(y,θ)

∂θi

∂ log p(y,θ)
∂θ j

)
, (6.16)

where λ ∈ [0,1], is chosen to be large enough as to produce a positive definite M. The form in
eq (6.16) is motivated by the fact that the two terms are expected to be similar in expectation for
a large number of data sets and uninformative priors.

In this work it was found that setting the metric tensor as per eq (6.16) does not work for all
parameter values tried by the sampler (in some cases, parameter values throughout the trajectory
tend to take extreme, unrealistic values, subsequently leading to warning messages from the
ODE solver which is called for the end trajectory value). In that case, the approach taken is akin
to a Quasi-Newton method in optimisation [19], i.e. if at any point throughout the trajectory, the
mass matrix is numerically unstable, the simulation within the trajectory is stopped prematurely
before reaching the end. A new simulation is started from the beginning of the trajectory and
the HMC algorithm is used instead of RMHMC or LDMC for that particular iteration. The
resulting posterior samples will have been drawn using a hybrid version of HMC and RMHMC
or LDMC, and the proposed algorithm is called Quasi-HMC-RMHMC or Quasi-HMC-LDMC.
This algorithm naturally satisfies detailed balance since each sample is drawn using a valid
sampler (either HMC or RMHMC/LDMC).

Adopting a Hessian-based approach in MCMC has been done in a few previous studies.
For example, Qi et. al. [146] used a modified version of the Hessian (H = H+ λ I to ensure
that the negative Hessian is positive definite) as the covariance matrix of the Gaussian proposal
distribution in the M-H algorithm. In addition, Zhang et. al. [220] set the mass matrix in the
HMC algorithm equal to the negative Hessian, which they compute based on a fixed window
of past HMC samples. The authors take the past chain samples in a way that ensures that the
negative Hessian is always positive definite, however this is not guaranteed to work for problems
in which the log posterior density is not convex, since the negative Hessian is no longer positive
definite. A similar idea is also adopted in another study on stochastic Quasi-Newton Langevin
Monte Carlo algorithm [182]. Additionally, Dahlin et. al. [48] incorporated the Hessian into a
particle M-H algorithm as a way to set the covariance of the proposal, and the authors transform
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the negative Hessian into a positive definite matrix by adding a diagonal matrix: H = H+λ I,
where λ = max(0,−2λmin), where λmin is the minimum negative eigenvalue. However, the
workability of such an approach is limited by the strict assumption that the log posterior is
convex, which is difficult to check in high-dimensional (>2) spaces.

6.3.4 Brief discussion on efficiency for all algorithms proposed

The noDA-GPNUTS algorithm requires evaluation of the differential equations several times
(equal to the number of tree doublings, i.e. tree height) along the trajectory before making
a proposal; see the proof in Section 6.9.8, in particular eq (6.34) on page 187, which shows
that the simulator potential function E(θ) needs evaluating for every tree doubling j. In con-
trast, DA-GPNUTS only evaluates the ODEs/PDEs once at the end of the trajectory, for the
final proposed point (as do all the other algorithms investigated: noDA-GPHMC, DA-GPHMC,
noDA-GPRMHMC, DA-GPRMHMC, noDA-GPLDMC, DA-GPLDMC). This implies that the
noDA-GPNUTS requires a much larger number of forward evaluations (roughly one order of
magnitude larger) than the DA-GPNUTS. For this reason, this algorithm was not implemented.
All the other algorithms: noDA-GPHMC (which is the standard GPHMC), DA-GPHMC, DA-
GPNUTS, noDA-GPRMHMC, DA-GPRMHMC, noDA-GPLDMC, DA-GPLDMC were ap-
plied on a number of ODE/PDE problems, presented in Section 6.4.

6.4 ODE/PDE test examples

This section describes the test examples on which the methods outlined above were applied.

6.4.1 Sinusoidal example

The first example is a linear ODE model, that is a sinusoidal toy problem, defined via the ex-
pression

d2 f
dt2 +B2 f = 0, (6.17)

or equivalently,
d f
dt

= z,
dz
dt

+B2 f = 0, (6.18)

and which has an analytical solution:

f (t) = Asin(B(t +C)), (6.19)

where A: amplitude,
2π

B
: period, C: phase shift are the unknown parameters, estimated from the

data, and t ∈ [0,2π], i.e. only one period is considered to ensure unimodality of the likelihood.
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Figure 6.4: An example of noise-free data generated from the sinusoidal model using eq (6.17)
(continuous black line). To this iid additive Gaussian noise with variance 0.12 was added (red
dots), and the noisy data were used in the inference procedure.

This linear ODE example with closed form solution allows to check the mathematical and cod-
ing correctness of the samplers’ implementation (using Geweke consistency test, reviewed in
Section 2.3.6) at affordable costs.

Data were simulated at 50 equally spaced time points in the range [0,2π]. The true parameter
values were set as: A= 3,B= 1 and C = 0.05. Iid additive Gaussian noise was added to the clean
data generated using eq (6.17), and the variance of the noise σ2 was set to 0.12. An illustration
of the data is given in Figure 6.4.

The parameters A,B,C were inferred, and the noise variance was kept fixed at its true
value. This simplification was relaxed in the next examples. A Gaussian prior distribution
was placed on the log of the parameters to ensure positivity (logA ∼N (log4,0.02), logB ∼
N (log1,0.01), logC ∼N (log0.05,0.05)). These priors were chosen to impose unimodality
of the posterior distribution.

6.4.2 FitzHugh-Nagumo

The FitzHugh-Nagumo model, developed by FitzHugh [58] and Nagumo et al. [131] to model
the behaviour of spike potentials in the giant axon of neurons, is defined as a non-linear ODE
model:

dV
dt

= γ

(
V − V 3

3
+R
)
,

dR
dt

=
1
γ
(V −α +βR). (6.20)
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Figure 6.5: An example of noise-free data generated from the FitzHugh-Nagumo model using
eq (6.20) (continuous black line). To these iid additive Gaussian noise with variance 0.25 - left
signal and 0.16 - right signal (red dots) was added. Data from the two signals were used for the
inference procedure.

The system describes the reciprocal dependency between the voltage V across an axon mem-
brane (characterising the self-excitation of the axon membrane) and the recovery R, acting as
outwards currents (providing a feedback response). The model has been used as a mathematical
representation for cardiac dynamics [80] and neuro-degenerative diseases [21]. Equation (6.20)
defines a highly non-linear likelihood surface [155] as the three parameters α,β ,γ are varied.

Following [25], data from the model were generated with the following parameter values:
α = 0.2,β = 0.2,γ = 3, and initial values (V0,R0) = (−1,1). 100 time points equally spaced
in the interval [0,20] ms were used. Iid additive Gaussian noise was added to the data, with the
following variances: σ2

V = 0.25,σ2
R = 0.16. A depiction of the data can be seen in Figure 6.5.

The estimation procedure inferred five parameters: α,β ,γ,σ2
V ,σ

2
R from data from the two

"species" V and R. Following the study in Chapter 8 of [112], a Gamma(2,1) prior was set
for parameters α,β ,γ , while for the noise variances: σ2

V ,σ
2
R a weakly informative Inverse-

Gamma(0.001, 0.001) prior was used.

6.4.3 Biochemical signalling pathway

The biochemical signalling pathway model characterised by the non-linear ODE system in equa-
tions (6.21) uses the Michaelis-Menten kinetic law to describe the activation of a protein R into
its active form Rpp in the presence of an enzyme S, followed by the degradation of the enzyme
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Figure 6.6: Graphical representation of the protein signalling pathway in eq (6.21). The model
uses the Michaelis-Menten kinetic law to describe the activation of a protein R into its active
form Rpp in the presence of an enzyme S, followed by the degradation of the enzyme into its
inactive form D. Figure adapted from Chapter 8 in [112].

into its inactive form D (Figure 6.6), see Chapter 8 in [112],

dS
dt

=−k1S,
dD
dt

= k1S,
dR
dt

=− V1RS
Km1 +R

+
V2Rpp

Km2 +Rpp
,

dRpp

dt
=

V1RS
Km1 +R

−
V2Rpp

Km2 +Rpp
.

(6.21)
Cell signalling has been used in cancer modelling [118] and modelling of neuro-degenerative

diseases [99]. The system of eqns in (6.21) depends on five kinetic parameters: k1,V1,Km1,V2,
Km2 which control how fast the biochemical processes involving the five "species" (S,D,R,Rpp)
take place.

Following the study in Chapter 8 of [112], data were generated from the model with the
following parameter values: k1 = 0.05,V1 = 0.2,Km1 = 0.1,V2 = 0.1,Km2 = 0.1, and initial
values (S0,D0,R0,Rpp0) = (1,0,1,0). 20 data points were used within the interval [0,100] s,
measured at time points {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 20, 25, 30, 40, 60, 80, 100}. Iid
additive Gaussian noise was added to the data, with the variance of 0.0004 for all species. A
depiction of the data can be seen in Figure 6.7.

Five parameters: k1,V1,Km1,V2,Km2 were estimated from data from the four "species": S,D,
R,Rpp. Following the study in Chapter 8 of [112], a Gamma(1,1) prior was set for parame-
ters k1,V1,Km1 , V2,Km2 , while for the noise variances: σ2

S ,σ
2
D,σ

2
R,σ

2
Rpp

, a weakly informative
Inverse-Gamma(0.001, 0.001) prior was used.

6.4.4 Real-world application: fluid-dynamics model of the pulmonary blood
circulation

The mathematical model used is indicated in Table 2.1 and is described in Section 2.2. The
experimental data used are described in Section 2.1. Measured blood pressure (a time series
consisting of 512 temporal pressure points) in the main pulmonary artery (MPA) was used to
infer the various biophysical parameters: s,r1,r2,c in a fixed vessel network obtained from
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Figure 6.7: An example of noise-free data generated from the biochemical signalling pathway
model using eq (6.21) (continuous black line). To these we added iid additive Gaussian noise
with variance 0.0004 for all four signals (red dots). Data from all four signals were used for the
inference procedure.

one image segmentation. The parameters estimated are a constant vessel stiffness and three
Windkessel adjustment parameters: s,r1,r2,c, which lie within biologically plausible ranges, as
established by the authors of [151]: s ∈ [7×104,5×105],r1 ∈ [−0.5,1.92],r2 ∈ [−0.5,1.0],c ∈
[−2.5,1.5]). A rescaled Beta(1,1) prior for the parameters was used to enforce that they lie
within the prescribed ranges, while for the noise variance σ2 a weakly informative Inverse-
Gamma(0.001, 0.001) prior was used (iid errors were assumed, see Chapter 7 for a discussion).

6.5 Simulations

6.5.1 Software

The statistical methods were implemented in Matlab (Mathworks, Natick, MA) and simulations
were run on a RedHat Enterprise Linux 6 machine with Intel(R) Xeon(R) CPU E5-2680 v2
2.80GHz and 32GB RAM. The GP models were constructed using the GPstuff toolbox [203]
and the MCMC convergence and efficiency diagnostics (multivariate potential scale reduction
factor, MPSRF [18] and ESS [95]) made use of functions from the MCMC toolbox [107].
NUTS, RMHMC and LDMC algorithms were run using the Matlab implementations developed
by the authors of the papers where these algorithms were proposed [74, 87, 109]. For the nu-
merical integration of the ODEs, the ode15s Matlab solver was used for the FitzHugh-Nagumo
model, and the ode23 solver for the biochemical signalling pathway model (the change of solvers
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is motivated by stiffness of the system, i.e. ode15s is used for stiff systems). The PDEs of the
1D fluid-dynamics model were numerically integrated using a two step Lax-Wendroff scheme
[113] implemented in C++ by Olufsen et al. [139, 151].

6.5.2 Method implementation details

GP kernel

For the GP emulator of the residual sum-of-squares, a squared exponential kernel (eq (2.54)) was
used, which is infinitely differentiable6, allowing to analytically compute7 first-order derivatives
of the GP posterior predictive mean and variance (eqns (D.1), (D.2), (D.6) and (D.7)) needed
in HMC, and second and third-order derivatives of the GP posterior predictive mean, needed in
RMHMC and LDMC (note that differentiation is a linear operator, so the derivative of a GP is
again a GP for differentiable kernels; see Section 9.4 in [157]).

GP mean

For the sinusoidal, FitzHugh-Nagumo and pulmonary models a zero mean GP prior was used,
while for the biochemical pathway model a second-order polynomial for the mean basis func-
tions was used, e.g. in 5D:

h(x) = [1 x1 . . . x5 x2
1 . . . x2

5 x1x2 x1x3 . . . x4x5]
T, (6.22)

to discourage the emulated RSS values become zero outside the region where there are no data,
and ensure high accuracy of the emulator in the high posterior probability region, where most
data lie. In regions of no data, the posterior relies completely on the prior, hence for a zero mean
GP prior, the emulated RSS values will tend towards zero. In addition, following the work by
Riihimaki et al. [160], a weakly informative prior distribution for the regression coefficients β

was imposed by setting b = 0 and B = 102I, i.e. β ∼MV N (0,102I). A justification of using
a non-zero mean GP prior for the biochemical model is given in Section 6.6.3.

6For example, the Matèrn 3/2 (eq (2.57)) or 5/2 kernels (eq (2.58)) cannot be used for the RMHMC and LDMC
algorithms, as they are only once and twice respectively differentiable.

7The analytical derivative was checked against the numerical derivative; a difference in Euclidean space below
a small threshold, e.g. 0.1%, was taken as an indication that the two were in agreement.
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Multiple GPs

For problems with multiple "species" (biochemical and FitzHugh-Nagumo examples), the RSS
for every "species" was emulated independently, thus eq (6.2) becomes

p̃(y|θ ,σ2) =
J

∏
j=1

 1√
2πσ2

j

n j

exp

(
−

S̃ j(θ)

2σ2
j

) , (6.23)

where S̃ j(θ) is the emulated RSS for the jth "species", σ2
j is the noise variance, n j is the number

of data points, and J is the total number of "species".

GP compact support

The emulator needs compact support. While for the real-world problem the bounds for the pa-
rameters were taken to be biologically meaningful, for the other three applications, we chose
the bounds based on an initial exploration, e.g. initially a wide interval was chosen, and 1D
and 2D plots of the true residual sum-of-square values against the parameters helped refine
this range. For example, parameter values producing signals extremely different from the data,
and thus high residual sum-of-square values (relative to the minimum value, e.g. 100 times
larger) should be excluded. Choosing ranges in this manner may work in 1D or 2D space,
further refinement may be needed in joint parameter space for dimensions higher than three
– see Section 6.5.2 for further details. Thus, the compact support was chosen as follows:
for the sinusoidal example: A ∈ [2,7],B ∈ [0.5,1.7],C ∈ [0.01,0.1]; for the FitzHugh-Nagumo
model: α ∈ [1,4],β ∈ [10−3,1],γ ∈ [10−3,1]; for the biochemical signalling pathway: k1 ∈
[0.03,0.07],V1 ∈ [0.05,0.5],Km1 ∈ [0.01,1],V2 ∈ [0.05,0.2], Km2 ∈ [0.01,0.3]; for the pulmonary
fluid-dynamics model: s ∈ [7×104,5×105],r1 ∈ [−0.5,1.92],r2 ∈ [−0.5,1.0],c ∈ [−2.5,1.5]).

Data sets

For all three synthetic examples (sinusoidal, FitzHugh-Nagumo and biochemical pathway) 10
synthetic data sets were generated with different noise instantiations. For the pulmonary exam-
ple one single measured data set was available.

GPHMC phases

Initial design stage: At the initial stage of the GPHMC algorithm [156] in which the initial
emulator is created, a number of training points must be selected. This number can be deter-
mined by quantifying the efficiency of the MCMC sampler in the beginning of the exploratory
phase (the acceptance rate of the sampler running on the initial emulator should not be too low,
e.g. below 20%). 1500 points were collected for the sinusoidal and FitzHugh-Nagumo (out of
which 500 points with lowest RSS value were used as training points for the emulator), 600
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points for the pulmonary fluid-dynamics model (all points were used as training points for the
emulator), and 3000 points (out of which 500 points with lowest RSS value were used as train-
ing points for the emulator) for the biochemical example. This can act as an initial refinement
of the initial joint range if very large RSS values relative to the minimum recorded are recorded
(an idea similar to a history matching approach [213]).

Exploratory phase: In the exploratory phase of the GPHMC algorithm [156] a minimum
number of training points should be stored (as to boost computational efficiency), while pre-
serving a high enough emulator accuracy (as quantified by GP diagnostics [8]), and a high
acceptance rate in the sampling phase (>65% [132]). Initially 100×d (d: parameter dimension-
ality) training points can be used, and if the acceptance rate in the sampling phase is sub-optimal
(<65%), the exploratory phase can be extended to allow a larger number of training points to be
collected. Generally this number depends on the parameter dimensionality and the complexity
of the posterior distribution. For example, the rule of thumb presented in the study by Jones et al.
[94] 10×d was found inadequate; while this rule of thumb may work for Bayesian optimisation,
which is the context in which it was originally proposed, it provided a sub-optimal emulator in
an MCMC context. The algorithm in the exploratory phase was run for 400 iterations for the
sinusoidal example and the accepted samples were added as further training points to the list
from the initial stage design (400 training points were saved at the end of the exploratory to be
used in the sampling phase), 500 iterations for the FitzHugh-Nagumo (450 points at the end of
the exploratory), 1000 iterations for the pulmonary fluid-dynamics model (400 points at the end
of the exploratory), and for the biochemical example the sampler was run to obtain 1500 training
points to be used in the sampling phase.

The samples collected in the exploratory phase were used to refine the GP emulator (i.e.
update the covariance hyperparameters by reoptimising the log marginal likelihood of the GP
training points – see eq (2.64) or (2.79)) and to get closer to the equilibrum distribution.

The noise variance was kept fixed in the first part of the exploratory phase to enable learning
the parameters while avoiding changes in curvature which would be induced by varying the
noise variance. One can initially use an informed guess, as given by RSS divided by the number
of points, where the RSS value was obtained from fitting a non-linear regression model to the
data. The acceptance rate in the exploratory phase of the algorithm can then act as an objective
metric to assess the appropriateness of the noise variance σ2 value. If the acceptance rate is too
low, e.g. <10%, this indicates a higher σ2 value in eqns (2.19) and (6.2) is needed to reduce the
discrepancy between the emulated and original likelihood (or posterior). If the acceptance rate
is too large, e.g. >90%, this suggests that the σ2 value should be reduced to avoid flattening out
the likelihood (or posterior) landscape (see eq (2.19)), and encouraging exploration of too wide
of a region without focusing on the area of interest (i.e. a low σ2 value will make the likelihood
in eq (2.19) more peaked, while a higher σ2 will flatten out the likelihood). The σ2 value can
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sequentially be altered by, say, 10%, and the exploratory phase re-run with a monitoring of the
acceptance rate. For the sinusoidal and FitzHugh-Nagumo examples, we kept σ2 to its true
value, for the biochemical example we set σ2 = 0.008, and for the pulmonary model we set
σ2 = 1.1. The noise variance was sampled in later stages, except the sinusoidal for which the
noise variance was fixed to its true value along the entire simulation as a simplifying assumption.
In the exploratory phase, the step size and number of leapfrog steps can be uniformly sampled
within some fairly narrow pre-specified ranges [132], chosen to ensure an acceptable acceptance
rate (e.g. above 20%), especially at the beginning of this phase when the emulator may not
be a very good representation of the simulator. Fairly low step sizes and number of leapfrog
steps were used, as follows: sinusoidal example – ε = 0.005,L = 20, FitzHugh-Nagumo –
ε ∈ [0.001,0.005],L∈ [20,30], biochemical – ε ∈ [0.0005,0.002],L∈ [50,100], pulmonary: ε =

0.003,L = 10.

Sampling phase: In the sampling phase of GPHMC [156] 100 samples were collected and
used as burn-in samples (chosen to ensure that MPSRF ≤ 1.1 [18]), and 2000 samples were
subsequently drawn and used for inference. Besides sampling the model parameters, the noise
variance was also sampled. Every algorithm (DA-GPHMC, noDA-GPHMC, DA-GPNUTS,
DA-GPRMHMC, noDA-GPRMHMC, DA-GPLDMC, noDA-GPLDMC) was run 10 times from
different random number generator seeds and different starting values for the parameters, se-
lected from the points collected in the exploratory phase, to make it less likely to start in a low
probability region. For each of the 10 simulations, ESS across all parameters was recorded, as
well as ESS divided by the number of model (ODE/PDE) evaluations, and ESS divided by the
total CPU time for the entire simulation. Each of the 10 simulations was timed three times, and
the best CPU time out of the three was used.

Bayesian optimisation for HMC performance tuning

The Hamiltonian/Lagrangian Monte Carlo algorithms (HMC, RMHMC, LDMC) making use of
Bayesian optimisation [208] for hyperparameter tuning require an initial GP for the normalised
squared jumping distance in eq (2.41), as a function of the step size and the number of leapfrog
steps, which need compact support. The ranges for the step size and the number of leapfrog
steps were carefully selected to ensure a high effective sample size (ESS) [95], while no an-
ticorrelation was induced (which would make ESS greater than the total number of MCMC
samples) [73]. For the sinusoidal example: for HMC, L ∈ {1, . . .40},ε ∈ [10−4,5×10−3], and
for RMHMC and LDMC, L ∈ {1, . . .25},ε ∈ [10−2,10−1]; for the FitzHugh-Nagumo example:
for HMC, L ∈ {1, . . .500},ε ∈ [10−4,10−2], and for RMHMC and LDMC, L ∈ {1, . . .50},ε ∈
[10−3,10−1]; for the biochemical example: for HMC, L ∈ {1, . . .500},ε ∈ [10−4,10−2]; for
the pulmonary example: for HMC, L ∈ {1, . . .50},ε ∈ [10−4,5× 10−3], and for RMHMC and
LDMC, L ∈ {1, . . .25},ε ∈ [10−2,10−1]. The initial GP for the normalised squared jumping
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distance was constructed based on 20 (ε,L) parameter vectors, and for each parameter vector 10
MCMC samples for the ODE/PDE parameters were obtained and used to estimate the expecta-
tion in eq (2.41). The initial parameter values fed into the sampler came from points collected
in the exploratory phase as to start from a region of high posterior probability. This is important
since the optimal step size and number of steps is dependent on the region in parameter space
that the sampler is exploring, and thus HMC hyperparameters which are optimal in the region of
high posterior probability are needed. Following [208] a squared exponential kernel for the GP
of the normalised squared jumping distance was used, whose hyperparameters were optimised
in a maximum likelihood framework. 50 iterations of the Bayesian optimisation algorithm were
then run to select ε and L values that maximise the acquisition function. The optimum value for
L was used as an upper bound for the number of leapfrog steps, and optimum ε was used as the
step size in the sampling phase of the algorithm.

Parameter transformations

To improve numerical stability and reduce round-off errors [141], the original parameters θi were

scaled in the order of one for building the GP emulator: θi ∈ [li,ui]→
θi

si
∈ [−1,1], where si is a

scaling factor which ensures
θi

si
∈ [−1,1]. In addition, the Hamiltonian/Lagrangian Monte Carlo

algorithms require unbounded parameters: θi ∈ [li,ui]→ loge
θi− li
ui−θi

∈ IR for hard bounds (for

our real-world application, parameter values outside these bounds are not plausible biologically),
or loge θi for soft bounds (for the other three applications, for which the only constraint was to
be positive). The transformed parameters were then mapped back via the inverse transformation
into the original domain θi ∈ [li,ui] before being inserted into the ODE/PDE simulator.

6.6 Numerical Results

Simulations for all test examples and methods registered a MPSRF ≤ 1.1, thus there was no
evidence of lack of convergence.

6.6.1 Sinusoidal

Geweke consistency test: mathematical and coding correctness of the sampler

The mathematical and coding correctness of the samplers’ implementation was performed using
the Geweke consistency test [71] reviewed in Section 2.3.6. This was done for the linear ODE
sinusoidal example to ensure no high computational costs attributed to a large number of ODE
numerical integrations were incurred. Figure 6.8 shows QQ plots, i.e. quantiles of the prior
distribution against quantiles of the ensemble of posterior distributions (see eq (2.52)) for all
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parameters (A,B,C) for three of the algorithms: DA-GPHMC (top panel), noDA-GPHMC (mid-
dle panel), DA-GPNUTS (bottom panel). The points lie on the equality line, taken as evidence
that the implementation of the three samplers is correct. This conclusion is extrapolated to the
other samplers: (no)DA-GPRMHMC and (no)DA-GPLDMC since by looking at the proofs in
Section 6.9, one can notice that they are a straightforward extension of (no)DA-GPHMC.

DA vs noDA

It was investigated whether the delayed acceptance scheme offers any gains in computational
efficiency. To quantify efficiency, effective sample size, reviewed in Section 2.3.5 was used.
The minimum, median and maximum ESS across all d parameters can be defined as:

MinESS = min
i

(
N

1+2∑
∞
l=1 ρ i

l

)
, (6.24)

MedianESS = mediani

(
N

1+2∑
∞
l=1 ρ i

l

)
, (6.25)

MaxESS = max
i

(
N

1+2∑
∞
l=1 ρ i

l

)
. (6.26)

Median ESS (eq (6.25)) across all parameters was calculated for all DA-HMC algorithms
against their noDA alternative (with the exception of NUTS, as justified in Section 6.3.4). Fig-
ure 6.9 shows the median ESS normalised by the total number of MCMC samples N, as well as
the median ESS normalised by the CPU time, and by the number of forward (ODE) evaluations
for 10 data sets. The distributions over the 10 data sets for DA compared to noDA appear to
overlap and there is no evidence that the DA scheme brings any advantages, a claim formally
investigated by a hypothesis test:

H0 : µ
noDA
ESS = µ

DA
ESS versus H1 : µ

noDA
ESS 6= µ

DA
ESS. (6.27)

In eq (6.27), µnoDA
ESS is the mean ESS for the noDA method in the sample of 10 data sets, while

µDA
ESS is the mean ESS for the DA method in the sample of 10 data sets. The test revealed a p-

value > 0.05, hence the null hypothesis cannot be rejected, supporting the visual finding. Given
that the next goal is to compare the different algorithms, an arbitrary choice to go with the DA
algorithms was made.

Accuracy

Parameter space: For each of the algorithms (DA-GPHMC, DA-GPNUTS, DA-GPRMHMC
and DA-GPLDMC) and ODE parameters (A,B,C), Figure 6.10 shows the distribution over 10
data sets of the biases in parameter space, obtained by subtracting the true parameter from the
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Figure 6.8: Geweke consistency test [71] to check the mathematical and coding correctness of
three samplers: DA-GPHMC (top panel), noDA-GPHMC (middle panel), DA-GPNUTS (bot-
tom panel) for the three parameters (A,B,C) of the sinusoidal example. Quantiles of the prior
distribution are shown against the quantiles of the ensemble of posterior distributions, see Sec-
tion 2.3.6 for more details. Points lying on the equality line (red dotted line) indicate correctness
in the implementation of the sampler.
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Figure 6.9: Efficiency in terms of ESS of DA-GPHMC, DA-GPRMHMC, DA-GPLDMC versus
their noDA version for the sinusoidal example. The distribution of median ESS (eq (6.25)) over
10 data sets is shown.

posterior median, which for a d-dimensional parameter vector θ is defined as:

bk(θ) = µk(θ)−θ true, k = 1 . . .10, (6.28)

where bk(θ) is the parameter bias vector for the kth data set, µk(θ) is the parameter posterior
median vector for the kth data set, and θ true is the true (data-generating) parameter vector.

In addition, Table 6.1 illustrates the mean of the posterior medians (i.e. the mean of the
10 posterior medians from the 10 data sets) for the ODE parameters drawn with all emulation
algorithms, and the corresponding standard deviation, i.e.

θ̄ =
1
K

K

∑
k=1

µk(θ), K = 10,

σ(θ) =

√√√√ 1
K−1

K

∑
k=1

(µk(θ)− θ̄)2.

(6.29)

If the parameters are well estimated, θ̄ should be close to θ true.
Moreover, for each of the algorithms and ODE parameters, Figure 6.11 shows the distribu-

tion over 10 data sets of the biases in parameter space, obtained by subtracting the true parameter
from the agglomerated posterior samples (i.e. posterior samples combined from all 10 data sets),
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Algorithm A B C
DA-GPHMC 3.0337 (0.0659) 1.0013 (0.0052) 0.0507 (0.0036)
DA-GPNUTS 3.0348 (0.0645) 1.0012 (0.0052) 0.0508 (0.0032)

DA-GPRMHMC 3.0358 (0.0656) 1.0011 (0.0053) 0.0505 (0.0035)
DA-GPLDMC 3.0348 (0.0650) 1.0014 (0.0052) 0.0506 (0.0035)

True value 3 1 0.05

Table 6.1: Parameter estimates and standard deviations for the sinusoidal example for each of
the methods compared. The mean and standard deviation of the posterior medians for 10 data
sets, calculated using eq (6.29) is shown. The true parameter values are also displayed.

which for a d-dimensional parameter vector θ is defined as:

b(θ) = θ∪K
k=1
−θ true, K = 10, (6.30)

where θ∪K
k=1

is the union of K sets of parameter posterior samples corresponding to the K data
sets.

In Figure 6.12, for parameter A and each of the algorithms, the distribution of the biases in
parameter space is displayed for each of the 10 data sets individually, obtained by subtracting the
true parameter from the posterior samples for each data set, which for a d-dimensional parameter
vector θ is defined as:

b(θ) = θ k−θ true, k = 1 . . .K, K = 10, (6.31)

where θ k represents the set of parameter posterior samples for the kth data set.
By analysing Figures 6.10, 6.11 and Table 6.1, it can be noted that all four algorithms reg-

ister a very similar performance in terms of accuracy, and the parameters seem to have been
learnt well, especially parameters B and C (the distributions lie around the zero bias line). For
parameter A a slight bias is observed. Investigation of Figure 6.12 reveals two negative offsets
(i.e. distributions below the zero bias line), six positive offsets and two zero offsets, hence no
systematic overestimation is present, therefore the bias is a consequence of a small number of
data sets (10). As the number of data sets increases, this parameter would be better estimated.
As an experiment, a fair coin can be tossed eight times, and the event of obtaining six or more
heads can be assigned to the event of obtaining six or more positive offsets. Calculations indicate
that the probability of obtaining six or more heads out of eight tosses is 0.145, hence assuming
that the algorithm is correctly implemented, the probability of obtaining six positive offsets out
of eight tosses is 0.145, thus it is not unlikely.

Functional space: The performance of the algorithms in functional space is quantified using
R2, which indicates how good the fit is between the data and the signal generated with the
estimated parameter values, e.g. with the posterior median. R2 is defined in terms of the residual
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Figure 6.10: Bias in parameter space for each parameter (A,B,C) of the sinusoidal example. The
bias is given by the difference between the posterior median value and the true parameter value
(see eq (6.28)). The posterior median value is the median of all posterior samples drawn using
each of the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS, 3: DA-GPRMHMC, 4:
DA-GPLDMC). The distribution of the biases over 10 data sets is shown. The horizontal dashed
line indicates zero bias.
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Figure 6.11: Bias in parameter space for each parameter (A,B,C) of the sinusoidal example.
The bias is given by the difference between the posterior samples and the true parameter value
(see eq (6.30)). The posterior samples were drawn using each of the algorithms compared (1:
DA-GPHMC, 2: DA-GPNUTS, 3: DA-GPRMHMC, 4: DA-GPLDMC). The distribution of the
agglomerated biases is shown for 10 data sets. The horizontal dashed line indicates zero bias.
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Figure 6.12: Bias in parameter space for parameter A of the sinusoidal example. The bias
is given by the difference between the posterior samples and the true parameter value (see
eq (6.31)). The posterior samples were drawn using each of the algorithms compared (1: DA-
GPHMC, 2: DA-GPNUTS, 3: DA-GPRMHMC, 4: DA-GPLDMC). The distribution of the
biases is shown for each of the 10 data sets individually. The horizontal dashed line indicates
zero bias. Di stands for the ith data set.

sum-of-squares RSS and the total sum-of-squares SStotal:

R2 = 1− RSS
SStotal

, RSS =
n

∑
i=1

(yi−mi(θ))
2 =

n

∑
i=1

ε
2
i , SStotal =

n

∑
i=1

(
yi−

1
n

n

∑
i=1

yi

)2

, (6.32)

thus R2 lies within [0,1], and the higher R2 is, the better the fit is.
Figure 6.13 shows the distribution of the R2 values for each of the 10 data sets, for all four

algorithms. R2 is very high (∼ 0.97) for all methods, suggesting that all algorithms perform
equally well in terms of predicting a signal which is very similar to the data.

Parameter UQ: UQ for the parameter estimates for all methods is also provided. Figure 6.14
displays the marginal posterior distributions for the parameters A,B,C obtained with 1D kernel
density estimation from the posterior samples drawn with the four methods (a random data set
was used). To obtain the marginal posterior distributions, the kernel smoothing function estimate
was used for univariate data with the optimal bandwidth for normal densities [14]. The marginal
distributions are comparable, backing up previous findings that all four methods perform very
similarly.
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Figure 6.13: Accuracy quantification in functional space via R2 for the sinusoidal example. R2

was computed using eq (6.32) with the posterior median value obtained from posterior sam-
ples drawn using each of the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS, 3: DA-
GPRMHMC, 4: DA-GPLDMC). The distribution of R2 over 10 data sets is shown.
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Figure 6.14: Parameter uncertainty quantification: marginal posterior distributions obtained via
1D kernel density estimation from the posterior samples of each parameter A,B,C of the sinu-
soidal example. The posterior samples for the ODE parameters were drawn using each of the al-
gorithms compared (DA-GPHMC, DA-GPNUTS, DA-GPRMHMC, DA-GPLDMC). Marginal
distributions for one random data set are shown.
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Efficiency

The different methods were next compared in terms of efficiency, as quantified using min, me-
dian and max ESS (see eqns (6.24)-(6.26)) normalised by the total number of MCMC samples
N, by the CPU time, and by the number of forward (model) evaluations8. The latter measure
is the only one that can generalise to ODE/PDE models for which a forward model evalua-
tion is computationally expensive. Results based on all three efficiency measures are presented
in Figure 6.15, showing the distribution of these quantities over 10 data sets. When inspecting
ESS/N (left panel), great variability can be observed between the distributions for the minESS/N,
medianESS/N and maxESS/N for the first-order methods (HMC and NUTS), in contrast with
the higher-order methods (RMHMC and LDMC). In terms of minESS/N, RMHMC and LDMC
are clearly superior to HMC and NUTS, while in terms of medianESS/N all methods are more
comparable, and similarly in terms of maxESS/N, with the HMC algorithm having moderate
advantage. The same pattern is observed when inspecting ESS normalised by the number of
model evaluations (right panel), which is expected, considering the high acceptance rate (>95%
across all methods), i.e. the number of model evaluations is very close to N. When it comes to
ESS normalised by the CPU time (middle panel), it becomes apparent that the RMHMC algo-
rithm loses its advantage due to incurring high computational costs, and performs worst in terms
of median and max. LDMC appears best in terms of minESS/CPUtime, with the other three
methods being very similar. In terms of medianESS/CPUtime, HMC and NUTS are quite com-
parable with LDMC, with a slight advantage, which becomes more pronounced when looking
at maxESS/CPUtime, with HMC being clearly superior.

6.6.2 Fitz-Hugh Nagumo

Quasi algorithms for non-positive definite negative Hessian matrix

For the FitzHugh-Nagumo model difficulties with running the higher-order methods (RMHMC
and LDMC) were encountered due to the negative Hessian matrix of the log posterior not being
positive definite, as illustrated in Figure 6.16 displaying regions in 2D parameter space for which
the negative Hessian is not positive definite. As outlined in Section 6.3.3, for this example,
the RMHMC or LDMC methods were replaced by the Quasi-HMC-RMHMC or Quasi-HMC-
LDMC, and for the RMHMC/LDMC component of the method, eq (6.16) was used to set the
metric tensor. The Quasi-HMC-LDMC algorithm registered a percentage of 25% (average over
the 10 data sets) of HMC-drawn samples, and 75% of LDMC-drawn samples out of the total
number of MCMC samples. Also, the Quasi-HMC-RMHMC algorithm registered a percentage
of 34% (average over the 10 data sets) of HMC-drawn samples, and 66% of RMHMC-drawn
samples out of the total number of MCMC samples. For the FitzHugh-Nagumo, results in

8Given that the number of parameters for the sinusoidal example is three, the min, median and max ESS corre-
spond to the ESS for each of the three parameters.
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Figure 6.15: Efficiency in terms of ESS of the algorithms compared (1: DA-GPHMC, 2: DA-
GPNUTS, 3: DA-GPRMHMC, 4: DA-GPLDMC) for the sinusoidal example. Min, median,
max ESS were calculated as per eqns (6.24)-(6.26). The distribution over 10 data sets is shown.

subsequent sections are shown for these Quasi algorithms.

DA vs noDA

Figure 6.17 reveals mostly an overlap between the distributions over 10 data sets of normalised
ESS for the DA and noDA algorithms, which is backed up by a p-value > 0.05 from the hypothe-
sis test (see eq (6.27)) for all efficiency measures, except MedianESS/CPUtime for HMC. Thus,
there is no difference in efficiency between the DA and noDA algorithms, except with respect to
one particular measure (MedianESS/CPUtime) for one algorithm (HMC), for which DA appears
slightly better (Figure 6.17). Similarly to the sinusoidal example, the DA algorithms are taken
forward for method comparison.

Accuracy

Parameter space: Table 6.2 illustrates the mean and standard deviation of the posterior medi-
ans over 10 data sets (see eq (6.29)) for the ODE parameters drawn with all emulation methods,
and of the noise variances, sampled with Gibbs. Figure 6.18 shows the distribution over data
sets of the biases in parameter space, obtained by subtracting the true parameter from the ag-
glomerated posterior samples (eq (6.30)) for all methods. Figure 6.18 and Table 6.2 reveal that
all four algorithms perform very similarly in terms of accuracy, with the distribution of biases
for the ODE parameters and the two noise variances containing the zero bias line. A slight bias
(underestimation) is observed for the α parameter from Figure 6.18, which is a consequence of
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Figure 6.16: Displaying the positive definiteness of the negative Hessian matrix for the emu-
lated (top) and original (bottom) log posterior distribution of two of the parameters (the third
parameter is kept fixed at its true value) for the FitzHugh-Nagumo model. Blue is positive defi-
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marks the true parameter value.
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Figure 6.17: Efficiency in terms of ESS of DA-GPHMC, DA-GPQuasi-HMC-RMHMC, DA-
GPQuasi-HMC-LDMC versus their noDA version for the FitzHugh-Nagumo example. Median
ESS is calculated as per eq (6.25). The distribution of median ESS over 10 data sets is shown.
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Algorithm α β γ σ2
V & σ2

R

DA-GPHMC 0.1840 (0.0282) 0.2507 (0.0991) 2.9821 (0.0465) 0.2587 (0.0355)
& 0.1677
(0.0183)

DA-GPNUTS 0.1837 (0.0285) 0.2494 (0.1010) 2.9829 (0.0468) 0.2588 (0.0356)
& 0.1679
(0.0173)

DA-GPQuasi-
RMHMC-HMC

0.1844 (0.0288) 0.2610 (0.1006) 2.9834 (0.0466) 0.2592 (0.0351)
& 0.1680
(0.0178)

DA-GPQuasi-
LDMC-HMC

0.1842 (0.0279) 0.2629 (0.1030) 2.9825 (0.0471) 0.2596 (0.0356)
& 0.1680
(0.0181)

True value 0.2 0.2 3 0.25 & 0.16

Table 6.2: Parameter estimates and standard deviations for the FitzHugh-Nagumo example
for each of the methods compared (note that the noise variances were sampled using Gibbs
sampling). The mean and standard deviation of the posterior medians for 10 data sets, calculated
using eq (6.29) is shown. The true parameter values are also displayed.

a small number of data sets (10), and not a systematic underestimation for all data sets. The coin
tossing experiment reveals that the probability of obtaining seven or more tails (equivalent to
obtaining seven or more negative offsets) out of 10 tosses is 0.172 (out of the 10 offsets, seven
were negative and three were positive).

Functional space: Figure 6.19 shows the distribution of the R2 (eq (6.32)) values over data
sets for all methods and each "species". The different methods perform very similarly, and one
of the signals appears to be learnt better (R2 ∼ 0.9) than the other (R2 ∼ 0.7).

Parameter UQ: Regarding UQ, all the methods are on a par, as evident in Figure 6.20 showing
the marginal posterior distributions for the ODE parameters and noise variances for one random
data set.

Efficiency

The methods are assessed in terms of efficiency, as quantified using min, median and max ESS
(see eqns (6.24)-(6.26) normalised by the total number of MCMC samples N, by the CPU time,
and by the number of forward (model) evaluations, and the latter measure is the only one that
can generalise to ODE/PDE models for which a forward model evaluation is computationally
expensive. Results based on all three measures are presented in Figure 6.21, which shows the
distribution of these quantities over 10 data sets. When inspecting ESS/N (left panel), much
larger variability between the distributions for the minESS/N, medianESS/N and maxESS/N
can be seen for the first-order methods (HMC and NUTS), unlike the higher-order methods
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R) of the FitzHugh-

Nagumo example. The bias is given by the difference between the posterior samples and the
true parameter value (see eq (6.30)). The posterior samples were drawn using each of the al-
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Figure 6.19: Accuracy quantification in functional space via R2 for the FitzHugh-Nagumo exam-
ple. R2 was computed using eq (6.32) with the posterior median value obtained from posterior
samples drawn using each of the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS, 3:
DA-GPQuasi-HMC-RMHMC, 4: DA-GPQuasi-HMC-LDMC). The distribution of R2 over 10
data sets is shown.
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Figure 6.20: Parameter uncertainty quantification: marginal posterior distributions obtained via
1D kernel density estimation from the posterior samples of each parameter α,β ,γ,σ2

V ,σ
2
R of the

FitzHugh-Nagumo example. The posterior samples for the ODE parameters were drawn using
each of the algorithms compared (DA-GPHMC, DA-GPNUTS, DA-GPQuasi-HMC-RMHMC,
DA-GPQuasi-HMC-LDMC), and Gibbs sampling was used for sampling the noise variances.
The marginal distributions are shown for one random data set.

(Quasi-HMC-RMHMC and Quasi-HMC-LDMC). Another observation is that NUTS tends to
perform systematically worst. In terms of minESS/N, HMC, Quasi-HMC-RMHMC and Quasi-
HMC-LDMC are comparable, while in terms of medianESS/N and maxESS/N, HMC seems
to have an advantage. The same observations can be made when inspecting ESS normalised
by the number of model evaluations (right panel), which is expected, considering the high ac-
ceptance rate (>80% across all methods), i.e. the number of model evaluations is close to N.
Regarding ESS normalised by the CPU time (middle panel), the Quasi-HMC-RMHMC algo-
rithm is penalised for the high computational costs, and tends to perform equally poorly as
NUTS when compared to HMC and Quasi-HMC-LDMC. The latter two are comparable with
respect to minESS/CPUtime, however HMC is preferred when looking at medianESS/CPUtime
and maxESS/CPUtime.

6.6.3 Biochemical pathway

A zero mean GP versus a quadratic mean GP

For the biochemical example, a zero mean GP model for the RSS was first implemented. This
model encouraged adding ’extreme’ RSS values (high relative to the low RSS region) to the
list of training points as a consequence of stepping into a region of high uncertainty of the
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Figure 6.21: Efficiency in terms of ESS of the algorithms compared (1: DA-GPHMC, 2: DA-
GPNUTS, 3: DA-GPQuasi-HMC-RMHMC, 4: DA-GPQuasi-HMC-LDMC) for the FitzHugh-
Nagumo example. Min, median, max ESS are calculated as per eqns (6.24)-(6.26). The distri-
bution over 10 data sets is shown.

emulator. The effect this has is illustrated in Figure 6.22, comparing the original and emulated
log posterior in 2D (two of the parameters were varied while the others were kept fixed to their
true values). Figure 6.22 reveals spurious modes and structures in the emulated log posterior,
which are not present in the original log posterior. The emulator is not a faithful representation
of the simulator, which leads to poor performance in the sampling phase.

Next a quadratic mean function for the GP prior was employed, which potentially places
high prior density values on the region where most data are, i.e. around the mode of the pos-
terior distribution, and lower density values away from the mode, thus moves of the emulator
away from the high posterior probability are discouraged. Consequently, the acceptance rate in
the sampling phase increases. For example, Figure 6.23 shows posterior samples collected in
the sampling phase for all five parameters for one data set. The top two figures show posterior
samples generated from the zero mean GP log posterior and two different initialisations, while
the bottom two figures show samples drawn from the quadratic mean GP log posterior. It is
obvious that the chain mixing based on the latter GP model is better than the former. In addi-
tion, Table 6.3 displays quantitative metrics, demonstrating that the quadratic mean GP leads to
better performance (in terms of acceptance rate and ESS) compared to the zero mean GP model.
Therefore, in the next sections, results produced with a quadratic mean function GP prior model
are presented.
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Figure 6.22: Biochemical pathway model: Showing the inappropriateness of using the zero
mean GP prior by a comparison of the emulated log unnormalised posterior (constructed in
the exploratory phase of the GPHMC algorithm) to the original log posterior for two pairs of
parameters (when two of the parameters are varied, the other parameters are kept fixed at their
true values). The red cross in the plot of the log unnormalised posterior distribution marks the
true parameter value. The parameter values on the log scale are shown on the (x,y) axis.
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0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration number

0

0.2

0.4

0.6

0.8

P
o

s
te

ri
o

r 
s
a

m
p

le
s

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration number

0

0.2

0.4

0.6

0.8

P
o

s
te

ri
o

r 
s
a

m
p

le
s

Posterior samples with a quadratic mean GP

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration number

0

0.5

1

1.5

P
o

s
te

ri
o

r 
s
a

m
p

le
s

Figure 6.23: Displaying occasional chain stagnation (’stickiness’) in the sampling phase for
the biochemical pathway model when a zero mean GP (top two panels) or quadratic mean GP
(bottom two panels) is used for the emulation of the residual-sum-of-squares. The chains consist
of posterior samples of the five parameters for two different initialisations for one data set.
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GP model Acceptance rate ESS/N
Zero-mean GP 57% (0.24, 0.04, 0.02, 0.03, 0.06)

Quadratic mean GP 77% (0.55, 0.48, 0.24, 0.32, 0.42)

Table 6.3: Hamiltonian Monte Carlo (HMC) results for two GP models (zero mean vs quadratic
mean GP) of the log unnormalised posterior for the biochemical signalling pathway model in
eq (6.21). The acceptance rate and effective sample size (ESS) normalised by the number of
HMC iterations N is the median over 10 algorithm initialisations for one data set.

Quasi algorithms for non-positive definite negative Hessian matrix

When running the higher-order methods (RMHMC and LDMC), difficulties were encountered
due to the negative Hessian matrix of the log posterior not being positive definite, as illustrated
in Figure 6.24 showing regions in 2D parameter space for which the negative Hessian matrix is
not positive definite. Large regions where the negative Hessian matrix is not positive definite
can be observed. Similarly to the FitzHugh-Nagumo example, the Quasi algorithms described
in Section 6.3.3 were implemented, however these were unable to perform satisfactorily. There
were two types of problems: for some data sets, the Quasi algorithms returned samples drawn
mostly with the HMC algorithm, i.e. the percentage of HMC-drawn samples was roughly 85-
90%, while 10-15% of the samples were drawn with RMHMC or LDMC, the reason being a
high condition number (> 1015) of the mass matrix set using eq (6.16). For other data sets,
the Bayesian optimisation employed for RMHMC or LDMC tuned the hyperparameters to very
low values (higher values would encourage the sampler to step into regions where the matrix
has high condition number), leading to the sampler making tiny, ineffective moves, resulting
in low ESS. These issues illustrate failure of second-order HMC methods (RMHMC, LDMC)
when combined with emulation of the log unnormalised posterior distribution due to the sub-
optimality of the mass matrix. Hence, these algorithms were excluded from the comparison,
and subsequent results for the biochemical pathway example are presented for HMC and NUTS
only.

DA vs noDA

The distributions over 10 data sets of the normalised minimum, median and maximum ESS
(calculated using eqns (6.24)-(6.26)) for the two schemes mostly overlap, as illustrated in Fig-
ure 6.25. The hypothesis testing (see eq (6.27)) revealed a p-value > 0.05 for all measures, except
MinESS/CPutime, MedianESS/CPUtime, MaxESS/CPUtime, and MaxESS/number of forward
evaluations, for which DA seems to have a slight advantage (Figure 6.25). For consistency with
previous examples, the DA algorithms were taken forward.
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Figure 6.24: Biochemical pathway model: Displaying the positive definiteness of the negative
Hessian matrix (right panel) for the emulated log unnormalised posterior distribution in the
middle panel, to be compared to the original log unnormalised posterior distribution in the left
panel for two of the parameters (the other parameters are kept fixed at their true values). Blue is
positive definite, yellow is non-positive definite. The red cross in the plot of the log unnormalised
posterior distribution marks the true parameter value. The parameter values on the log scale are
shown on the (x,y) axis.
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Figure 6.25: Efficiency in terms of ESS of DA-GPHMC versus noDA-GPHMC for the bio-
chemical pathway example. Minimum ESS, median ESS and maximum ESS are calculated as
per eqns (6.24)-(6.26). The distribution of min, median, max ESS over 10 data sets is shown.
Section 6.6.3 contains justification as to why the algorithms Riemann Manifold Hamiltonian
Monte Carlo and Lagrangian Dynamical Monte Carlo are not included in the comparison.

Accuracy

Parameter space: Table 6.4 illustrates the mean and standard deviation of the posterior me-
dians based on 10 data sets (see eq (6.29)) for the ODE parameters drawn with all emulation
methods, and of the noise variances, sampled with Gibbs. Figure 6.26 displays the distribution

Algorithm k1 V1 Km1 V2 Km2 σ2
S & σ2

D & σ2
R &

σ2
Rpp

DA-
GPHMC

0.0506
(0.0008)

0.2021
(0.0142)

0.1166
(0.0516)

0.0996
(0.0049)

0.1142
(0.0233)

0.0005 (0.0001) &
0.0005 (0.0001) &
0.0006 (0.0001) &

0.0005 (0.0001)
DA-

GPNUTS
0.0506
(0.0008)

0.2021
(0.0146)

0.1167
(0.0518)

0.0997
(0.0052)

0.1150
(0.0268)

0.0005 (0.0001) &
0.0005 (0.0001) &
0.0006 (0.0001) &

0.0005 (0.0001)
True
value

0.05 0.2 0.1 0.1 0.1 0.0004 & 0.0004 &
0.0004 & 0.0004

Table 6.4: Parameter estimates and standard deviations for the biochemical pathway example
for each of the methods compared (note that the noise variances were sampled using Gibbs
sampling). The mean and standard deviation of the posterior medians for 10 data sets, calculated
using eq (6.29) are shown. The true parameter values are also displayed.
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over data sets of the biases in parameter space, obtained by subtracting the true parameter from
the agglomerated posterior samples (eq (6.30)) for all methods. Figure 6.26 and Table 6.4 reveal
that the methods perform very similarly in terms of accuracy, with the distribution of biases for
the ODE parameters and the "species" noise variances including the zero bias line. A slight bias
(overestimation) is observed for the k1 parameter. The coin tossing experiment reveals that the
probability of obtaining six or more heads (equivalent to obtaining six or more positive offsets)
out of eight tosses is 0.145 (out of the 10 offsets, two were negative, six were positive and two
had zero bias).

Functional space: Figure 6.27 shows the distribution of the R2 (eq (6.32)) values over data
sets for all methods and each "species". The different methods perform similarly well, giving a
very large R2 (∼ 0.99).

Parameter UQ: When analysing the marginal posterior distributions for the ODE parame-
ters and noise variances for one random data set (see Figure 6.28), it can be observed that the
distributions generated with the different methods overlap greatly.

Efficiency

Method comparison: The performance of the methods with respect to efficiency is investi-
gated, as quantified using min, median and max ESS (see eqns (6.24)-(6.26)) normalised by the
total number of MCMC samples N, by the CPU time, and by the number of forward (model)
evaluations, and the latter measure is the only one generalisable to ODE/PDE models for which
a forward model evaluation is computationally burdensome. Results based on all three mea-
sures are presented in Figure 6.29, which shows the distribution of these quantities over 10 data
sets. In terms of normalised MinESS and MedianESS the HMC algorithm has a superior perfor-
mance to NUTS, while the performance between the two algorithms is comparable with respect
to normalised MaxESS.

Chain stagnation: Figure 6.23 displays the posterior samples for the five parameters obtained
by running the sampler from two different initialisations for one data set. By focusing on the
simulation using a quadratic mean GP (bottom two figures), fairly long periods of rejections can
be observed, after which the sampler recovers, with good mixing exhibited.
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– noise variances zoomed in in the bottom panel) of the bio-
chemical pathway example. The bias is given by the difference between the posterior samples
and the true parameter value (see eq (6.30)). The posterior samples were drawn using each of
the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS), and Gibbs sampling was used for
sampling the noise variances. The distribution of the agglomerated biases for 10 data sets is
shown. The horizontal dashed line indicates zero bias.
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samples drawn using each of the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS). The
distribution of R2 over 10 data sets is shown.
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Figure 6.28: Parameter uncertainty quantification: marginal posterior distributions ob-
tained via 1D kernel density estimation from the posterior samples of each parameter
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of the biochemical pathway example. The posterior samples
for the ODE parameters were drawn using each of the algorithms compared (1: DA-GPHMC, 2:
DA-GPNUTS), and Gibbs sampling was used for sampling the noise variances. The marginal
distributions for one random data set are shown.
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Figure 6.29: Efficiency in terms of ESS of the algorithms compared (1: DA-GPHMC, 2: DA-
GPNUTS) for the biochemical pathway example. Min, median, max ESS were calculated as per
eqns (6.24)-(6.26). The distribution over 10 data sets is shown.

6.6.4 Real-world application: 1D fluid-dynamics model of the pulmonary
blood circulation

DA vs noDA

Figure 6.30 displays the distributions of the normalised ESS over all four parameters (see
eq (2.51)) for both schemes: DA and noDA, and all algorithms, for the particular data set avail-
able. The distributions overlie, except for RMHMC with respect to ESS/CPUtime (DA seems to
have an advantage, see Figure 6.30). This tallies with results from the hypothesis test, testing for
equality of normalised ESS means across the distributions over parameters of the DA and noDA
methods (i.e. p-value > 0.05 for all metrics and algorithms except ESS/CPUtime for RMHMC).
These findings suggest no difference in efficiency between the DA and noDA schemes for this
particular data set, except for RMHMC with respect to ESS/CPUtime. Similarly to the previous
three examples, the DA algorithms were taken forward for method comparison.

Accuracy

Table 6.5 shows the posterior median and 95% credible interval of the PDE parameters ob-
tained from the posterior samples generated with all the methods (DA-GPHMC, DA-GPNUTS,
DA-GPRMHMC, DA-GPLDMC), and of the noise variance, sampled with Gibbs sampling; the
standard deviation of these estimates is also attached. These estimates are for one single mea-
sured (real) data set, for which the ground truth parameter values are unknown. In addition,
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Figure 6.30: Efficiency in terms of ESS of DA-GPHMC, DA-GPRMHMC, DA-GPLDMC ver-
sus their noDA version for the fluid-dynamics pulmonary example. ESS was calculated as per
eq (2.51). The distribution of ESS over the four parameters for one single data set is shown.
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Figure 6.31: Parameter uncertainty quantification: marginal posterior distributions obtained via
1D kernel density estimation from the posterior samples of each parameter s,r1,r2,c,σ2 of the
fluid-dynamics pulmonary example. The posterior samples for the PDE parameters were drawn
using each of the algorithms compared (1: DA-GPHMC, 2: DA-GPNUTS, 3: DA-GPRMHMC,
4: DA-GPLDMC), and Gibbs sampling was used for sampling the noise variances. The Adap-
tive Metropolis [82] algorithm was used to draw samples from the exact posterior distribution
(Direct MCMC). This enables to test if the emulation approach gives any bias. The marginal
distributions for one available data set are shown.
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Figure 6.31 displays the marginal posterior distributions of the parameters. In the absence of
a gold standard, to test whether the emulation approach gives any bias, results obtained with
a long-run MCMC sampler (the Adaptive Metropolis (AM) algorithm [82]) drawing samples
directly from the asymptotically exact posterior distribution, are also shown and are taken as a
proxy for the gold standard. HMC running directly on the original posterior distribution would
incur excessive computational costs (see Section 6.2.1 for a discussion on this), hence in our
work we opt for a random-walk algorithm (AM).

Table 6.5 and Figure 6.31 suggest that all methods provide very similar results. The overlap-
ping distributions for the different algorithms indicate that the methods provide samples from
approximately the same distribution. In the absence of a proper gold standard – a consequence of
the fact that real data are used, for which the true parameter values are unknown – this agreement
between the predicted posterior probability distributions across the emulation algorithms and the
long-run MCMC sampler (direct MCMC) can be taken as a proxy for accuracy. This statement
is backed up by a very high R2 value (see Table 6.5) registered by all methods, indicating a very
good fit to the measured data.

Algorithm s r1 r2 c σ2 R2

DA-
GPHMC

98043
(97004,
99159)

1.7371
(1.6997,
1.7765)

0.1892
(0.1740,
0.2035)

-1.4339
(-1.5495,
-1.3264)

0.1256
(0.1119,
0.1420)

0.99

DA-
GPNUTS

98021
(96998,
99136)

1.7364
(1.6996,
1.7748)

0.1891
(0.1743,
0.2026)

-1.4322
(-1.5409,
-1.3259)

0.1256
(0.1116,
0.1425)

0.99

DA-
GPRMHMC

98038
(97040,
99052)

1.7374
(1.7023,
1.7716)

0.1889
(0.1728,
0.2035)

-1.4340
(-1.5505,
-1.3260)

0.1255
(0.1109,
0.1432)

0.99

DA-
GPLDMC

98024
(96967,
99132)

1.7366
(1.7006,
1.7731)

0.1893
(0.1734,
0.2037)

-1.4294
(-1.5591,
-1.3280)

0.1258
(0.1122,
0.1429)

0.99

Table 6.5: Accuracy in parameter and functional space for the statistical inference performed on
the fluid-dynamics pulmonary application. The parameter posterior medians and 95% credible
interval are shown for all the emulation methods employed (note that the noise variance was
sampled using Gibbs sampling). R2, computed as in eq (6.32), is also displayed.

Efficiency

The methods are evaluated with respect to efficiency, quantified using ESS (see eq (2.51)) nor-
malised by the total number of MCMC samples N, by the CPU time, and by the number of
forward (model) evaluations. Results based on all three measures are given in Figure 6.32,
which displays the distribution of these quantities over all four parameters for the single data
set analysed. The RMHMC algorithm is superior to all algorithms when analysing ESS/N (left
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Figure 6.32: Efficiency in terms of ESS of the algorithms compared (1: DA-GPHMC, 2: DA-
GPNUTS, 3: DA-GPRMHMC, 4: DA-GPLDMC) for the fluid-dynamics pulmonary example.
ESS was calculated as per eq (2.51). The distribution of ESS over the four parameters for one
single data set is shown.

panel) or ESS/#forwardEval (right panel), however it loses its advantage, becoming the worst
when the CPU time is accounted for (middle panel). Additionally, NUTS systematically per-
forms more poorly than the other parameters. LDMC is clearly superior to HMC when looking
at the minimum or median ESS/N, ESS/CPUtime or ESS/#forwardEval, and HMC is better
when looking at the maximum ESS/N, ESS/CPUtime or ESS/#forwardEval. The distribution of
these three quantities is much more variable for HMC and NUTS than for RMHMC and LDMC.

6.6.5 Advantage of surrogate modelling

Table 6.6 displays the number of model solves (ODEs/PDEs) required to obtain one single sam-
ple drawn using the conventional HMC versus the emulation HMC (GPHMC) for all four test
examples considered in this study. It is clear that the use of the surrogate model in place of the
computationally expensive ODE/PDE simulator leads to a substantial reduction in the number
of model evaluations.

6.7 Discussion

This study proposes to accelerate Hamiltonian/Lagrangian Monte Carlo algorithms by coupling
them with Gaussian Processes for emulation of the log unnormalised posterior distribution.
Proofs of convergence to the asymptotically exact posterior distribution were provided for these
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Test example Algorithm Number of model solves per HMC sample

sinusoidal
conventional HMC 80 (44)

emulation HMC 1
FitzHugh-
Nagumo

conventional HMC 284 (162)
emulation HMC 1

biochemical
pathway

conventional HMC 1224 (703)
emulation HMC 1

fluid-
dynamics

conventional HMC 113 (62)
emulation HMC 1

Table 6.6: Number of model evaluations (ODEs/PDEs) required to obtain one single HMC
sample drawn using conventional HMC versus emulation HMC (GPHMC) algorithm (mean
and standard deviation) for all test examples considered in this study. The number of model
solves for the conventional HMC is L(d + 1), where L is the number of leapfrog steps and d
is the parameter dimensionality. The term d + 1 is the sum of one model evaluation to find
the log likelihood, and d model evaluations to find its numerical derivatives by a first-order
differencing scheme with respect to each of the d parameters. For the sinusoidal model d = 3
and optimum L = 39, for the FitzHugh-Nagumo model d = 3 and optimum L = 141, for the
biochemical pathway model d = 5 and optimum L = 407, and for the fluid-dynamics model,
d = 4 and optimum L = 44. The optimum L value was obtained with Bayesian optimisation.
HMC was run with the number of leapfrog steps drawn from a uniform distribution with lower
bound being 1 and upper bound being optimum L [208]. For the sinusoidal, FitzHugh-Nagumo
and biochemical pathway model, optimum L and number of model evaluations are reported for
a random data set.
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algorithms, and the mathematical and coding correctness of the samplers’ implementation was
validated by Geweke consistency tests (Figure 6.8). Moreover, a comparative evaluation study
was carried out to assess the performance of the methods on a series of models described by
ODEs or PDEs (sinusoidal, FitzHugh-Nagumo, biochemical pathway and fluid-dynamics pul-
monary model). The aim was to identify the most computationally efficient and accurate pa-
rameter inference and UQ tool to be applied to non-linear ODE or PDE models which typically
incur onerous computational costs caused by repeated numerical integrations. In addition, it was
investigated whether the delayed acceptance scheme used in conjunction with these algorithms
can further offer computational gains over the standard algorithms.

6.7.1 A discussion on the algorithms compared

The following algorithms were compared: noDA-GPHMC (i.e. standard GPHMC), DA-GPHMC,
DA-GPNUTS, noDA-GPRMHMC, DA-GPRMHMC, noDA-GPLDMC, DA-GPLDMC. While
the standard GPHMC was originally proposed in [156], all the other algorithms are method-
ologically new and my own work. For all algorithms but NUTS, Bayesian optimisation was
used to tune the hyperparameters: step size and number of leapfrog steps. NUTS has an in-built
mechanism to tune the number of steps recursively, while the step size is tuned with stochastic
optimisation [87].

GPNUTS

For the NUTS algorithm, only the DA-GPNUTS was implemented, and not noDA-GPNUTS.
This is because the noDA-GPNUTS algorithm requires evaluation of the differential equations
several times along the trajectory before making a proposal (see Section 6.9.8, in particular
eq (6.34) on page 184). In contrast, DA-GPNUTS only evaluates the ODEs/PDEs once at
the end of the trajectory (as do all the other algorithms investigated: noDA-GPHMC, DA-
GPHMC, noDA-GPRMHMC, DA-GPRMHMC, noDA-GPLDMC, DA-GPLDMC). This im-
plies that noDA-GPNUTS would incur a larger computational burden than DA-GPNUTS, since
the number of forward evaluations is roughly one order of magnitude higher for noDA-GPNUTS
compared to DA-GPNUTS.

Quasi algorithms for non-positive definite negative Hessian matrix

While the HMC and NUTS algorithms make use of the first-order derivative of the log posterior,
the RMHMC and LDMC algorithms use second and third-order derivative of the log posterior,
thus they utilise the Fisher information matrix and its derivative. As discussed in Section 6.3.3,
due to emulating the log posterior instead of the signal, the expected Fisher information matrix
could not be used, instead the observed Fisher information matrix (the negative Hessian matrix
of the log posterior) was used, which is however not guaranteed to be positive definite and
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is not a valid metric tensor, as required by RMHMC and LDMC. While using the negative
Hessian worked for the sinusoidal and pulmonary model, it failed for the FitzHugh-Nagumo
and biochemical pathway models, which had regions in parameter space for which the negative
Hessian was non-positive definite (see Figures 6.16 and 6.24). In that case a different form
for the metric tensor was adopted, see eq (6.16), which ensures that the mass matrix can never
be non-positive definite for a large enough λ . However, it can have a high condition number
(> 1015).

To deal with this, an approach akin to a Quasi-Newton method in optimisation [19] was
taken, i.e. if at any point throughout the trajectory, the matrix is numerically unstable, the
simulation within the trajectory is stopped prematurely before reaching the end. A new simu-
lation is started from the beginning of the trajectory and the HMC algorithm is used instead
of RMHMC/LDMC for that particular iteration. The resulting posterior samples will have
been drawn using a hybrid version of HMC and RMHMC/LDMC, an algorithm thus called
Quasi-HMC-RMHMC or Quasi-HMC-LDMC. This approach achieved high efficiency for the
FitzHugh-Nagumo, which registered roughly two thirds of RMHMC-drawn samples and three
quarters of LDMC-drawn samples, however it achieved very little efficiency gain for the bio-
chemical pathway, for which a high condition number of the mass matrix was repeatedly reg-
istered. This led either to a small percentage of RMHMC or LDMC-drawn samples (<15%),
or to low-valued optimised RMHMC/LDMC hyperparameters obtained based on the standard
RMHMC or LDMC algorithms (higher values would encourage the sampler to step into regions
where the matrix has high condition number), which resulted in small moves, thus an ineffective
sampler.

In general, approaches utilising the Hessian are prone to facing positive definiteness issues
for non-convex problems, and ad-hoc modifications to impose positive definiteness of the matrix,
discussed in Section 6.3.3, may change the topology of the log posterior. Consider for example a
saddle point for which the Hessian has both positive and negative eigenvalues. By adding twice
the minimum negative eigenvalue as a diagonal term, the saddle point is ignored, and the non-
convex problem is wrongly transformed into a convex one, ultimately converging to the wrong
parameter values.

6.7.2 Emulation of the model output

The reason for the inability of computing the expected Fisher information matrix in eq (2.40)
(which should be used in RMHMC/LDMC) is the fact that the log unnormalised posterior distri-
bution was emulated, and not the model output (signal). This leads to loss of information as the
(time) pointwise log posterior values cannot be recovered, only the sum of the pointwise values
is known (see Section 6.3.3 for specific equations and details). A solution to this is to emulate
the signal. Different strategies for the emulation of multivariate outputs have been proposed in
the literature [42], e.g. ensemble of single-output emulators (MS), or multivariate-output Gaus-
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sian Process (MO) [126, 224]. While the first strategy (MS) fits independent emulators to each
model output point (i.e. if the signal is measured at k time points, k independent emulators will
be fitted), it ignores any correlation between the points. However it allows every emulator have
its own kernel hyperparameters, and if k computer cores are available, they can all be used in par-
allel for k emulator predictions at the cost of one. The second strategy (MO) fits a k-dimensional
Gaussian Process to the multivariate output, thus correlation is naturally incorporated, and the
computational burden is equivalent to that of fitting a single output emulator. The downside is
that the kernel hyperparameters are shared between dimensions, however there is no reason to
assume that changes in input will affect the different outputs in the same way [42].

6.7.3 Advantage of delayed acceptance

This study reveals that for most ODE/PDE models considered there is no evidence that the
DA scheme brings any computational gains when coupled with Hamiltonian/Lagrangian Monte
Carlo algorithms. The efficiency of DA-GPHMC, noDA-GPHMC (i.e. standard GPHMC as
proposed in [156]), DA-GPRMHMC, noDA-GPRMHMC, DA-GPLDMC, noDA-GPLDMC, as
measured in terms of ESS normalised by the total number of MCMC samples, ESS normalised
by CPU time and by number of model (forward) evaluations, is comparable between the DA and
noDA algorithms. This is displayed in Figures 6.9, 6.17, 6.25 and 6.30, showing overlapping
distributions, with a few exceptions, e.g. for MedianESS/CPUtime for HMC in the Fitz-Hugh
Nagumo model, or ESS/CPUtime for the biochemical pathway model, or ESS/CPUtime for
GPRMHMC in the pulmonary model, for which the DA scheme appeared slightly better. This
statement was validated by a formal hypothesis test testing for equal sample means of normalised
ESS, and a p-value>0.05 was registered for most algorithms and metrics used, except a few, as
given above.

While an MCMC with DA approach has been taken in previous studies in the literature [7, 33,
47, 76, 85, 149, 177], to the author’s best knowledge, this study is the first to use it in conjunction
with Hamiltonian/Lagrangian Monte Carlo algorithms. Previous work has compared standard
MCMC algorithms to DA-MCMC algorithms. For example, Golithly et al. [76] showed that the
DA scheme can lead to improvements in computational efficiency in a particle MCMC algorithm
applied to stochastic kinetic models. Additionally, Banterle et al. [7] and Quinoz et al. [149]
showed that DA brings computational advantage when applied to M-H algorithms on large data
sets, for which data sub-sampling is employed. However, these MCMC algorithms are based
on a random-walk, which is known to have a lower acceptance rate (and efficiency) than the
gradient-driven Hamiltonian Monte Carlo algorithms (see Ch. 5 in [17] or [174]). Therefore,
for the former algorithms there is more potential for the DA scheme to be advantageous than
for the latter algorithms (i.e. if a rejection is more likely, a higher number of computationally
expensive model evaluations are avoided by the first stage employing the surrogate model9).

9provided the surrogate is an accurate representation of the simulator
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This may help explain why previous studies employing DA with random-walk MCMC have
benefited (from a computational point of view) from using DA, which is hardly the case for this
study using DA with Hamiltonian/Lagrangian Monte Carlo algorithms.

6.7.4 Accuracy

The accuracy in parameter and functional space proved to be very similar between the different
methods for all ODE/PDE models considered, see Figures 6.11, 6.13, 6.18, 6.19, 6.26, 6.27 and
Table 6.5. In addition, for the toy examples, it was shown that the algorithms were able to learn
the true parameter values that generated the data (Tables 6.1, 6.2, 6.4). The marginal posterior
distributions constructed from the MCMC posterior samples showed overlapping distributions,
indicating that the uncertainty quantification was on a par for all methods (Figures 6.14, 6.20,
6.28, 6.31).

6.7.5 Efficiency

ESS normalised by the total number of MCMC samples

In terms of ESS normalised by the total number of MCMC samples N (left panel in Figures 6.15,
6.21, 6.29, 6.32), it was found that the performance of DA-GPNUTS was generally inferior to
that of the other algorithms (DA-GPHMC, DA-GPRMHMC, DA-GPLDMC). A possible ex-
planation is that for DA-GPNUTS the hyperparameter (step size and number of steps) tuning
is performed in the emulated log posterior entirely, based on samples accepted at the emulator
stage, due to the construction of the algorithm (see the proof in Section 6.9). In contrast, for the
other three algorithms the tuning is performed by taking into account the simulator, i.e. based
on samples accepted at the simulator stage, thus the simulator plays a role in the choice of opti-
mum hyperparameters, which positively affects efficiency. In terms of minESS/N generally the
RMHMC and LDMC algorithms perform better than HMC, while in terms of medianESS/N or
maxESS/N no clear pattern is observed (sometimes RMHMC and LDMC are better, other times
HMC is preferred). A much larger discrepancy can be seen between minESS/N and maxESS/N
for HMC and NUTS than RMHMC and LDMC for which ESS/N varies much less across pa-
rameters. This is a consequence of the latter two algorithms using a mass matrix set via the
curvature of the log posterior (metric tensor), while HMC and NUTS use an identity matrix
as the mass matrix, and the optimum step size is restricted by the lowest marginal variance.
That implies that for HMC/NUTS all the work falls on the back of the step size (and number
of steps) to optimise efficiency, while for RMHMC/LDMC this is alleviated by the use of the
metric tensor. For this reason, a first-order algorithm like HMC or NUTS can be more ineffi-
cient (e.g. in terms of minESS/N) for problems with large discrepancies between the lowest and
largest marginal variance. Generally, RMHMC and LDMC perform similarly, an exception is
the pulmonary model which registers better performance for RMHMC than LDMC.
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ESS normalised by the CPU time

In terms of ESS normalised by the CPU time (middle panel in Figures 6.15, 6.21, 6.29, 6.32),
the following observations can be made. RMHMC incurs high computational costs due to the
use of the implicit integrator in the simulation of the Hamiltonian dynamics, becoming the al-
gorithm with the worst performance when the CPU time is taken into account. In terms of
MinESS/CPUtime and MedianESS/CPUtime, NUTS performs second worst (or worst for the
biochemical pathway), except for the sinusoidal example; no systematic pattern is observed
for MaxESS/CPUtime. Inspection of the minESS/CPUtime reveals that LDMC tends to be the
best algorithm, while medianESS/CPUtime shows no clear pattern (sometimes HMC is better,
other times LDMC is preferred). This makes sense considering that HMC has the advantage
of avoiding calculations of higher-order derivatives, but requires a larger number of steps to be
made, while LDMC calculates higher-order derivatives, but only needs a few steps. In terms of
maxESS/CPUtime, HMC is consistently best. However, maxESS is an inflated measure since
ideally an algorithm that gives the highest number of uncorrelated samples across all parameters
is preferred, hence minESS (or medianESS) is a better measure.

ESS normalised by the number of forward evaluations

In terms of ESS normalised by the number of model (forward) evaluations (right panel in Fig-
ures 6.15, 6.21, 6.29, 6.32), a similar pattern as for ESS/N is observed, which is expected given
the high acceptance rate (>80%), meaning that the number of model evaluations in close to the
total number of MCMC samples. This finding also helps explain why no advantage of the DA
scheme was found: generally most proposals are accepted at the emulator (first) stage, and are
subsequently subject to the accept/reject at the simulator (second) stage.

The above interpretations for the FitzHugh-Nagumo model apply to the Quasi-RMHMC-
HMC/Quasi-LDMC-HMC instead of the standard RMHMC/LDMC.

An algorithm performance metric that is generalisable to any model, regardless of its com-
putational complexity, is ESS/number of forward solves. For models for which a single solve is
very computationally expensive, e.g. in the order of hours, the CPU time would be dominated by
the computational load from the forward solves, thus ESS/CPU time would not be an appropriate
metric to compare strictly the performance of the algorithms since the computational load from
the algorithms would be dominated by that of the forward solve. In contrast, ESS normalised by
the CPU time is a more suitable efficiency measure for ODE/PDE models for which a forward
evaluation incurs low or moderate computational cost, for which emulation might not bring any
computational advantages.

The comparative observations made about HMC, NUTS, LDMC and RMHMC are based
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on empirical findings, to the author’s knowledge, no theoretical study comparing the efficiency
between the algorithms has been performed.

6.7.6 A zero mean GP versus a quadratic mean GP

For the sinusoidal, FitzHugh-Nagumo and pulmonary models, a zero mean GP prior for the
RSS was implemented, producing an emulator faithful to the simulator, which was reflected in
efficient and accurate inference results.

For the biochemical example, initially a zero mean GP model was employed. However,
this model led to a sub-optimal emulator, see Figure 6.22. This could be a consequence of
the fact that ’extreme’ RSS values (relative to the low RSS region) were added to the list of
training points as the sampler stepped into a region of high uncertainty. In this region, in the
absence of data, the posterior relied on the prior for inference, hence the predicted emulated RSS
value would be close to 0, despite the true RSS value being high10. The result is a sub-optimal
performance (acceptance rate and efficiency) of the sampler in the sampling phase.

This issue was alleviated by the use of a quadratic mean GP prior, which potentially places
high prior density values on the region where most data points are, i.e. around the mode of
the posterior distribution, and lower density values away from the mode, thus the emulator is
discouraged to move far away from the high posterior probability region. This modification
considerably improved the acceptance rate and the efficiency (see Figure 6.23 and Table 6.3).

6.7.7 Limitations and future improvements for the biochemical pathway
example

The biochemical example was a hard problem to emulate due to the high correlations manifested
through long ridges in the log posterior landscape (see Figure 6.22), thus large regions in pa-
rameter space needed covering by the emulator. This required a large number of training points,
which in turn affected efficiency (high CPU times)11 due to different operations (to compute the
GP predictive mean and up to its third-order derivative) involving the high-dimensional covari-
ance matrix (inversion of the covariance matrix was no longer performed in the sampling phase
since the emulator was no longer refined). Such operations performed repeatedly as part of the
MCMC scheme restricted the number of training points used, which resulted in a somewhat sub-
optimal emulator. The consequence was occasional stagnations of the chain, i.e. ’stickiness’,
see Figure 6.23, caused by a mismatch between the emulator and the simulator in the tails of the
target distribution: proposals were accepted at the emulator stage, but rejected at the simulator
stage. The use of a larger number of training points in conjunction with sparse GPs [184], which

10The proposed points in this area would be rejected based on the simulator in the M-H accept/reject step.
11Care has to be taken to ensure that the computational times in approaches employing the emulator remain lower

than when the simulator solely is used, else the entire purpose of emulation is defied.
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optimally select a lower number of points retaining the maximum information at reduced costs
could overcome the issues presented and constitute future work. This strategy could potentially
be coupled with continuous refinement of the emulator when the sampler steps into a region of
high uncertainty, similar to the study in [40], to avoid deciding when to stop the exploratory
phase during which the emulator is refined. An aside observation is that sampler ’stickiness’ is
a notorious issue in pseudo-marginal MCMC problems [53, 129], in which the estimator of the
target distribution is inconsistent with the true target distribution in the tails. In addition, emu-
lating the model output instead of the objective function, as discussed in Section 6.7.2 will allow
to apply the RMHMC and LDMC algorithms on this model, which as previously highlighted,
was not possible due to numerical instabilities of the mass matrix.

6.7.8 Future work for the fluid-dynamics model

The method comparison could also be performed on a more physiologically and complex fluid-
dynamics model that includes vessel-specific stiffness, as described in Chapter 4. This modi-
fication will significantly increase the model complexity, presumably requiring a much larger
number of training points needed to train the GP emulator to ensure a dense enough coverage
of the parameter space. O’Hagan [137] notes that GP emulation is likely to be implemented
effectively with up to 50 inputs on modern computing platforms. The number of training points
required to optimally cover a 50D input space depends on the complexity of the problem (e.g.
smoothness of the log posterior), and is restricted by the O(n3) computational complexity of GP
emulators (due to the covariance matrix inversion). Conventional GPs may be replaced by sparse
GPs [184] for the emulator. In addition, the model mismatch discussed in Chapter 4 should be
incorporated into future analysis.

6.7.9 Connection to cardiovascular modelling

Cardiovascular models have been proved to have real potential in enabling better understanding
of cardiovascular (patho)physiology, as well as assist clinicians in the diagnosis, prognostication
and treatment of cardiovascular diseases [91]. Moreover, cardiovascular modelling can aid in
surgical interventions, in the design and evaluation of medical devices, and even in the inference
of unknown and immeasurable parameters from measured data [91]. Before being used as a
decision support system in the clinic, these models must first be adapted to patient-specific
conditions and an assessment of their credibility (uncertainty quantification, UQ) based on a
comparison between model predictions and clinical data, must be performed. For example,
studies in [89, 91] discuss the requirements that clinically applicable cardiovascular models
must meet and the advances required to do so. In addition, the study in [64] demonstrates that
biophysical parameters of mathematical cardiovascular models have genuine predictive value
for disease prognostication.
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However, fast parameter estimation and computational efficiency are paramount for clinical
decision making. The benchmark study in this chapter comparing several state-of-the-art sam-
pling methods, particularly adapted to complex and expensive computational models, sheds light
on their relative computational efficiencies, and is novel in the context of biophysical modelling.
Among cardiovascular mathematical modelling studies, a single study in cardiac electrophysi-
ology was found, which uses a similar idea to that proposed here: Dhamala et al. [50] employ
the Metropolis-Hastings algorithm coupled with GPs and DA with a surrogate model for the
log posterior distribution, and they take inspiration from a study by Lê et al. [117], who apply
the HMC algorithm coupled with GPs to a tumor growth model. However, these studies ap-
ply one single algorithm to the problem of interest, without any comparative evaluation of its
performance.

Furthermore, the inference procedure proposed here deals with unknown constraints in pa-
rameter space, caused by the violation of the physical model assumptions. In such problems,
naively employing a GP-MCMC method will yield inaccurate results, hence the use of a mul-
tivariate classifier that automatically learns the infeasible parameter domain is proposed, and
to the author’s best knowledge, this is novel in the cardiovascular and mathematical biology
research community.

In addition, considering the number of equivalent number of forward evaluations replaced
by the GP surrogate (Table 6.6), it is clear that the method proposed is a key enabler for using
ODE/PDE mathematical models as a model-based disease diagnostic in the clinic.

Therefore, this work is a stepping stone towards a decision support system for personalised
medicine that can help clinical practitioners to make informed decisions in real time.

6.8 Conclusions

This study proposes to accelerate Hamiltonian/Lagrangian Monte Carlo algorithms by coupling
them with Gaussian Processes for emulation of the log unnormalised posterior distribution.
Proofs of convergence to the asymptotically exact posterior distribution for these algorithms
were provided, and the mathematical and coding correctness of the samplers’ implementation
was performed by Geweke consistency tests. Investigations into whether the delayed acceptance
scheme can offer computational gains over the standard algorithms were done. A comparative
evaluation study was carried out to assess the performance of the methods on a series of mod-
els described by ODEs and PDEs, including toy problems and a real-world application of the
fluid-dynamics in a pulmonary blood circulation model. The aim was to identify the most com-
putationally efficient and accurate parameter inference and UQ tool to be applied to non-linear
ODE or PDE models, which typically incur onerous computational costs caused by repeated nu-
merical integrations. Results showed no advantage of the delayed acceptance scheme over the
standard algorithms with respect to several efficiency measures based on the effective sample
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size for most methods and ODE/PDE models considered. Additionally, the methods estimated
the true parameter values well, with all methods performing similarly across the ODE/PDE
models considered. The Lagrangian Dynamical Monte Carlo and Riemann Manifold Hamil-
tonian Monte Carlo tended to register the highest efficiency (in terms of effective sample size
normalised by the number of forward model evaluations), followed by the Hamiltonian Monte
Carlo, and the No U-turn sampler tended to be the least efficient.

6.9 Proofs of convergence

In this part of the chapter, proofs of convergence to the asymptotically exact posterior distribu-
tion are provided for the emulation Hamiltonian/Lagrangian Monte Carlo algorithms.

6.9.1 HMC with emulation and DA (DA-GPHMC)

Define

p(θ |y) =
exp(−E(θ))

Zp
; p̃(θ |y) =

exp(−Ẽ(θ))
Z̃p

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the true potential function and Ẽ(θ) =−(log p(θ)+

log p̃(y|θ)) is the surrogate potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ = p(y) is a nor-

malising constant ensuring that the integral of the probability distribution p(θ |y) is 1. Also,
Z̃p =

∫
θ

p(θ)p̃(y|θ)dθ is a normalising constant.
The algorithms starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step,
i.e.

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix) and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1. Note that p̃(r|θ) = p(r|θ) = p(r) since it is expressed
independently of E(θ).

2. Propose (θ ∗,r∗) by following a set of Hamiltonian dynamics steps, which are determin-
istic (so the transition probability is q(θ ∗,r∗|θ ,r) = 1) in emulated space, and accepting
the new configuration with the following acceptance probability (emulator-based):

α1(θ
∗,r∗|θ ,r) = 1∧ exp(−H̃[θ ∗,r∗])

exp(−H̃[θ ,r])
,

where H̃(θ ,r) = Ẽ(θ)+K(r) is the Hamiltonian function.
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3. If the configuration has been accepted, accept the parameters with the second stage accep-
tance probability (simulator-based)

α2(θ
∗,r∗|θ ,r) = 1∧ exp(−E(θ ∗))

exp(−E(θ))
exp(−Ẽ(θ))
exp(−Ẽ(θ ∗))

.

This algorithm preserves detailed balance with respect to p(θ |y).

PROOF
One needs to show that

α2(θ
∗,r∗|θ ,r)α1(θ

∗,r∗|θ ,r)q(θ ∗,r∗|θ ,r)p(r|θ)p(θ |y)

is invariant with respect to the parameter exchange (θ ,r)↔ (θ ∗,r∗). The individual terms are
as follows:

p(θ |y) =
exp(−E(θ))

Zp
,

p(r|θ) =
exp(−K(r))

Zk
,

q(θ ∗,r∗|θ ,r) = 1,

α1(θ
∗,r∗|θ ,r) = 1∧ exp(−H̃[θ ∗,r∗])

exp(−H̃[θ ,r])
,

α2(θ
∗,r∗|θ ,r) = 1∧ exp(−E(θ ∗))

exp(−E(θ))
exp(−Ẽ(θ))
exp(−Ẽ(θ ∗))

,

Multiplying these individual terms together gives:(
1

ZpZk

)
exp(−E(θ))
exp(−Ẽ(θ))

exp(−Ẽ(θ)−K(r))α1(θ
∗,r∗|θ ,r)α2(θ

∗,r∗|θ ,r)

=

(
1

ZpZk

)
exp(−H̃(θ ,r))α1(θ

∗,r∗|θ ,r)exp(−E(θ))
exp(−Ẽ(θ))

α2(θ
∗,r∗|θ ,r)

=

(
1

ZpZk

)[
exp(−H̃[θ ,r])∧ exp(−H̃[θ ∗,r∗])

][exp(−E(θ))
exp(−Ẽ(θ))

∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

]
,

which is invariant with respect to the parameter swap (θ ,r)↔ (θ ∗,r∗), as required.
Hence, the algorithm defines a transition kernel that leaves the joint posterior distribution,

p(θ ,r|y) = p(θ |y)p(r|θ)

invariant, and thus the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:
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∫
p(θ ,r|y)dr = p(θ |y).

6.9.2 RMHMC with emulation and DA (DA-GPRMHMC)

For the RMHMC algorithm, the Hamiltonian function in surrogate space is:

H̃(θ ,r) = Ẽ(θ)+K(r|θ).

Hence,

p(r|θ) = exp(−K(r|θ))
Zk(θ)

,

where K(r|θ) = 1
2rT M(θ)−1r, and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)|

))
is a normalising factor

ensuring that the integral of the probability distribution p(r|θ) is 1. Here, M(θ) is a function of
every θ along the leapfrog trajectory. All the other terms and the proof are similar to those for
DA-GPHMC in Section 6.9.1.

6.9.3 HMC with emulation and no DA (noDA-GPHMC)

Define

p(θ |y) =
exp(−E(θ))

Zp
; p̃(θ |y) =

exp(−Ẽ(θ))
Z̃p

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the true potential function and Ẽ(θ) =−(log p(θ)+

log p̃(y|θ)) is the surrogate potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ = p(y) is a nor-

malising constant ensuring that the integral of the probability distribution p(θ |y) is 1. Also,
Z̃p =

∫
θ

p(θ)p̃(y|θ)dθ is a normalising constant.
The algorithms starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix), and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1. Note that p̃(r|θ) = p(r|θ) = p(r) since it is expressed
independently of E(θ).

2. Propose (θ ∗,r∗) by following a set of deterministic Hamiltonian dynamics steps in the
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surrogate space, and the proposal probability ratio is:

q(θ ∗,r∗|θ ,r)
q(θ ,r|θ ∗,r∗)

=
1
1

= 1,

3. Accept the parameters (θ ∗,r∗) in a M-H step with the following probability:

α(θ ∗,r∗|θ ,r) = 1∧ p(θ ∗|y)p(r∗|θ ∗)q(θ ,r|θ ∗,r∗)
p(θ |y)p(r|θ)q(θ ∗,r∗|θ ,r)

= 1∧ exp(−E(θ ∗))
exp(−E(θ))

exp(−K(r∗))
exp(−K(r))

.

This algorithm preserves detailed balance with respect to p(θ |y).

PROOF

p(θ |y)p(r|θ)q(θ ∗,r∗|θ ,r)α(θ ∗,r∗|θ ,r)

=
exp(−E(θ))

Zp

exp(−K(r))
Zk

[
1∧ exp(−E(θ ∗))exp(−K(r∗))

exp(−E(θ))exp(−K(r))

]
=

(
1

ZpZk

)
[exp(−H(θ ,r))∧ exp(−H(θ ∗,r∗))]

which is invariant with respect to the parameter swap (θ ,r)↔ (θ ∗,r∗), as required.
Hence, the algorithm defines a transition kernel that leaves the joint posterior distribution,

p(θ ,r|y) = p(θ |y)p(r|θ)

invariant, and thus the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:

∫
p(θ ,r|y)dr = p(θ |y).

6.9.4 RMHMC with emulation and no DA (noDA-GPRMHMC)

For the RMHMC algorithm, the Hamiltonian function in surrogate space is:

H̃(θ ,r) = Ẽ(θ)+K(r|θ).

Hence,

p(r|θ) = exp(−K(r|θ))
Zk(θ)

,

where K(r|θ) = 1
2rT M(θ)−1r, and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)|

))
is a normalising factor

ensuring that the integral of the probability distribution p(r|θ) is 1. Here, M(θ) is a function of
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every θ along the leapfrog trajectory. All the other terms and the proof are similar to those of
noDA-GPHMC in Section 6.9.3.

6.9.5 LDMC with emulation and DA (DA-GPLDMC)

The Lagrangian Dynamical Monte Carlo (LDMC) algorithm uses ’velocity’ instead of ’momen-
tum’ as the auxiliary variable, thus the sampling follows the Lagrangian dynamics rather than
the Hamiltonian dynamics.

Define

p(θ |y) =
exp(−E(θ))

Zp
; p̃(θ |y) =

exp(−Ẽ(θ))
Z̃p

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the true potential function and Ẽ(θ) =−(log p(θ)+

log p̃(y|θ)) is the surrogate potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ = p(y) is a nor-

malising constant ensuring that the integral of the probability distribution p(θ |y) is 1. Also,
Z̃p =

∫
θ

p(θ)p̃(y|θ)dθ is a normalising constant.
The algorithms starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘velocity’ variables v from MV N (0,M(θ)−1) in a Gibbs
step, i.e.

p(v|θ) =
exp(−K(v|θ))

Zk(θ)
,

where K(v|θ) = 1
2vT M(θ)v and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)−1|

))
is a normalis-

ing factor ensuring that the integral of the probability distribution p(v|θ) is 1. Note that
p̃(v|θ) = p(v|θ) since it is expressed independently of E(θ).

2. Propose (θ ∗,v∗) by following a set of Lagrangian dynamics steps, which are deterministic,
but do not preserve volume in phase space, and accept the new configuration with the
following acceptance probability (emulator-based):

α1(θ
∗,v∗|θ ,v) = 1∧

exp(−H̃[θ ∗,v∗])
Zk(θ

∗)

exp(−H̃[θ ,v])
Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣ ,
where H̃(θ ,v) = Ẽ(θ)+K(v|θ).

3. If the configuration has been accepted, accept the parameters with the second stage accep-
tance probability (simulator-based):

α2(θ
∗,v∗|θ ,v) = 1∧ exp(−E(θ ∗))

exp(−E(θ))
exp(−Ẽ(θ))
exp(−Ẽ(θ ∗))

.

This algorithm preserves detailed balance with respect to p(θ |y).
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PROOF
We need to show that

α2(θ
∗,v∗|θ ,v)α1(θ

∗,v∗|θ ,v)q(θ ∗,v∗|θ ,v)p(v|θ)p(θ |y)

is invariant with respect to the parameter exchange (θ ,v)↔ (θ ∗,v∗). The individual terms are
as follows:

p(θ |y) =
exp(−E(θ))

Zp
,

p(v|θ) =
exp(−K(v|θ))

Zk(θ)
,

q(θ ∗,v∗|θ ,v)
q(θ ,v|θ ∗,v∗)

=

∣∣∣∣ ∂ (θ ,v)
∂ (θ ∗,v∗)

∣∣∣∣ , by transformation of pdfs of random variables

α1(θ
∗,v∗|θ ,v) = 1∧

exp(−H̃[θ ∗,v∗])
Zk(θ

∗)

exp(−H̃[θ ,v])
Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣ ,
α2(θ

∗,v∗|θ ,v) = 1∧ exp(−E(θ ∗))
exp(−E(θ))

exp(−Ẽ(θ))
exp(−Ẽ(θ ∗))

,

Multiplying these individual terms together gives:(
1

ZpZk(θ)

)
q(θ ∗,v∗|θ ,v)α1(θ

∗,v∗|θ ,v)α2(θ
∗,v∗|θ ,v)exp(−E(θ))

exp(−Ẽ(θ))
exp(−Ẽ(θ)−K(v|θ))

=

(
1

ZpZk(θ)

)
exp(−E(θ))
exp(−Ẽ(θ))

α2(θ
∗,v∗|θ ,v)exp(−H̃(θ ,v))q(θ ∗,v∗|θ ,v)α1(θ

∗,v∗|θ ,v)

=

(
1

ZpZk(θ)

)[
exp(−E(θ))
exp(−Ẽ(θ))

∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

]
exp(−H̃(θ ,v))q(θ ∗,v∗|θ ,v)1∧

exp(−H̃[θ ∗,v∗])
Zk(θ

∗)

exp(−H̃[θ ,v])
Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣


=

(
1

Zp

)[
exp(−E(θ))
exp(−Ẽ(θ))

∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

]
[

exp(−H̃(θ ,v))
Zk(θ)

q(θ ∗,v∗|θ ,v)∧ exp(−H̃[θ ∗,v∗])
Zk(θ

∗)
q(θ ,v|θ ∗,v∗)

]
,

which is invariant with respect to the parameter swap (θ ,v)↔ (θ ∗,v∗), as required.
Hence, the algorithm defines a transition kernel that leaves the joint posterior distribution,

p(θ ,v|y) = p(θ |y)p(v|θ)
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invariant, and thus the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:

∫
p(θ ,v|y)dv = p(θ |y).

6.9.6 LDMC with emulation and no DA (noDA-GPLDMC)

Define

p(θ |y) =
exp(−E(θ))

Zp
; p̃(θ |y) =

exp(−Ẽ(θ))
Z̃p

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the true potential function and Ẽ(θ) =−(log p(θ)+

log p̃(y|θ)) is the surrogate potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ = p(y) is a nor-

malising constant ensuring that the integral of the probability distribution p(θ |y) is 1. Also,
Z̃p =

∫
θ

p(θ)p̃(y|θ)dθ is a normalising constant.
The algorithms starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘velocity’ variables v from MV N (0,M(θ)−1) in a Gibbs
step, i.e.

p(v|θ) =
exp(−K(v|θ))

Zk(θ)
,

where K(v|θ) = 1
2vT M(θ)v and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)−1|

))
is a normalis-

ing factor ensuring that the integral of the probability distribution p(v|θ) is 1. Note that
p̃(v|θ) = p(v|θ) since it is expressed independently of E(θ).

2. Propose (θ ∗,v∗) by following a set of Lagrangian dynamics steps, which are deterministic,
but do not preserve volume in phase space, and the proposal probability ratio is:

q(θ ∗,v∗|θ ,v)
q(θ ,v|θ ∗,v∗)

=

∣∣∣∣ ∂ (θ ,v)
∂ (θ ∗,v∗)

∣∣∣∣ , by transformation of pdfs of random variables

3. Accept the parameters (θ ∗,v∗) in a M-H step with the following probability:

α(θ ∗,v∗|θ ,v) = 1∧ p(θ ∗|y)p(v∗|θ ∗)q(θ ,v|θ ∗,v∗)
p(θ |y)p(v|θ)q(θ ∗,v∗|θ ,v)

= 1∧ exp(−E(θ ∗))
exp(−E(θ))

exp(−K(v∗|θ ∗))
Zk(θ

∗)
exp(−K(v|θ))

Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣ .
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PROOF

p(θ |y)p(v|θ)q(θ ∗,v∗|θ ,v)α(θ ∗,v∗|θ ,v)

=
exp(−E(θ))

Zp

exp(−K(v|θ))
Zk(θ)

q(θ ∗,v∗|θ ,v)

1∧ exp(−E(θ ∗))
exp(−E(θ))

exp(−K(v∗|θ ∗))
Zk(θ

∗)
exp(−K(v|θ))

Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣


=

(
1

Zp

)[
exp(−H(θ ∗,v∗))

Zk(θ
∗)

q(θ ,v|θ ∗,v∗)∧ exp(−H(θ ,v))
Zk(θ)

q(θ ∗,v∗|θ ,v)
]
,

which is invariant with respect to the parameter swap (θ ,v)↔ (θ ∗,v∗), as required. Hence, the
algorithm defines a transition kernel that leaves the joint posterior distribution,

p(θ ,v|y) = p(θ |y)p(v|θ)

invariant, and thus the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:

∫
p(θ ,v|y)dv = p(θ |y).

6.9.7 NUTS with emulation and DA (DA-GPNUTS)

NUTS with emulation carries out Hamiltonian dynamics (with the leapfrog method) on the
combined momentum and parameter space (θ ,r) in emulated log posterior space. It collects
configurations along the leapfrog trajectory to create two sets B and C ⊂ B. A balanced binary
tree is constructed by repeatedly doubling the number of points visited along the trajectory. B

contains all the (position, momentum) (θ ,r) configurations collected throughout the trajectory,
while C contains a subset of these parameters to which transitioning does not violate detailed
balance, a condition checked using a real slice variable u. The algorithm effectively defines a
transition kernel T (θ ∗,r∗,Cnew|θ ,r,Cold) that leaves the joint posterior distribution,

p(θ ,r,u,B,C,Cold|y) = p(θ |y)p̃(r,u,B,C,Cold|θ) = p(θ |y)p̃(r|θ)p̃(u,B,C|θ ,r)p̃(Cold|C)

invariant, and hence the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:

∫
p(θ ,r,u,B,C,Cold|y)drdudBdCdCold = p(θ |y).

Note that p̃(r|θ) = p(r|θ) = p(r) since it is expressed independently of E(θ).
If (efficient) NUTS is run on the surrogate posterior distribution from the emulator, detailed
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balance in emulated space holds (see proof in Section A.5), and the following is true:

T (θ ∗,r∗,Cnew|θ ,r,Cold)p̃(θ |y)p̃(r|θ)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)p̃(Cold|C) =

T (θ ,r,Cold|θ ∗,r∗,Cnew)p̃(θ ∗|y)p̃(r∗|θ ∗)p̃(u|θ ∗,r∗)p̃(B,C|θ ∗,r∗,u,ε)p̃(Cnew|C),
(6.33)

Hence, in emulated posterior distribution space, detailed balance is satisfied. Next, detailed
balance is proven to hold for the original (exact) posterior distribution.

Denote by θ = θ
0, r = r0, θ

∗ = θ
J, r∗ = rJ ,

Cnew =CJ
new; ∩ jC

j
new = /0; C j

old∪C j
new =C j; C =CJ; C j

old∪C j
new =C j+1

old ; Cold =CJ
old,

where J: tree height.
If θ

∗ is accepted by NUTS at the emulator level with first-stage acceptance probability:

α1(θ
∗,r∗,Cnew|θ ,r,Cold) =

J

∏
j=1

α1 j(θ
j,r j,C j

new|θ j−1,r j−1,C j
old) =

J

∏
j=1

[
1∧ |C

j
new|
|C j

old|

]
,

the second-stage delayed acceptance step is included, which accepts the final configuration
(θ ∗,r∗) = (θ J,rJ) with the following probability:

α2(θ
∗|θ) = 1∧ p(θ ∗|y)

p(θ |y)
p̃(θ |y)
p̃(θ ∗|y)

= 1∧ exp(−E(θ ∗))
exp(−E(θ))

exp(−Ẽ(θ))
exp(−Ẽ(θ ∗))

.

The aim is to show that the combined transition kernel

α2(θ
∗|θ)T (θ ∗,r∗,Cnew|θ ,r,Cold)

leaves the distribution p(θ ,r,u,B,C|y) invariant.

PROOF

α2(θ
∗|θ)T (θ ∗,r∗,Cnew|θ ,r,Cold)p(θ ,r,u,B,C,Cold|y,ε)

= α2(θ
∗|θ)exp(−E(θ))

exp(−Ẽ(θ))
T (θ ∗,r∗,Cnew|θ ,r,Cold)p̃(θ |y)p̃(r|θ)p̃(u|θ ,r)

p̃(B,C|θ ,r,u,ε)p̃(Cold|C)

=

(
exp(−E(θ))
exp(−Ẽ(θ))

∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

)
T (θ ∗,r∗,Cnew|θ ,r,Cold)p̃(θ |y)p̃(r|θ)

p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)p̃(Cold|C)

The first factor is invariant with respect to a swap of the arguments θ ↔ θ
∗. Equation (6.33) im-

plies that the last six factors are invariant with respect to a swap of the arguments (θ ,r,Cold)↔
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(θ ∗,r∗,Cnew) via a sequence of intermediate state swaps (θ j−1,r j−1,C j
old) ↔ (θ j,r j,C j

new).
Together this implies that α2(θ

∗|θ)T (θ ∗,r∗,Cnew|θ ,r,Cold)p(θ ,r,u,B,C,Cold|y,ε) is invariant
with respect to a swap of the arguments (θ ,r,Cold)↔ (θ ∗,r∗,Cnew). Hence detailed balance
holds:

α2(θ
∗|θ)T (θ ∗,r∗,Cnew|θ ,r,Cold)p(θ ,r,u,B,C,Cold|y,ε)

= α2(θ |θ ∗)T (θ ,r,Cold|θ ∗,r∗,Cnew)p(θ ∗,r∗,u,B,C,Cnew|y,ε)

and the combined transition kernel leaves the joint distribution p(θ ,r,u,B,C|y,ε) invariant, as
required.

6.9.8 NUTS with emulation and no DA (noDA-GPNUTS)

NUTS with emulation carries out Hamiltonian dynamics (with the leapfrog method) on the
combined momentum and parameter space (θ ,r) in emulated log posterior space. It collects
configurations along the leapfrog trajectory to create two sets B and C ⊂ B. A balanced binary
tree is constructed by repeatedly doubling the number of points visited along the leapfrog tra-
jectory. B contains all the (position, momentum) (θ ,r) configurations collected throughout the
trajectory, while C contains a subset of these parameters to which transitioning does not violate
detailed balance, a condition checked using a real slice variable u. The algorithm effectively
defines a transition kernel T (θ ∗,r∗|θ ,r,C) that leaves the joint posterior distribution,

p(θ ,r,u,B,C|y) = p(θ |y)p̃(r,u,B,C|θ) = p(θ |y)p̃(r|θ)p̃(u,B,C|θ ,r)

invariant, and hence the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out:

∫
p(θ ,r,u,B,C|y)drdudBdC = p(θ |y).

Note that p̃(r|θ) = p(r|θ) = p(r) since it is expressed independently of E(θ).
Define

p(θ |y) =
exp(−E(θ))

Zp
; p̃(θ |y) =

exp(−Ẽ(θ))
Z̃p

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the true potential function and Ẽ(θ) =−(log p(θ)+

log p̃(y|θ)) is the surrogate potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ = p(y) is a nor-

malising constant ensuring that the integral of the probability distribution p(θ |y) is 1. Also,
Z̃p =

∫
θ

p(θ)p̃(y|θ)dθ is a normalising constant.
The naive NUTS algorithm is first set up (which will help with the set-up of the efficient

NUTS), starting with a parameter vector θ :
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1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix) and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1.

2. Sample the slice variable u|θ ,r∼ Uniform(0,exp(−Ẽ(θ)−K(r))) in a Gibbs step.

3. Sample B,C from their conditional distribution p̃(B,C|θ ,r,u,ε) in a Gibbs step, such that

p̃(B,C|θ ,r,u,ε) ∝ 1((θ ,r) ∈C),

p̃(B,C|θ ,r,u,ε) = p̃(B,C|θ ∗,r∗,u,ε).

4. Move from (θ ,r) to (θ ∗,r∗) with uniform probability over C:

q(θ ∗,r∗|θ ,r,C) =
1((θ ∗,r∗) ∈C)

|C|
.

Next, by noting that

p(θ ,r,B,C,u|y,ε) = p(θ ,r|y)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)

= p(θ |y)p(r|θ)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)

=
exp(−E(θ))

Zp

exp(−K(r))
Zk

1(u≤ exp(−Ẽ(θ)−K(r)))
exp(−Ẽ(θ)−K(r))

p̃(B,C|θ ,r,u,ε)

=

(
1

ZpZk

)
exp(−E(θ))
exp(−Ẽ(θ))

p̃(B,C|θ ,r,u,ε), if 1(.) = 1,

accept the parameters (θ ∗,r∗) in a M-H step with the following probability:

α(θ ∗,r∗|θ ,r) = 1∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

exp(−Ẽ(θ))
exp(−E(θ))

This algorithm preserves detailed balance with respect to p(θ |y).
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PROOF

p(θ ,r|y)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)q(θ ∗,r∗, |θ ,r,C)α(θ ∗,r∗|θ ,r,C)

=

(
1

ZpZk

)
exp(−E(θ))
exp(−Ẽ(θ)

p̃(B,C|θ ,r,u,ε)1((θ
∗,r∗) ∈C)

|C|

[
1∧ exp(−E(θ ∗))

exp(−Ẽ(θ ∗))
exp(−Ẽ(θ))
exp(−E(θ))

]
=

(
1

ZpZk

)
p̃(B,C|θ ,r,u,ε)1((θ

∗,r∗) ∈C)

|C|

[
exp(−E(θ))
exp(−Ẽ(θ))

∧ exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

]
=

(
1

ZpZk

)
p̃(B,C|θ ∗,r∗,u,ε)1((θ ,r) ∈C)

|C|

[
exp(−E(θ ∗))
exp(−Ẽ(θ ∗))

∧ exp(−E(θ))
exp(−Ẽ(θ))

.

]
Hence, the algorithm is invariant with respect to the parameter swap (θ ,r)↔ (θ ∗,r∗), as re-
quired.

Next the efficient NUTS algorithm is set up, starting with a parameter vector θ :

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix) and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1.

2. Sample the slice variable u|θ ,r∼ Uniform(0,exp(−Ẽ(θ)−K(r))) in a Gibbs step.

3. Sample B,C from their conditional distribution p̃(B,C|θ ,r,u,ε) in a Gibbs step, such that

p̃(B,C|θ ,r,u,ε) ∝ 1((θ ,r) ∈C),

p̃(B,C|θ ,r,u,ε) = p̃(B,C|θ ∗,r∗,u,ε).

4. Deterministically divide the set C into Cnew and Cold, such that Cold ∪Cnew = C,Cold ∩
Cnew = /0, and sample Cold and Cnew with probability:

p(Cnew|C) = p(Cold|C) = 1

5. Propose to move from (θ j−1,r j−1) ∈C j
old to (θ j,r j) ∈C j

new by following a set of deter-
ministic Hamiltonian dynamics steps in the surrogate space. Switch from C j

old to C j
new

with probability 1(C
′ j
old = C j

new)1(C
′ j
new = C j

old) and choose an element (θ j,r j) ∈ C j
new

with uniform probability
1((θ j,r j) ∈C j

new)

|C j
new|

, where |C j
new| defines the cardinality of the
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set C j
new:

q(θ j,r j,C j
new|θ j−1,r j−1,C j

old) = 1(C j′
old =C j

new)1(C
j′
new =C j

old)
1((θ j,r j) ∈C j

new)

|C j
new|

=
1((θ j,r j) ∈C j

new)

|C j
new|

,

assuming 1(C j′
old =C j

new)1(C
j′
new =C j

old) = 1

6. Accept the parameters (θ j,r j,C j
new) in a M-H step with the following probability:

α(θ j,r j,C j
new|θ j−1,r j−1,C j

old) = 1∧ exp(−E(θ j))

exp(−Ẽ(θ j))

exp(−Ẽ(θ j−1))

exp(−E(θ j−1))

|C j
new|
|C j

old|
1((θ j−1,r j−1) ∈C j

old)

1((θ j,r j) ∈C j
new)

,

Propose to move from (θ ,r) ∈ Cold to (θ ∗,r∗) ∈ Cnew by following a set of deterministic
Hamiltonian dynamics steps in the surrogate space via a sequence of intermediate states. Thus,
the transition kernel T is repeatedly applied after every tree doubling, i.e. steps (5) and (6) are
repeated a number of times equal to the tree height:

T (θ ∗,r∗,Cnew|θ ,r,Cold) =
J

∏
j=1

q(θ j,r j,C j
new|θ j−1,r j−1,C j

old)α(θ j,r j,C j
new|θ j−1,r j−1,C j

old)

=
J

∏
j=1

{
exp(−Ẽ(θ j−1))

exp(−E(θ j−1))

[
exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

∧

exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

]}
,

(6.34)

where:
θ = θ

0,r = r0: the initial values, J: the number of tree doublings (tree height) before reaching
the final proposed values θ

∗ = θ
J,r∗ = rJ .

Cnew contains all the points visited at the last doubling, i.e. Cnew =CJ
new and

∩ jC
j
new = /0; C j

old∪C j
new =C j; C =CJ; C j

old∪C j
new =C j+1

old ; Cold =CJ
old.
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One can similarly express

T (θ ,r,Cold|θ ∗,r∗,Cnew) =
J

∏
j=1

q(θ j−1,r j−1,C j
old|θ

j,r j,C j
new)α(θ j−1,r j−1,C j

old|θ
j,r j,C j

new)

=
J

∏
j=1

{
exp(−Ẽ(θ j))

exp(−E(θ j))

[
exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

∧

exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

]}

This algorithm preserves detailed balance with respect to p(θ |y).

PROOF

p(θ ,r|y)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)p(Cold|C)q(θ ∗,r∗,Cnew|θ ,r,Cold)

α(θ ∗,r∗,Cnew|θ ,r,Cold)

=

(
1

ZpZk

)
exp(−E(θ 0))

exp(−Ẽ(θ 0))
p̃(B,C|θ 0,r0,u,ε)1

J

∏
j=1

{
exp(−Ẽ(θ j−1))

exp(−E(θ j−1))

[
exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

∧ exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

]}

=

(
1

ZpZk

)
p̃(B,C|θ 0,r0,u,ε)

[
exp(−E(θ 0))

exp(−Ẽ(θ 0))

1((θ 1,r1) ∈C1
new)

|C1
new|

∧ exp(−E(θ 1))

exp(−Ẽ(θ 1))

1((θ 0,r0) ∈C1
old)

|C1
old|

]
J

∏
j=2

{
exp(−Ẽ(θ j−1))

exp(−E(θ j−1))

[
exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

∧ exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

]}
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Moreover,

p(θ ∗,r∗|y)p̃(u|θ ∗,r∗)p̃(B,C|θ ∗,r∗,u,ε)p(Cold|C)q(θ ,r,Cold|θ ∗,r∗,Cnew)α(θ ,r,Cold|θ ∗,r∗,Cnew)

=

(
1

ZpZk

)
exp(−E(θ J))

exp(−Ẽ(θ J))
p̃(B,C|θ J,rJ,u,ε)1

J

∏
j=1

{
exp(−Ẽ(θ j))

exp(−E(θ j))

[
exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

∧ exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

]}

=

(
1

ZpZk

)
p̃(B,C|θ J,rJ,u,ε)

[
exp(−E(θ J))

exp(−Ẽ(θ J))

1((θ J−1,rJ−1) ∈CJ
old)

|CJ
old|

∧ exp(−E(θ J−1))

exp(−Ẽ(θ J−1))

1((θ J,rJ) ∈CJ
new)

|CJ
new|

]
J−1

∏
j=1

{
exp(−Ẽ(θ j))

exp(−E(θ j))

[
exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

∧ exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

]}

=

(
1

ZpZk

)
p̃(B,C|θ J,rJ,u,ε)

exp(−Ẽ(θ 1))

exp(−E(θ 1))

[
exp(−E(θ 1))

exp(−Ẽ(θ 1))

1((θ 0,r0) ∈C1
old)

|C1
old|

∧

exp(−E(θ 0))

exp(−Ẽ(θ 0))

1((θ 1,r1) ∈C1
new)

|C1
new|

]
exp(−E(θ J))

exp(−Ẽ(θ J))

J

∏
j=2

{
exp(−Ẽ(θ j))

exp(−E(θ j))[
exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

∧ exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

]}

=

(
1

ZpZk

)
p̃(B,C|θ J,rJ,u,ε)

[
exp(−E(θ 1))

exp(−Ẽ(θ 1))

1((θ 0,r0) ∈C1
old)

|C1
old|

∧ exp(−E(θ 0))

exp(−Ẽ(θ 0))

1((θ 1,r1) ∈C1
new)

|C1
new|

]
J

∏
j=2

{
exp(−Ẽ(θ j−1))

exp(−E(θ j−1))

[
exp(−E(θ j))

exp(−Ẽ(θ j))

1((θ j−1,r j−1) ∈C j
old)

|C j
old|

∧ exp(−E(θ j−1))

exp(−Ẽ(θ j−1))

1((θ j,r j) ∈C j
new)

|C j
new|

]}

Since p̃(B,C|θ 0,r0,u,ε) = p̃(B,C|θ J,rJ,u,ε), it is clear that

p(θ ,r|y)p̃(u|θ ,r)p̃(B,C|θ ,r,u,ε)p(Cold|C)q(θ ∗,r∗,Cnew|θ ,r,Cold)

α(θ ∗,r∗,Cnew|θ ,r,Cold)

= p(θ ∗,r∗|y)p̃(u|θ ∗,r∗)p̃(B,C|θ ∗,r∗,u,ε)p(Cold|C)q(θ ,r,Cold|θ ∗,r∗,Cnew)

α(θ ,r,Cold|θ ∗,r∗,Cnew)

Hence, the algorithm is invariant with respect to the parameter swap (θ ,r,Cold)↔ (θ ∗,r∗,Cnew)

via a sequence of intermediate state swaps (θ j−1,r j−1,C j
old)↔ (θ j,r j,C j

new). So the joint dis-
tribution p(θ ,r,u,B,C|y) is left invariant.
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Chapter 7

Discussion

7.1 Conclusions

This thesis focuses on developing, adapting and implementing statistical methods to quantify
uncertainty in mathematical models of the pulmonary blood circulation. The ultimate goal is
using these models for decision-making in the clinic, to allow the non-invasive diagnosis of long-
term PH, which is currently done with right-heart catheterisation. However, this is an invasive
technique that comes with a series of risks and possible side effects, including excessive bleeding
because of puncture of the vein during catheter insertion, and partial collapse of the lung. The
ultimate quest, therefore, is to use MRI with mathematical modelling and statistical inference to
develop a non-invasive alternative.

Substantial efforts have been put into developing mathematical models of the pulmonary cir-
culation [151, 152], however much work still needs to be done to incorporate statistical inference
into the analysis. The problem with using mathematical models alone is that the uncertainty, e.g.
in model parameters, model form, data measurement process is ignored, making these models
lack credibility. A rigorous testing by accounting for all sources of uncertainty is needed. An
overview of the sources of uncertainty present in the mathematical models of the pulmonary
blood circulation is given in Chapter 1. The present study focuses on estimating unknown pa-
rameters of a 1D fluid-dynamics model, which cannot be measured in-vivo, from measured
blood flow and pressure data in healthy and diseased (hypertensive) mice. These parameters re-
late to the blood haemodynamics, e.g. vessel wall stiffness and boundary conditions (3-element
Windkessels) for the PDEs by which the models are defined. Chapter 3 of this thesis discusses a
Bayesian approach to inferring the vessel wall stiffness (assumed constant throughout the vessel
network) and Windkessel adjustment parameters (also assumed constant) and quantifying their
uncertainty in a fixed vessel network geometry (e.g. fixed vessel radii, length, number of ves-
sels and vessel connectivity) extracted from micro-CT images. The analysis, performed with a
random-walk MCMC algorithm (DRAM) makes the assumptions of iid measurement errors, and
finds that PH is associated with stiffer and less compliant proximal and distal vasculature. The
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wall stiffness of the large vessels was larger for the diseased mouse than the healthy (control)
mouse, and the compliance from the Windkessels, representative of the wall compliance of the
small vessels and capillaries was smaller in PH compared to the control case. In addition, it was
found that the mathematical model provides blood pressure predictions that faithfully resemble
the haemodynamics for the diseased mouse, however a slight model mismatch was observed for
the healthy mouse data.

The model mismatch stems from the model discrepancy between the real system and the
mathematical model and the from the wrong noise model, i.e. wrongly assuming iid errors
when the errors are in fact correlated. Possible causes for the measurement error correlation are:
the nature of the data (i.e. the blood flow or pressure measurements at the current time point
depend on measurements at previous time points), and smoothing and averaging of the data.
Possible causes for the model discrepancy are: numerical errors (e.g., numerical integration of
the PDEs), model assumptions (e.g., purely elastic vessel walls, or the 1D model simplifica-
tion), and inconsistency between network geometry and haemodynamic data (e.g., the network
geometry and the blood flow data do not come from the same mouse).

The model mismatch is incorporated in the analysis presented in Chapter 4 by assuming that
the errors follow a multivariate normal distribution with a full covariance matrix, learnt using
Gaussian Processes. In this chapter, haemodynamic parameters (vessel stiffness and Windkessel
adjustment parameters) in a fixed network were jointly sampled with the error model hyperpa-
rameters using Bayesian methods based on random-walk Adaptive Metropolis algorithm. This
was carried out for the control mouse data. This chapter emphasizes the importance of allowing
for model mismatch when one is present. It is demonstrated that minimising the mean square er-
ror between the measured data and the model-predicted data, which is the conventional method
widely used in the literature, leads to biased parameter estimates and incorrect predictions, and
underestimates uncertainty in parameter and output space. This finding is based on synthetic
data, for which the gold standard is known, and it tallies with results from the physiological
data. In contrast, the proposed method based on GPs modelling the model mismatch, circum-
vents these issues and provides wider uncertainty bounds in parameter and output space, which
accommodates for natural, physiological variations in pulmonary pressure (e.g. effects of the
respiratory cycle).

A further contribution of the analysis in Chapter 4 is the thorough exploration of several
mathematical models describing the vessel wall elasticity (i.e. a linear and a non-linear elas-
tic behaviour of the vessel wall) with different vessel wall assumptions (constant, exponential
radius-dependent, or vessel-specific stiffness). Model selection was performed with WAIC, and
it was found that the model that can most accurately predict the available pressure data for the
healthy mouse was the non-linear wall model with a weak exponential radius-dependent stiff-
ness.

Chapters 3 and 4 deal with inference and UQ of haemodynamic parameters, and uncertainty
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propagation to haemodynamic predictions, in a fixed vessel network obtained based on one im-
age segmentation. In contrast, Chapter 5 presents an analysis of the network uncertainty, i.e.
network geometry: vessel radius and length, network connectivity: location of vessel bifurca-
tions, and network size: number of vessels, resulting from multiple image segmentations with
different pre-segmentation parameters. The variation in the network also leads to uncertainty
in haemodynamic predictions. Using multiple image segmentations of one single mouse lung
allowed quantifying the total network variation, and thus the uncertainty in the haemodynamic
predictions. Subsequently, one single image segmentation was chosen and the contributions to
the total network variation were separated to find the variation due to 1) network geometry and
2) network connectivity and size. GPs were used for density estimation of the vessels’ radii
and lengths from repeated measurements of these quantities for fixed network connectivity and
size, and sampling from these densities allowed forward UQ (i.e. UQ in model predictions) via
Monte Carlo sampling (with inverse transform sampling). In addition, varying the network size
and connectivity for a fixed network geometry (i.e. deterministically and sequentially reducing
the number of vessels), allowed to compute the model predictions, thus quantify the variability in
the haemodynamic predictions. Results indicated that variation in network size and connectivity
is a larger contributor to haemodynamic uncertainty than the variation in network geometry, i.e.
vessel radius and length.

Chapters 3 and 4 employ random-walk MCMC algorithms in a conventional fashion, by
evaluating the PDEs at every MCMC iteration for tens of thousands of iterations, rendering the
parameter inference procedure unsuitable for use in the clinic due to high computational costs.
Thus, Chapter 6 places a strong emphasis on computational efficiency by coupling efficient,
gradient-based MCMC algorithms (Hamiltonian and Lagrangian Monte Carlo algorithms) with
emulation of the log unnormalised posterior distribution using GPs, with the aim to identify
the method which gives the best trade-off between accuracy and efficiency. Several algorithms,
particularly adapted for computationally expensive models, were derived and implemented on
the 1D fluid-dynamics model, as well as on toy models defined by differential equations. The
empirical method comparison revealed that all the proposed algorithms accurately estimated
the ground-truth parameter values, which were known for the toy problems. Additionally, La-
grangian Dynamical Monte Carlo and Riemann Manifold Hamiltonian Monte Carlo tended to
register the highest efficiency (in terms of effective sample size normalised by the number of for-
ward model evaluations), followed by the Hamiltonian Monte Carlo, and the No U-turn sampler
tended to be least efficient.

7.2 Future work

The present study did not jointly quantify the uncertainty in haemodynamic and network pa-
rameters, this constitutes future work. Currently, the image segmentation process requires sub-
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stantial user input, rendering an automated network parameter inference impossible. Efforts are
being made into automating the image segmentation process [29]. Future work will also quantify
the uncertainty inherent in the imaging process affecting the image intensities and leading to un-
certainty in the segmentation and mesh reconstruction of the network vasculature. Furthermore,
replacement of the Windkessel boundary conditions, which greatly simplify the downstream
resistance, by structured tree boundary conditions [138, 139, 152], can provide an additional
level of complexity for approximating downstream resistance and help incorporate the network
structure beyond the truncation induced by the image segmentation.

The parameter dimension reduction from Chapter 3 was done ad-hoc and future work in-
cludes sensitivity analysis, to identify the parameters that the output is most sensitive to, follow-
ing approaches in [36]. Additionally, the method comparison in Chapter 6 used the simple linear
wall fluid-dynamics model with a constant vessel stiffness and iid measurement errors. Future
work includes applying the most efficient algorithm identified to the non-linear wall model with
an exponential radius-dependent stiffness (the model best supported by the data, as found in
Chapter 4), and incorporating the model mismatch.

While in this thesis mouse data were used, the analysis performed can be translated to human
data, using for example the model developed by Qureshi et al. [152], which is a two-sided model
incorporating both the pulmonary arterial and venous side, unlike the model used in this study,
which only models the arterial side.

Lastly, another future research direction represents the closed-loop effects arising when cou-
pling the mathematical and statistical modelling with the clinical decision process. More specif-
ically, medical interventions caused by model predictions must be accommodated for in the
modelling framework. In a clinical application, the prediction of high pulmonary blood pres-
sure above a critical threshold will trigger the administration of vasodilators to reduce the blood
pressure, which will increase the blood vessel diameter. A statistical inference performed on
the newly measured blood flow data with the old vessel diameter will lead to biased parameter
inference, as demonstrated in our preliminary study [92].

193



Appendix A

Appendix for Chapter 2

A.1 Detailed balance proof for DR

p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))[1−α1(θ

∗|θ ∗(2))]q2(θ
(k−1)|θ ∗,θ ∗(2))α2(θ

(k−1)|θ ∗,θ ∗(2))

= p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))[1−α1(θ

∗|θ ∗(2))]q2(θ
(k−1)|θ ∗,θ ∗(2))[

1∧ p(θ k−1|y)q1(θ
∗|θ k−1)q2(θ

∗(2)|θ ∗,θ k−1)[1−α1(θ
∗|θ k−1)]

p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))q2(θ

k−1|θ ∗,θ ∗(2))[1−α1(θ
∗|θ ∗(2))]

]
=
[

p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))q2(θ

k−1|θ ∗,θ ∗(2))[1−α1(θ
∗|θ ∗(2))]∧

p(θ k−1|y)q1(θ
∗|θ k−1)q2(θ

∗(2)|θ ∗,θ k−1)[1−α1(θ
∗|θ k−1)]

]
,

which is invariant with respect to the parameter swap θ
k−1 ↔ θ

∗(2), hence detailed balance
holds:

p(θ ∗(2)|y)q1(θ
∗|θ ∗(2))[1−α1(θ

∗|θ ∗(2))]q2(θ
k−1|θ ∗,θ ∗(2))α2(θ

k−1|θ ∗,θ ∗(2)) =

p(θ k−1|y)q1(θ
∗|θ k−1)[1−α1(θ

∗|θ k−1)]q2(θ
∗(2)|θ ∗,θ k−1)α2(θ

∗(2)|θ ∗,θ k−1).

A.2 Detailed balance proof for HMC

Consider a probabilistic model p(y|θ), where y are the data and θ the model parameters with
prior probability p(θ). The corresponding posterior probability is given by p(θ |y)∝ p(y|θ)p(θ).

Define
p(θ |y) =

exp(−E(θ))
Zp

,

where E(θ) =−(log p(y|θ)+ log p(θ)) is the potential function, and Zp =
∫

θ
p(θ)p(y|θ)dθ =

p(y) is a normalising constant ensuring that the integral of the probability distribution p(θ |y) is
1.
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Starting with a parameter vector θ , the algorithm follows:

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix) and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1. Note that p(r|θ) = p(r) since it is expressed indepen-
dently of θ .

2. Propose (θ ∗,r∗) by following a set of deterministic Hamiltonian dynamics steps in the
joint (θ ,r) space, and the proposal probability ratio is:

q(θ ∗,r∗|θ ,r)
q(θ ,r|θ ∗,r∗)

=
1
1

= 1.

3. Accept the parameters (θ ∗,r∗) in a M-H step with the following probability:

α(θ ∗,r∗|θ ,r) =

[
1∧ p(θ ∗|y)p(r∗|θ ∗)q(θ ,r|θ ∗,r∗)

p(θ |y)p(r|θ)q(θ ∗,r∗|θ ,r)

]
= 1∧ exp(−E(θ ∗))

exp(−E(θ))
exp(−K(r∗))
exp(−K(r))

.

This algorithm preserves detailed balance with respect to p(θ |y).

PROOF

p(θ |y)p(r|θ)q(θ ∗,r∗|θ ,r)α(θ ∗,r∗|θ ,r)

=
exp(−E(θ))

Zp

exp(−K(r))
Zk

[
1∧ exp(−E(θ ∗))exp(−K(r∗))

exp(−E(θ))exp(−K(r))

]
=

(
1

ZpZk

)
[exp(−H(θ ,r))∧ exp(−H(θ ∗,r∗))],

which is invariant with respect to the parameter swap (θ ,r)↔ (θ ∗,r∗).
The algorithm defines a transition kernel that leaves the joint posterior distribution,

p(θ ,r|y) = p(θ |y)p(r|θ)

invariant, and hence the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out: ∫

p(θ ,r|y)dr = p(θ |y).
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A.3 Detailed balance proof for RMHMC

Note that in the Riemann Manifold Hamiltonian Monte Carlo (RMHMC) algorithm, the Hamil-
tonian function is:

H(θ ,r) = E(θ)+K(r|θ).

Hence,

p(r|θ) = exp(−K(r|θ))
Zk(θ)

,

where K(r|θ) = 1
2rT M(θ)−1r, and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)|

))
is a normalising factor

ensuring that the integral of the probability distribution p(r|θ) is 1. Here, M(θ) is a function of
every θ along the leapfrog trajectory. All the other terms and the proof are similar to HMC in
Section A.2.

A.4 Detailed balance proof for LDMC

The Lagrangian Dynamical Monte Carlo (LDMC) algorithm uses ’velocity’ instead of ’momen-
tum’ as the auxiliary variable, thus the sampling follows the Lagrangian dynamics rather than
the Hamiltonian dynamics.

Define
p(θ |y) =

exp(−E(θ))
Zp

,

where E(θ) =−(log p(θ)+ log p(y|θ)) is the potential function and Zp =
∫

θ
p(θ)p(y|θ)dθ =

p(y) is a normalising constant ensuring that the integral of the probability distribution p(θ |y) is
1.

Starting with a parameter vector θ , the algorithm follows:

1. Sample a vector of auxiliary ‘velocity’ variables v from MV N (0,M(θ)−1) in a Gibbs
step, i.e.

p(v|θ) =
exp(−K(v|θ))

Zk(θ)
,

where K(v|θ) = 1
2vT M(θ)v and Zk(θ) = exp

(
−1

2 log
(
(2π)d|M(θ)−1|

))
is a normalis-

ing factor ensuring that the integral of the probability distribution p(v|θ) is 1.

2. Propose (θ ∗,v∗) by following a set of Lagrangian dynamics steps, which are deterministic,
but do not preserve volume in phase space, and the proposal probability ratio follows from
the transformation of probability densities of random variables:

q(θ ∗,v∗|θ ,v)
q(θ ,v|θ ∗,v∗)

=

∣∣∣∣ ∂ (θ ,v)
∂ (θ ∗,v∗)

∣∣∣∣ .
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3. Accept the parameters (θ ∗,v∗) in a M-H step with the following probability:

α(θ ∗,v∗|θ ,v) = 1∧

exp(−H[θ ∗,v∗])
Zk(θ

∗)
exp(−H[θ ,v])

Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣ ,
where H(θ ,v) = E(θ)+K(v|θ).

This algorithm preserves detailed balance with respect to p(θ |y).

PROOF

p(θ |y)p(v|θ)q(θ ∗,v∗|θ ,v)
[

1∧ p(θ ∗|y)p(v∗|θ ∗)q(θ ,v|θ ∗,v∗)
p(θ |y)p(v|θ)q(θ ∗,v∗|θ ,v)

]

=
exp(−E(θ))

Zp

exp(−K(v|θ))
Zk(θ)

q(θ ∗,v∗|θ ,v)

1∧

exp(−E(θ ∗))exp(−K(v∗|θ ∗))
Zk(θ

∗)
exp(−E(θ))exp(−K(v|θ))

Zk(θ)

∣∣∣∣∂ (θ ∗,v∗)∂ (θ ,v)

∣∣∣∣


=

(
1

Zp

)[
exp(−H(θ ,v))q(θ ∗,v∗|θ ,v)

Zk(θ)
∧ exp(−H(θ ∗,v∗))q(θ ,v|θ ∗,v∗)

Zk(θ
∗)

]
,

which is invariant with respect to the parameter swap (θ ,v)↔ (θ ∗,v∗). Thus, the transition
kernel leaves the joint posterior distribution p(θ ,v|y) invariant, and hence the target distribution,
p(θ |y) invariant, as the auxiliary variable v can be integrated out:∫

p(θ ,v|y)dv = p(θ |y).

A.5 Detailed balance proof for NUTS

NUTS, which stands for "No U-Turn Sampler", carries out Hamiltonian dynamics (with the
leapfrog method) on the combined momentum and parameter space (θ ,r). It collects configu-
rations along the leapfrog trajectory to create two sets B and C ⊂ B. A balanced binary tree is
constructed by repeatedly doubling the number of points visited along the leapfrog trajectory. B

contains all the (position, momentum) (θ ,r) configurations collected throughout the trajectory,
while C contains a subset of these parameters to which transitioning does not violate detailed
balance, a condition checked using a real slice variable u. The algorithm effectively defines a
transition kernel T (θ ∗,r∗|θ ,r,C) that leaves the joint posterior distribution,

p(θ ,r,u,B,C|y) = p(θ |y)p(r|θ)p(u|θ ,r)p(B,C|θ ,r,u)
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invariant, and thus the target distribution p(θ |y) invariant, as the auxiliary variables can be
integrated out: ∫

p(θ ,r,u,B,C|y)drdudBdC = p(θ |y).

NUTS exists in two forms: the naive version and the efficient version. The naive NUTS
algorithm is first explained.

The algorithm starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix), and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1. Note that p(r|θ) = p(r) since it is expressed indepen-
dently of θ .

2. Sample the slice variable u|θ ,r∼ Uniform(0,exp(−E(θ)−K(r))) in a Gibbs step.

3. Sample B,C from their conditional distribution p(B,C|θ ,r,u,ε) in a Gibbs step.

4. Move from (θ ,r) to (θ ∗,r∗) with uniform transition probability over C:

T (θ ∗,r∗|θ ,r,C) =
1((θ ∗,r∗) ∈C)

|C|
.

This algorithm preserves detailed balance with respect to p(θ ,r,u,B,C|y).

PROOF
The aim is to show that

T (θ ∗,r∗|θ ,r,C)p(θ ,r|y)p(u|θ ,r)p(B,C|θ ,r,u,ε) =

T (θ ,r|θ ∗,r∗,C)p(θ ∗,r∗|y)p(u|θ ∗,r∗)p(B,C|θ ∗,r∗,u,ε),
(A.1)

where ε is the step size in the leapfrog algorithm.

By noting that
p(θ ,r|y) = p(θ |y)p(r|θ), (A.2)

equation (A.1), which needs proving, becomes equivalent to:

T (θ ∗,r∗|θ ,r,C)p(θ |y)p(r|θ)p(u|θ ,r)p(B,C|θ ,r,u,ε) =

T (θ ,r|θ ∗,r∗,C)p(θ ∗|y)p(r∗|θ ∗)p(u|θ ∗,r∗)p(B,C|θ ∗,r∗,u,ε),
(A.3)
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The individual terms are:

p(θ |y) =
exp(−E(θ))

Zp
, E(θ) =−(log p(θ)+ log p(y|θ)),

Zp =
∫

θ

p(θ)p(y|θ)dθ = p(y),

p(r|θ) =
exp(−K(r))

Zk
, Zk = exp(−1

2
log
(
(2π)d|M|

)
),

p(u|θ ,r) =
1(u≤ exp(−E(θ)−K(r)))

exp(−E(θ)−K(r))
,

p(B,C|θ ,r,u,ε) = p(B,C|θ ∗,r∗,u,ε), where ε is the leapfrog step size,

p(B,C|θ ,r,u,ε) =
1((θ ,r) ∈C)

|B|
, where 1(.): indicator function, |B|: cardinality of the set B,

T (θ ∗,r∗|θ ,r,C) =
1((θ ∗,r∗) ∈C)

|C|
.

But,

p(θ ,r|u,B,C,ε) =
p(θ ,r,u,B,C|ε)

p(u,B,C|ε)

=
p(B,C|θ ,r,u,ε)p(θ ,r,u)

p(u,B,C|ε)
∝ p(B,C|θ ,r,u,ε)p(θ ,r|u)

∝
1((θ ,r) ∈C)

|B|
1(u≤ exp(−E(θ)−K(r)))

∝
1((θ ,r) ∈C)

|C|
|C|
|B|

, where |B|≥ |C|

∝
1((θ ,r) ∈C)

|C|
,

since 1(u≤ exp(−E(θ)−K(r))) = 1 if (θ ,r) ∈C.

(A.4)

Thus, the following holds:

p(θ ,r|u,B,C,ε) ∝ p(θ ,r|C) =
1((θ ,r) ∈C)

|C|
. (A.5)

By cancellation of terms and using eq (A.4), eq (A.3) can be simplified to:

T (θ ∗,r∗|θ ,r,C)p(θ ,r|C) = T (θ ,r|θ ∗,r∗,C)p(θ ∗,r∗|C), (A.6)
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which needs proving. To do so, the following can be noted:

T (θ ∗,r∗|θ ,r,C)p(θ ,r|C)

=
1((θ ∗,r∗) ∈C)

|C|
1((θ ,r) ∈C)

|C|

=
1((θ ,r) ∈C)

|C|
1((θ ∗,r∗) ∈C)

|C|
= T (θ ,r|θ ∗,r∗,C)p(θ ∗,r∗|C).

Hence, the algorithm is invariant with respect to a swap (θ ,r)↔ (θ ∗,r∗).

A more efficient NUTS is needed because:

1. The naive NUTS requires a large amount of memory to store all (θ ,r) ∈C.

2. The simple uniform sampling is inefficient; there exist alternative transition kernels that
ensure detailed balance is satisfied with respect to a uniform distribution and that produce
larger jumps on average than the simple uniform sampling method.

The efficient NUTS thus uses a more sophisticated, memory-efficient transition kernel that
leaves the distribution over C invariant.

The algorithm starts with a parameter vector θ and proceeds as follows:

1. Sample a vector of auxiliary ‘momentum’ variables r from MV N (0,M) in a Gibbs step

p(r) =
exp(−K(r))

Zk
,

where K(r) = 1
2rT M−1r is the kinetic energy (M - mass matrix) and

Zk = exp
(
−1

2 log
(
(2π)d|M|

))
is a normalising constant ensuring that the integral of the

probability distribution p(r) is 1. Note that p(r|θ) = p(r) since it is expressed indepen-
dently of θ .

2. Sample the slice variable u|θ ,r∼ Uniform(0,exp(−E(θ)−K(r))) in a Gibbs step.

3. Sample B,C from their conditional distribution p(B,C|θ ,r,u,ε) in a Gibbs step.

4. Deterministically divide the set C into Cnew and Cold, such that Cold ∪Cnew = C, Cold ∩
Cnew = /0, and sample Cold and Cnew with probability:

p(Cnew|C) = p(Cold|C) = 1.

5. Propose to move from (θ j−1,r j−1) ∈C j
old to (θ j,r j) ∈C j

new by following a set of deter-
ministic Hamiltonian dynamics steps. Switch from C j

old to C j
new with probability 1(C

′ j
old =
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C j
new)1(C

′ j
new = C j

old) and choose an element (θ ∗,r∗) ∈ Cnew with uniform probability
1((θ ∗,r∗) ∈Cnew)

|Cnew|
, where |Cnew| defines the cardinality of the set Cnew:

q(θ j,r j,C j
new|θ j−1,r j−1,C j

old) = 1(C j′
old =C j

new)1(C
j′
new =C j

old)
1((θ j,r j) ∈C j

new)

|C j
new|

=
1((θ j,r j) ∈C j

new)

|C j
new|

,

assuming 1(C j′
old =C j

new)1(C
j′
new =C j

old) = 1.

6. Accept the parameters (θ j,r j,C j
new) in a M-H step with the following probability:

α(θ j,r j,C j
new|θ j−1,r j−1,C j

old) = 1∧ |C
j
new|
|C j

old|
1((θ j−1,r j−1) ∈C j

old)

1((θ j,r j) ∈C j
new)

.

The sampler proposes to move from (θ ,r) ∈ Cold to (θ ∗,r∗) ∈ Cnew by following a set of
deterministic Hamiltonian dynamics steps via a sequence of intermediate states. Thus, the tran-
sition kernel T is repeatedly applied after every tree doubling, i.e. steps (5) and (6) are repeated
a number of times equal to the tree height:

T (θ ∗,r∗,Cnew|θ ,r,Cold) =
J

∏
j=1

q(θ j,r j,C j
new|θ j−1,r j−1,C j

old)α(θ j,r j,C j
new|θ j−1,r j−1,C j

old),

=
J

∏
j=1

[
1((θ j,r j) ∈C j

new)

|C j
new|

∧
1((θ j−1,r j−1) ∈C j

old)

|C j
old|

]
,

where θ = θ
0, r = r0: the initial values, J: the number of tree doublings (tree height) before

reaching the final proposed values θ
∗ = θ

J, r∗ = rJ . Cnew contains all the points visited at the
last doubling, i.e. Cnew =CJ

new and

∩ jC
j
new = /0; C j

old∪C j
new =C j; C =CJ; C j

old∪C j
new =C j+1

old ; Cold =CJ
old.

This algorithm preserves detailed balance with respect to p(θ ,r,u,B,C|y).

PROOF
Eq (A.3) in the naive NUTS algorithm is adapted to give

T (θ ∗,r∗,Cnew|θ ,r,Cold)p(θ |y)p(r|θ)p(u|θ ,r)p(B,C|θ ,r,u,ε)p(Cold|C) =

T (θ ,r,Cold|θ ∗,r∗,Cnew)p(θ ∗|y)p(r∗|θ ∗)p(u|θ ∗,r∗)p(B,C|θ ∗,r∗,u,ε)p(Cnew|C).
(A.7)
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The aim is to show that eq (A.7) holds.
Eq (A.7) can be simplified using eq (A.4) and (A.5) from the naive NUTS section to give:

T (θ ∗,r∗,Cnew|θ ,r,Cold)p(θ ,r|C)p(Cold|C)

=
J

∏
j=1

[
1((θ j,r j) ∈C j

new)

|C j
new|

∧
1((θ j−1,r j−1) ∈C j

old)

|C j
old|

]
1((θ ,r) ∈C)

|C|

=
J

∏
j=1

[
1((θ j−1,r j−1) ∈C j

old)

|C j
old|

∧ 1((θ
j,r j) ∈C j

new)

|C j
new|

]
1((θ ∗,r∗) ∈C)

|C|
= T (θ ,r,Cold|θ ∗,r∗,Cnew)p(θ ∗,r∗|C)p(Cnew|C).

Hence, the algorithm is invariant with respect to the parameter swap (θ ,r,Cold)↔ (θ ∗,r∗,Cnew)

via a sequence of intermediate state swaps (θ j−1,r j−1,C j
old)↔ (θ j,r j,C j

new). So the joint dis-
tribution p(θ ,r,u,B,C|y) is left invariant.

A.6 Proof of equation (2.40)

Note that
Cov(X ,Y ) = E(XY )−E(X)E(Y ).

And so,

Cov
(

∂ log p(y|θ)
∂θi

,
∂ log p(y|θ)

∂θ j

)
= Ey|θ

(
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θ j

)
−

Ey|θ

(
∂ log p(y|θ)

∂θi

)
Ey|θ

(
∂ log p(y|θ)

∂θ j

)
.

But

Ey|θ

(
∂ log p(y|θ)

∂θi

)
=
∫

p(y|θ) 1
p(y|θ)

∂ p(y|θ)
∂θi

dy =
∂

∂θi

∫
p(y|θ)dydθ =

∂

∂θi
1 = 0.

Hence,

Cov
(

∂ log p(y|θ)
∂θi

,
∂ log p(y|θ)

∂θ j

)
= Ey|θ

(
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θ j

)
,

which proves the first equality of eq (2.40). To prove that the second equality holds, note that:

∂ 2 log p(y|θ)
∂θi∂θ j

=
∂

∂θi

(
∂ log p(y|θ)

∂θ j

)
=

∂

∂θi

(
1

p(y|θ)
∂ p(y|θ)

∂θ j

)
= − 1

p(y|θ)2
∂ p(y|θ)

∂θi

∂ p(y|θ)
∂θ j

+
1

p(y|θ)
∂ 2 p(y|θ)
∂θi∂θ j

= −∂ log p(y|θ)
∂θi

∂ log p(y|θ)
∂θ j

+
1

p(y|θ)
∂ 2 p(y|θ)
∂θi∂θ j
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Multiply both sides by -1 and take expectation with respect to y|θ to obtain:

Ey|θ

(
−∂ 2 log p(y|θ)

∂θi∂θ j

)
= Ey|θ

(
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θ j

− 1
p(y|θ)

∂ 2 p(y|θ)
∂θi∂θ j

)
.

But,

Ey|θ

(
1

p(y|θ)
∂ 2 p(y|θ)
∂θi∂θ j

)
=
∫ 1

p(y|θ)
∂ 2 p(y|θ)
∂θi∂θ j

p(y|θ)dy =
∂ 2

∂θi∂θ j

∫
p(y|θ)dy =

∂ 21
∂θi∂θ j

= 0.

Hence,

Ey|θ

(
−∂ 2 log p(y|θ)

∂θi∂θ j

)
= Ey|θ

(
∂ log p(y|θ)

∂θi

∂ log p(y|θ)
∂θ j

)
.

The proof assumes that operations ’integration’ and ’taking derivatives’ (up to 2nd order) com-
mute.
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Appendix B

Appendix for Chapter 4

B.1 N-steps ahead DA-GP-MCMC algorithm

This section describes a proposed Bayesian approach for accelerating parameter estimation and
UQ in expensive models, such as the fluid-dynamics model under consideration, by using a
novel combination of state-of-the-art statistical inference techniques. This work takes inspiration
from a paper by Rasmussen [156], and makes various modifications inspired from the statistical
literature (e.g. Delayed Acceptance MCMC [33, 177]) which have the potential to further reduce
the computational costs. The algorithm derived is called the N-steps ahead DA-GP-MCMC
algorithm, which is proved to converge asymptotically to the correct posterior distribution, see
our study [140] for a proof.

The N-steps ahead DA-GP-MCMC algorithm proceeds as follows:

• Initial design stage. Starting from a space filling design in parameter space, e.g. Sobol
sequence [16], integrate the PDEs numerically for each parameter vector to get the true
log likelihood. Use these points to build a GP emulator (surrogate model) for the log
likelihood. The GP model is built on a compact parameter space, where the lower and
upper limits are decided in advance.

• Exploratory phase. Gather information about the target distribution by running MCMC
on the surrogate log posterior of the PDE parameters; the proposed point is subject to
a MH accept/reject step, for which the simulator is called, i.e. the PDEs are integrated
numerically – see the pseudocode in Algorithm 1g for one iteration of the algorithm.
The emulator is sequentially refined (optimum covariance hyperparameters are found by
maximisation of the log marginal likelihood of the hyperparameters) as new points are
accepted. Following [156], the emulated approximate log posterior distribution of the
MCMC algorithm is set to

log p̃(θ ,φ |y) ∝

(
E( f (θ ,φ)|D)+

√
var( f (θ ,φ)|D)

)
+ log p(θ ,φ).
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Here p(θ ,φ) is the prior distribution, f (.) is the emulated log likelihood function, also
E( f (θ ,φ)|D) is the GP posterior predictive mean given the training points D (see eq.
(2.66)), and

√
var( f (θ ,φ)|D) is the GP posterior predictive standard deviation (see eq.

(2.67)) for the log likelihood of the physiological data at unseen parameter configura-
tions θ ,φ conditional on the training points D. This drives the exploration into regions
with high posterior probability (large value of E(.)) or high uncertainty (large value of√

var(.)). If
√

var(.)>3 along the trajectory, the simulation is stopped prematurely before
reaching the end of the trajectory, as the algorithm steps into a region of high uncertainty,
where the GP needs to be further trained. The log likelihood is computed at this point
by numerically solving the PDEs of the biophysical model. The exploratory phase is run
until high accuracy of the emulator is reached (as quantified by GP diagnostics [8]).

• Sampling phase. Use the emulator created in the exploratory phase to draw samples from
the target distribution using MCMC – see the pseudocode in Algorithm 1g, where the PDE
model parameters and the GP neural network hyperparameters (error model parameters)
are jointly sampled. At this stage, the emulator and the classifier are no longer updated.
We set the emulated approximate log posterior distribution of the MCMC algorithm to

log p̃(θ ,φ |y) ∝ E( f (θ ,φ)|D)+ log p(θ ,φ).

Note that the numerator in the first term is the expected log likelihood of the data, and
the final term is the log prior. The end point of the trajectory is subject to a 2-stage DA
Metropolis-Hastings accept/reject step, based on the simulator, see Algorithm 1g. The
rejection rate is monitored, and this indicates how well the GP emulator has captured the
log posterior density. A large number of rejections calls for an extension of the exploratory
phase.

Note that the proposal distribution q(.|.) in Algorithm 1g is that of an Adaptive Metropolis
(AM) algorithm [82], i.e. a multivariate normal distribution centred at the current point, with
covariance matrix adapted based on the past posterior samples. See Section 2.3.2 for details on
the AM algorithm.

B.2 Bayesian hierarchical model

B.2.1 Standard Gibbs sampler

In a hierarchical Bayesian model, the probability of a selected parameter conditional on all the
other parameters is equal to the probability of the parameter conditional on its Markov blanket:

p(ms|everything else) = p(ms|Markov blanket of ms).
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Algorithm 1g One iteration of the N-steps ahead Delayed Acceptance GP-MCMC algorithm

1: Define a probabilistic model p(y|θ ,φ), where y are the data, θ are the PDE model pa-
rameters with prior probability p(θ), and φ are the error parameters with prior probabil-
ity p(φ). Let p̃(y|θ) denote a computationally cheap surrogate model. The correspond-
ing posterior probabilities are given by p(θ ,φ |y) ∝ p(y|θ ,φ)p(θ)p(φ) and p̃(θ ,φ |y) ∝

p̃(y|θ ,φ)p(θ)p(φ).
2: Define N: number of proposed points before the simulator is called.
3: for i=2:N do
4: Given the current parameter vector (θ i−1,φ i−1), draw new parameters (θ i,φ i) from the

proposal distribution q(θ i,φ i|θ i−1,φ i−1), and accept the move with the acceptance proba-
bility:

α1(θ i,φ i|θ i−1,φ i−1) = min
(

1,
p̃(θ i,φ i|y)q(θ i−1,φ i−1|θ i,φ i)

p̃(θ i−1,φ i−1|y)q(θ i,φ i|θ i−1,φ i−1)

)
. (B.1)

5: end for
6: The final proposed parameter vector (θ N ,φ N) is subject to a second stage acceptance prob-

ability:

α2(θ N ,φ N |θ 1,φ 1) = min
(

1,
p(θ N ,φ N |y)
p(θ 1,φ 1|y)

p̃(θ 1,φ 1|y)
p̃(θ N ,φ N |y)

)
. (B.2)

The Markov blanket is the set of parents, children and co-parents. For ms, the parents are
m∗,σ2∗, the children are s = (s1, . . . ,sd), and there is one co-parent: σ2

s . This gives:

p(ms|everything else) = p(ms|m∗,σ2∗,s1, . . . ,sd,σ
2
s ).

The conditional probability is proportional to the joint probability:

p(ms|m∗,σ2∗,s1, . . . ,sd,σ
2
s ) ∝ p(ms,m∗,σ2∗,s1, . . . ,sd,σ

2
s ).

The joint probability can be factorised according to the factorisation rules for directed graphical
models, applied to Figure 4.1:

p(ms,m∗,σ2∗,s1, . . . ,sd,σ
2
s ) = p(ms|m∗,σ2∗)

d

∏
i=1

p(si|ms,σ
2
s ).

According to Figure 4.1, all distributions on the right-hand side are Gaussian, hence:

p(ms|everything else) ∝ N (ms|m∗,σ2∗)
d

∏
i=1

N (si|ms,σ
2
s ).

Now, one can write out the expressions for the Gaussian, and keep all the terms that explic-
itly depend on ms. The other terms are constant with respect to ms and get absorbed in the
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normalization constant. This leads to:

p(ms|everything else) ∝ N (ms|m∗,σ2∗)
d

∏
i=1

N (si|ms,σ
2
s )

= exp

(
−1

2σ2∗ (ms−m∗)2 +
−1
2σ2

s

d

∑
i=1

(si−ms)
2

)

∝ exp

(
−1
2

m2
s

[
d

σ2
s
+

1
σ2∗

]
+ms

[
m∗

σ2∗ +
1

σ2
s

d

∑
i=1

si

])
.

Completing the square and normalising this distribution yields:

p(ms|everything else) = N

ms

∣∣∣∣∣
m∗
σ2∗ +

1
σ2

s
∑

d
i=1 si

1
σ2∗ +

d
σ2

s

,

[
1

σ2∗ +
d

σ2
s

]−1
 . (B.3)

In words: the mean of the conditional posterior distrubution is a weighted sum of m∗,s1, . . . ,sd ,
weighted by their respective precision. The precision of the conditional posterior distribution
is a sum of the individual precisions of m∗,s1, . . . ,sd . This makes intuitively sense: each of the
variables in {m∗,s1, . . . ,sd} contributes a piece of information whose value is its precision. The
overall precision gets higher as you pass information from more variables to m∗ (i.e. its inverse,
the variance, gets reduced).

For σ2
s , one can proceed in the same way:

p(σ2
s |everything else) = p(σ2

s |Markov blanket of σ
2
s ).

Again, the Markov blanket is the set of parents, children and co-parents. For σ2
s , the parents

are α∗,β ∗, the children are s = (s1, . . . ,sd), and there is one co-parent: ms. So the following is
obtained:

p(σ2
s |everything else) = p(σ2

s |α∗,β ∗,s1, . . . ,sd,ms).

The conditional probability is proportional to the joint probability:

p(σ2
s |everything else) ∝ p(σ2

s ,α
∗,β ∗,s1, . . . ,sd,ms).

The joint probability can be factorised according to the factorisation rules for directed graphical
models, applied to Figure 4.1. Again, only those terms that explicitly depend on σ2

s are needed,
as the other terms get absorbed in the normalization constant. Since the prior is conjugate, a
distribution in closed form (an Inverse Gamma I G distribution) is obtained, as follows:
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p(σ2
s |everything else) ∝ I G (α∗,β ∗)

d

∏
i=1

N (si|ms,σ
2
s )

∝

[
(σ2

s )
−α∗−1 exp

(
− β ∗

σ2
s

)][(
1

σ2
s

) d
2

exp
( −1

2σ2
s

d

∑
i=1

(si−ms)
2
)]

∝

[
(σ2

s )
−
(

α∗+ d
2

)
−1

exp

[
− 1

σ2
s

(
β
∗+0.5

d

∑
i=1

(si−ms)
2
)]

.

Normalising this distribution yields:

p(σ2
s |everything else) = I G

(
α
∗+

d
2
,β ∗+0.5

d

∑
i=1

(si−ms)
2

)
. (B.4)

This Gibbs sampler can be used for sampling from the posterior distribution, iteratively
sampling from

• p(ms|m∗,σ2∗,s1, . . . ,sd,σ
2
s ) in eq (B.3),

• p(σ2
s |α∗,β ∗,s1, . . . ,sd,ms) in eq (B.4),

• p(s,r1,r2,c|ms,σ
2
s ,y,α,β ),

where the sampling of s = (s1, . . . ,sd) and r1,r2 and c cannot be done analytically and follows a
Metropolis-Hastings within Gibbs scheme.
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B.2.2 A first attempt at collapsing

One can marginalise over ms.

p(ms,σ
2
s |everything else) ∝ I G (σ2

s |α∗,β ∗)N (ms|m∗,σ2∗)
d

∏
i=1

N (si|ms,σ
2
s )

∝

(
1

σ2
s

)α∗+1

exp
(
−β ∗

σ2
s

)(
1

σ2
s

)d/2

exp

(
−1

2σ2∗ (ms−m∗)2 +
−1
2σ2

s

d

∑
i=1

(si−ms)
2

)

=

(
1

σ2
s

)α∗+1( 1
σ2

s

)d/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)

exp
(
−1

2σ2∗ (ms−m∗)2 +
−d
2σ2

s
(s−ms)

2
)

∝

(
1

σ2
s

)α∗+1( 1
σ2

s

)(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)

N (ms|m∗,σ2∗)N

(
s|ms,

σ2
s

d

)
,

where s = 1
d ∑

d
i=1 si. ms can now be integrated using the standard Gaussian integral

∫
N

(
s|ms,

σ2
s

d

)
N (ms|m∗,σ2∗)dms ∝ N

(
s|m∗,σ2∗+

σ2
s

d

)
.

This gives:

p(σ2
s |everything else except ms) ∝

(
1

σ2
s

)α∗+1+(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)

N

(
s|m∗,σ2∗+

σ2
s

d

)
∝

(
1

σ2
s

)α∗+1+(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)
(

1

σ2∗+ σ2
s

d

)1/2

exp

(
−(s−m∗)2)

2(σ2∗+ σ2
s

d )

)
.

Hence, ms can be integrated out analytically to get the marginal distribution in closed form.
However, due to the additive term σ2∗ in the denominator of the last two factors, the distribution
is not in the family of inverse-gamma distributions, and therefore σ2

s cannot be sampled from
directly. In order to proceed, one would have to set up a slice sampling or Metropolis-Hastings
scheme. This is will almost certainly lose the efficiency gained from collapsing.
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y

s1 s2 . . . sd r1 r2 c

ms σ2
s α β

m∗ σ2∗ α∗ β ∗

y∼MV N (m(θ),C)

s j ∼N (ms,σ
2
s )

ms ∼N (m∗,σ2∗σ2
s )

σ2
s ∼I G (α∗,β ∗)

r1,r2,c∼ R-Be(α,β )

Figure B.1: Modified Bayesian Hierarchical model to potentially enable computationally ef-
ficient inference, i.e. the prior is modified according to eq (B.5)), which corresponds to an
additional edge from σ2

s to ms (to be compared to Figure 4.1). The data, denoted by y, are
assumed to follow a multivariate normal distribution MV N with mean m(θ) and covariance
matrix C. If iid errors are assumed, C is a diagonal matrix, C = σ2I (where σ2: error variance
and I: identity matrix), and if correlated errors are assumed, C is a full matrix. The biophysical
parameters, θ = (s1, . . .sd,r1,r2,c), and the hyperparameters, ms,σ

2
s , are apriori drawn from the

distributions indicated in the graphical model (where N : Normal distribution, I G : Inverse-
Gamma, R-Be: rescaled Beta distribution). The circle represents variable quantities, which are
inferred using MCMC, and the rectangle stands for fixed quantities.

B.2.3 How to get the collapsed Gibbs sampler to work

Following studies in [4, 162] that use a trick to enable collapsing, the prior can be modified as
follows:

N (ms|m∗,σ2∗) → N (ms|m∗,σ2∗
σ

2
s ). (B.5)

Graphically, this corresponds to introducing an additional edge from σ2
s to ms in the hierarchical

model, see Figure B.1.

p(ms,σ
2
s |everything else) ∝

(
1

σ2
s

)α∗+1( 1
σ2

s

)(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)

N (ms|m∗,σ2∗
σ

2
s )N

(
s|ms,

σ2
s

d

)
.

Integrating out ms now gives:

∫
N

(
s|ms,

σ2
s

d

)
N (ms|m∗,σ2∗

σ
2
s )dms ∝ N

(
s|m∗,σ2

s

[
σ

2∗+
1
d

])
,

210



leading to

p(σ2
s |everything else except for ms)

∝

(
1

σ2
s

)α∗+1( 1
σ2

s

)(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)

N

(
s|m∗,σ2

s

[
σ

2∗+
1
d

])
∝

(
1

σ2
s

)α∗+1+(d−1)/2

exp
(
−β ∗

σ2
s

)
exp

(
−1
2σ2

s

d

∑
i=1

(si− s)2

)
(

1
σ2

s

)1/2

exp

(
−1
2σ2

s

[
σ

2∗+
1
d

]−1

(s−m∗)2

)

=

(
1

σ2
s

)α∗+1+d/2

exp

{
−1
σ2

s

(
β
∗+

1
2

d

∑
i=1

(si− s)2 +
1
2

[
σ

2∗+
1
d

]−1

(s−m∗)2

)}
.

Hence,

p(σ2
s |everything else except for ms) ∝ I G

(
σ

2
s

∣∣∣∣∣α∗+ d
2
,

[
β
∗+

1
2

d

∑
i=1

(si− s)2

+
1
2

[
σ

2∗+
1
d

]−1

(s−m∗)2

])
.

(B.6)

This could give a faster and more efficient sampling scheme than the original naive Gibbs
sampler, following

• p(ms|m∗,σ2∗,s1, . . . ,sd,σ
2
s ) in eq (B.3),

• p(σ2
s |α∗,β ∗,s1, . . . ,sd,m∗,σ2∗) in eq (B.6),

• p(s,r1,r2,c|ms,σ
2
s ,y,α,β ).

B.2.4 Final improvement: eliminating the need for Gibbs sampling

However, the mixing and convergence of the sampler can be even further improved with another
round of collapsing. To simplify the notation, let Ψ[.] denote all the ‘prior’ random variables
(i.e. downstream of the data y) except those included in the bracket. So
p(σ2

s |everything else except for ms) = p(σ2
s |Ψ[ms,σ

2
s ]). Here, the additional condition ‘down-

stream of the data y’ is redundant, because y is not included in the Markov blanket of σ2
s .

However, this additional condition does make a difference when looking at the distribution of
the vector of stiffness parameters, s = (s1, . . . ,sd). Now, take the previously derived expression
for p(σ2

s |Ψ[ms,σ
2
s ]) in eq (B.6), keep the terms that depend on σ2

s and s = (s1, . . . ,sd), ignore all
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the other terms (because they will be absorbed in the normalization constant), and the following
is obtained:

p(σ2
s ,s|Ψ[ms,σ

2
s ])∝

(
1

σ2
s

)α∗+1+d/2

exp

{
−1
σ2

s

(
β
∗+

1
2

d

∑
i=1

(si−s)2+
1
2

[
σ

2∗+
1
d

]−1

(s−m∗)2

)}
.

Now marginalise over σ2
s ,

p(s|Ψ[ms σ
2
s ]) =

∫
∞

0
p(σ2

s ,s|Ψ[ms,σ
2
s ])dσ

2
s ,

and make use of the gamma integral

∫
∞

0

(
1
x

)a+1

exp
(
−b
x

)
dx =

Γ(a)
ba .

This leads to

p(s|Ψ[ms,σ
2
s ]) ∝

1(
β ∗+ 1

2 ∑
d
i=1(si− s)2 + 1

2

[
σ2∗+ 1

d

]−1
(s−m∗)2

)(α∗+d/2)

.

(B.7)

The upshot is that σ2
s and ms have effectively been eliminated altogether. So the corresponding

sampling steps of both the naive and the collapsed Gibbs sampler are no longer needed. All that
one has to do is run a standard MCMC scheme for s, with the likelihood given by p(y|s,r1,r2,c),
the prior of {r1,r2,c} taken from the hierarchical Bayesian model, and the prior of s given by eq
(B.7) (where the unknown normalisation constant cancels out in the Metropolis-Hastings ratio).

B.3 Bayesian Hierarchical model for the stiffness – prior dis-
tribution

In the Bayesian Hierarchical model the hyper-hyperparameters (ms,σ
2
s ,α

∗,β ∗) take fixed val-
ues, set as follows. The stiffness mean ms was chosen to be within the physiological range via
the fixed hyperparameters m∗ and σ2∗. The stiffness variance σ2

s , as chosen via the fixed hyper-
parameters α∗,β ∗, controls the spread around ms, thus a 90% probability of the stiffness being
inside the physiological range is controlled by σ2

s .
For the iid errors analysis, m∗ = 51690 (which is the posterior mean value obtained from the

MCMC simulation for the constant stiffness model under the iid error assumption, see Table 4.5),
σ2∗ = 1e+08, α∗ = 3, and β ∗ = 1e+09.

For the correlated errors analysis, we set m∗ = 43075 (which is the posterior mean value
obtained from the MCMC simulation for the constant stiffness model under the correlation errors
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assumption, see Table 4.5), σ2∗ = 2.5e+08, α∗ = 3, and β ∗ = 0.6e+09.

B.4 Error correlation parameters – prior ranges

A log uniform prior distribution for the GP neural network hyperparameters (used in the error
correlation analysis) was used, with the range chosen based on maximising the profile log like-
lihood. The log uniform distribution was chosen to ensure a sufficiently large prior coverage. A
GP was fitted to the residuals obtained by a difference between the measured data and the data
generated from the mathematical model with the MAP estimate from the iid errors analysis. The
profile log likelihood was obtained for each hyperparameter, i.e. by varying one hyperparam-
eter at once (within a wide range), and the marginal log likelihood in eq (??) was maximised
with respect to the other kernel hyperparameter. The maximised marginal log likelihood in
eq (??) (called profile log likelihood) was plotted against the varying hyperparameter. This plot
informed of the range that the varying hyperparameter should take. The range should cover
a concave-looking profile log likelihood curve – the maximum of this curve is the maximum
profile log likehood value [104], which should be included in the range; hyperparameter values
which gave a small profile log likelihood value relative to the maximum value, e.g. below 10%
of the maximum value, were excluded from the range.

B.5 Log likelihood GP kernel

For the GP regression model of the log likelihood, a squared exponential kernel was used, as
chosen based on the data via 1-fold cross-validation with a score based on the absolute value
of the deviation of the data y from the GP predictions ŷ, i.e. |y− ŷ|. One log likelihood data
point at a time was left out from the training set of the emulator, the log marginal likelihood was
optimised with respect to the hyperparameters, the GP model thus obtained was used to predict
the held-out log likelihood point, and the prediction was compared to the actual held-out point.
The kernel which recorded the smallest deviation was the best.

B.6 Additional results

While in Section 4.6 results for a few blood vessels are shown, here the complete results for all
21 blood vessels are attached.
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Figure B.2: Pressure predictions obtained using the MCMC posterior samples for the parameters
from all the models described in Chapter 4, which are denoted by A-I in the figure legend. The
median pressure signal for 21 blood vessels in time is shown. The measured pressure data in the
MPA is superimposed. This figure corresponds to Figure 4.7 in Chapter 4.

Time (s)
0 0.05 0.10 0 0.05 0.10 0 0.05 0.10 0 0.05 0.10 0 0.05 0.10

Fl
ow

 (m
l/s

)

0.2

0.4

0

Vessel 17 Vessel 18 Vessel 19 Vessel 20 Vessel 21

Vessel 12 Vessel 13 Vessel 14 Vessel 15 Vessel 16

Vessel 7 Vessel 8 Vessel 9 Vessel 10 Vessel 11

Vessel 2 Vessel 3 Vessel 4 Vessel 5 Vessel 6

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

A
B
D
E
F
G
H
I

Figure B.3: Flow predictions obtained using the MCMC posterior samples for the parameters
from all the models described in Chapter 4, which are denoted by A-I in the figure legend. The
median flow signal for blood vessels 2-21 in time is shown. The MPA flow is used as inflow
boundary condition for the PDEs. This figure corresponds to the left side subplots in Figure 4.8
in Chapter 4.
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Figure B.4: Pressure-Area predictions obtained using the MCMC posterior sample for the pa-
rameters from all the models described in Chapter 4, which are denoted by A-I in the figure
legend. The median pressure prediction versus standardised cross-sectional area predictions for
all 21 blood vessels are shown. The area, Ai is standardised per vessel i to lie between [0,1]
using the expression: Ai−li

ui−li
, where li,ui are the maximum and minimum area value for vessel i.

l = [0.010, 0.003, 0.006, 0.003, 0.001, 0.004, 0.001, 0.002, 0.001, 0.002, 0.001, 0.001, 0.001,
0.002, 0.002, 0.002, 0.001, 0.002, 0.001, 0.002, 0.001]; u = [0.017, 0.005, 0.010, 0.006, 0.001,
0.007, 0.002, 0.032, 0.002, 0.003, 0.003, 0.035, 0.002, 0.005, 0.004, 0.004, 0.002, 0.004, 0.002,
0.003, 0.002]. This figure corresponds to the right side subplots in Figure 4.8 in Chapter 4.
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Figure B.5: 95% credible intervals (C.I.) and prediction intervals (P.I.) for the pressure prediction
in 21 vessels from the linear model with constant stiffness and no model mismatch (model A
in Table 4.2) obtained from MCMC posterior samples. The measured pressure data in the MPA
and the median prediction are superimposed. This figure corresponds to the left column subplots
in Figure 4.4 in Chapter 4.
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Figure B.6: 95% credible intervals (C.I.) and prediction intervals (P.I.) for the pressure prediction
in 21 vessels from the linear model with constant stiffness and model mismatch (model B in
Table 4.2) obtained from MCMC posterior samples. The measured pressure data in the MPA
and the median prediction are superimposed. This figure corresponds to the centre column
subplots in Figure 4.4 in Chapter 4.
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Figure B.7: 95% credible intervals (C.I.) and prediction intervals (P.I.) for the pressure prediction
in 21 vessels from the non-linear model with radius-dependent stiffness and model mismatch
(model I in Table 4.2) obtained from MCMC posterior samples. The measured pressure data
in the MPA and the median prediction are superimposed. This figure corresponds to the right
column subplots in Figure 4.4 in Chapter 4.



Vessel Radius Model A Model B Model C Model D Model E Model F Model G Model H Model I
1 0.05 14.7 (14.6 14.7)

(14.0 15.4)
14.2 (12.6 15.7)
(11.7 16.7)

14.0 (12.7 15.4)
(11.7 16.4)

14.7 (14.6 14.8)
(14.0 15.4)

14.4 (12.7 16.0)
(11.9 16.8)

14.7 (14.6 14.7)
(14.3 15.1)

14.6 (13.0 15.9)
(12.1 17.0)

14.5 (13.2 16.1)
(12.1 16.9)

15.0 (13.7 16.4)
(12.7 17.4)

2 0.03 14.3 (14.2 14.3)
(13.5 15.0)

13.8 (12.2 15.4)
(11.3 16.3)

13.7 (12.3 15.0)
(11.3 16.1)

14.3 (14.2 14.3)
(13.6 15.0)

14.0 (12.3 15.6)
(11.5 16.5)

14.4 (14.3 14.5)
(14.0 14.8)

14.2 (12.5 15.6)
(11.7 16.6)

14.2 (12.8 15.9)
(11.8 16.6)

14.7 (13.4 16.1)
(12.3 17.1)

3 0.04 14.3 (14.2 14.3)
(13.6 15.0)

13.9 (12.3 15.4)
(11.3 16.3)

13.7 (12.3 15.0)
(11.3 16.1)

14.3 (14.2 14.3)
(13.6 15.0)

14.0 (12.4 15.7)
(11.5 16.5)

14.2 (14.2 14.3)
(13.8 14.7)

14.2 (12.6 15.5)
(11.7 16.7)

14.2 (12.9 15.9)
(11.8 16.6)

14.7 (13.4 16.1)
(12.4 17.1)

4 0.02 13.9 (13.8 13.9)
(13.1 14.6)

13.5 (11.9 15.1)
(11.0 16.0)

13.3 (11.9 14.7)
(11.0 15.8)

13.9 (13.8 13.9)
(13.2 14.6)

13.7 (12.0 15.3)
(11.1 16.2)

14.2 (14.1 14.3)
(13.7 14.6)

13.8 (11.9 15.4)
(11.1 16.3)

14.0 (12.6 15.6)
(11.6 16.4)

14.4 (13.1 15.8)
(12.0 16.8)

5 0.01 14.0 (13.9 14.0)
(13.3 14.7)

13.6 (12.0 15.2)
(11.1 16.1)

13.4 (12.0 14.8)
(11.1 15.9)

14.0 (13.9 14.0)
(13.3 14.7)

13.8 (12.1 15.4)
(11.2 16.3)

14.2 (14.1 14.3)
(13.8 14.6)

13.9 (12.1 15.4)
(11.3 16.4)

14.0 (12.7 15.7)
(11.6 16.5)

14.5 (13.2 15.9)
(12.1 16.9)

6 0.03 13.9 (13.8 13.9)
(13.1 14.6)

13.5 (11.9 15.0)
(11.0 16.0)

13.3 (11.9 14.7)
(11.0 15.7)

13.8 (13.8 13.9)
(13.1 14.5)

13.7 (12.0 15.3)
(11.1 16.1)

13.6 (13.5 13.7)
(13.2 14.0)

13.8 (12.1 15.1)
(11.3 16.3)

13.9 (12.5 15.6)
(11.5 16.3)

14.5 (13.1 15.8)
(12.1 16.9)

7 0.02 13.8 (13.8 13.9)
(13.1 14.5)

13.5 (11.9 15.0)
(10.9 16.0)

13.3 (11.9 14.7)
(10.9 15.7)

13.8 (13.8 13.9)
(13.1 14.5)

13.7 (12.0 15.3)
(11.1 16.1)

13.6 (13.5 13.7)
(13.2 14.1)

13.8 (12.1 15.1)
(11.3 16.3)

13.9 (12.5 15.6)
(11.5 16.3)

14.4 (13.1 15.8)
(12.0 16.8)

8 0.02 13.6 (13.5 13.6)
(12.9 14.3)

13.3 (11.6 14.9)
(10.7 15.8)

13.1 (11.6 14.5)
(10.7 15.5)

13.6 (13.5 13.6)
(12.9 14.3)

13.4 (11.7 15.1)
(10.9 15.9)

14.1 (14.0 14.2)
(13.7 14.5)

13.6 (11.4 15.2)
(10.8 16.2)

13.8 (12.4 15.5)
(11.4 16.2)

14.2 (12.8 15.6)
(11.8 16.6)

9 0.02 13.5 (13.5 13.6)
(12.8 14.3)

13.3 (11.5 14.9)
(10.7 15.8)

13.1 (11.6 14.5)
(10.7 15.5)

13.5 (13.5 13.6)
(12.8 14.2)

13.4 (11.7 15.1)
(10.8 15.9)

13.8 (13.7 14.0)
(13.4 14.3)

13.6 (11.6 15.2)
(10.8 16.2)

13.8 (12.3 15.5)
(11.3 16.2)

14.2 (12.8 15.6)
(11.8 16.6)

10 0.02 13.3 (13.2 13.4)
(12.6 14.0)

13.0 (11.3 14.7)
(10.4 15.6)

12.9 (11.4 14.3)
(10.4 15.3)

13.3 (13.2 13.4)
(12.6 14.0)

13.2 (11.5 14.9)
(10.6 15.7)

14.0 (13.8 14.2)
(13.6 14.5)

13.4 (10.9 15.1)
(10.4 16.1)

13.6 (12.2 15.3)
(11.2 16.1)

14.0 (12.6 15.5)
(11.6 16.4)

11 0.02 13.4 (13.3 13.4)
(12.7 14.1)

13.1 (11.4 14.7)
(10.5 15.6)

12.9 (11.4 14.4)
(10.5 15.4)

13.4 (13.3 13.5)
(12.7 14.1)

13.3 (11.5 15.0)
(10.7 15.8)

14.1 (14.0 14.2)
(13.7 14.5)

13.4 (10.9 15.2)
(10.5 16.1)

13.7 (12.2 15.4)
(11.2 16.1)

14.1 (12.7 15.5)
(11.7 16.5)

12 0.02 13.1 (13.0 13.2)
(12.4 13.8)

12.9 (11.1 14.6)
(10.3 15.5)

12.7 (11.2 14.2)
(10.3 15.2)

13.1 (13.0 13.2)
(12.4 13.8)

13.1 (11.3 14.8)
(10.5 15.6)

13.8 (13.5 14.2)
(13.3 14.4)

13.3 (10.7 15.0)
(10.3 16.0)

13.5 (12.0 15.2)
(11.1 16.0)

13.9 (12.5 15.3)
(11.5 16.3)

13 0.01 13.2 (13.1 13.3)
(12.5 13.9)

12.9 (11.2 14.6)
(10.3 15.5)

12.8 (11.2 14.2)
(10.3 15.2)

13.2 (13.1 13.3)
(12.5 13.9)

13.1 (11.3 14.8)
(10.5 15.7)

13.8 (13.5 14.2)
(13.3 14.4)

13.3 (10.7 15.1)
(10.3 16.1)

13.5 (12.1 15.3)
(11.1 16.0)

13.9 (12.6 15.4)
(11.5 16.4)

14 0.03 13.4 (13.4 13.5)
(12.7 14.1)

13.1 (11.5 14.7)
(10.6 15.6)

13.0 (11.6 14.3)
(10.6 15.4)

13.4 (13.4 13.5)
(12.7 14.1)

13.3 (11.6 15.0)
(10.8 15.8)

12.8 (12.6 13.0)
(12.3 13.3)

13.5 (11.8 14.9)
(11.0 15.9)

13.7 (12.3 15.3)
(11.2 16.1)

14.2 (12.8 15.6)
(11.8 16.6)

15 0.02 13.4 (13.3 13.4)
(12.7 14.1)

13.1 (11.4 14.6)
(10.5 15.6)

12.9 (11.5 14.3)
(10.5 15.3)

13.4 (13.3 13.4)
(12.7 14.1)

13.3 (11.6 14.9)
(10.7 15.7)

13.0 (12.8 13.1)
(12.5 13.4)

13.4 (11.7 14.8)
(10.9 15.9)

13.6 (12.2 15.3)
(11.2 16.0)

14.1 (12.7 15.5)
(11.7 16.5)

16 0.03 13.1 (13.0 13.1)
(12.3 13.8)

12.8 (11.1 14.4)
(10.2 15.3)

12.6 (11.2 14.0)
(10.2 15.1)

13.0 (13.0 13.1)
(12.3 13.7)

13.0 (11.2 14.6)
(10.4 15.4)

12.2 (12.0 12.4)
(11.7 12.6)

13.2 (11.3 14.6)
(10.6 15.7)

13.4 (12.0 15.1)
(11.0 15.8)

13.9 (12.5 15.3)
(11.5 16.3)

17 0.02 13.0 (12.9 13.1)
(12.3 13.7)

12.8 (11.1 14.3)
(10.2 15.3)

12.6 (11.2 14.0)
(10.2 15.0)

13.0 (12.9 13.1)
(12.3 13.7)

12.9 (11.2 14.6)
(10.4 15.4)

12.2 (11.8 12.4)
(11.6 12.7)

13.1 (11.3 14.6)
(10.5 15.6)

13.4 (11.9 15.1)
(10.9 15.8)

13.8 (12.4 15.2)
(11.4 16.2)

18 0.02 11.8 (11.7 11.9)
(11.1 12.5)

11.7 (9.9 13.3) (9.1
14.2)

11.5 (10.1 13.0)
(9.1 14.0)

11.8 (11.7 11.9)
(11.1 12.5)

11.9 (10.0 13.6)
(9.3 14.4)

10.3 (10.0 10.7)
(9.7 10.9)

12.1 (10.0 13.9)
(9.3 14.8)

12.5 (11.0 14.3)
(10.1 15.0)

12.9 (11.5 14.4)
(10.5 15.4)

19 0.02 11.6 (11.6 11.7)
(10.9 12.4)

11.6 (9.8 13.2) (9.0
14.1)

11.4 (10.0 12.9)
(9.0 13.9)

11.6 (11.6 11.7)
(10.9 12.3)

11.8 (9.9 13.5) (9.1
14.3)

10.4 (9.9 10.7) (9.7
11.0)

12.2 (10.0 14.0)
(9.4 14.9)

12.4 (10.9 14.2)
(10.0 14.9)

12.7 (11.3 14.2)
(10.3 15.1)

20 0.02 10.2 (10.1 10.3)
(9.5 10.9)

10.3 (8.4 12.1) (7.6
12.9)

10.1 (8.6 11.7) (7.7
12.7)

10.2 (10.1 10.3)
(9.5 10.9)

10.5 (8.5 12.3) (7.8
13.1)

8.1 (7.5 8.8) (7.2
8.9)

10.7 (8.3 13.2) (7.5
14.0)

11.5 (9.8 13.4) (9.0
14.0)

11.8 (10.3 13.3)
(9.4 14.3)

21 0.02 10.4 (10.4 10.5)
(9.7 11.1)

10.5 (8.6 12.3) (7.8
13.1)

10.3 (8.8 11.9) (7.9
12.9)

10.4 (10.4 10.5)
(9.7 11.1)

10.7 (8.8 12.5) (8.0
13.3)

8.4 (7.8 9.1) (7.6
9.2)

10.9 (8.5 13.3) (7.7
14.1)

11.7 (10.0 13.5)
(9.2 14.2)

12.0 (10.5 13.5)
(9.5 14.5)

Table B.1: Summary of the MCMC simulation results on measured data for each of the models considered, see Table 4.2 also for a summary. For
each of the 21 blood vessels the average value over time of the median pressure waveform is shown, as well as the average value over time of the
2.5th and 97.5th noise-free pressure waveform, which is the average 95% explanatory credible interval (CI) for the pressure data, and the 2.5th

and 97.5th noisy pressure waveform, which is the average 95% predictive CI for the pressure data. While the explanatory CI is calculated based
on the PDE model predictions, the predictive CI includes the error.



Vessel-specific stiffness values The vessel-specific stiffness values (median value and 95%
credible interval) are provided here, which were obtained from running the Bayesian Hierarchi-
cal model in Chapter 4 on the physiological data. These values complement Table 4.5 (rows 3
and 4 from bottom to top, column 5 from left to right, marked by ’*’).

For iid errors, f3 : (×104) 4.93 (4.71, 5.10), 3.84 (3.61, 4.15), 6.10 (5.53, 7.10), 2.34 (2.10,
2.64), 10.4 (2.51, 18.1), 16.0 (9.16, 23.2), 6.27 (3.45, 10.9), 0.53 (0.51, 0.55), 9.95 (1.95, 17.00),
7.98 (6.36, 11.4), 2.29 (0.59, 7.00), 0.27 (0.23, 0.30), 5.54 (1.19, 14.36), 17.8 (9.77, 24.0), 1.94
(1.46, 2.85), 8.16 (4.67, 13.4), 3.47 (2.17, 11.3), 11.4 (6.30, 22.4), 7.63 (4.08, 12.5), 11.6 (5.51,
20.0), 8.44 (2.61,17.3).

For correlated errors, f3 : (×104) 3.96 (3.57, 4.24), 5.76 (3.55, 9.32), 5.22 (4.27, 6.77), 4.46
(1.55, 12.9), 3.51 (0.52, 9.11), 4.13 (2.77, 6.01), 3.56 (1.86, 8.49), 4.47 (1.22, 12.24), 3.79 (0.73,
9.93), 2.94 (0.12, 11.9), 3.17 (0.26, 11.3), 2.62 (0.35, 11.2), 2.52 (0.23, 7.40), 3.43 (1.79, 8.15),
4.70 (2.28, 11.3), 4.15 (2.04, 11.6), 4.45 (2.21, 10.7), 4.05 (2.10, 12.9), 3.03 (1.23, 10.4), 3.30
(0.58, 10.6), 3.02 (0.41, 8.66).

The posterior median and 95% credible interval for the hyperpriors, ms and σ2
s are also

provided here. For iid errors, ms : (×103) 4.29 (-0.31, 10.9), and σ2
s : (×109) 5.81 (2.80, 13.9).

For correlated errors, ms : (×103) 0.79 (-1.40, 3.22), and σ2
s : (×109) 1.8 (0.88, 4.10).

Emulator efficiency Table B.2 compares the efficiency of the standard MCMC sampler to that
of MCMC with emulation using GPs (N-steps ahead Adaptive Metropolis with emulation, see
Algorithm 1g), for the linear wall model with constant vessel stiffness (models B and C in Table
4.2). Efficiency is quantified using the effective sample size (ESS) [95], and it can be seen that
while the emulation method requires much fewer PDE evaluations (compare 5000 to 150,000),
it also registers a much higher acceptance rate (compare 89% to 24%) and highly increased
efficiency, as given by the median ESS (across all parameters) normalised by the number of
PDEs evaluated (compare 0.35 to 0.04).

Emulator Acceptance rate Median ESS
no of PDEs

yes 89% 0.35
no 24% 0.04

Table B.2: Comparison of efficiency for models B and C in Table 4.2 obtained with standard
MCMC (model C) and MCMC with emulation – N-steps ahead Adaptive Metropolis with emu-
lation, see Algorithm 1g (model B). Results for model B are based on 5000 iterations (i.e. PDE
evaluations), and 150,000 for model C. The acceptance rate and the median ESS (across all
parameters) normalised by the number of PDEs evaluated are shown.

218



Appendix C

Appendix for Chapter 5

C.1 Cross-validation results

To select the kernel for the noise-dependent GP model employed in Chapter 5, cross-validation
was performed. One input-output data point (xi,yi), i = 1 . . .n (where x: standardised vessel
radius or length defined in eq (5.1) and y: coefficient of variation, CV defined in eq (5.20))
at a time was removed from the data set, a GP noise-dependent model was fitted to the rest
of the data points, and the GP model thus fitted was used to predict the data point yi left out.
The log predictive density (given in eq (C.1)) of each held-out point was recorded, and the
distribution of the log predictive densities over all points was constructed. This process was
repeated for four GP models, each GP employing different kernels: squared exponential, Matérn
3/2, Matérn 5/2 and neural network. The four distributions for the radius measurements are
shown in Figure C.1. The GP kernel giving the highest log predictive densities is preferred. It
can be noticed that the performances of the squared exponential, Matérn 3/2 and Matérn 5/2
kernels are similar, and they appear better than that of the neural network. Hypothesis testing
reveals no significant difference between the stationary kernels, hence Matérn 5/2 was arbitrarily
selected. For consistency, the same kernel was used for the length measurements.

log p(yi|y−i) =− log
(√

2πkp(xi,xi)

)
−

(yi−mp(xi))
2

2kp(xi,xi)
, (C.1)

where xi, is the input point excluded, yi is the output point excluded, y−i is the data set with the
ith point removed, and the predictive distribution is given by:

yi ∼N (mp(xi),kp(xi,x
′
i)). (C.2)
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Figure C.1: Cross validation results for the vessel radius measurements. One radius measure-
ment point (input) and the corresponding coefficient of variation point (output) was removed at a
time from the data set, the GP noise-dependent model was fitted to the rest of the (input, output)
points, and the GP model thus fitted was used to predict the coefficient of variation point for the
radius measurement left out. The log predictive density (given in eq (C.1)) for each held-out
point was recorded, and the distribution of the log predictive densities for all points is shown
here. This process was repeated for four GP models, each GP employing a different kernel:
squared exponential (SqExp), Matérn 3/2 (Mat3/2), Matérn 5/2 (Mat5/2) and neural network
(NN).
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Appendix D

Appendix for Chapter 6

D.1 GP derivatives of predictive mean and variance

Derivatives of the predictive equations with respect to a new input x̃ may be needed if GPs are
coupled with methods requiring knowledge of the derivatives, e.g. with Hamiltonian/Lagrangian
Monte Carlo algorithms [156]. These derivatives can be computed analytically.

D.1.1 Zero mean GP

The first order partial derivatives of the posterior predictive mean and variance in eqns (2.66)
and (2.67) with respect to a new input x̃ = (x̃1, . . . x̃d) are:

∂mp(x̃)
∂ x̃ j

=
∂k(x̃,X|γ)

∂ x̃ j
(K+σ

2I)−1y,

(D.1)

∂kp(x̃, x̃|γ)
∂ x̃ j

=
∂k(x̃, x̃|γ)

∂ x̃ j
− ∂k(x̃,X|γ)

∂ x̃ j
(K+σ

2I)−1k(X, x̃|γ)− k(x̃,X|γ)(K+σ
2I)−1 ∂k(X, x̃|γ)

∂ x̃ j
,

(D.2)

where (
∂k(x̃,X|γ)

∂ x̃ j

)T

=


∂k(x̃,x1|γ)

∂ x̃ j
...

∂k(x̃,xn|γ)
∂ x̃ j

 and
∂k(X, x̃|γ)

∂ x̃ j
=


∂k(x1,x̃|γ)

∂ x̃ j
...

∂k(xn,x̃|γ)
∂ x̃ j

 . (D.3)

In addition, the second and third order derivatives of the posterior predictive mean, needed for
the RMHMC or LDMC algorithms applied in the sampling phase of the GP HMC algorithm,
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are:

∂ 2mp(x̃)
∂ x̃k∂ x̃ j

=
∂ 2k(x̃,X|γ)

∂ x̃k∂ x̃ j
(K+σ

2I)−1y, (D.4)

∂ 3mp(x̃)
∂ x̃l∂ x̃k∂ x̃ j

=
∂ 3k(x̃,X|γ)
∂ x̃l∂ x̃k∂ x̃ j

(K+σ
2I)−1y. (D.5)

D.1.2 Mean functions GP

Derivatives of the predictive equations (2.74) and (2.75) with respect to a new input x̃ make
use of the derivatives of the zero mean GP predictive equations (see eqns (D.1) and (D.2)) as
follows:

∂m∗p(x̃)
∂ x̃ j

=
∂mp(x̃)

∂ x̃ j
+

(
∂RT

∂ x̃ j

)
β̄ , (D.6)

∂k∗p(x̃, x̃|γ)
∂ x̃ j

=
∂kp(x̃, x̃|γ)

∂ x̃ j
+

(
∂RT

∂ x̃ j

)
(B−1 +H(K+σ

2I)−1HT)−1R+

RT(B−1 +H(K+σ
2I)−1HT)−1

(
∂R
∂ x̃ j

)
,

(D.7)

∂R
∂ x̃ j

=
∂h(x̃)

∂ x̃ j
−H(K+σ

2I)−1 ∂k(X, x̃)
∂ x̃ j

. (D.8)

In addition, the second and third order derivatives of the posterior predictive mean are needed
for the RMHMC or LDMC algorithms applied in the sampling phase of GP HMC algorithm.
These derivatives make use of the derivatives of the zero mean GP (see eqns (D.4) and (D.5)),
and are given by:

∂ 2m∗p(x̃)
∂ x̃k∂ x̃ j

=
∂ 2mp(x̃)
∂ x̃k∂ x̃ j

+

(
∂ 2RT

∂ x̃k∂ x̃ j

)
β̄ , (D.9)

∂ 2R
∂ x̃k∂ x̃ j

=
∂ 2h(x̃)
∂ x̃k∂ x̃ j

−H(K+σ
2I)−1 ∂ 2k(X, x̃)

∂ x̃k∂ x̃ j
, (D.10)

∂ 3m∗p(x̃)
∂ x̃l x̃k∂ x̃ j

=
∂ 3mp(x̃)

∂ x̃l∂ x̃k∂ x̃ j
+

(
∂ 3RT

∂ x̃l∂ x̃k∂ x̃ j

)
β̄ , (D.11)

∂ 3R
∂ x̃l∂ x̃k∂ x̃ j

=
∂ 3h(x̃)

∂ x̃l∂ x̃k∂ x̃ j
−H(K+σ

2I)−1 ∂ 3k(X, x̃)
∂ x̃l∂ x̃k∂ x̃ j

, (D.12)
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D.1.3 Squared exponential kernel derivatives

For a squared exponential kernel (defined in eq (2.54)), the first order partial derivatives with
respect to a new input x̃ are:

∂k(x̃,xi)

∂ x̃ j
=−k(x̃,xi)

(
1
l2

j
(x̃ j− xi, j)

)
, (D.13)

where i = 1 . . .n and j = 1 . . .d.
Note that

∂k(x̃,xi)

∂ x̃ j
=

∂k(xi, x̃)
∂ x̃ j

. (D.14)

In addition, the second and third order partial derivatives of the squared exponential kernel
with respect to a new input x̃ are:

∂ 2k(x̃,xi)

∂ x̃k∂ x̃ j
=−

(
∂k(x̃,xi)

∂ x̃k

( 1
l2

j
(x̃ j− xi, j)

)
+ k(x̃,xi)

1
l2

j
I(k = j)

)
,

(D.15)

∂ 3k(x̃,xi)

∂ x̃l∂ x̃k∂ x̃ j
=−

(
∂ 2k(x̃,xi)

∂ x̃l∂ x̃k

( 1
l2

j
(x̃ j− xi, j)

)
+

∂k(x̃,xi)

∂ x̃k

1
l2

j
I(l = j)+

∂k(x̃,xi)

∂ x̃l

1
l2

j
I(k = j)

)
,

(D.16)

where I is the indicator function, i.e. I(k = j) = 1 if k = j and 0 otherwise.

D.2 Pseudocode
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Algorithm 1h GP HMC algorithm with DA (no classifier) – initial and exploratory phase

1: Let D = {(X,S ) : λ = 1}: training set for the GP emulator, where X: n× d matrix of
input parameter vectors θ and S : vector of residual sum-of-square (RSS) values. Denote S:
number of HMC samples, L: number of HMC trajectory steps, ε: step size, S (θ): simulator
RSS, S̃ (θ): emulator RSS, M: mass matrix, f (.): emulated RSS function, and p(y|θ):
simulator data likelihood, p̃(y|θ): emulator data likelihood, E(θ): true potential function,
Ẽ(θ): surrogate potential function, K(r): kinetic energy for the momentum variable r.

2: log p(y|θ) = −S (θ)

2σ2 −
n
2

log(2πσ
2) and log p̃(y|θ) = −S̃ (θ)

2σ2 −
n
2

log(2πσ
2) for ε

iid∼
MV N (0,σ2I); E(θ) =−(log p(y|θ)+ log p(θ)), where p(θ): prior distribution; Ẽ(θ) =
−(log p̃(y|θ)+ log p(θ)).

3: INITIAL DESIGN STAGE: Build the GP emulator.
4: EXPLORATORY PHASE: Set θ

0 and l = 1, where l marks the lth point being deleted
5: for i = 1 : S do . loop over HMC samples

6: Draw r∼ exp(−K(r)) and let θ 0 = θ
i−1 and r0 = r+

ε

2
∂ Ẽ
∂θ

∣∣∣∣
θ 0

7: for j = 1 : L do . loop over HMC steps

8: θ j = θ j−1 + εM−1r j−1; r j = r j−1 + ε
∂ Ẽ
∂θ

∣∣∣∣
θ j

9: end for
10: rL = rL−1 +

ε

2
∂ Ẽ
∂θ

∣∣∣∣
θ L

11: Set (θ ∗,r∗) = (θ L,rL), S̃ (θ ∗) = E( f (θ ∗)|D)−
√

var( f (θ ∗)|D), where E( f (θ ∗)|D) &√
var( f (θ ∗)|D): GP predictive mean & standard deviation ((2.66), (2.74), (2.67), (2.75))

12: M-H accept/reject step with 1st stage acceptance probability (emulator based):

α1(θ
∗,r∗|θ i−1,r) = 1∧ exp(−Ẽ(θ ∗))

exp(−Ẽ(θ i−1))

exp(−K(r∗))
exp(−K(r))

, with Ẽ computed from S̃ as in line 2

13: if α1 ≥ v1, v1 ∼U(0,1) then, solve ODEs/PDEs for θ
∗ = θ L to get (θ ∗,S (θ ∗))

14: Calculate the 2nd stage acceptance probability (simulator based):

α2(θ
∗|θ i−1) = 1∧ exp(−E(θ ∗))

exp(−E(θ i−1))

exp(−Ẽ(θ i−1))

exp(−Ẽ(θ ∗))
, with E computed from S as in line 2

15: if α2 ≥ v2, v2 ∼U(0,1) then, set θ
i = θ

∗

16: if S (θ l)> T , where T : threshold value chosen based on the S values from the
initial design stage (e.g. T = 10th percentile) then update D = D\ (θ l,S (θ l))

17: else set l = l + 1
18: end if
19: Re-train GP emulator with D = D∪ (θ ∗,S (θ ∗))
20: else
21: θ

i = θ
i−1

22: end if
23: else
24: θ

i = θ
i−1

25: end if
26: end for
27: Re-train GP with D = D\ (θ ,S (θ)) for θ : S (θ)> T ; enter the SAMPLING PHASE
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Algorithm 1i GP HMC algorithm with DA (no classifier) – sampling phase
1: Denote θ : input parameter vector, S: number of HMC samples, L: number of HMC tra-

jectory steps, ε: step size, S (θ): simulator residual sum-of-square (RSS) value, S̃ (θ):
emulator RSS, M: mass matrix, f (.): emulated RSS function, p(y|θ): simulator data like-
lihood, p̃(y|θ): emulator data likelihood, E(θ): true potential function, Ẽ(θ): surrogate
potential function, K(r): kinetic energy for the momentum variable r.

2: log p(y|θ) = −S (θ)

2σ2 −
n
2

log(2πσ
2) and log p̃(y|θ) = −S̃ (θ)

2σ2 −
n
2

log(2πσ
2) for ε

iid∼
MV N (0,σ2I); E(θ) =−(log p(y|θ)+ log p(θ)), where p(θ): prior distribution; Ẽ(θ) =
−(log p̃(y|θ)+ log p(θ)).

3: Initialise θ
0

4: for i = 1 : S do . loop over HMC samples
5: Draw r∼ exp(−K(r))

6: Let θ 0 = θ
i−1 and r0 = r+

ε

2
∂ Ẽ
∂θ

∣∣∣∣
θ 0

7: for j = 1 : L do . loop over HMC steps
8: θ j = θ j−1 + εM−1r j−1

9: r j = r j−1 + ε
∂ Ẽ
∂θ

∣∣∣∣
θ j

10: end for
11: rL = rL−1 +

ε

2
∂ Ẽ
∂θ

∣∣∣∣
θ L

12: Set proposed points (θ ∗,r∗) = (θ L,rL) and S̃ (θ ∗) = E( f (θ ∗)|D), where E( f (θ ∗)|D)
is the GP posterior predictive mean (see eq (2.66) and (2.74))

13: Compute Ẽ from S̃ as explained in line 2
14: M-H accept/reject step with 1st stage acceptance probability (emulator based):

α1(θ
∗,r∗|θ i−1,r) = 1∧ exp(−Ẽ(θ ∗))

exp(−Ẽ(θ i−1))

exp(−K(r∗))
exp(−K(r))

15: if α1 ≥ v1, v1 ∼U(0,1) then
16: Solve ODEs/PDEs for θ

∗ to get (θ ∗,S (θ ∗))
17: Compute E from S as explained in line 2
18: Calculate the 2nd stage acceptance probability (simulator based):

α2(θ
∗|θ i−1) = 1∧ exp(−E(θ ∗))

exp(−E(θ i−1))

exp(−Ẽ(θ i−1))

exp(−Ẽ(θ ∗))

19: if α2 ≥ v2, v2 ∼U(0,1) then
20: Set θ

i = θ
∗

21: else
22: θ

i = θ
i−1

23: end if
24: else
25: θ

i = θ
i−1

26: end if
27: end for
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Algorithm 1j GP HMC algorithm without DA (no classifier) – initial and exploratory phase
1: Lines 1-11 are the same as in Algorithm 1h
2: Solve ODEs/PDEs for proposed point θ

∗ = θ L to get (θ ∗,S (θ ∗))
3: Compute E from S as explained in line 2 of Algorithm 1h
4: M-H accept/reject step with acceptance probability :

α = 1∧ exp(−E(θ ∗))
exp(−E(θ i−1))

exp(−K(r∗))
exp(−K(r))

5: if α ≥ v, v∼U(0,1) then
6: Set θ

(i) = θ
∗

7: Lines (16)-(19) are the same as in Algorithm 1h
8: else
9: θ

(i) = θ
(i−1)

10: end if
11: Line (27) is the same as in Algorithm 1h

Algorithm 1k GP HMC algorithm without DA (no classifier) – sampling phase
1: Lines 1-12 are the same as in Algorithm 1i
2: Solve ODEs/PDEs for proposed point θ

∗ = θ L to get (θ ∗,S (θ ∗))
3: Compute E from S as explained in line 2 of Algorithm 1i
4: M-H accept/reject step with acceptance probability :

α = 1∧ exp(−E(θ ∗))
exp(−E(θ i−1))

exp(−K(r∗))
exp(−K(r))

5: if α ≥ v, v∼U(0,1) then
6: Set θ

(i) = θ
∗

7: else
8: θ

(i) = θ
(i−1)

9: end if
10: end for
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Algorithm 1l GP HMC algorithm with DA and a classifier – initial, exploratory and sampling
phase

1: For the initial and exploratory phase, modify Algorithm 1h as follows:
2: Line 2: Replace p(θ) by p̃(θ) (eq (6.5))
3: Line 3: Build the GP emulator and classifier.
4: Line 13: Solve ODEs/PDEs for proposed point θ

∗ = θ L to get (θ ∗,S (θ ∗),λ ∗)
5: Line 16: if S (θ l) > T , where T : threshold value chosen based on the S values from

the initial design stage (e.g. T = 10th percentile), update D = D \ (θ l,S (θ l)), H =
H \ (θ l,λ l)

6: Line 19: Re-train GP emulator with D = D∪ (θ ∗,S (θ ∗)) and GP classifier with H =
H ∪ (θ ∗,λ ∗)

7: Line 27: Update D = D \ (θ ,S (θ)), H = H \ (θ ,λ ) for the remaining θ for which
S (θ)> T ; Re-train GP emulator with new D and GP classifier with new H and enter the
SAMPLING PHASE

8: For the sampling phase, modify Algorithm 1i as follows:
9: Line 2: Replace p(θ) by p̃(θ) (eq (6.5))

10: Line 16: Solve ODEs/PDEs for θ
∗ to get (θ ∗,S (θ ∗),λ ∗)
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