
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Orchard, Dominic and Wadler, Philip and Eades, Harley (2020) Unifying graded and parameterised
monads. In: Proceedings Eighth Workshop on Mathematically Structured Functional Programming,
MSFP@ETAPS 2020, 25th April 2020, Dublin, Ireland.

DOI

Link to record in KAR

https://kar.kent.ac.uk/84635/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/355108413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sam Lindley and Max S. New (Eds.): Eighth
Workshop on Mathematically Structured
Functional Programming (MSFP 2020)
EPTCS 317, 2020, pp. 18–38, doi:10.4204/EPTCS.317.2

c© D. Orchard and P. Wadler and H. Eades
This work is licensed under the
Creative Commons Attribution License.

Unifying graded and parameterised monads

Dominic Orchard
School of Computing, University of Kent

Philip Wadler
School of Informatics, University of Edinburgh

Harley Eades III
Department of Computer Science, Augusta University

Monads are a useful tool for structuring effectful features of computation such as state, non-determinism,
and continuations. In the last decade, several generalisations of monads have been suggested which
provide a more fine-grained model of effects by replacing the single type constructor of a monad
with an indexed family of constructors. Most notably, graded monads (indexed by a monoid) model
effect systems and parameterised monads (indexed by pairs of pre- and post-conditions) model
program logics. This paper studies the relationship between these two generalisations of monads
via a third generalisation. This third generalisation, which we call category-graded monads, arises
by generalising a view of monads as a particular special case of lax functors. A category-graded
monad provides a family of functors T f indexed by morphisms f of some other category. This allows
certain compositions of effects to be ruled out (in the style of a program logic) as well as an abstract
description of effects (in the style of an effect system). Using this as a basis, we show how graded and
parameterised monads can be unified, studying their similarities and differences along the way.

1 Introduction

Ever since Moggi [1989, 1991], monads have become an important structure in programming and
semantics, particularly for capturing computational effects. In this approach, an effectful computation
yielding a value of type A is modelled by the type MA where M is an endofunctor with the structure of a
monad, i.e., with two operations (and some axioms): unit (η) mapping values into pure computations
(with no effects) and multiplication (µ) composing effects of two computations (one nested in the other):

ηA : A→MA µA : MMA→MA

Various generalisations of monads replace the single endofunctor M with a family of endofunctors indexed
by effect information. For example, Wadler and Thiemann [2003] proposed a generalisation of monads to
model effect systems using a family of monads (Ma)a∈E indexed over a bounded semilattice (E,t, /0,v).
Later, graded monads were proposed (Katsumata [2014], Orchard et al. [2014]), generalising this idea
to a family of endofunctors (Ge)e∈E indexed by the elements of an ordered monoid (E,•, I,v) with
monad-like unit and multiplication operations (and axioms) mediated by the monoid structure:

ηA : A→ G I A µe, f ,A : Ge G f A→ G(e• f)A G(ev f)A : GeA→ G f A

A family of approximation maps G(ev f) is derived from the ordering.
Another indexed generalisation is provided by parameterised monads, which comprise a family

of endofunctors (P(I,J))I∈Iop,J∈I indexed by pairs of objects drawn from a category I which provides
information akin to pre- and post-conditions (Wadler [1994], Atkey [2009b]). Parameterised monads have
unit and multiplication operations (satisfying analogous axioms to monads):

ηI,A :A→P(I, I)A µI,J,K,A :P(I,J)P(J,K)A→P(I,K)A P(f ,g)A :P(I,J)A→P(I′,J′)A

http://dx.doi.org/10.4204/EPTCS.317.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

D. Orchard and P. Wadler and H. Eades 19

The family of maps P(f ,g)A (for all f : I′→ I,g : J→ J′) provides a notion of approximation via pre-
condition strengthening and post-condition weakening. For pure computations via η , the pre-condition is
preserved as the post-condition. For composition via µ , the post-condition of the outer computation must
match the pre-condition of the inner, yielding a computation indexed by the pre-condition of the outer and
post-condition of the inner.

Graded and parameterised monads are used for various kinds of fine-grained effectful semantics,
reasoning, and programming. For example, graded monads model effect systems (Katsumata [2014],
Mycroft et al. [2016]), trace semantics (Milius et al. [2015]), and session types (Orchard and Yoshida
[2016]). Parameterised monads are used to refine effectful semantics with Floyd-Hoare triples (Atkey
[2009b]), information flow tracking (Stefan et al. [2011]), and session types (Pucella and Tov [2008], Imai
et al. [2010]). In GHC/Haskell, graded and parameterised monads are provided by the effect-monad
package,1 leveraging GHC’s advanced type system features particularly in the case of graded monads.

Both structures appear to follow a similar pattern, generalising monads into some indexed family of
type constructors with monad-like operations mediated by structure on the indices. Furthermore, there are
applications for which both graded and parameterised monads have been used, notably session types.2

Thus, one might naturally wonder how graded and parameterised monads are related. We show that they
can be related by a structure we call category-graded monads, based on a specialised class of lax functors.

Whilst graded monads are indexed by elements of a monoid and parameterised monads by pairs of
indices, category-graded monads are indexed by the morphisms of a category, and have operations:

ηI,A : A→ T idI A µ f ,g,A : T f TgA→ T(g◦ f)A T(f : j⇒ k)A : T j A→ Tk A

for f : I→ J, g : J→ K, j,k : I′→ J′. Indexing by morphisms provides a way to restrict composition of
effectful computations and a model that captures various kinds of indexing. The rightmost operation is
provided by 2-category-graded monads (generalising grading to 2-categories) where Tf lifts a 2-morphism
f (morphism between morphisms), providing a notion of approximation akin to graded monads.

The structures we study along with their relationships are summarised by the diagram below, where
the source of an arrow is at a more specific structure, and the target is a more general structure. Highlighted
in bold are the new structures in this paper, centrally category-graded monads and its generalisation to
2-category-graded monads and the additional structure of generalised units. Throughout, we state the
results of the diagram below as propositions of the form “every A is a B” whenever there is an arrow from
A to B in the diagram. By this we mean there is an injective map from A structures into B structures.

2-cat-graded monads
+ generalised unit

2-cat-graded monads

55

cat-graded monads
+ generalised unit

ii

graded monads

OO

cat-graded monads

jj 44

parametrised monads

OO

unordered
graded monads

OO ??

discrete
parameterised monads

OO__

monads

hh

OO

66

Section 3 introduces category-graded
monads as a particular way of generalis-
ing monads via lax functors. Section 4
considers graded monads and 2-category-
graded monads. Section 5 considers
the notion of lax natural transformations
used in Section 6 which considers param-
eterised monads and generalised units.

We show that the subclasses of un-
ordered graded monads and discrete pa-
rameterised monads are both subsumed by category-graded monads. However, graded monads may have
an ordering which provides approximation, requiring 2-category-graded monads, and full (non-discrete)

1https://hackage.haskell.org/package/effect-monad
2Orchard and Yoshida [2017] provide a survey of different structuring techniques for session types in the context of Haskell.

https://hackage.haskell.org/package/effect-monad

20 Unifying graded and parameterised monads

parameterised monads also have a kind of approximation which can be captured by a generalised unit for
a category-graded monad. Section 7 shows that the apex of 2-category-graded monads plus generalised
units capture analyses and semantics that have both graded and parameterised monad components, using
an example of a Hoare logic for probabilistic computations.

2 Background

We first recall some standard, basic categorical facts relating monoids to categories which will be used
throughout. We start by fixing some notation.

Notation 1 (2-Category). For a 2-category C, we denote the class of objects as C0, 1-morphisms as C1
and 2-morphisms as C2. We write 2-morphism arrows as ⇒ unless they are natural transformations
(2-morphisms in Cat) which are instead written as .−→. Appendix A provides a definition of 2-categories.

Notation 2 (Homset). The homset of (1-)morphisms between any two objects A,B∈C0 is written C(A,B).

There are two standard ways to view monoids in categorical terms: Recall a set-theoretic presentation
of a monoid with set M, operation • : M×M→M and unit e ∈M. This is identical to a category M,
which has a single object M0 = {∗}, morphisms as the elements of M, i.e., M1 = M, composition via the
binary operation ◦= • and identity morphism id∗ = e. Associativity and unit properties of categories and
monoids align. Hence:

Proposition 3. Monoids are one-object categories.

An alternate but equivalent view of monoids is as a monoidal category, where (M,•,e) is a category
with objects M, bifunctor • : M×M→M and unit object e. This monoidal category is discrete, meaning
the only morphisms are the identities.

Proposition 4. Monoids are discrete monoidal categories.

In this paper, we study graded monads which are typically defined in the literature as being indexed
by a pre-ordered monoid, or pomonoid. We therefore recall how the above two results generalise to
pomonoids. A monoid (M,•,e) with a preorder v (with • monotonic wrt. v)3 is a 2-category following
Proposition 3 but with added 2-morphisms between every pair of morphisms x,y ∈M whenever xv y.

Proposition 5. Pre-ordered monoids are one-object 2-categories.

Pre-orders are categories, with a morphism for every pair of ordered elements. Thus we can replay
Proposition 4, but we now have morphisms between some elements representing the ordering and thus the
category is no longer discrete. However this monoidal category is strict, meaning that associativity and
unit axioms are equalities rather than isomorphisms. (Note, discrete categories are automatically strict).

Proposition 6. Pre-ordered monoids are strict monoidal categories.

A further categorical view on monoids is that they can be identified as some distinguished object in a
monoidal category:

Definition 7. A monoid in a monoidal category (C,⊗, I) is a distinguished object M ∈C equipped with a
pair of morphisms e : I→M for the unit and • : M⊗M→M, with associativity and unit axioms.

The monoidal category of endofunctors for some category is particularly important in this paper:

3That is for all x1,x2,y1,y2 ∈M then x1 v y1 ∧ x2 v y2 =⇒ (x1 • x2)v (y1 • y2)

D. Orchard and P. Wadler and H. Eades 21

Definition 8. The category of endofunctors on C, denoted [C,C], has endofunctors as objects and natural
transformations as morphisms. This is a strict monoidal category with ([C,C],◦, IdC), i.e., with functor
composition as the bifunctor and the identity endofunctor IdCA = A as the unit element.

The classic aphorism that monads are just a monoid in the category of endofunctors thus applies
Definition 7 in the context of the monoidal category of endofunctors ([C,C],◦, IdC), pointing out that a
monad for endofunctor T : C→ C is a particular single object. Since the tensor product of the monoidal
category is ◦ then monad multiplication is the binary operator µ : T◦T .−→ T and the monad unit operation
identifies the unit element η : IdC

.−→ T . Thus:

Proposition 9. Monads are monoids in the category of endofunctors.

Finally, we leverage the (standard) equivalence between strict monoidal categories and 2-categories
with one object, which “transposes” monoidal and 1-categorical composition into 1-categorical and
2-categorical composition respectively. That is, for a strict monoidal category (C,⊗, I) we can construct
a one-object 2-category, call it 1(C), with 1(C)0 = ∗ and 1(C)1 = C0 and 1(C)2 = C1 with horizontal
composition ◦0 = ⊗ and identity morphism id = I, and vertical composition ◦1 = ◦C and 2-identities
by identities of C. Conversely, given a one-object 2-category, C, we can construct a strict monoidal
category (SMC(C),⊗, I) where SMC(C)0 = C1, SMC(C)1 = C2, ⊗= ◦0, I is the 1-morphism identity,
composition ◦= ◦1 and identity is the 2-identity. The same result applies for discrete monoidal categories
and one-object categories where we can elide the 2-categorical part. Hence:

Proposition 10. Discrete monoidal categories are equivalent to one-object categories, and strict monoidal
categories are equivalent to one-object 2-categories.

Corollary 11. By Def. 8 and Prop. 10, the strict monoidal category of endofunctors ([C,C],◦, IdC) is
equivalent to a one-object 2-category with single object C, morphisms as endofunctors and 2-morphisms
are natural transformations. For clarity, we denote this 2-category as Endo(C).

3 Generalising monads via lax functors to category-graded monads

Recall that every monoid corresponds to a single-object category (Proposition 3). In a single-object
category, all morphisms compose just as all elements of a monoid multiply. Categories can therefore
be seen as a generalisation of monoids: morphisms f and g compose to g◦ f only when the source of
g agrees with the target of f . Similarly, groupoids generalise the notion of groups to categories, where
elements of the group are morphisms and every morphism has an inverse.

This process of generalising some notion to a category is known as horizontal categorification or
oidification (echoing the relationship of groups to groupoids) (nLab authors [2020], Bertozzini et al.
[2008a,b]). The general approach is to realise some concept as a kind of category comprising a single
object which can then be generalised to many objects; categories are the “oidification” of monoids going
from a single object to many (nLab authors [2020])—though the term category is preferred to monoidoid!

Our approach can be summarised as the horizontal categorification of monads. It turns out that this
yields structures that unify graded and parameterised monads, but with some subtleties as we shall see.

First we need to understand in what way the concept of a monad can be seen as single-object entity
such that it can be subjected to oidification. The view of a monad as a monoid in category of endofunctors
(Proposition 9) highlights that a monad comprises a single object in [C,C] but oidification cannot readily
be applied to this perspective. Instead, we take Bénabou’s [1967] view of monads as lax functors which is
more amenable to oidification. We first recall the definitions of lax functors for completeness.

22 Unifying graded and parameterised monads

Definition 12. A lax functor F : C→ D (where D is a 2-category)4 comprises an object mapping and a
morphism mapping, however the usual functor axioms idFA = FidA and Fg◦F f = F(g◦ f) are replaced
by families of 2-morphisms in D which “laxly” preserve units and composition:

ηA : idFA⇒ FidA µ f ,g : Fg◦F f ⇒ F(g◦ f)

We have chosen the names of these families to be suggestive of our endpoint here.
Whilst the axioms of a category are preserved automatically by non-lax functors, this is not the case

here. For example, if F is a functor then F f = F(id ◦ f) = Fid ◦F f = F f , but not if F is a lax functor.
Instead a lax functor has additional axioms for associativity of µ and unitality of η :

F f
ηJ F f

//

F f ηI
��

FidJ ◦F f
µidJ , f
��

F f ◦FidI µ f ,idI

// F f

F f ◦Fg◦Fh
F f µg,h

//

µ f ,gFh
��

F f ◦F(g◦h)
µ f ,g◦h
��

F(f ◦g)◦Fh
µ f◦g,h

// F(f ◦g◦h)

We can thus see monads as lax functors between the terminal category 1 and the one-object 2-category of
endofunctors on C:

Proposition 13 (Bénabou [1967]). For a category C, a monad on C is a lax functor T : 1→ Endo(C)
where 1 is the single-object category with ∗ ∈ 10 and a single morphism id∗ : ∗→ ∗. Then T∗= C and
Tid∗ identifies an endofunctor on C. Laxness means the functor axioms for T are 2-morphisms, which are
the unit and multiplication operations of the monad on the endofunctor Tid∗:

η : idT∗
.−→ T id∗ µ : T id∗T id∗

.−→ T id∗

where idT∗ is the identity endofunctor Id on C. The monad axioms are exactly the unit and associativity
axioms of the lax functor.

This proposition recasts the aphorism that monads are monoids in the category of endofunctors. It
equivalently views monads as lax homomorphisms (lax functors) between the singleton monoid 1 and the
monoid of endofunctors. Since the source category 1 has but one object and one morphism, T identifies a
particular endofunctor on C and the lax operators η and µ provide the usual monad operations for T.

We can now “oidify” this definition in two ways: (1) generalising the singleton source 1 to a category,
or (2) generalising the singleton target category Endo(C) to Cat. In this paper, we pursue the first choice,
though we discuss the second in Section 8.3. We thus oidify Bénabou’s monad definition by replacing
the singleton category 1 with an arbitrary category I. We might have chosen the name monadoid for this
structure, but since there are two ways in which the oidification can be applied, we settle on the name
category-graded monads, the terminology for which will be explained once we recall graded monads in
the next section. We also found that people do not like the name monadoid.

Definition 14. Let I and C be categories. A category-graded monad is a lax functor T : Iop→ Endo(C),
and because Endo(C) has only a single object we require that T I = C for all I ∈ C0. Thus the morphism
mapping of T can be thought of as family of endofunctors indexed by I morphisms, i.e., for all f : I→ J
in I then T f : C→ C is an endofunctor.

We refer to I as the indexing category and often write T f as T f . For brevity we sometimes refer to
category-graded monads as cat-graded monads or I-graded monads if the category I is in scope.

4Lax functors are often defined between 2-categories, but can instead be defined (like here) with a 1-category in the domain
which is treated as a 2-category with only trivial 2-morphisms.

D. Orchard and P. Wadler and H. Eades 23

The definition of category-graded monads is compact, but the requirement that T is a lax functor
comes with a lot of structure which is akin to that of monads and graded monads.

Corollary 15 (Category-graded monad operations and axioms). Suppose T : Iop→Endo(C) is a category-
graded monad as defined above. Then, following from the lax functor definition for T there are natural
transformations (which we call unit and multiplication respectively):

ηI : idTI
.−→ TidI µ f ,g : T fTg

.−→ T(g◦ f) (where f : I→ J and g : J→ K are in I)

Following from the lax functor, these satisfy associativity and unitality axioms (specialised from Def. 12):

T f
ηJT f

//

T f ηI
��

TidJT f

µidJ , f
��

T fTidI µ f ,idI

// T f

T fTgTh
T f µg,h

//

µ f ,gTh
��

T fT(h◦g)
µ f ,h◦g
��

T(g◦ f)Th µg◦ f ,h
// Th◦g◦ f

Note that the left square uses the equality T(f◦idI) = T(idJ◦ f) = T f due to the unitality of id and the right
square uses associativity of composition such that Th◦(g◦ f) = T(h◦g)◦ f

Example 16. Following Prop. 13 and the above definition, every monad (M : C→ C,µ,η) is a category-
graded monad on C, with indexing I= 1, lax functor Tid∗ =M, and operations µid∗,id∗ = µ and η∗ = η .

Remark 17. For morphisms f : I→ J,g : J→ K in I, any two morphisms j : A→ T f B and k : B→ TgC
in C can then be composed using multiplication:

A
j−→ T f B

T f k
−−→ T fTgC

µ f ,g,C−−−→ Tg◦ f C (1)

This composition is akin to Kleisli composition of a monad and has identities given by ηI,A. This shows
the role of the opposite category in T : Iop→ Endo(C): the outer functor in the source of µ (T f of T fTg)
corresponds to the first effect and the inner (Tg of T fTg) corresponds to the second effect. Sequential
composition via µ f ,g,C then returns an object Tg◦ f C.

Remark 18. The above composition for morphisms of the form A→T f B corresponds to the Grothendieck
construction for an indexed category T′ : Iop→ Cat (Grothendieck [1961]) which maps an Iop-indexed
category T′ to a category I

∫
T′ which provides a category with:

• objects (I
∫
T′)0 = I0×C0 i.e., pairs of index and base category objects;

• morphisms g : I×A→ J×B given by g = f ×h where f : I→ J ∈ I1 and h : A→ T′f B ∈ C1;

• composition and identities defined as in Remark 17 in terms of the lax functor operations µ and η .

As pointed out by Jacobs [1999], µ and η need not be natural isomorphisms but just natural transformations
in order for the above construction to be a category [Jacobs, 1999, p.117, 1.10.7]; that is, T′ need only be
a lax functor for the Grothendieck construction to work, as is the case for category-graded monads here.

Example 19. The identity category-graded monad is a lifting of the identity monad to an arbitrary
indexing category. We denote this Id : Iop→ Endo(C) with Id f = IdC. This will be useful later.

Example 20. A category can be viewed as a state machine: objects as states and morphisms as transitions.
Given a monad M on C and some category I, there is a category-graded monad T : Iop→ Endo(C) with
T f = M, restricting the composition of effectful computations by the morphisms of I. Any effectful

24 Unifying graded and parameterised monads

operation producing values MA can be suitably wrapped into T f A for some particular f describing the
operation and its corresponding state transition. A cat-graded monad model for a program then provides a
static trace of the effects in its indices. We may also wrap a monad into a category-graded monad but with
some additional implementation related to the grading, with the implementation dependent on the indices.

For example, we could capture the simple state-machine protocol of a mutual exclusion lock over a
memory cell with I0 = {free,critical} and morphisms lock : free→ critical and unlock : critical→ free
and get,put : critical→ critical. We can then wrap the state monad, call it StS for some state type S, to
get an I-graded monad ConcStS, wrapping the usual state monad operations as get : ConcStS

get S and
put : S→ ConcStS

put 1 and adding operations (implemented in ConcSt) lock : ConcStS
lock 1 and unlock :

ConcStS
unlock 1 and an operation for spawning threads from computations whose index is any morphism

from free to free, i.e. spawn : (∀ f .ConcStS
f :free→free1)→ConcStS

idfree1. Subsequently, the category grading
statically ensures the mutual exclusion protocol: a spawned thread must acquire the lock before it can get
or put (or indeed unlock), and the lock must be released if acquired. In Haskell-style syntax, we can then
have programs like: do{lock; x← get; put(x+1); unlock} : ConcStIntunlock◦put◦get◦lock:free→free 1.

4 Graded monads as category-graded monads

Graded monads are a generalisation of monads from a single endofunctor to an indexed family of
endofunctors whose indices are drawn from a (possibly ordered) monoid. The graded monad operations
are “mediated” by the monoidal structure of the indices. Graded monads appear in the literature under
various names: indexed monads (Orchard et al. [2014]), parametric effect monads (Katsumata [2014]) or
parametric monads (Mellies [2012]). The terminology of graded monads (e.g., in Smirnov [2008], Fujii
et al. [2016], Milius et al. [2015], Gaboardi et al. [2016]) is now the preferred term in the community.

Here we show that lax functors T : Iop→ Endo(C) generalise the notion of graded monads. We thus
explain why we chose the name category-graded monads, since this structure can be seen as generalising
a monoid-based grading to a category-based grading. The idea of generalising graded monads to lax
functors is mentioned by [Katsumata, 2014, §6.2] and Fujii et al. [2016]. We give the full details.
Definition 21. Let (M,•,e,v) be a pomonoid, meaning that • is also monotonic with respect to v,
presented as a strict monoidal category (Prop. 6) which we denote as M for convenience.

A graded monad comprises a functor G : M→ [C,C] which is lax monoidal and therefore has natural
transformations witnessing lax preservation of the monoidal structure of M into the monoidal structure of
[C,C], that is unit ηG : Id .−→ Ge and multiplication µG

m,n : GmGn .−→ G(m•n). The morphism mapping of
the functor G means that an ordering mv n corresponding to a morphism f : m→ n ∈M1 is then mapped
to a natural transformation G f : Gm .−→ Gn which we call an effect approximation. Lax monoidality of G
means that functoriality of • is laxly preserved by µG. A graded monad thus satisfies axioms:

Gm
Gη

//

ηG
��

GmGe
µm,e
��

GeGm
µe,m

// Gm

GmGnG p
Gµn,p

//

µm,nG
��

GmG(n• p)
µm,n•p
��

G(m•n)G p
µm•n,p

// G(m•n• p)

GnGm
µG

n,m
��

G fG
// Gn′Gm

GGg
// Gn′Gm′

µG
n′,m′
��

G(n•m)
G(f •g)

// G(n′ •m′)

where f : n→ n′,g : m→ m′ ∈M1 in the rightmost diagram.
Note, graded monads are not families of monads; Gm need not be a monad for all m. For example:

Example 22. The graded list monad is indexed by the monoid (N,∗,1,≤) refining the usual list monad by
length Gn A = A0 +A1 + . . .+An thus GnA represents the type of lists of length at most n with elements of

D. Orchard and P. Wadler and H. Eades 25

type A. This graded monad then has the operations ηG
A : A→ G1A = in1 injecting a value into a singleton

list and µG
n,m,A : Gm(GnA)→ Gm∗nA = concat which concatenates together a list of lists and approximation

G(f : m≤ n) : GmA→ GnA which views a list of at most length m as a list of at most length n when m≤ n.

In the literature, graded monads need not have a pre-ordering (e.g., Mycroft et al. [2016], Gibbons
[2016]), so we may distinguish two kinds of graded monad depending on the “grading” structure: monoid-
graded monads and pomonoid-graded monads. A monoid-graded monad G : A→ [C,C] therefore maps
from a discrete strict monoidal category, i.e., one whose only morphisms are the identities. Generally
when we refer to “graded monads” we mean pomonoid-graded monads since this is the most common
meaning in the literature. We qualify the nature of the grading structure when we need to be explicit.

We now come to the first main result: that monoid-graded monads are a simple case of category-graded
monads via the old idea of monoids as single-object categories (Prop. 3) and monoidal categories (Prop. 4):

Proposition 23. Every monoid-graded monad is a category-graded monad.

Proof. The indexing category for a monoid-graded monad on C is discrete monoidal (M,•,e), thus it is
equivalent to a single-object category (Prop. 10), which we write as 1(M). Similarly, [C,C] is equivalent
to the single object 2-category Endo(C) (Cor. 11). Thus G : M→ [C,C] is equivalent to a lax functor
T : 1(M)→ Endo(C), with T f = G f (where f is a morphism of 1(M) and an object of M) and η1 = ηG

and µ f ,g = µG
f ,g whose lax functor axioms follow directly from the graded monad axioms.

On the naming The general paradigm of “grading” is to have an indexed structure where the structure
of the indices matches the structure of some underlying semantics or term calculus (Orchard et al. [2019]).
We can grade by different structures, mapping (e.g., as a homomorphism or functor) to the underlying
domain (in our case Endo(C)). Thus, we can view this particular class of lax functors as a horizontal
categorification of monads which serves to “grade” by a category, rather than grading by a single object as
with monads or grading by a (po)monoid as with traditional graded monads.

4.1 Pomonoid-graded monads and 2-category-graded monads

Proposition 23 considers only monoid-graded monads (without an ordering) however in the literature
pomonoid-graded monads are the norm. Since strict monoidal categories are equivalent to one-object
2-categories (Prop. 10), where the morphisms of the former become the 2-morphisms of the latter, we
therefore generalise category-graded monads to 2-category-graded monads to complete the picture.

Definition 24. A 2-category-graded monad extends a category-graded monad to a 2-categorical index
category, thus T : Iop→ Endo(C) is a lax 2-functor. This provides a 2-morphism mapping from I2 to
natural transformations on C: for all f ,g : A→ B ∈ I1 and f : f ⇒ g ∈ I2 then Tf : T f

.−→ Tg is a natural
transformation which we call an approximation to recall the similar idea in graded monads.

The 2-morphism mapping has 2-functorial axioms in two flavours: for vertical composition (left two
diagrams) and for horizontal composition which is laxly preserved by T (right two diagrams):

T f

Tid f
��

idT f

""

T f T f

T f

Tf
��

Tg◦1 f

""

Tg
Tg
// Th

IdC
ηI
$$

ηI
��

TidI TididI

// TidI

T fTg
µ f ,g
��

TfTg
// T f ′Tg′

µ f ′,g′
��

Tg◦ f
Tg◦0 f

// Tg′◦ f ′

The left two diagrams hold for all f ,g,h : A→ B ∈ I1 and f : f ⇒ g ∈ I2 and g : g⇒ h ∈ I2. The right two
diagrams hold for all f , f ′ : A→ B ∈ I1 and g,g′ : B→C ∈ I1 and f : f ⇒ f ′ ∈ I2 and g : g⇒ g′ ∈ I2.

26 Unifying graded and parameterised monads

Proposition 25. Every pomonoid-graded monad is a 2-category-graded monad.

Proof. Strict monoidal categories are equivalent to single-object 2-categories (Prop. 10). Thus G : M→
[C,C] is equivalent to a lax functor T : 1(M)→ Endo(C), with T f = G f (where f is a morphism of 1(M)
and an object of M) and Tf = Gf for approximations (where f is a 2-morphism of 1(M) and a morphism of
M) and η1 = ηG and µ f ,g = µG

f ,g whose lax functor axioms follow from the graded monad axioms.

5 Lax natural transformations and category-graded monad morphisms

Our use of lax functors provides a source of useful results from the literature. Here we show the notion of
lax natural transformations (Street [1972]) which provides category-graded monad (homo)morphisms
and further useful additional structure leveraged in Section 6.
Definition 26. (Street [1972]) Let I be a category and S,T : I→ Cat be two lax functors. A left lax
natural transformation L : S .−→ T comprises (1) a functor LI : SI→ TI for every I ∈ I0 and (2) a natural
transformation L f : T f LI

.−→ LJS f for every f : I→ J ∈ I1, such that the following diagrams commute
(where f : I→ J and g : J→ K):

TgT f LI
µT

g, f LI
//

TgL f
��

Tg◦ f LI Lg◦ f
++
LKSg◦ f

TgLJS f LgS f

// LKSgS f LK µS
g, f

33

LI
ηT

I LI
//

LIη
S
I %%

TidI LI

LidI
��

LISidI

A right lax natural transformation R : S .−→ T has the same data, with functors RI : SI→ TI but a family
of natural transformations R f : RJS f

.−→ T f RI . Subsequently, the dual of the above diagrams commute.
Proposition 27. Let I and C be categories and S,T : Iop→ Endo(C) be I-graded monads.

A homomorphism γ :T→ S between the I-graded monads is a left-lax natural transformation L : S .−→T
(since S and T map into a sub-category of Cat with SI = TI = C) with LI = IdC. Therefore we have
a family of natural transformations γ f = L f : T f LI

.−→ LJS f which are natural transformations T f
.−→ S f

since LI and LJ are the identity functor, with the following homomorphism axioms following from the
definition of lax naturality (eliding again LI and LJ which are identities):

T f ◦Tg
µT

f ,g
//

T f γg
��

Tg◦ f γg◦ f
**
Sg◦ f

T f ◦Sg
γ f Sg

// S fSg µS
f ,g

44

Id
ηT

I //

ηS
I $$

TidI

γidI
��

SidI

Thus we can define the category of I-graded monads over C base with these morphisms.
Lax natural transformations are also key to the next step of capturing parameterised monads.

6 Parameterised monads and generalised units

The notion of a monad with two indices which denote pre- and post-conditions was first proposed for
the continuation monad by Wadler [1994]. Later, Atkey [2009b] generalised this idea, introducing the
concept of a parameterised monad with a doubly-indexed functor P : Iop× I→ [C,C] which can, for
example, model effects with Floyd-Hoare-logic reasoning via indices of pre- and post-conditions.

D. Orchard and P. Wadler and H. Eades 27

Definition 28. (Atkey [2009b])5 A parameterised monad comprises a functor P : Iop× I→ [C,C] and
natural transformations ηP

I : IdC
.−→ P(I, I) and µP

I,J,K : P(I,J)P(J,K)
.−→ P(I,K) satisfying analogous unit

and associativity axioms to the usual monad axioms (with the addition of the indexing).
Furthermore, ηP is dinatural in I and µP

I,J,K is dinatural in J and natural in I, K, equating to the
following dinaturality diagrams for all f : I→ J and g : J→ J′:

P(I,J)P(J′,K)
P(I,g)P(J′,K)

//

P(I,J)P(g,K)
��

P(I,J′)P(J′,K)

µP
I,J′,K
��

P(I,J)P(J,K)
µP

I,J,K

// P(I,K)

Id
ηP

I //

ηP
J
��

P(I, I)

P(I, f)
��

P(J,J)
P(f ,J)

// P(I,J)

(2)

Multiplication µP requires that the post-condition of the outer computation matches the pre-condition of
the inner computation. Thus, similarly to category-graded monads, parameterised monads restrict the
composition of computations. Where category-graded monads differ is that this restriction is provided via
morphisms, whereas the indices of parameterised monads are just pairs. Thus, category-graded monads
can have indices with more computational content, e.g., proofs (see Example 40).
Example 29. [Atkey, 2009b, §2.3.2] Mutable state can be modelled by the state monad with TA=(A×S)S

where S represents the type of the state. A parameterised monad provides a type-refined version of this
where P(S1,S2)A = (A× S2)

S1 modelling the type of state at the start (S1) and end of a computation
(S2). The parameterised monad operations have the same definition as the state monad operations
ηP

S = x 7→ λ s.(x,s) and µP
S1,S2,S3

= c 7→ λ s1.app (c s1) where c : (((A×S3)
S2)×S2)

S1 . Reading and writing
from the store is provided by two families of operations: readS : P(S,S)S and storeS0,S : S→ P(S0,S)1.

This idea of using lax functors to generalise parameterised monads has been conjectured before
by Capriotti [2015] in a blog post, but without further details. Here we show that, on there own, category-
graded monads (lax functors) do not subsume parameterised monads, but they instead capture a subset of
parameterised monads restricted to discrete indexing categories (with only identity morphisms). We show
that discrete parameterised monads are category-graded monads (Section 6.1), and thus similar in power
to monoid-graded monads (i.e., without ordering). We then add the additional structure of generalised
units to category-graded monads (which arises as a kind of lax natural transformation) which accounts for
the additional power of full parameterised monads (Section 6.2).

6.1 Discrete parameterised monads are category-graded monads

Standard notions of discrete and indiscrete categories are key here. We thus recall their definitions:
Definition 30. A category is discrete if its only morphisms are identities.

The functor ∆ : Cat→ Cat discretises a category by discarding all but the identities
Definition 31. A category is indiscrete if there is exactly one morphism between every pair of objects.

The functor ∇ : Cat→ Cat maps a category to its indiscrete form by replacing morphisms with pairs
of the source and target objects (“dominoes”), i.e., ∇(C)(a,b) = {(a,b)}. Identities are pairs of identical
objects and composition of (a,b) with (b,c) yields (a,c).

A standard result is that the ∆ and ∇ functors arise from a single adjoint triple (see Appendix, Prop. 43).
The symbol ∆ is often used for the diagonalisation functor, and ∇ co-diagonalisation. We reuse the notation
as discretisation is akin to restricting a category to the diagonal of the adjacency matrix of its morphisms.

5 Atkey actually presents parameterised monads with a ternary functor P : Iop× I×C→ C; we use an isomorphic binary
functor here mapping to [C,C] to reduce clutter and as this is akin to presentations of graded monads on functors T : Iop→ [C,C].

28 Unifying graded and parameterised monads

Definition 32. A discrete parameterised monad is a parameterised monad indexed by a discrete category,
with functor P : ∆(I)op×∆(I)→ [C,C] which has a degenerate morphism mapping which is always the
identity P(id, id) = id : P(I, I)A→ P(I, I)A since there are only identity morphisms in ∆(I). Dinaturality
squares (eq. 2) trivially hold as they collapse to identities.

Proposition 33. Every discrete parameterised monad is a category-graded monad.

Proof. Let (P,µP,ηP) be a discrete parameterised monad on P : ∆(I)op×∆(I)→ [C,C]. There is then a
category-graded monad T : ∇(I)op→ Endo(C), graded by the indiscrete version of I which has pairs of
objects as morphisms, and thus the morphism mapping of T is defined T(I,J) = P(I,J) with operations:

ηI : Id .−→ T(I,I) = η
P
I µ(I,J),(J,K) : T(I,J)T(J,K)

.−→ T(I,K) = µ
P
I,J,K (for all (I,J),(J,K) ∈ ∇(I)1)

This construction is injective, with an inverse mapping from indiscrete-category-graded monads to discrete
parameterised monads. Each unique morphism of an indiscrete category J can be identified by its singleton
homset J(I,J). Thus, there is a map from indiscrete-category-graded monads S : Jop → Endo(C) to
discrete parameterised monads P : ∆(J)op×∆(J)→ [C,C] where P(I,J)A = S (J(I,J))A and P(I,J) f =
SJ(I,J) f , and operations ηP

I = ηI and µP
I,J,K = µJ(I,J),J(J,K).

6.2 Parameterised monads are category-graded monads with a generalised unit

Of course, parameterised monads need not be discrete and therefore may have non-degenerate morphism
mappings P(f ,g)A : P(I,J)A→ P(I′,J′)A for f : I′→ I and g : J→ J′ in I. Through the Floyd-Hoare
perspective, this morphism mapping corresponds to pre-condition strengthening (via f) and post-condition
weakening (via g), i.e., a kind of approximation on the indices. Whilst object pairs Iop× I do not contain
computational content in the way that a morphism may (e.g., if it is a function), the morphism mapping
provides a way to change an effectful computation via the morphisms of I.

A category-graded monad could be constructed from a parameterised monad following the approach
for discrete parameterised category-graded monads with T : ∇(I)op→ Endo(C) defined on morphisms as
T(I,J) = P(I,J) (Prop 33). However, such a construction is non-injective since the morphism mapping
of P is discarded. Alternatively, we might try to define T : Iop→ Endo(C) with T(f : I→ J) = P(I,J).
The morphism mapping P(g, f) : P(I,J) .−→ P(I′,J′) for g : J→ J′, f : I′→ I would then correspond to
a family of natural transformations of the form α f ,g,k : Tk .−→ T(g◦ k ◦ f) with k : I→ J. However, no
such family is elicited by a (2-)category-graded monad alone. Furthermore, T(f : I→ J) = P(I,J) is
non-injective since it maps to P(I,J) only when there is a morphism I → J ∈ I1 despite the P object
mapping being defined for all object pairs Iop× I.

Additional structure is therefore needed to capture full parameterised monads. For this, we introduce
the notion of a generalised unit.

Definition 34. Let (T : Iop→ Endo(C),µ,η) be an I-graded monad and let S be a wide subcategory
S⊆ I where S0 = I0 (all the same objects) and ι : S→ I is the inclusion functor.

A generalised unit augments a category-graded monad with a right lax natural transformation (Def. 26)
R : Id .−→ (T◦ ι) mapping from the identity category-graded monad (Example 19). The right lax natural
transformation has RI = IdC for all I and thus its family of maps has signature R f : A→ Tι(f)A. Subse-
quently, the right lax natural transformation axioms are specialised to the following axioms, where we let

D. Orchard and P. Wadler and H. Eades 29

η̄ f = R f and make the inclusion functor ι implicit:

A

η̄g◦ f
��

η̄ f
// T f A

T f η̄g
��

Tg◦ f A T fTg A
µ f ,g

oo

A
ηI

//

η̄idI ,A $$

TidI A

idTidI A
��

TidI A

The left square states that “generating” two computations indexed by morphisms in S1 via η̄ and multiply-
ing via µ is equivalent to generating via η̄ the computation indexed by the composition of the indices.
The right square is well defined by the requirement that S0 = I0, thus all identity morphisms of I are in S,
and η̄idI and ηI coincide.

We refer to the family of maps η̄ f ,A : A→ T f A as the generalised unit, with the notation alluding to
η , since it has a similar form to unit but is defined for all f : I→ J ∈ S1 rather than just on identities.

Example 35. Every category-graded monad has a generalised unit with S= ∆(I), i.e., the subcategory
containing only the identity morphisms. Since ∆(I) contains only the identity morphisms, η̄ need only be
defined on identities with η̄idI = ηI : IdC

.−→ TidI .

Example 36. Consider a pomonoid-graded monad T presented as a 2-category-graded monad (Proposi-
tion 25) with (M,•,e,v) and T : 1(M)→ Endo(C). If the unit element is the bottom element of the order-
ing, i.e., ∀m ∈M.evm, then there is a generalised unit with S= I defined η̄m = T(evm)◦η : IdC

.−→ Tm.

Proposition 37. Every parameterised monad is a category-graded monad with a generalised unit.

Proof. Let (P : Iop× I→ [C,C],µP,ηP) be a parameterised monad. From I we construct a category I∇

called the pair completion of I where objects are the objects of I, and morphisms from I to J are either
a morphism in I(I,J) or a pair (I,J), that is, we have homsets I∇(I,J) = I(I,J)] {(I,J)}. Thus, the
homsets are the disjoint union of I morphisms or a pair (I,J), with injections into it written in1 and in2.
Identities of I∇ are by in1(idI) and composition is defined:

(g : J→ K)◦ (f : I→ J) =

{
in1(g′ ◦ f ′) f = in1(f ′) ∧ g = in1(g′)
in2(I,K) otherwise

(3)

We then define a category-graded monad T : (I∇)op → Endo(C) where T(f : I → J) = P (I,J) with
operations: ηI = ηP

I and µ f ,g = µP
I,J,K for f : I→ J,g : J→ K ∈ I∇

1. The source and target objects I, J,
and K are used to index µP without needing to determine whether the morphisms f and g are in the left or
right injection of I∇.

Let S = I which is a subcategory of I∇ via the inclusion which is the identity on objects and left
injection in1 on morphisms. This satisfies the property that all identities of I∇ are in S as identities are
given by in1 id. Generalised unit η̄ then has two equivalent definitions:

∀ f : I→ J ∈ I1 . η̄ f = P idI f ◦η
P
I = P f idJ ◦η

P
J (4)

These two definitions of η̄ are equivalent by dinaturality of ηP (the right equality is the dinaturality
condition). The generalised unit axioms follow from bifunctor axiom P idI idI = id and dinaturality of µP.

In the Appendix, Proposition 44 shows that the above construction has a left inverse, i.e., every
category-graded monad with generalised unit indexed by I∇ with S= I has a corresponding parameterised
monad. We give an outline here.

30 Unifying graded and parameterised monads

For a category-graded monad on T : (I∇)op → Endo(C) with η̄ and subcategory S = I we can
construct a parameterised monad with functor P : Iop× I→ [C,C] on objects as P(I, I) = T (in1idI) and
P(I,J) = T (in2 (I,J)) (for I 6= J). The morphism mapping P(f ,g)h is built from µ and η̄ , where for all
f : I′→ I,g : J→ J′ ∈ I1, h : A→ B ∈ C1 (with shorthand k = in2(I,J), f̄ = in1 f and ḡ = in1 g):

Tk A
η̄ f̄Tk

// T f̄Tk A
T f̄ Tk η̄ḡ

// T f̄TkTḡ A
µ f̄ ,k,Tḡ

// T(k◦ f̄)Tḡ A
µk◦ f̄ ,ḡ

// T(ḡ◦k◦ f̄) A Th // T(ḡ◦k◦ f̄) B

Bifunctoriality of P follows from the right lax natural transformation and category-graded-monads axioms.
The parameterised monad operations are provided by category-graded monad µP

I,J,K = µin2(I,J),in2(J,K) and
generalised unit ηP

I = η̄in1idI .
This construction is the inverse of the former, thus there is just one category-graded monad with

generalised unit for every parameterised monad.

Corollary 38. 2-cat-graded monads with a generalised unit subsume graded and parameterised monads.

The mapping of a parameterised monad to our structure here identifies two parts of a parameterised
monad: the object mapping of P, defined for all pairs of objects and the morphism mapping of P, defined
for all morphisms. These two classes are grouped into a single category via I∇ such that the generalised
unit is defined only on the actual morphisms of I, corresponding to the morphism mapping part of P.

Remark 39. Atkey [2009b] describes parameterised monads in a similar way to our description of
category-graded monads: “parameterised monads are to monads as categories are to monoids”. He
illustrates this by generalising the writer monad TA = M×A for some monoid on M, replacing M with
morphisms of a small category. That is, for some small category S then P : Sop×S→ [Set,Set] is defined
P(I,J)A = S(I,J)×A, i.e., the set of I→ J morphisms paired with the set A. Then ηP

I,Aa 7→ (idI,a) and
µP

I,J,K,A(f ,(g,a)) 7→ (g◦ f ,a). This construction is essentially a value-level version of what the indices
of a category-graded monad provide. Thus category-graded monads provide a static trace of morphism
composition (recall Example 20), whilst parameterised monads can give only a dynamic, value-level trace.

Example 40. Making parameterised monads constructive via a category-graded monad. We define a
class of category-graded monads based on parameterised monads, but that are not parameterised monads.
A parameterised monad (P : Iop× I→ [C,C],µP,ηP) induces a cat-graded monad on T : Iop→ Endo(C)
with T(f : I→ J) = P (I,J), i.e., source and target objects of f provide the parameterised monad indices
with operations ηI =ηP

I and µ f ,g = µP
I,J,K (for f : I→ J, g : J→K) and a generalised unit η̄ f =P idI f ◦ηP

I .
This gives a restricted view of the parameterised monad P, allowing computations P (I,J) to be used
only when there is a morphism (e.g., a proof or “path”) I → J ∈ I1. We thus call this a constructive
parameterised monad. This example is only possible with the additional power of category-graded monads.

7 Example: combining graded monads and parameterised monads

Since 2-category-graded monads with generalised units unify both parameterised and graded monads
(Corollary 38) then they can provide a model for systems which combine both quantitative reasoning
and program logics into a single structure. For example, Barthe et al. [2016] define a probabilistic Hoare
Logic (aHL) which provides a quantitative analysis of the “union bound” of probabilistic computations.
Judgments in aHL for a program c are of the form: `β c : φ ⇒ ψ where the initial state of a program c
satisfies pre-condition φ and after execution produces a distribution of states for which ψ holds. The

D. Orchard and P. Wadler and H. Eades 31

annotation β is the maximum probability that ψ does not hold. Derivations of judgments track the change
in this probability bound β by structure on the annotation (where β ,β ′ ∈ [0,1] and + is saturating at 1):

`0 skip : φ ⇒ φ
(skip)

`0 x← e : φ [e/x]⇒ φ
(assgn)

`β c : φ ⇒ φ ′ `β ′ c′ : φ ′⇒ φ ′′

`β+β ′ c;c′ : φ ⇒ φ ′′
(seq)

|= φ ′→ φ `β c : φ ⇒ ψ |= ψ → ψ ′ β ≤ β ′

`β ′ c : φ ′⇒ ψ ′
(weak)

The consequence rule (called weak above) combines pre-condition strengthening and post-condition
weakening with approximation of the probability upper-bound.

We give a 2-category-graded monadic semantics to this system, using a product of two indexing
categories: the 2-category of the additive monoid over [0,1] (with ordering ≤) and the category Prop∇

whose morphisms are pairs of propositions Prop and logical implications. For brevity we consider just
the subset of the aHL system given above, though the rest of the system can be readily modelled.

Barthe et al. interpret programs as functions from a store type State to distributions over stores
Distr(State). We extend this to include a return value of type A denoting DA = State→Distr(State×A).
We define a 2-category-graded monad on Set as a lax functor T : ([0,1]×Prop∇)op→ [Set,Set] with
generalised unit, combining Atkey’s parameterised monad for a program logic (which refines the set of
denotations to valid store transformations [Atkey, 2009b, p.27]) with the additional validity requirements
with regards probabilities in aHL (the probability that the return state does not satisfy the post-condition is
bounded above by β) where:

T(β , f :φ→ψ)A = {c ∈ DA | ∀s1. s1 |= φ ⇒∃(s2,a).((s2,a) ∈ c(s1) ∧ s2 |= ψ ∧ Pr
s2
[¬ψ]≤ β)}

The definition of the category-graded monad operations is essentially that of a state monad combined
with a distribution monad (e.g., η(0,φ),A : A→ T0,idφ :φ→φ A = x 7→ λ s.λ p.(s,x)) but whose set of values is
refined by the validity requirements of the above definition. The generalised unit operation is defined when
|= φ ′→ φ then η̄(0, f :φ ′→φ) : A→ T(0, f)A = x 7→ λ s.λ p.(s,x) where f is the model of the implication in
Prop. Derivations are then interpreted as morphisms J`β c : φ ⇒ ψK : 1→ Tβ , f :φ→ψ1 with:

JskipK = η(0,φ),1 : 1→ T0,idφ :φ⇒φ 1 Jc;c′K = µ(β , f),(β ′,g),1 ◦Tβ , f :φ→φ ′Jc′K◦ JcK

The (weak) rule is modelled by generalised unit and the approximation maps of the 2-cat-graded monad:

µ(β ′,g◦ f),(0,g′) ◦Tg◦ f η̄(0,g′:φ ′→φ) ◦µ(0,g),(β ′, f) ◦ η̄(0,g:ψ→ψ ′) ◦Tf:β≤β ′ ◦ (JcK : 1→ Tβ , f :φ→ψ1)

8 Discussion

8.1 A more direct relationship between parameterised and graded monads

The main motivation for category-graded monads is to unify graded and parameterised monads. However,
in some restricted cases, some parameterised monads can be mapped to graded monads more directly.
Proposition 41. For a parameterised monad (P : Iop× I→ [C,C],µP,ηP) where I is a monoidal category
(I,•,e) and C is finitely complete (in that it has all finite limits) there is a graded monad given by an end in
C (generalising universal quantification) G f =

∫
iP(i, i• f). with unit η : A→ Ge = ηP : A→ P(i, i• e)

and graded monad multiplication as follows (which shows some calculation):

G f Gg =
∫

i
P(i, i• f)

∫
j
P(j, j •g) =

∫
i
P(i, i• f)P(i• f ,(i• f)•g)

µP

−→
∫

i
P(i,(i• f)•g) =

∫
i
P(i, i• (f •g)) = G(f •g)

Mapping the other way (graded into parameterised) is more difficult as two indices are needed from one.

32 Unifying graded and parameterised monads

8.2 Categorical semantics

Given a notion of tensorial strength for category-graded monads, it is straightforward to define a calculus
whose denotational model is given by the category-graded monad operations, i.e., a language like the
monadic metalanguage of Moggi [1991] (akin to Haskell’s do-notation) for sequential composition of
effectful computations. The core sequential composition and identity rules are then of the form:

Γ ` t : T f A Γ,x : A ` t ′ : Tg B f : I→ J g : J→ K
Γ ` let x← t in t ′ : Tg◦ f B

Γ ` t : A
Γ ` 〈t〉 : TidI A

The semantics of such a calculus resembles that of the monadic meta language, taking the same form
but with the added morphism grades. This semantics then requires a notion of tensorial strength in the
category-graded setting, that is a natural transformation σ f ,A,B : A×T f B→T f (A×B) for all f : I→ J ∈ I1
satisfying a graded variant of the usual monadic strength axioms. Tensorial strength has been previously
considered for graded [Katsumata, 2014] and parameterised monads [Atkey, 2009b]. Defining a subsuming
notion of strong category-graded monads as above appears to be straightforward.

8.3 Further work

Category-graded comonads Various works employ graded comonads to give the semantics of coeffects
(Petricek et al. [2013], Brunel et al. [2014], Ghica and Smith [2014]). Category-graded monads dualise
straightforwardly to category-graded comonads as a colax functor D : I→ Endo(C) witnessed by natural
transformations εI : DidI

.−→ Id and δ f ,g : Dg◦ f
.−→ DgD f with dual axioms to category-graded monads. The

source of the colax functor is dual to the Iop source of a category-graded monad lax functor.
Graded comonads are category-graded comonads however graded comonads usually have a semiring

structure on their indices, adding extra graded monoidal structure (called exponential graded comon-
ads [Gaboardi et al., 2016]). Further work is to incorporate such additional structure into our formulation.

Polymonads, supermonads, and productoids Polymonads provide a programming-oriented generali-
sation of monads replacing the single type constructor M of a monad with a family of constructors Σ (Hicks
et al. [2014]). For some triples of M,N,P ∈ Σ there is a bind operation of type: ∀a,b.Ma→ (a→ Nb)→
Pb which allows two effectful computations captured by M and N to be composed and encoded by P. This
generalises the familiar bind operation for monadic programming of type ∀a,b.Ma→ (a→Mb)→Mb
which internalises Kleisli extension of a strong monad.

Bracker and Nilsson [2016] provide a similar structure to polymonads, called supermonads where the
constructors M,N,P are derived from an indexed family. The additional power of supermonads is that
each functor need not be an endofunctor, but instead maps from some subcategory of the base category.
This provides models which have some type-predicate-like restrictions on functors.

Another related structure is the productoid of Tate [2013] with an indexed family of constructors
T : Eff→ [C,C], indexed by an effectoid structure Eff which is a kind of relational ordered monoid. Tate
mentions the possibility of modelling this 2-categorically.

Future work is to study a generalisation of these seemingly related structures.
Hoare and Dijkstra Monads Nanevski et al. [2008] introduced the notion of Hoare monads which
resemble parameterised monads but indexed by pre-conditions that are dependent on a heap value and
post-conditions which are dependent on a heap and the return value of a computation. This is generalised
by the notion of Dijkstra monads [Swamy et al., 2013, Maillard et al., 2019]) indexed by a predicate
transformer which, given a post-condition on the final heap and value, computes the weakest pre-condition

D. Orchard and P. Wadler and H. Eades 33

of the computation. Studying how these structures fit with other kinds of indexed generalisations of
monads, perhaps through the lense of lax functors, is interesting further work.

Monads on indexed sets An alternate indexed generalisation of monads is to consider monads over
indexed sets, as in the work of McBride [2011]. This provides a fine-grained model of effects which can
react to external uncertainty in the program state in a more natural way than the approaches discussed here.
Exploring the connection between monads on indexed sets/types and cat-graded monads is further work.

The alternate oidification Category-graded monads were presented as the oidification of monads as a
lax functor T : 1→ Endo(C) to T : Iop→ Endo(C). An alternate, orthogonal oidification is to generalise
the target category as well to the lax functor T : Iop→Cat where each T(f : I→ J) is then a functor from
category TI to TJ, rather than an endofunctor on a particular category.

Such a generalisation suggests further control over the models of effects where for a morphism
f : I→ J the categories TI and TJ may differ. For example, they may be subcategories of some overall
base category as in the supermonads of Bracker and Nilsson [2016]. Exploring this is future work.

Adjunctions Fujii et al. [2016] show how a graded monad can be factored into an adjunction with graded
analogues of the Kleisli and Eilenberg-Moore constructions. Relatedly, Atkey [2009a] gives notions of
Kleisli and Eilenberg-Moore category for parameterised monads. Defining the appropriate adjunctions
which gives rise to category-graded monads is further work. This would provide the opportunity to
consider different kinds of semantics, for example, for call-by-push-value (Levy [2006]).

8.4 Summary and concluding remarks

Following Bénabou’s perspective of monads as degenerate lax functors T : 1→ Endo(C) involving single
object categories, we applied the notion of oidification, generalising the source category from a point to a
category T : Iop→ Endo(C). This yielded the base notion of category-graded monads from which we
encompass the full power of graded and parameterised monads as found in the recent literature. Namely:
• Monoid-graded monads are category-graded monads (Prop. 23);
• Pomonoid-graded monads are 2-category graded monads (Prop. 25);
• Discrete parameterised monads are category-graded monads (Prop. 33);
• Parameterised monads are category-graded monads with a generalised unit (Prop. 37) η̄ f : Id .−→ T f

(a right lax natural transformation) for all f ∈ S1 where S⊆ I and S0 = I0.
Each result is an injection into the more general structure. This could be made stronger by a full and
faithful embedding, but this requires a definition of categories of parameterised monads and graded
monads, but the former is not provided in the literature. This is future work.

Category-graded monads have the feel of a proof relevant version of a graded monad or parameterised
monad where the index is not merely a value, but a computation, that is a program or a proof. We leave the
door open for future applications to utilise this generality, not just to provide a framework for including
both graded and parameterised monads into one cohesive whole, but also for programs and models with
more fine-grained computational indices.
Acknowledgments Thanks to Bob Atkey, Iavor Diatchki, Shin-ya Katsumata, and Ben Moon for useful
discussions and comments on a draft of this paper. Specific thanks to Iavor for pointing out the connection
to the Grothendieck construction and Shin-ya for various mathematical insights. We also thank the
reviewers for their helpful feedback.

34 Unifying graded and parameterised monads

References

R. Atkey. Algebras for parameterised monads. In International Conference on Algebra and Coalgebra in
Computer Science, pages 3–17. Springer, 2009a. doi:10.1007/978-3-642-03741-2 2.

R. Atkey. Parameterised notions of computation. JFP, 19(3-4):335–376, 2009b.
doi:10.1017/S095679680900728X.

G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub. A program logic for union bounds. In ICALP
2016, pages 107:1–107:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.107.

J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages 1–77.
Springer, 1967. doi:10.1007/BFb0074299.

P. Bertozzini, R. Conti, and W. Lewkeeratiyutkul. A Horizontal Categorification of Gelfand Duality. arXiv
preprint arXiv:0812.3601, 2008a. doi:10.1016/j.aim.2010.06.025.

P. Bertozzini, R. Conti, and W. Lewkeeratiyutkul. Non-Commutative Geometry, Categories and Quantum
Physics. East West J. Math., 2007(arXiv: 0801.2826):S213–S259, 2008b.

J. Bracker and H. Nilsson. Supermonads: one notion to bind them all. In Proceedings of the 9th
International Symposium on Haskell, pages 158–169. ACM, 2016. doi:10.1145/2976002.2976012.

A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A Core Quantitative Coeffect Calculus. In ESOP,
pages 351–370, 2014. doi:10.1007/978-3-642-54833-8 19.

P. Capriotti. Monads as lax functors. https://www.paolocapriotti.com/blog/2015/06/22/

monads-as-lax-functors/index.html (accessed March 2020), 2015.

S. Fujii, S. Katsumata, and P.-A. Melliès. Towards a Formal Theory of Graded Monads. In FOSSACS,
pages 513–530. Springer, 2016. doi:10.1007/978-3-662-49630-5 30.

M. Gaboardi, S. Katsumata, D. Orchard, F. Breuvart, and T. Uustalu. Combining Effects and Coeffects
via Grading. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, pages 476–489, 2016. doi:10.1145/2951913.2951939.

D. R. Ghica and A. I. Smith. Bounded Linear Types in a Resource Semiring. In European Symposium on
Programming Languages and Systems, pages 331–350. Springer, 2014. doi:10.1007/978-3-642-54833-
8 18.

J. Gibbons. Comprehending Ringads. In A List of Successes That Can Change the World, pages 132–151.
Springer, 2016. doi:10.1007/978-3-319-30936-1 7.

A. Grothendieck. Catégories fibrées et descente. Institut des Hautes Etudes Scientifiques, 1961.

M. Hicks, G. Bierman, N. Guts, D. Leijen, and N. Swamy. Polymonadic programming. Electronic Proceed-
ings in Theoretical Computer Science, 153:7999, Jun 2014. ISSN 2075-2180. doi:10.4204/eptcs.153.7.

K. Imai, S. Yuen, and K. Agusa. Session Type Inference in Haskell. In Proc. of PLACES, pages 74–91,
2010. doi:10.4204/EPTCS.69.6.

B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations of
Mathematics. Elsevier, 1999. ISBN 978-0-444-50170-7.

S. Katsumata. Parametric effect monads and semantics of effect systems. In Proceedings of POPL 2014,
pages 633–645. ACM, 2014. doi:10.1145/2535838.2535846.

http://dx.doi.org/10.1007/978-3-642-03741-2_2
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.1007/BFb0074299
http://dx.doi.org/10.1016/j.aim.2010.06.025
http://dx.doi.org/10.1145/2976002.2976012
http://dx.doi.org/10.1007/978-3-642-54833-8_19
https://www.paolocapriotti.com/blog/2015/06/22/monads-as-lax-functors/index.html
https://www.paolocapriotti.com/blog/2015/06/22/monads-as-lax-functors/index.html
http://dx.doi.org/10.1007/978-3-662-49630-5_30
http://dx.doi.org/10.1145/2951913.2951939
http://dx.doi.org/10.1007/978-3-642-54833-8_18
http://dx.doi.org/10.1007/978-3-642-54833-8_18
http://dx.doi.org/10.1007/978-3-319-30936-1_7
http://dx.doi.org/10.4204/eptcs.153.7
http://dx.doi.org/10.4204/EPTCS.69.6
http://dx.doi.org/10.1145/2535838.2535846

D. Orchard and P. Wadler and H. Eades 35

P. B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order and
Symbolic Computation, 19(4):377–414, 2006. doi:10.1007/s10990-006-0480-6.

K. Maillard, D. Ahman, R. Atkey, G. Martı́nez, C. Hriţcu, E. Rivas, and É. Tanter. Dijkstra monads for all.
Proceedings of the ACM on Programming Languages, 3(ICFP):104, 2019. doi:10.1145/3341708.

C. McBride. Functional pearl: Kleisli arrows of outrageous fortune. 2011.

P.-A. Mellies. Parametric monads and enriched adjunctions. Available via http://www.pps.

univ-paris-diderot.fr/~mellies/tensorial-logic.html, 2012.

S. Milius, D. Pattinson, and L. Schröder. Generic Trace Semantics and Graded Monads. In L. S.
Moss and P. Sobocinski, editors, 6th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2015), volume 35 of Leibniz International Proceedings in Informatics (LIPIcs), pages 253–269,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-
84-2. doi:10.4230/LIPIcs.CALCO.2015.253.

E. Moggi. Computational lambda-calculus and monads. In Logic in Computer Science, 1989. LICS’89,
Proceedings., Fourth Annual Symposium on, pages 14–23. IEEE, 1989. doi:10.1109/LICS.1989.39155.

E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991. doi:10.1016/0890-
5401(91)90052-4.

A. Mycroft, D. Orchard, and T. Petricek. Effect Systems Revisited – Control-Flow Algebra and Semantics.
In Semantics, Logics, and Calculi, pages 1–32. Springer, 2016. doi:10.1007/978-3-319-27810-0 1.

A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism and separation. Journal of
Functional Programming, 18(5-6):865–911, 2008. doi:10.1017/S0956796808006953.

nLab authors. Horizontal Categorification. http://ncatlab.org/nlab/show/

horizontalcategorification, Jan. 2020. Revision 20.

D. Orchard and N. Yoshida. Effects as Sessions, Sessions as Effects. POPL, 51(1):568–581, 2016.
doi:10.1145/2914770.2837634.

D. Orchard and N. Yoshida. Session types with linearity in Haskell. In S. Gay and A. Ravara, editors, Be-
havioural Types: from Theory to Tools, pages 219–241. River Publishers, 2017. ISBN 9788793519824.
doi:10.13052/rp-9788793519817.

D. Orchard, T. Petricek, and A. Mycroft. The semantic marriage of monads and effects. CoRR,
abs/1401.5391, 2014. URL http://arxiv.org/abs/1401.5391.

D. Orchard, V.-B. Liepelt, and H. Eades III. Quantitative Program Reasoning with Graded Modal Types.
Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/3341714.

T. Petricek, D. Orchard, and A. Mycroft. Coeffects: Unified static analysis of context-dependence. In
ICALP (2), pages 385–397, 2013. doi:10.1007/978-3-642-39212-2 35.

R. Pucella and J. A. Tov. Haskell Session Types with (Almost) no Class. In Proc. of Haskell symposium
’08, pages 25–36. ACM, 2008. doi:10.1145/1411286.1411290.

A. L. Smirnov. Graded monads and rings of polynomials. Journal of Mathematical Sciences, 151(3):
3032–3051, 2008. doi:10.1007/s10958-008-9013-7.

D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control in
Haskell, volume 46. ACM, 2011. doi:10.1145/2034675.2034688.

http://dx.doi.org/10.1007/s10990-006-0480-6
http://dx.doi.org/10.1145/3341708
http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic.html
http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic.html
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.253
http://dx.doi.org/10.1109/LICS.1989.39155
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/978-3-319-27810-0_1
http://dx.doi.org/10.1017/S0956796808006953
http://ncatlab.org/nlab/show/horizontal categorification
http://ncatlab.org/nlab/show/horizontal categorification
http://ncatlab.org/nlab/revision/horizontal categorification/20
http://dx.doi.org/10.1145/2914770.2837634
http://dx.doi.org/10.13052/rp-9788793519817
http://arxiv.org/abs/1401.5391
http://dx.doi.org/10.1145/3341714
http://dx.doi.org/10.1007/978-3-642-39212-2_35
http://dx.doi.org/10.1145/1411286.1411290
http://dx.doi.org/10.1007/s10958-008-9013-7
http://dx.doi.org/10.1145/2034675.2034688

36 Unifying graded and parameterised monads

R. Street. Two constructions on lax functors. Cahiers de topologie et géométrie différentielle catégoriques,
13(3):217–264, 1972.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying higher-order programs with
the Dijkstra monad. ACM SIGPLAN Notices, 48(6):387–398, 2013. doi:10.1145/2499370.2491978.

R. Tate. The sequential semantics of producer effect systems. In ACM SIGPLAN Notices, volume 48,
pages 15–26. ACM, 2013. doi:10.1145/2429069.2429074.

P. Wadler. Monads and composable continuations. Lisp and Symbolic Computation, 7(1):39–55, 1994.
doi:10.1007/BF01019944.

P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Trans. Comput. Logic, 4:1–32,
January 2003. doi:10.1145/601775.601776.

A Additional background and details

Definition 42. 2-categories extend the notion of a category with morphism between morphisms. A
2-category C has a class of objects C0, a class of 1-morphisms (usual morphisms, between objects) C1,
and a class of 2-morphisms (between 1-morphisms) C2. We write 2-morphisms in bold, e.g. k : f ⇒ g is
a 2-morphism between 1-morphisms f ,g : A→ B.

1-morphisms compose as usual via ◦ and have identities idA for all objects A. 2-morphisms have
two notions of composition: horizontal, written ◦0, which composes along objects and vertical written
◦1 which composes along morphisms. That is, horizontal composition of a 2-morphism i : f ⇒ g
where f ,g : A→ B and j : f ′⇒ g′ where f ′,g′ : B→C yields j◦0 i : (f ′ ◦ f)⇒ (g′ ◦g). For morphisms
f ,g,h : A→ B and 2-morphisms i : f ⇒ g and j : g⇒ h then their vertical composition is j◦1 i : f ⇒ h.

Both vertical and horizontal composition are associative and have an identity via the identity 2-
morphism id f : f ⇒ f . Additionally, vertical and horizontal composition satisfy the interchange axiom:
(i◦1 j)◦0 (k◦1 l) = (i◦0 k)◦1 (j◦0 l).

Proposition 43. The following adjoint triple gives rise to functors for mapping (small) categories to their
discrete and indiscrete versions:

d a ob a i : Set→ Cat

where d : Set→ Cat maps a set to a discrete category (the set gives the objects of the category), ob :
Cat→ Set maps a category to its set of objects, i : Set→ Cat maps a set to an indiscrete category with
morphisms given by the unique pair of the objects, i.e., (iA)(a,b) = {(a,b)}. Identities are pairs of
identical objects and composition of (a,b) with (b,c) yields (a,c); think dominoes.

From this adjoint triple there arises two functors ∆ = d◦ob : Cat→ Cat which discretises categories
by discarding all but the identities and ∇ = i◦ob : Cat→ Cat which maps a category to its indiscrete
form by replacing their morphisms with pairs of objects.

The following provides the details of the inverse direction of Proposition 37.

Proposition 44. Every category-graded monad with generalised unit indexed by I∇ with S = I has a
corresponding parameterised monad.

Proof. Let (T,η ,µ, η̄) be a category-graded monad with generalised unit η̄ and T : (I∇)op→ Endo(C)
and subcategory S= I. Then, there is a parameterised monad with P : Iop× I→ [C,C] defined on objects

http://dx.doi.org/10.1145/2499370.2491978
http://dx.doi.org/10.1145/2429069.2429074
http://dx.doi.org/10.1007/BF01019944
http://dx.doi.org/10.1145/601775.601776

D. Orchard and P. Wadler and H. Eades 37

as P(I, I) = T (in1idI) and P(I,J) = T (in2 (I,J)) (for I 6= J) and on morphisms f : I′→ I,g : J→ J′

∈ I1, h : A→ B ∈ C1 (with shorthand k = in2(I,J), f̄ = in1 f and ḡ = in1 g):

P(f ,g)h = Tḡ◦k◦ f̄ h ◦ µk◦ f̄ ,ḡ ◦ µ f̄ ,kTḡ ◦ T f̄ Tk η̄ḡ ◦ η̄ f̄Tk : P(I,J)A→ P(I′,J′)B (5)

The following shows part of this definition diagrammatically for clarity:

TkA
η̄ f̄ Tk

// T f̄TkA
T f̄ Tk η̄ḡ

// T f̄TkTḡA
µ f̄ ,k,Tḡ

// T(k◦ f̄)TḡA
µk◦ f̄ ,ḡ

// Tḡ◦k◦ f̄ A
Th // Tḡ◦k◦ f̄ B

The morphism mapping of P is thus built from µ and η̄ and is well defined since the functor T(ḡ ◦
(in2(I,J))◦ f̄) equals T(in2(I′,J′)) by composition in I∇ (eq. 3). Thus, the domain of the functor matches
the object mapping of P(I′,J′). Since S= I, η̄ is defined for all morphisms of I which are wrapped by in1
to indicate they are morphisms on I rather than object pairs.

Bifunctoriality of P(f ,g)h holds as follows:

• P(f ′ ◦ f ,g′ ◦g)(h′ ◦h) = P(f ,g′)h′ ◦P(f ′,g)h : P(K′, I)A→ P(I′,K)C
for all h : A→ B,h′ : B→C ∈ C1 and g : I→ J,g′ : J→ K ∈ I1 and f : I′→ J′, f ′ : J′→ K′ ∈ I1

follows from the right lax natural transformation axiom on µ and associativity of µ , via the following
reasoning (where k = in2(K, I′) and k′ = in2(J′,J) = ḡ◦ k ◦ f̄ ′ by the definition of composition for
I∇ (eq.3), and a line above a morphism means that in1 is applied to it):

P(f ,g′)h′ ◦P(f ′,g)h

≡ Tḡ′◦k′◦ f̄ h
′ ◦ µk′◦ f̄ ,ḡ′ ◦ µ f̄ ,k′Tḡ′ ◦ T f̄ Tk′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦Tḡ◦k◦ f̄ ′h ◦ µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦k′◦ f̄ h
′ ◦ µk′◦ f̄ ,ḡ′ ◦ µ f̄ ,k′Tḡ′ ◦ T f̄ Tk′ η̄ḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′h ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦k′◦ f̄ h
′ ◦ µk′◦ f̄ ,ḡ′ ◦ µ f̄ ,k′Tḡ′ ◦ T f̄ Tk′Tḡ′h ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦k′◦ f̄ h
′ ◦ µk′◦ f̄ ,ḡ′ ◦ Tk′◦ f̄Tḡ′h ◦ µ f̄ ,k′Tḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦k′◦ f̄ h
′ ◦ Tḡ′◦k′◦ f̄ h◦µk′◦ f̄ ,ḡ′ ◦ µ f̄ ,k′Tḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{func.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦h)◦µk′◦ f̄ ,ḡ′ ◦ µ f̄ ,k′Tḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦h)◦µ f̄ ,ḡ′◦k′ ◦ T f̄ µk′,ḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦µk◦ f̄ ′,ḡ ◦ µ f̄ ′,kTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦ h) ◦ µ f̄ ,ḡ′◦k′ ◦ T f̄ µk′,ḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ η̄ f̄Tk′ ◦ µ f̄ ′,ḡ◦k ◦ T f̄ ′µk,ḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦ h) ◦ µ f̄ ,ḡ′◦k′ ◦ T f̄ µk′,ḡ′ ◦ T f̄Tḡ◦k◦ f̄ ′ η̄ḡ′ ◦ T f̄ µ f̄ ′,ḡ◦k ◦ T f̄T f̄ ′µk,ḡ ◦ η̄ f̄T f ′TkTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦ h) ◦ µ f̄ ,ḡ′◦k′ ◦ T f̄ µk′,ḡ′ ◦ T f̄ µ f̄ ′,ḡ◦kTḡ′ ◦ T f̄T f̄ ′Tḡ◦kη̄ḡ′ ◦ T f̄T f̄ ′µk,ḡ ◦ η̄ f̄T f ′TkTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦k′◦ f̄ (h
′ ◦ h) ◦ µ f̄ ,ḡ′◦k′ ◦ T f̄ µk′,ḡ′ ◦ T f̄ µ f̄ ′,ḡ◦kTḡ′ ◦ T f̄T f̄ ′µk,ḡTḡ′ ◦ T f̄T f̄ ′TkTḡη̄ḡ′ ◦ η̄ f̄T f ′TkTḡ ◦ T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{k′ def.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ,ḡ′◦ḡ◦k◦ f̄ ′ ◦T f̄ µḡ◦k◦ f̄ ′,ḡ′ ◦T f̄ µ f̄ ′,ḡ◦kTḡ′ ◦T f̄T f̄ ′µk,ḡTḡ′ ◦T f̄T f̄ ′TkTḡη̄ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ,ḡ′◦ḡ◦k◦ f̄ ′ ◦T f̄ µ f̄ ′,ḡ′◦ḡ◦k ◦T f̄T f̄ ′µḡ◦k,ḡ′ ◦T f̄T f̄ ′µk,ḡTḡ′ ◦T f̄T f̄ ′TkTḡη̄ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ,ḡ′◦ḡ◦k◦ f̄ ′ ◦T f̄ µ f̄ ′,ḡ′◦ḡ◦k ◦T f̄T f̄ ′µk,ḡ′◦ḡ ◦ T f̄T f̄ ′Tk µḡ,ḡ′ ◦T f̄T f̄ ′TkTḡη̄ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ,ḡ′◦ḡ◦k◦ f̄ ′ ◦T f̄ µ f̄ ′,ḡ′◦ḡ◦k ◦T f̄T f̄ ′µk,ḡ′◦ḡ ◦ T f̄T f̄ ′Tk µḡ,ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′TkTḡη̄ḡ′ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ′◦ f̄ ,ḡ′◦ḡ◦k ◦µ f̄ , f̄ ′Tḡ′◦ḡ◦k ◦T f̄T f̄ ′µk,ḡ′◦ḡ ◦ T f̄T f̄ ′Tk µḡ,ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′TkTḡη̄ḡ′ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µ f̄ ′◦ f̄ ,ḡ′◦ḡ◦k ◦T f̄ ′◦ f̄ µk,ḡ′◦ḡ ◦ µ f̄ , f̄ ′TkTḡ′◦ḡ ◦T f̄T f̄ ′Tk µḡ,ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′TkTḡη̄ḡ′ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{µ assoc.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ µ f̄ , f̄ ′TkTḡ′◦ḡ ◦T f̄T f̄ ′Tk µḡ,ḡ′ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′TkTḡη̄ḡ′ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ µ f̄ , f̄ ′TkTḡ′◦ḡ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′Tk µḡ,ḡ′ ◦T f̄ ′TkTḡη̄ḡ′ ◦T f̄ ′Tk η̄ḡ ◦ η̄ f̄ ′Tk

{func.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ µ f̄ , f̄ ′TkTḡ′◦ḡ ◦ η̄ f̄T f̄ ′TkTḡ′◦ḡ ◦T f̄ ′Tk (µḡ,ḡ′ ◦Tḡη̄ḡ′ ◦ η̄ḡ) ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ µ f̄ , f̄ ′TkTḡ′◦ḡ ◦T f̄T f̄ ′Tk (µḡ,ḡ′ ◦Tḡη̄ḡ′ ◦ η̄ḡ) ◦ η̄ f̄T f̄ ′Tk ◦ η̄ f̄ ′Tk

{µ nat.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ T f̄ ′◦ f̄ Tk (µḡ,ḡ′ ◦Tḡη̄ḡ′ ◦ η̄ḡ) ◦ µ f̄ , f̄ ′Tk ◦ η̄ f̄T f̄ ′Tk ◦ η̄ f̄ ′Tk

{η̄ nat.} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ T f̄ ′◦ f̄ Tk (µḡ,ḡ′ ◦Tḡη̄ḡ′ ◦ η̄ḡ) ◦ µ f̄ , f̄ ′Tk ◦T f η̄ f̄ ′Tk ◦ η̄ f̄Tk

{η̄ /mu} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ T f̄ ′◦ f̄ Tk η̄ḡ′◦ḡ ◦ µ f̄ , f̄ ′Tk ◦T f η̄ f̄ ′Tk ◦ η̄ f̄Tk

{η̄ /mu} ≡ Tḡ′◦ḡ◦k◦ f̄ ′◦ f̄ (h
′ ◦h) ◦ µk◦ f̄ ′◦ f̄ ,ḡ′◦ḡ ◦ µ f̄ ′◦ f̄ ,kTḡ′◦ḡ ◦ T f̄ ′◦ f̄ Tk η̄ḡ′◦ḡ ◦ η̄ f̄ ′◦ f̄Tk

≡ P(f ′ ◦ f ,g′ ◦g)(h′ ◦h)

38 Unifying graded and parameterised monads

• P(idI, idI)idA = idP(I,I)A follows from the right lax natural transformation axiom on η and the unit
properties of cat-graded monads, via the following reasoning (where k = in2(I, I)):

P(idI, idI)idA

≡ Tīd◦k◦īdid ◦ µk◦īd,īd ◦ µīd,kTīd ◦ TīdTk η̄īd ◦ η̄īdTk

{η̄/id property} ≡ Tkid ◦ µk,īd ◦ µīd,kTīd ◦ TīdTk ηI ◦ ηITk

{µ naturality} ≡ Tkid ◦ µk,īd ◦ ηI ◦µīd,kTīd ◦ ηITk

{µ unitality} ≡ Tkid ◦ µk,īd ◦ ηITk

{µ unitality} ≡ Tkid

{functor identity property} ≡ idTk

≡ idP(I,I)A

The parameterised monad operations follow from the cat-graded monad µP
I,J,K = µin2(I,J),in2(J,K) and

generalised unit ηP
I = η̄in1idI . This mapping is inverse to the former, e.g., with ηP

I = η̄in1(idI) = PidIidI ◦
ηP

I = ηP
I (µ is more direct). For P(f ,g)h, substituting eq. 4 into eq. 5 and applying the category-graded

monad laws yields P(f ,g)h (calculation elided for brevity). Therefore, there is just one category-graded
monad with generalised unit for every parameterised monad.

