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The ability to measure privacy accurately and consistently is key in the development of new privacy protections.
However, recent studies have uncovered weaknesses in existing privacy metrics, as well as weaknesses
caused by the use of only a single privacy metric. Metrics suites, or combinations of privacy metrics, are
a promising mechanism to alleviate these weaknesses, if we can solve two open problems: which metrics
should be combined, and how. In this paper, we tackle the first problem, i.e. the selection of metrics for
strong metrics suites, by formulating it as a knapsack optimization problem with both single and multiple
objectives. Because solving this problem exactly is difficult due to the large number of combinations and
many qualities/objectives that need to be evaluated for each metrics suite, we apply 16 existing evolutionary
and metaheuristic optimization algorithms. We solve the optimization problem for three privacy application
domains: genomic privacy, graph privacy, and vehicular communications privacy. We find that the resulting
metrics suites have better properties, i.e. higher monotonicity, diversity, evenness, and shared value range,
than previously proposed metrics suites.
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1 INTRODUCTION
Methods to measure privacy as accurately and consistently as possible are important for the
development of new privacy-enhancing technologies (PETs): without a means to measure and
compare the effectiveness of PETs, it is unclear to what extent new PETs improve on existing PETs.

Privacy measurement is a hard problem because the concept of privacy can be defined in different
ways depending on the privacy domain, and on who is making the definition. As a result, privacy
measurement has been an active research area for many years, and many different metrics have
been proposed [54]. However, not all metrics are equally good and research has identified many
weaknesses of existing metrics. For example, some privacy metrics are hard to interpret [13],
inconsistent [53], or only suitable for narrow application domains [25]. As a result, researchers
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2 Isabel Wagner and Iryna Yevseyeva

have called for using combinations of metrics to evaluate new PETs instead of using single metrics
[22, 45, 54, 59]. Intuitively, the use of combinations of metrics is easily justified because it improves
the diversity of measurement and can improve the interpretation of results by giving insight into
different aspects of privacy. In addition, combinations of metrics can make the ranking of alternative
PETs more robust. Recent work has also shown that combinations of metrics, or metrics suites, can
improve the monotonicity of privacy measurement [60], which is a key requirement for consistent
measurement.

However, there are two open issues: first, how the metrics should be combined, and second, which
metrics should be selected. To address the first issue, the use of multi-criteria decision analysis
methods (MCDA) was recently proposed [60]. The second issue has so far been addressed in a
rather ad-hoc fashion, either relying on convenience, i.e. selecting metrics that are implemented
and readily available, or relying on professional judgment, i.e. selecting metrics that are likely to
“work” in a given application, or relying on prior work, i.e. selecting metrics that have previously
been used [54]. In this paper, we use optimization methods to systematically address this issue.
Privacy metrics suites selection can be presented as a knapsack optimization problem [35],

which can be difficult to solve due to its large combinatorial search space, especially for problems
with more than three objectives. To tackle this problem of computational complexity, various
approximation methods, such as heuristics and metaheuristics [49], many of which are nature-
inspired, have been developed for both single-objective and multi-objective (MO) optimization
problems. These methods are particularly useful for finding approximate solutions in cases when
exact analytic methods struggle to reach optimum in feasible time.
Prior work has suggested a number of criteria for privacy metrics, including monotonicity,

evenness, and shared value range [59]. We argue that privacy metrics suites need to perform well
on these criteria, and in addition they should include a diverse selection of metrics, and the number
of metrics in a suite should be limited to make them easy to apply. In this paper, we contribute a
new optimization-based method to create strong suites of privacy metrics. In particular, we aim to
answer three research questions:
RQ1. What is the optimal composition of metrics suites, in terms of which metrics are selected
and how they are weighted?
RQ2 Which optimization algorithms and which open source packages are most suitable to solve
our optimization problem?
RQ3 What are the trade-offs between different optimization objectives for privacy metrics suites?
In detail, our contributions are as follows.

• We formally define the selection and weighting of privacy metrics in a metrics suite as a
many-objective optimization problem that maximizes five objectives that indicate the quality
of privacy metrics: monotonicity, diversity, evenness, shared value range, and number of
metrics (Section 3).

• We use 16 evolutionary optimization algorithms to solve our optimization problem for three
application domains: genomic privacy, graph privacy, and vehicular communications privacy
(Sections 4 and 5).

• We evaluate the performance of different evolutionary optimization algorithms on our many-
objective problem and find that older, well-established algorithms like NSGA-II perform
better on our problem and datasets than modern algorithms specifically developed to solve
many-objective problems (Section B).

• We analyze the metrics suites generated by the optimization and find that trade-offs have to
be made especially between evenness and shared value range, but also between the effort of
measurement (i.e., the number of metrics in a suite), monotonicity, and diversity. We have
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Designing Strong Privacy Metrics Suites Using Evolutionary Optimization 3

published our dataset of optimization results so that researchers can choose metrics suites
according to their own trade-offs [55] (Section 6).

• We apply our metrics suites to the problem of ranking anonymization algorithms in graph
privacy. We find that our metrics suites rank the algorithms more consistently than individual
metrics (Section 7.1).

• We compare the composition of metrics suites for each application domain and find that
the selection and weights of metrics differs significantly between domains, leading to the
conclusion that there is no one-size-fits-all metrics suite (Section 7.2).

2 BACKGROUND
The research field of creating new privacy-enhancing technologies (PETs) has been very active
in the last two decades, proposing new PETs in various domains, for various data types, and for
various assumptions about the adversary’s capabilities.

To illustrate our general optimization-based approach to to the creation of strong privacy metrics
suites, we have selected three domains – genomic privacy, graph privacy, and vehicular network
privacy – that differ in their data types and assumptions about the adversary. We explain these
three domains below, followed by an overview of existing privacy metrics and their characteristics,
and a discussion of optimization algorithms.

2.1 Privacy Domains
In genomic privacy, the aim is to protect knowledge about which genomic variations are present in an
individual’s genome because these variations can predict, for example, the individual’s susceptibility
to diseases like cancer. The adversary is assumed to have prior knowledge, for example about the
population-wide distributions of genomic variations or about the individual’s relatives or ethnicity.
To preserve the utility in genomic information, for example in research or healthcare, PETs for
genomic privacy have included homomorphic encryption and secure multi-party computation [2].

In graph privacy, the aim is to protect user identities in anonymized social graphs. The adversary
is assumed to have knowledge of an auxiliary, non-anonymized, partially overlapping social graph as
well as the identities of some seed nodes in both graphs and then attempts to re-identify other users
based on similarities in graph structures [38]. PETs for graph privacy have included approaches to
use noise to anonymize graph structures or to publish synthetic graphs.

In vehicular network privacy, the aim is to prevent the adversary from linking subsequent positions
of the user’s vehicle. The adversary is assumed to be able to overhear messages sent by the vehicle,
such as safety broadcasts, and tries to track individual vehicles. PETs in this area have to make
sure that privacy protection does not interfere with the safety function provided by the vehicular
broadcasts, which can, for example, help avoid collisions at intersections with limited visibility [14].

In Section 5.1, we give technical details for how each domain was included in our study.

2.2 Privacy Measurement
Many privacy metrics have been proposed in the literature: a recent survey of technical privacy
metrics, i.e. privacy metrics that measure the technical effectiveness of PETs, discussed more than
80 different privacy metrics [54]. These metrics can be grouped into different categories depending
on what aspect of privacy they measure. For example, some metrics measure the adversary’s success
probability while others focus on the adversary’s uncertainty (e.g., entropy) or the information
gained by the adversary (e.g., mutual information). Eight categories were proposed in [54], and
Table 1 shows that the datasets we used for the three privacy domains relied on metrics from 5–7
of these categories. We refer to [54] for further details on individual metrics.
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4 Isabel Wagner and Iryna Yevseyeva

Table 1. Privacy metrics for each of the three privacy domains in this study and their categories from [54].

Category Metric Genomics [53] Graph [60] Vanet [59]

Uncertainty Anonymity set size – x x
Asymmetric entropy x – –
Asymmetric entropy per SNP x – –
Collision entropy – x x
Conditional entropy x x x
Conditional privacy – x x
Cross entropy – – x
Cumulative entropy x – x
Entropy x x x
Genomic privacy x – –
Inherent privacy x x x
Max entropy – x x
Mean entropy x – –
Min entropy x x x
Normalized entropy x x x
Quantiles anonymity set size – x –
Quantiles entropy – x x

Information gain Amount of leaked information x x x
Conditional privacy loss x x x
Increase in adversary belief – – x
Information surprisal x x –
Loss of anonymity – x –
Mutual information x x x
Normalized mutual information x – x
Pearson correlation – x x
Relative entropy x x x
Variation of information x – –

Similarity Coefficient of determination x – –
Normalized variance – x x

Indistinguishability Information privacy – – x

Success Adversary’s overall success – x –
Adversary’s success rate x x x
Hiding property – x x
Privacy breach level – – x
User-specified innocence x x x

Error Absolute error – x –
Expected distortion – – x
Expected error x – x
Incorrectness – x x
Mean error x – –
Mean squared error x x –
Percentage incorrectly classified x x x

Time Distance to confusion – – x
Mean tracking duration – – x
Time to confusion – – x
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Designing Strong Privacy Metrics Suites Using Evolutionary Optimization 5

2.2.1 Criteria for PrivacyMetrics. Several criteria have been proposed to judge the quality of privacy
metrics. One criterion is monotonicity – the notion that privacy metrics should indicate decreasing
privacy with increasing adversary strength [53]. Monotonicity is an important requirement because
non-monotonic metrics may not be able to distinguish high and low privacy levels.
Another set of criteria focuses on different aspects of privacy. For example, metrics should

indicate the adversary’s chances of success [1], the resources required by the adversary [48], the
portion of data that is not protected [6], and the accuracy, uncertainty, and correctness of the
adversary’s estimate [45]. Taken together, these criteria indicate that a single privacy metric is
unlikely to be sufficient to measure privacy.

The final set of criteria evaluates how well privacy metrics can compare privacy levels within a
scenario (e.g. privacy for two users of the same social network) and between scenarios (e.g. privacy
for users of two different social networks). Metrics whose values are spread evenly across their
value range (evenness) are suitable for within-scenario comparisons, and metrics that have a large
shared value range across different scenarios are suitable for between-scenario comparisons [59].

2.2.2 Combinations of Privacy Metrics. It is unlikely that any single privacy metric can meet all of
the above criteria. Several authors have therefore proposed to use several different metrics and
combine their evaluation [22, 41, 54, 59].
For example, Oya et al. [41] studied location privacy in location-based services and used two

metrics: the adversary’s expected error to quantify correctness, and conditional entropy to quantify
uncertainty. They argue that considering both metrics is essential to avoid designing privacy
mechanisms that provide only low privacy levels.
In addition, Oya et al. observe that none of the privacy mechanisms in their study performed

equally well on the two metrics. This observation has two important implications. First, there is
a need to use multiple metrics to understand all aspects of the privacy protection provided by a
mechanism. Second, to achieve an objective ranking of privacy mechanisms, there is a need to
systematically combine the results from multiple privacy metrics.
In prior work, we have proposed radar charts as a visual method for combination [53] and

methods from multi-criteria decision analysis as an analytic method [59]. In this paper, we build on
this analytic method to improve the design of privacy metrics suites (see Section 3.2).

2.2.3 Utility. Data utility is a concern that is orthogonal to privacy measurement, i.e. developers of
new PETs need to measure both privacy and utility to determine whether the new PET is suitable
for the intended application. In this paper, we are concerned with improving the quality of privacy
measurement through optimized metrics suites. As such we are concerned with including metrics
for different properties of privacy in our metrics suites. Because utility is not a property of privacy,
but rather of the system to which PETs are applied, we do not include utility measures in our study.
A promising line of future work may be to study whether utility measurement can be improved
in a similar manner, or whether it is possible to combine privacy and utility metrics into a single
measure.

2.3 Optimization Problems
Selecting a strong suite of privacy metrics can be formulated as a knapsack problem. The knapsack
problem is a well-known combinatorial NP-hard problem [35]. In this problem, the most valuable
items should be selected out of a given set of items in such a way that the value of the selected set
is maximized. The knapsack is usually limited to a certain capacity or weight, hence, the selected
knapsack should not exceed that capacity. Depending on the way of presenting items, binary,
integer and continuous formulations are available, addressing either selection of an item (with
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0/1 variables), a number of each type of items or assignment of a real weight value to each item,
respectively [34].

Solving each type of knapsack problem is often difficult by exact methods [26, 35]. The difficulty
can be related to the problem size, e.g., number of available items, size of knapsack, number
of objectives to optimize simultaneously and constraints to be satisfied. Similarly, selecting the
strongest suite of privacy metrics by solving a knapsack problem is computationally hard due to the
large number of metrics combinations, each of which takes a number of parameters for evaluating
a number of their qualities (objectives), such as monotonicity, diversity in inputs/outputs, evenness,
and shared value range. For this reason, we use heuristics, in particular evolutionary algorithms,
to solve our metrics suite optimization problem. In this work we represent a privacy metric in a
suite with a real weight. Using real-valued weights allows performing selection and weighting of
metrics in one step.

2.3.1 Evolutionary Optimization. Evolutionary Algorithms (EAs) are nature-inspired optimization
algorithms that search for a good approximation of the optimal solution in feasible time. EAs have
been shown to be efficient in searching large search spaces when solving single-objective and
multi-objective, discrete and continuous, constrained and unconstrained problems [3, 4], including
knapsack problems. Moreover, various benchmark knapsack problems are often used to test newly
developed EAs [19], [63].

Genetic Algorithms (GAs) [17] are among the most well-known EAs, mimicking genetic evolu-
tion and the process of natural selection of species observed in nature. Initially, a GA randomly
generates a population of individuals, each of which is a potential solution. At each iteration a
sub-population of individuals is selected, mutated and recombined, and the best individuals of
this sub-population are selected as the population for the next iteration. The evolutionary process
is repeated until a stopping criterion is met, for example until the maximal number of iterations
or function evaluations is reached. The best individuals are presented as the final approximation
solution. The difference between various EAs are in the way they perform selection and variation
(mutation and recombination) of individuals.

A number of improvements were proposed to make EAs more powerful, such as elitism, which is
preserving best individuals in the population for the future generations; and diversity maintenance,
which is preserving diversity in genotype and/or phenotype across population [4].

Due to the stochastic nature of EAs, it is recommended to run evolutionary processes for a large
enough number of iterations and for a large enough number of runs to ensure stable approximation
results [4]. For instance, the number of iterations per run is usually selected based on some test
runs and observing convergence of performance.
EAs are particularly suitable for our problem because they typically find good approximations,

are efficient, can explore large search spaces, and can handle many objectives. We describe the
single- and multi-objective evolutionary algorithms we used in this study in more detail in Sections
A.1 and A.2.

Aiming at a three different privacy application domains, we used as many algorithms as pos-
sible, as according to the “no free lunch theorem in optimisation”, there is no single algorithm
that performs best across all applications. Hence, in addition to EAs, some other nature-inspired
metaheuristics, such as particle swam optimisation, were used whenever their implementation in
Python was available.

2.3.2 Multi-Objective Optimization. Optimization with multiple objectives is difficult because it is
not enough to search for a single solution with the best value on a single objective, but instead
for a set of solutions that are optimal on at least one of the objectives. These solutions are called
Pareto optimal solutions. The set of Pareto optimal solutions is called the Pareto set in the solution
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space and the Pareto front in the objective space. The Pareto front represents trade-offs between
objectives, where each solution is better than the others on at least one objective. To select the
Pareto optimal solutions, all candidate solutions have to be evaluated on all objectives and compared
pairwisely based on the weak non-dominance relation [36]. The solution xi is considered to be
weakly non-dominated with respect to another solution x j if it is as good as x j on all objectives,
and is better on at least one of the objectives.

Formally, weak non-dominance can be written as follows assuming minimisation of all objectives:

xi ≺ x j ⇔ fm(xi ) ≤ fm(x j )∀m ∈ M and ∃l ∈ M | fl (xi ) < fl (x j ),m , l . (1)

Other types of dominance are available for search of optimal solutions but are less common.
One of the approaches to solving multi-objective problems is to combine all objectives into

a single one by assigning relative weights to each objective. Even though this approach looks
attractive due to its simplicity, it has some drawbacks, e.g. not being able to consider all Pareto
optimal solutions in case of non-convex objective functions [36]. This approach is often used in an
a posteriori approach to multi-objective optimization [36] and MCDA [51], where a single solution
needs to be selected from the Pareto set, e.g. based on the preferences of a decision maker. Such
preferences can be expressed in different forms, e.g. as objectives weights representing importance
of each objective to decision maker(s), or as reference solutions, which decision maker(s) would
want to obtain if possible and towards which the optimization search can be guided [32].

3 PROBLEM FORMULATION
Our aim is to find a weighted selection of privacy metrics – a metrics suite – that can be used to
evaluate PETs. The selection and weighting of metrics is guided by objectives that express desirable
qualities of privacy measurement. In this paper, we focus on five objectives: monotonicity, diversity,
evenness, shared value range, and number of metrics. We selected these five objectives because
they have been used as criteria for the strength of privacy metrics in the literature [59, 60], and
because they could be expressed formally and implemented in our optimization.
In general, additional objectives and alternative definitions of the objectives are possible. For

example, additional objectives may include whether metrics are easy to interpret, whether they can
measure privacy for individual users, or whether they can measure privacy over time. Alternative
definitions for objectives are common in other areas, for example in the evaluation of EA solution
sets, where 10+ metrics exist for uniformity (similar to our evenness). We hope to see future work
that explores other objectives and improves on our work.
In this section, we formulate the problem of selecting and weighting privacy metrics as a

mathematical optimization problem, independent of the application domain, and describe the
five objectives that should be optimized to find the best metrics suite. We cast this problem as a
real-valued optimization problem because this allows us to solve two problems at once: the problem
of selecting which metrics will be included in a metrics suite, and the problem of weighting each
metric so that the properties of the resulting metrics suites are optimized.
In Section B, we will use published empirical data to compute metrics suites for three specific

application domains: genomic privacy, vehicular communications privacy, and graph privacy.

3.1 Preliminaries
Metrics suites are composed of a number of privacy metrics vk drawn from a pool V of candidate
metrics. V varies depending on the application domain because different privacy metrics may be
applicable in each domain. Each metric contributes to the metrics suite according to its weight
wk ∈ [0, 1]. A weight ofwk = 0 indicates that the metric vk is not part of the metrics suite. We use
the Weighted Product Model (described in detail below), a method from multi-criteria decision
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analysis, to combine individual metrics into a metrics suite. We are interested in finding the best
metrics suite ®v with corresponding weights ®w .

Each application domain consists of a set of scenarios S . Each scenario combines user behavior,
user data, adversary behavior, and an ordered list of adversary strength levels L. For example, user
behavior and user data in graph privacy are given by a specific anonymization algorithm applied to
a specific graph; adversary behavior is a specific de-anonymization algorithm; and the adversary’s
strength is determined by how much prior information is at the adversary’s disposal, with more
prior information indicating a stronger adversary.

3.2 ObjectiveM1: Monotonicity
The most important requirement in privacy measurement is that the measurement is monotonic,
that is, privacy metrics should indicate lower privacy for stronger adversaries [53, 59]. Monotonicity
is essential because non-monotonic metrics could indicate the same privacy levels for a strong
privacy-enhancing technology (PET) and for a weak one, and as a result they could make PETs
appear stronger than they are.
To evaluate the monotonicity of a single privacy metric, the metric is computed for an ordered

list of adversary strength levels L. For each pair of successive strength levels, the change in the
metric’s value is analyzed: if the change is in the expected direction, i.e. shows decreasing privacy
for increasing adversary strength, then the metric is monotonic for this pair of adversary strengths.
The percentage of pairwise strength levels where the change in metric value is in the expected
direction is an indicator for monotonicity.

To evaluate the monotonicity of a metrics suite, we aggregate the individual privacy metrics in a
suite using a multi-criteria decision analysis (MCDA) method. Specifically, we use the Weighted
Product Model (WPM) as a well-established MCDA method [51]. WPM computes the relative
ranking of a set of alternatives (i.e., it does not compute absolute privacy values). We use the list of
adversary strength levels L in each scenario to represent this set of alternatives. Because we know
the ground truth of how the strength levels should be ranked, we can judge the monotonicity of
metrics suites [60].
The advantage of using a multiplicative model (WPM) instead of an additive model like the

Weighted Sum Model is that the multiplicative model can eliminate bias due to the magnitude or
units of individual metrics, can correctly integrate higher-better and lower-better metrics, and
avoids rank reversals that can occur with additive models [50]. However, the score computed by
WPM is useful only for ranking and should not be interpreted [50].

To rank the alternatives, WPM computes the metrics suite score Ql for each alternative:

Ql =

n∏
k=1

(x lk )
wk ,

where xlk is the value of metric vk for strength level l , and x lk is normalized:

x lk =

{
xlk

maxl xlk , if higher values indicate higher privacy,
minl xlk
xlk
, if lower values indicate higher privacy.

The monotonicity criterion cm formalizes the notion whether the WPM ranking for a pair of
alternatives is monotonic or not. Note that this criterion depends on knowing the correct ordering
of the alternatives L.

cm(Ql ,Ql+1) =

{
1 if Ql −Ql+1 < 0,
0 otherwise.
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Designing Strong Privacy Metrics Suites Using Evolutionary Optimization 9

Finally, the objective functionM1 computes the portion of these pairwise rankings that are mono-
tonic across all scenarios S .

M1(S) =
1

|S |(|L| − 1)

∑
s ∈S

|L |−1∑
l=1

cm(Ql ,Ql+1). (2)

To simultaneously solve the two problems of selecting/deselecting privacy metrics and choosing
their weights, we adjust the value range for weights towk ∈ [−1, 1]. Metrics with weightswk ≤ 0
are considered not selected. In this way, we ensure that there is a reasonably high probability for
de-selecting metrics when the optimization algorithms generate random weights. The weights are
clipped to [0, 1] before computing the Ql scores.

3.3 ObjectiveM2: Diversity of metrics
It is important to ensure that metrics suites contain a diverse set of metrics. As argued in [54],
privacy metrics measure privacy only indirectly, and different privacy metrics can thus provide
information about different aspects of privacy, such as the adversary’s success rate, uncertainty,
or estimation error. In addition, the interpretation of privacy metrics can be easier if results from
different metrics are available [41].

We consider the diversity of privacy metrics in two main respects: the types of output measured,
and the types of input used for the calculation. We follow [54] for the classification of privacy
metrics into output categories and input types used. Our datasets use metrics belonging to seven
of the eight output categories described in [54], namely uncertainty, error, information gain/loss,
diversity, adversary’s success, time, and indistinguishability. Each metric vk belongs to exactly one
output category O(vk ).

Metrics may use one or more input types I (vk ) to compute their measurement. The metrics in our
study use three types of input data: the adversary’s estimate, ground truth, and prior knowledge
available to the adversary.

To define the diversity objective, we count how many different output categories are present in
a metrics suite, and how many different input types are used for their computation.

M2 = |
⋃

vk ∈V ,wk>0
O(vk ) + I (vk )|. (3)

3.4 ObjectiveM3: Evenness
Evenness indicates how uniformly metric values are spread across their value range [59]. Metrics
that score high on evenness enable easy comparisons within a scenario, for example between users
in a graph, and are thus a useful tool for interpretation. Metrics with low evenness are undesirable
because they make it hard to distinguish between alternatives that are very close.
The evenness ce (v) of a metric v is computed as the normalized Cramér-von Mises criterion,

which indicates how well the distribution of metric values fits a uniform distribution.
Because the aim of easy within-scenario comparisons can be achieved by including a single

highly even metric in a metrics suite, our objective is to maximize the maximum evenness of any
metric in the suite (instead of maximizing the evenness of the entire metrics suite). This approach
is similar to previous recommendations [59, 60].

M3 = max
v ∈V

ce (v). (4)
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3.5 ObjectiveM4: Shared Value Range
The shared value range of a metric indicates to what extent its value range depends on the
characteristics of the scenario, for example on the input graph or the adversary’s de-anonymization
algorithm. Metrics with a high shared value range allow for easy comparisons between different
scenarios and are thus helpful for interpretation and result analysis.

The shared value range cs (v) is computed as the portion of the global value range that is used in
each scenario. Similarly to evenness, a single metric with high shared value range is sufficient to
achieve the aim of easy between-scenario comparisons. We therefore take a similar approach and
define our objective so that only one metric with a high shared value range needs to be included
in a metrics suite, that is, we define the shared value range of a metrics suite as the maximum
individual shared value range across the metrics in the suite.

M4 = max
v ∈V

cs (v). (5)

3.6 ObjectiveM5: Number of metrics
Even though it is desirable to evaluate privacy using a diverse set of metrics, it is unrealistic to
expect that real metrics suites can include all possible metrics: evaluating all metrics would be too
time-consuming, make the analysis unnecessarily cumbersome, may lead to the use of undesirable
metrics (e.g. in terms of monotonicity), or may result in the use of several similar metrics.
We therefore assume that shorter metrics suites are preferable, provided they perform equally

well on the other objectives. To guide the optimization process, we design the objective function to
have its highest value in a range between the lower and upper thresholds tl and tu . The objective
function is zero when metrics suites contain fewer than tl metrics to ensure diversity, and it
decreases with the inverse of the number of metrics when the suite contains more than tu metrics
to ensure usability. In our optimization, we choose tl = 4 to discourage generation of overly short
metrics suites and tu = 8 to keep them short enough to be evaluated by a human decision maker.
There is a well-studied limitation of human capacity of processing information in short-term
memory with seven +/- two objects that most of people can evaluate simultaneously [44].
We defineW as the set of weights for all metrics in a suite and letw = 0 indicate that a metric

is not selected for this metrics suite. Let |w | denote the number of metrics with a weight w > 0,
and tl resp. tu the thresholds that indicate our desired lower resp. upper limits for the number of
metrics in a suite.

M5(W ) =


0 |w | ≤ tl

1 tl < |w | < tu
1
|w |

|w | ≥ tu .

(6)

We evaluate the effect of this objective on the quality of the resulting metrics suites in Section 6.2.
Our evaluation will show how this objective affects the optimization results, and whether larger
metrics suites have better properties, e.g. in terms of monotonicity.

3.7 Five-objective Optimization Problem
We finally integrate the five objectives introduced above into a five-objective optimization problem:

M1(S) → max;
M2 → max;
M3 → max;
M4 → max;

M5(W ) → max .

(7)
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4 SOLUTION ALGORITHMS
To solve the optimization problem defined in Equation 7, we use evolutionary algorithms (EAs).
Because different EAs have different solution approaches, and because EAs have so far not been
used to solve the problem of metrics suite optimization, it is not known which EA will yield the
best solutions. We have therefore evaluated several different types of EA to determine which EA
performs best on our problem.

We have included both single-objective (SO) and multi-/many-objective (MO) algorithms for two
reasons. First, we used SO algorithms to estimate the best value of the monotonicity objective that
we could hope to obtain. Although we could have used the extreme solutions of multi-objective
algorithms, we could run SO algorithms for longer (more generations and more replications) and
thus get more precise estimates. Second, we used SO algorithms to motivate that the added effort
of multi-objective optimization is indeed necessary because the metrics suites found by SO are
much longer and therefore harder to apply in practice.

In our selection of MO algorithms, we aimed for a diverse set of algorithms, including dominance-
based, decomposition-based, and indicator-based evolutionary algorithms as well as meta-heuristics.
However, the final selection of specific SO and MO algorithms was also influenced by their availabil-
ity in open source Python implementations. We include the detailed description of the algorithms
and the performance measures for optimization algorithms in appendix A.

5 EXPERIMENTS
We apply the 16 optimization algorithms described in appendix A (4 single-objective algorithms
and 12 multi-objective algorithms) to three previously published datasets. In this section, we first
describe the datasets and how we encoded our multi-objective problem defined in Equation (7) for
each dataset. Then, we explain which implementations we used for the optimization algorithms
and how we configured each algorithm.

5.1 Datasets
We use one dataset for each of the three privacy domains introduced above. In particular, we use
the datasets [55] from three papers, each of which systematically analyzed the performance of
individual privacy metrics in its specific application domain. In general, each paper used a real-
world data source to represent the user’s data or behavior, then applied state-of-the-art adversary
models or algorithms and finally used a range of privacy metrics to measure the privacy level.
The graph privacy paper additionally considered defense mechanisms, i.e. graph anonymization
techniques.
To evaluate the strength of privacy metrics, each paper relied on a ranked set of 6–9 adversary

strengths, i.e. different configurations of the adversary model that represent stronger and weaker
adversaries. For example, [60] used a sequence of six overlap percentages (60, 70, 80, 85, 90, 95),
assuming that an adversary who knows a 95% overlapping graph is stronger than one who only
knows a 60% overlapping graph. The resulting privacy levels should reflect this sequence and
indicate the lowest privacy level for the strongest adversary. Our monotonicity objective is then
computed based on the percentage of adversary strength levels that each privacy metric can rank
correctly.

For genomic privacy, the user data consisted of publicly available genome data for a large number
of individuals [53]. The paper constructed adversary models by assuming that all adversaries
guess randomly, but that strong adversaries guess correctly with a higher probability than weak
adversaries. The mean of the adversary’s probability distribution was varied between 10–90% . In
addition, stronger adversaries were constructed by giving prior knowledge about population-wide
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frequencies of genomic variations, knowledge about relationships between genomic variations, and
knowledge about the genome of a relative. The evaluation considered 24 privacy metrics belonging
to five different output categories (see Table 1) and analyzed 102 scenarios.
For graph privacy, the paper used 11 publicly available social graphs as user data, anonymized

with 12 existing graph anonymization algorithms [60]. Six adversary types were constructed based
on six de-anonymization algorithms. Adversary strength was defined by adjusting the amount of
prior knowledge available to the adversary: adversaries were given an auxiliary graph with 60–95%
overlap with the anonymized graph, and 5–100 seed nodes with known mappings between the
anonymized and auxiliary graphs. The paper evaluated 26 privacy metrics in five different output
categories, considering 792 scenarios in total.
For vehicular network privacy, the user data was given by several real-world traffic traces, and

the adversary used a state-of-the-art probabilistic tracking algorithm to track vehicles [59]. The
adversary strength was adjusted based on the level of process noise (random motion in the system
between observations) and measurement noise (uncertainty in measurement) that the adversary
was subject to. The paper evaluated 41 privacy metrics from six different output categories in 15
scenarios.

5.2 Implementation
We used five Python libraries that provide implementations of evolutionary optimization algorithms.
For all four single-objective optimization algorithms – CMA-ES, DE, PSO, and Subplex, we relied
on their implementations in Pagmo2 [8]. For the multi-objective optimization algorithms, we used
Pagmo2 2.15.0 [8] (MOEA/D, NSGA-II), pymoo 0.3.0 [9] (NSGA-II, NSGA-III), Platypus 1.0.2 [18]
(CMA-ES, EpsMOEA, GDE3, IBEA, MOEA/D, NSGA-II, NSGA-III, OMOPSO, SMPSO, SPEA2), evoal-
gos 1.0 [56] (CMSA-ES), and DEAP 1.2.2 [16] (CMA-ES). Note that we used implementations from
different libraries for some algorithms so that we could spot whether implementation differences
had an influence on the optimization performance for our problem. We compare their results in
Section B.4. Table 2 gives an overview of all algorithms, which implementations we use for each
algorithm, and how we label each algorithm in the figures.
Our encoding of individuals relies on the fact that we are interested in finding a metrics suite

defined by its set of weights wk that optimizes the properties of the metrics suite. We therefore
represent each individual as an array with |V | elements, where V is the set of metrics available
for each dataset. Each element in the array can take values in [−1, 1]. Even though the weights
wk need to be in [0, 1] to define a valid metrics suite, having negative values in the individual
arrays allows us to de-select metrics from metrics suites. This is important because the optimization
algorithms choose values for individuals randomly. If individuals could take only values in [0, 1],
the optimization would de-select metrics only very infrequently and thus make it hard to achieve
objective M5 (number of metrics). The values of individual weights are clipped to [0, 1] before
evaluating the objective functions.
We implemented our five objectives as evaluation functions in Python, closely following their

definitions in Section 3. The datasets provided metric values for each scenario and adversary
strength level, which we use to compute monotonicity, as well as values for evenness and shared
value range for each scenario.

5.3 Settings for optimization algorithms
We configured the settings for each optimization algorithm so that the algorithms used roughly
comparable options, but also so that the settings were aligned with the best recommendations from
the literature. To set the population size and number of function evaluations for both single and
multi-objective formulations, we follow [10]. We set the population size to N = 212 for NSGA-III
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Table 2. List of algorithms used in our study, with an indication whether the algorithm is single- or multi-
objective, the open source library or libraries we used, and the label used in text and figures.

SO/MO Algorithm Library Label

SO

Covariance matrix adaptation evolutionary strategy Pagmo2 CMA-ES
Differential evolution Pagmo2 DE
Particle swarm optimization Pagmo2 PSO
Subplex Pagmo2 SBPLX

MO

Multi-objective covariance matrix adaptation DEAP CMA-ES-deap
Platypus CMA-ES-plat

Covariance matrix self-adaptation evolution strategy evoalgos CMSA-ES-evo
EpsMOEA Platypus EpsMOEA-plat
Generalized Differential Evolution 3 Platypus GDE-plat
Indicator-Based Evolutionary Algorithm Platypus IBEA-plat

Multi-objective Evolutionary Algorithm Based on Decomposition Pagmo2 MOEA/D-gmo
Platypus MOEA/D-plat

Non-dominated Sorting Genetic Algorithm II
Pagmo2 NSGA-II-gmo
pymoo NSGA-II-moo
Platypus NSGA-II-plat

EvolutionaryMany-Objective Optimization AlgorithmUsing Reference-
point Based Non-dominated Sorting

pymoo NSGA-III-moo
Platypus NSGA-III-plat

Optimized Multi-Objective Optimization PSO Platypus OMOPSO-plat
Speed-constrained Multi-objective PSO Platypus SMPSO-plat
Strength Pareto Evolutionary Algorithm 2 Platypus SPEA2-plat

and N = 210 for all other algorithms and set the number of reference points for multi-objective
algorithms to |R | = 210. The required number of function evaluations increases with the number of
objective functions. We again follow [10] and set the number of function evaluations to F = 50, 400
obtained as the product of population size N = 210 and number of generations G = 240.
For a fair comparison, the same mutation and recombination operators should be used for all

algorithms. Here, we follow the settings in [10, 58] and use polynomial mutation with mutation
probabilitypm = 1/n, wheren is number of decision variables, and mutation distribution index ηm =
20. We use simulated binary crossover with recombination probability pc = 1.0 and distribution
indexηc = 20. Algorithm specific parameters are set to their original recommendations. For instance,
control parameters for GDE3 are set to CR = 0.2 and F = 0.2, and control parameter in NSGA-III is
set to T = 10.

We initially performed 20 replications for eachMOEA. Then, we computed the values for the three
most important performance indicators (hypervolume, generational distance, inverted generational
distance) and computed the relative error γ (x) for each algorithm/dataset combination based on
a 95% confidence interval, i.e. γ (x) = h(x )

|x̄ | where h(x) is the confidence interval half-width for
confidence level 0.95 and x are observed values of the performance indicators for all replications
for each combination of algorithm and dataset [31]. We then added replications until the relative
error was below 5% for each algorithm/dataset combination, resulting in up to 90 replications in
some cases.

5.4 Performance of optimization algorithms
Based on a detailed analysis of the performance of optimization algorithms (presented in appendix
B), we excluded algorithms that have shown clear weaknesses in one or more indicators. Figure 1
shows the pairwise C metric for the remaining six implementations, all from the Platypus package.
Based on this direct comparison, we can see that solutions from CMA-ES and OMOPSO are
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Fig. 1. C indicator for the six best algorithms from the above analysis.

dominated more often than solutions from the other algorithms. EpsMOEA and GDE3 are very
good for some of the application domains but worse for others. We therefore conclude that NSGA-III
and SPEA2 are the best overall algorithms for our problem. We hypothesize that NSGA-III performs
well because it is designed for many-objective problems, and both NSGA-III and SPEA2 use an
external archive to keep nondominated solutions which helps retain good solutions found early
during the optimization.

6 RESULTS: PERFORMANCE OF METRICS SUITES
We now move on to analyze the metrics suites themselves, i.e. the solutions generated by the
multi-objective optimization algorithms. Because we aim to find good metrics suites for each of
the three application domains, for this analysis we are only interested in the characteristics of the
metrics suites, but not in the algorithm that generated them. Therefore, we combine all solutions
generated by all algorithms and narrow them down to select only the non-dominated solutions.
In total, the optimization resulted in 47,679 non-dominated metrics suites for genomics privacy,
14,853 for vanet privacy, and 4,126 for graph privacy.
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Fig. 2. Parallel coordinates plots showing the objective values for all non-dominated solutions. Solutions with
monotonicity better than 99% of the best monotonicity and between 4 and 8 metrics in each non-dominated
metrics suite are highlighted in dark green.
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6.1 Metrics suites vs. single metrics
Figure 2 shows the objective values for all non-dominated solutions in parallel coordinates plots
[37]. To select a specific metrics suite from these solutions, the best metrics suites satisfy additional
criteria: first, their monotonicity should be high, e.g. above 99% of the best monotonicity for a given
dataset, and second, the number of metrics in the suite should be manageable, e.g. between 4 and 8.
We have colored in dark green all solutions that fulfill these constraints.

Figure 2 also compares the objective values for the metrics suites (as given by the non-dominated
solutions) to the objective values for all metrics individually (by light blue lines), and the objective
values for metrics suites previously proposed in [53, 59, 60] (by blue dashed lines). It is clear that
the individual metrics are worse especially on the number of metrics and diversity objectives, but
many individual metrics are also worse on monotonicity, evenness, and shared value range. For
all three datasets, the previously proposed metrics suites perform well on the number of metrics
objective, but fall short on most of the other objectives. Even though the optimization generated
some metrics suites that are worse on single objectives (e.g., lower monotonicity than the individual
metric with the highest monotonicity), it did not generate solutions that are worse on all objectives.
As a result, the metrics suites computed by solving our optimization problem perform better than
the previously proposed metrics suites and the individual metrics.

6.2 Number of metrics in a suite
In this section, we answer two questions: first, how does the quality of a metrics suite depend on
the number of metrics in it (is it worth the additional effort to use an eight-metrics suite rather
than a five-metrics suite?), and second, how does the presence of the number-of-metrics objective
influence the optimization process (does the optimization result in less-monotonic metrics suites
than it would otherwise?).

6.2.1 Quality of metrics suites. Figure 3 shows how the objective values of the four other objectives
evolve when the number of metrics in a metrics suite increases. The three datasets are indicated by
different colors, and for each dataset we present two cases: metrics suites with a monotonicity of at
least 99% of the best monotonicity for the dataset (solid lines), and all other metrics suites (dashed
lines). Some lines in the plot are shorter than others because we removed all dominated solutions
from the set of metrics suites. As a result, for example, the graph dataset does not have solutions
with one or two metrics in a suite.

For monotonicity (see Figure 3a), we can see that for the genomics and vanet datasets, the best
(100%) monotonicity can be achieved with as few as 2 metrics in a metrics suite. For the graph
dataset, the best monotonicity (90.51%) is achieved with 16 metrics. With 90.28% monotonicity,
6-metrics suites are already very close to the best value.
As expected, the diversity objective (Figure 3b), indicating how diverse in terms of inputs and

outputs a metrics suite is, increases with the number of metrics in a suite. This increase is mostly
independent from the monotonicity of a metrics suite, i.e. the most monotonic suites and the other
suites have similar values for diversity.

Figure 3c shows that the evenness objective decreases with the number of metrics. This indicates
that a trade-off has to be made between the number of metrics and evenness. Interestingly, for the
vanet dataset, and for metrics suites with a small number of metrics, those suites with the highest
monotonicity have lower scores on evenness than the less-monotonic suites.

Similar to evenness, the shared value range objective (Figure 3d) also decreases with the number
of metrics. We note that metrics suites with the best monotonicity consistently have a lower shared
value range for the graph and genomics datasets compared to less-monotonic suites.
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Fig. 3. Monotonicity, Diversity, Evenness, and Shared Value Range depending on the number of metrics in
the metrics suite. Solid lines indicate metrics suites whose monotonicity is among the top 1%, whereas dashed
lines indicate all other metrics suites. Shaded areas indicate the standard deviation, computed across the
objective values for all metrics suites with the given number of metrics.

The fact that both evenness and shared value range decrease with a higher number of metrics in
a suite across all datasets indicates that shorter metrics suites can be advantageous. This represents
a trade-off between evenness and shared value range on the one hand and the diversity of the
metrics suite on the other.
Overall, selecting the best size for a metrics suite depends on the dataset and the desired value

for the diversity objective. For most datasets, we see a sweet spot at 5 or 6 metrics. Six-metrics
suites achieve the close to the best monotonicity, diversity values of 0.6 or higher, and reasonable
values for evenness and shared value range for all datasets.

6.2.2 Quality of optimization result. To evaluate the usefulness of the number-of-metrics objective,
we ran experiments without this objective, i.e. optimizing only for the four other objectives. The
resulting metrics suites are 10-30% longer on average and the average monotonicity changes by
-2% to +6%. The best monotonicity achieved by the metrics suites does not change, but the shortest
suite that achieves the best monotonicity is up to 37% longer.
This result can be explained by how the optimization uses objective functions and the non-

dominance criterion. The optimization does not exclude metrics suites that are longer than our
“ideal” range. For example, Figure 12 shows metrics suites with up to 24 metrics. Instead, the value
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of the number-of-metrics objective function decreases with the length of the suite, which guides
the optimizer towards shorter suites. This illustrates the non-dominance criterion: if a metrics
suite has better monotonicity but worse number-of-metrics than another suite, neither suite is
dominated and both are kept in the solution set. The decision which non-dominated metrics suite
should be selected is then up to the researcher’s priorities.

With all other objective values equal, we can say that including the number-of-metrics objective
results in shorter metrics suites, which are generally preferable.

6.3 Metrics suites for genomics privacy
Wewill now present the composition of specific metrics suites for each dataset. To allow researchers
to select custommetrics suites depending on their needs, we make the full dataset of non-dominated
metrics suites, including their composition and objective values, available at [55].
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(a) Average weight for each metric included in the best metrics suites for the
genomics dataset, by size of the suite. n indicates how many solutions, or
metrics suites, of each size were found by the optimization.

Category Number of metrics/suite 6 5 4 3 8 (prior)

Success Adversary’s success rate 0.94 0.74 0.80 0.47 1.0
Uncertainty Asym. entropy per snp 0.05 0.005 0.14
Uncertainty Entropy 0.64 0.34 0.17 0.70 1.0
Uncertainty Mean entropy 0.69
Uncertainty Normalized entropy 0.46 0.64 0.14 0.71
Information gain Variation of information 0.009 0.005
Information gain Amount of leaked information 1.0
Error Expected error 1.0
Uncertainty Genomic privacy 1.0
Information gain Information surprisal 1.0
Error Mean squared error 1.0
Information gain Relative entropy 1.0

Monotonicity 1.0 1.0 1.0 1.0 0.998
Evenness 0.93 0.92 0.94 0.94 0.55
Shared value range 0.97 0.99 0.99 0.99 0.64
Diversity 0.6 0.6 0.5 0.4 0.6

(b) Weights and objective values for example metrics suites for genomics dataset.
Each column is one metrics suite.

Fig. 4. Metrics suite characteristics for genomic privacy.

Figure 4a shows the average weight for each metric included in the most-monotonic metrics
suites for genomics, depending on the size of the suite. The figure also indicates how many metrics
suites were found in each case. We can see that at each increase in the size of the metrics suite one
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metric is added and all previous metrics are retained. We can also see that the adversary’s success
rate is the most highly weighted single metric, and that larger metrics suites mainly add different
versions of the entropy metric, such as normalized entropy, mean entropy, and asymmetric entropy.

We selected four example metrics suites and show their weights and objective values in Figure
4b. Each weight is shown with a value range of [0, 1] to allow easier comparison of their relative
importance, regardless of the size of the metrics suite. The optimization uses normalized metric
weights so that all weights in a suite add up to 1. We note that the weights of specific metrics suites,
as shown in Figure 4b, do not necessarily correspond to the average weights over all metrics suites,
as shown in Figure 4a. We can see that all metrics suites have 100% monotonicity. As expected
from the discussion in the previous section, larger metrics suites have slightly smaller values for
evenness and shared value range, but higher values for diversity. The comparison with a previously
suggested metrics suite [53] in the rightmost column shows that the optimized metrics suites
perform equally well on monotonicity, but much better on evenness and shared value range with a
smaller number of metrics.

6.4 Metrics suites for graph privacy
Compared with the genomics dataset, the selection of metrics in the top-performing metrics suites
for the graph dataset (Figure 5a) is much more diverse. For example, the 222 non-dominated 5-
metrics suites use a total of 18 different metrics. The adversary’s success rate (including its variant,
the overall success rate) is still the most highly weighted single metric.
We show four example metrics suites for graph privacy in Figure 5b. In contrast to genomics,

monotonicity is increasing with the size of the metrics suite. Monotonicity of the best individual
metric for graph privacy is 82.3% (amount of leaked information) [60]. The example 6-metrics suite
in Figure 5b increases this monotonicity to 90.3% (+ 8%), which illustrates the benefit of using
a well-optimized metrics suite. Compared to the metrics suite from prior work [60] (rightmost
column), the optimized 6-metrics suite has higher monotonicity, evenness, shared value range, and
diversity.

6.5 Metrics suites for vanet privacy
Finally, Figure 6a shows the average weights for non-dominated vanet privacy metrics suites.
In contrast to genomics and graph privacy metrics suites, the adversary’s success rate is only a
minor component for vanet privacy metrics suites. Instead, normalized entropy is the most highly
weighted individual metric.

The example metrics suites in Figure 6b show that monotonicity is close or equal to 100% in all
cases. As expected, the diversity objective increases with the size of the metrics suite. The values
for evenness and shared value range vary and depend strongly on the specific metrics suite that
is selected. This illustrates that a trade-off between diversity, evenness, and shared value range
has to be made depending on the specific requirements for privacy measurement. Compared to a
previously suggested combination of metrics [59], the optimized metrics suites have much higher
monotonicity (+8%). The optimized 6-metrics suite performs similar to prior work on evenness,
shared value range, and diversity, while the other optimized suites perform better on one objective
but worse on the others, showing the trade-off between evenness, shared value range, and diversity.

7 DISCUSSION
Metrics suites allow to rank systems by their privacy level, for example systems that differ in the
privacy-enhancing technology they use. Because these rankings incorporate different aspects of
privacy through the different privacy metrics that make up the metrics suite, they offer a more
comprehensive view than rankings based on individual metrics alone.
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(a) Average weight for each metric included in the best metrics suites for
the graph dataset, by size of the suite. n indicates how many solutions, or
metrics suites, of each size were found by the optimization.

Category Number of metrics/suite 6 5 4 3 7 (prior)

Success Adversary’s overall success 0.96 0.87 0.93 0.97 1.0
Success Adversary’s success rate 1.0
Uncertainty Conditional privacy 0.19
Information gain Pearson correlation 0.23 0.24 0.23 0.95 1.0
Error % incorrectly classified 0.53 0.40 0.50
Information gain Loss of anonymity 0.22
Error Mean squared error 0.49 0.47
Uncertainty Normalized entropy 0.04 0.2
Similarity Normalized variance 0.52 1.0
Error Absolute error 1.0
Information gain Amount of leaked information 1.0
Error Incorrectness 1.0

Monotonicity 0.903 0.902 0.90 0.896 0.892
Evenness 0.62 0.60 0.60 0.68 0.44
Shared value range 0.27 0.43 0.43 0.47 0.17
Diversity 0.8 0.6 0.6 0.5 0.6

(b) Weights and objective values for example metrics suites for graph dataset.

Fig. 5. Metrics suite characteristics for graph privacy.

The benefits of using optimization to determine the selection and weighting of metrics in a suite
are that optimization allows researchers to select a metrics suite that fits their needs when multiple
objectives cannot be satisfied simultaneously (e.g. evenness and shared value range), and that
optimization can give confidence that the selected metrics suite is of high quality in terms of the
optimization objectives.
In this section, we first show how metrics suites can be applied in practice, and then discuss

some limitations of our approach.

7.1 Application example: ranking of graph anonymization algorithms
To illustrate the benefits of optimized metrics suites in a practical example, we now use the graph
privacy dataset to answer the question, which graph anonymization algorithm performs best when
tested against different adversaries and on different graphs? We will compare how the answer to this
question differs when individual metrics are used as opposed to metrics suites.
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(a) Average weight for each metric included in the best metrics suites for
the vanet dataset, by size of the suite. n indicates how many solutions, or
metrics suites, of each size were found by the optimization.

Category Number of metrics/suite 6 5 4 3 5 (prior)

Success Adversary’s success rate 0.02 0.008
Error Incorrectness 0.84 1.0
Information gain Increase in adversary belief 0.008 0.01 0.01 0.02
Time Mean tracking duration 0.14
Uncertainty Normalized entropy 0.78 0.76 0.59 0.88 1.0
Information gain Pearson correlation 0.46 0.53
Error % incorrectly classified 0.02
Success Privacy breach level 0.61 0.24 1.0
Information gain Amount of leaked information 0.02
Information gain Conditional privacy loss 1.0
Time Time to confusion 1.0

Monotonicity 0.99 0.99 1.0 0.99 0.908
Evenness 0.69 0.77 0.72 0.68 0.65
Shared value range 0.89 0.68 0.89 0.99 0.89
Diversity 0.8 0.7 0.6 0.5 0.8

(b) Weights and objective values for example metrics suites for vanet dataset.

Fig. 6. Metrics suite characteristics for vanet privacy.

The graph privacy dataset provides sufficient data to answer this question: the experiment
evaluated 12 state-of-the-art anonymization algorithms against six de-anonymization algorithms
on 11 different graphs [60]. The dataset uses several different privacy metrics that we can use to rank
the anonymization algorithms. The five left-hand columns in Table 3 show the ranking generated
by five individual privacy metrics. It is clear that each metric generates a different ranking, and
there is little agreement on the relative merits of each anonymization algorithm. In contrast, the five
columns on the right show rankings generated by the metrics suites defined in Figure 5b1. Here it
is clear that the metrics suites are largely consistent in the rankings they generate, and in particular

1We note that the prior metrics suite from [60] was already quite effective at ranking algorithms. This is because the metrics
suite in that paper was hand-optimized by tuning the selection and weighting of metrics to achieve high monotonicity.
Our results show that the optimization method presented in this paper can improve the metrics suite compared to hand-
optimization, without the effort of manual tuning.

, Vol. 1, No. 1, Article . Publication date: November 2020.



Designing Strong Privacy Metrics Suites Using Evolutionary Optimization 21

all metrics suites agree on the best and worst algorithm, and on the three algorithms that make up
the top-3. In addition, the three algorithms based on differential privacy are ranked highest, which
is consistent with expectation based on differential privacy literature, and the baseline algorithm
ID removal, which is known to provide little to no privacy protection, is ranked near the bottom2.
We also observe that the three right-most metrics suites (consisting of 4, 5, and 6 metrics), which
have higher monotonicity than the other metrics suites, are most consistent in their rankings. The
last row of Table 3 shows the Spearman rank-correlation coefficient comparing the rankings of
the metric/metrics suite in each column with the 6-metrics suite. We can see that only one of the
individual metrics, the adversary’s overall success rate, is highly correlated with the best metrics
suites in this example. However, while the adversary’s overall success rate generates a consistent
ranking of anonymization algorithms, it does not perform well on the evenness and shared value
range criteria which are needed for more detailed analyses of privacy levels. By combining different
metrics, the metrics suites can compensate for this weakness.
Based on the rankings generated by, for example, the 6-metrics suite, we can conclude that

Weighted privacy integrated queries based DP is the graph anonymization algorithm that performs
best, followed by Hierarchical random graph based DP. This application example shows how
metrics suites can help ensure a consistent ranking of systems or algorithms by the privacy level
they provide. Our optimization-based approach ensures that selection and weighting of metrics is
consistent and objective, and does not require luck or subjective judgments. Individual metrics can
still be interpreted separately if needed, e.g., for comparisons of individuals within scenarios or for
ease of comparison with prior work.

7.2 Limitations of our approach
Although we have shown that our approach improves privacy measurement by optimizing the
selection and weighting of privacy metrics, it has a number of limitations. Our approach does not
attempt to unify privacy measurement across domains. Rather, our approach can be used to improve
the measurement of privacy in individual, well-defined scenarios. Even though privacy metrics
suites may differ between domains, we argue that it is important to measure multiple aspects of
privacy, and to measure it in a consistent way. Our approach to use optimization to determine the
composition of metrics suites can help address these issues. Drawbacks of our approach are that it
requires additional work before privacy can be measured, that transferability of its results to new
domains is limited, and that it does not resolve the issue of having to know which privacy metrics
are effective and applicable in a specific application. These are discussed in more detail below.

7.2.1 Steps for practical application. To apply our approach in the context of a research project
to evaluate new PETs or existing PETs in a new scenario, the evaluation workflow needs four
additional steps. The prerequisite for these steps is that the scenario has been defined, including
considerations regarding what data needs to be protected and what the adversary’s capabilities are.
The additional steps are then: First, to define a sequence of adversary strength levels. In our

experience, this is straightforward after the scenario has been defined. Second, to collect a list of
candidate privacy metrics that may be suitable in the scenario. Third, to evaluate the candidate
privacy metrics for each adversary strength level. This data is needed as input for the optimization.
Fourth, to perform the optimization using one or more of the optimization algorithms described
in this paper3 and choose among the optimized metrics suites. The metrics suite can be selected

2Note that differential privacy as a metric was omitted from the three datasets that we used, but differential privacy as a
mechanism is present in the graph dataset. The reason that differential privacy as a metric was omitted is that it is not
possible to compute an ϵ score for a scenario that does not use differential privacy.
3Solutions from multiple algorithms can be combined by retaining non-dominated solutions, as we have done in Section 7.
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Table 3. Ranking of 12 graph anonymization algorithms by their privacy level. Each cell indicates the
algorithm’s rank when the ranking was generated using the column’s metric or metrics suite. The underlying
experiment evaluated each anonymization algorithm on 11 graphs and against six different de-anonymization
algorithms [60]. The individual metrics have been chosen because they make up the 3-, 4-, and 5-metrics
suites (see Figure 5b).
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Weighted privacy integrated queries based DP 1 2 10 6 10 1 1 1 1 1
Hierarchical random graph based DP 2 4 9 1 1 2 3 2 2 2
dk-series based differential privacy (DP) 3 3 2 11 11 3 2 3 3 3
Random walk 4 1 1 3 5 4 4 4 4 4
Univariate micro-aggregation (UMGA) 5 9 11 2 2 7 9 5 5 5
k-Degree anonymity 6 6 4 7 8 5 5 6 6 6
Bounded t-means 8 5 3 5 9 6 6 7 7 7
Graph k-anonymzation 7 10 8 4 3 10 10 8 9 8
Switch 9 7 5 9 7 8 7 9 8 9
ID removal 10 8 6 10 4 9 8 10 10 10
k-Symmetry anonymity 11 11 7 8 6 11 11 11 11 11

Spearman rank-correlation with 6-metrics suite 0.99 0.79 -0.11 0.41 -0.15 0.95 0.85 1.0 0.99 1.0

to fit the scenario. For example, if within-scenario comparisons are needed, a metrics suite with
high evenness is most suitable, and a metrics suite with high shared value range is best if between-
scenario comparisons are needed. Finally, the chosen metrics suite can be used to evaluate privacy
levels.
These steps show that the improvements in privacy measurement that can be achieved with

optimized metrics suites comes at a price. Future work may be able to focus on simplifying this
approach to make it easier to apply.

7.2.2 Efficacy of existing privacy metrics. Our approach relies on a list of effective privacy metrics
from which to construct metrics suites. In this paper, we have selected datasets from prior work
that contained a wide range of privacy metrics, not all of which may be conceptually sound choices
in every application domain.
In a practical application, however, is preferable to remove privacy metrics from the list which

have known weaknesses in the intended application scenario, and to ensure that the metrics on the
list capture vulnerabilities to specific attacks if needed. For example, it has been shown that max-
entropy and anonymity set size overestimate privacy because they do not take into account that an
adversary may consider some users more likely than others [12]. However, this weakness has not
stopped the metric from being used in many research papers. Overall, we argue that it is important
to consider strength and weaknesses of privacy metrics before applying our optimization-based
method, but since our method leads to a combination of different metrics, it has the potential of
mitigating the weaknesses of individual metrics to some extent.
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7.2.3 Availability of data. The optimization relies on input data that represent the privacy levels
measured by different privacy metrics, arranged in sequences for which it is known how privacy
levels should evolve, e.g. a sequence can be given by an ordered sequence of adversary strength
levels where a stronger adversary is expected to result in lower privacy levels. In this paper, we
have used empirical datasets from prior work. However, if no existing datasets are available, it
can be difficult and time-consuming to generate this data because appropriate adversary strength
levels need to be defined and values for privacy metrics need to be computed, possibly for many
combinations of user and adversary behavior.

7.2.4 Transfer of metrics suites to new settings. We have computed optimized metrics suites for
three application domains: genomic privacy, graph privacy, and vehicular communications privacy.
For two of these domains (genomic and graph privacy), the datasets we used included data for
different adversary models. Based on the observed differences between metrics suites, we can judge
to what extent optimized metrics suites can be used in other settings.

Prior work showed that the strength of individual metrics is largely consistent within application
domains (e.g., genomics [53], vehicular communications [59], and social graphs [60]) and across
algorithms the adversary uses [53, 60]. However, in combination these results show that different
metrics are strong in different application domains. In addition, these papers did not study whether
metric strength is consistent across different adversary goals, such as inference of a user’s location
vs. correct tracking of a user’s trajectory.

Combining our results with prior work, we conclude that metric strength is not necessarily
consistent between application domains, and may not be consistent for different adversary goals in
the same domain. As a result, we believe that new optimization of metrics suites is needed for new
application domains, new adversary goals, and newly introduced metrics.

8 CONCLUSION
In this paper, we have used multi-objective evolutionary optimization to generate privacy metrics
suites that simultaneously fulfill five objectives: monotonicity, diversity, evenness, shared value
range, and number of metrics. We evaluated which optimization algorithm performs best on our
problem and find that NSGA-III and SPEA2 generate the best solution sets across our application
domains.
Regarding the quality of privacy measurement, we find that metrics suites generated by the

optimization increase the monotonicity of privacy measurement and at the same time ensure that
the metrics suites exhibit other desirable properties such as diversity, evenness, shared value range,
and number of metrics. Our optimization generates specific metrics suites, i.e. selections of privacy
metrics and their weights, that researchers can use to evaluate new privacy technologies. We have
shown in an application example that optimized metrics suites rank privacy technologies more
consistently than individual metrics. The optimization thus removes uncertainty from the selection
of privacy metrics.
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A SOLUTION ALGORITHMS
A.1 Single-objective optimization
For optimizing only monotonicity as the most important objective (Equation 2), we use state-of-the-
art single-objective EAs and some other metaheuristics: Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [20], Differential Evolution (DE) [47], Particle Swarm Optimization (PSO) [27],
and Subplex [42].

A.1.1 Covariance Matrix Adaptation Evolutionary Strategy. Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) is an evolutionary strategy developed for real-valued optimization [21].
At each iteration of the algorithm a vector of individuals is generated according to the multi-variate
normal distribution, which follows the maximum entropy principle. Mutation operator uses co-
variance matrix adaptation (CMA), which learns all pairwise dependencies between variables and
enables step size control according to the local curvature and scaling of the objective function. CMA
increases the likelihood of previously successful steps speeding up convergence yet preventing
premature convergence by controlling the step size.

A.1.2 Differential Evolution. Differential Evolution (DE) [47] uses self-adapting mutation, which
changes depending on the objective space surface and adapts to the current population, similarly
to CMA-ES [20] and inspired by the simplex search method [40]. The scaled difference between
two parents is added to the third one to create an offspring. Mutation happens on selected elements
of the parental individual if the mutation probability is below a threshold. The algorithm execution
is controlled by a scaling factor, which controls the convergence rate, and a crossover parameter,
which directs the rotational invariance search.

A.1.3 Particle Swarm Optimization. Particle Swarm Optimization (PSO) [27] is a metaheuristic that
instead of imitating an evolutionary process, simulates the social behaviour of swarms, e.g. birds
flocking or fish schooling, where individuals/particles move rather than evolve as in EAs. Each
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individual of the population is called particle and the population is called swarm. At each iteration
each particle is updated taking into account its parent and velocity, which considers information
about the best position that the particle has seen so far (personal best) and the best particle in a
certain neighbourhood (global best) formed by the swarm members with which the particle can
interact.

A.1.4 Subplex. The final method we use for single objective optimization is Subplex [42]. It is the
only algorithm in this paper that is neither an evolutionary method nor metaheuristic. Instead,
it is based on the Nelder-Mead simplex search method [40]. The Subplex method expands the
Nelder-Mead method for problems with more than five dimensions by decomposing the problem
into sub-spaces with step size changing depending on the size of the problem. The Subplex method
was particularly designed to work with noisy multi-modal many-dimensional functions where
the Nelder-Mead method does not perform well, however, it can be used as a general purpose
unconstrained optimization method.

A.2 Multi-objective and many-objective optimization
Our optimization problem as formulated in Equation (7) can be considered a many-objective
optimization problem because the number of objectives exceeds three. Traditional multi-objective
algorithms struggle to solve many-objective problems because of the increased dimension of the
search space and the large number of non-dominated solutions obtained. The first difficulty also
leads to the diversity evaluation becoming computationally expensive and the recombination
operator becoming inefficient. To address the diversity issue many diversity-oriented algorithms
have been developed [5].
In this paper, we use multi-objective metaheuristics and a number of state-of-the-art multi-

objective evolutionary algorithms (MOEAs) that have been developed specifically to deal with
many-objective problems.

A.2.1 NSGA-II and SPEA2. Non-dominated Sorting Genetic Algorithm II (NSGA-II) [11] and
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [30] belong to the group of elitist Pareto-
based state-of-the-art MOEAs. They preserve non-dominated solutions at each iteration either as
members of the next generation, like in NSGA-II, or in a separate archive, like in SPEA2.
In NSGA-II, the population is sorted into a set of Pareto fronts based on the non-dominance

relation and for the last front(s) the individuals in the most crowded regions are discarded. NSGA-II
is often used as a reference benchmark to evaluate newly developed MOEAs. SPEA2 maintains
an archive of solutions in addition to the current population. The strength of an individual in
the archive is based on the number of members of the population that the individual dominates
or equals, while the strength of an individual in the population is the sum of strengths of all
individuals in the archive that dominate or equal the individual. The archive size is truncated based
on a clustering technique which always preserves outer solutions.

A.2.2 EpsMOEA. EpsMOEA [29] is another elitist algorithm based on ϵ-dominance, i.e. the non-
dominance relation is checked with respect to a relaxation interval ϵ within which two solutions
are considered to be non-dominated with respect to each other. In EpsMOEA, the objective space is
divided into a set of boxes of ϵ size each, and the archive consists of a set of non-dominated boxes
with one individual per box instead of a set of non-dominated solutions. An individual is accepted
into the archive if it is located in a box non-dominated by any other box, and boxes dominated by a
new archive member are removed from the archive.

A.2.3 IBEA. In general, any performance measure (indicator) can be used in an Indicator-Based
Evolutionary Algorithm (IBEA) [61] to select the next generations of individuals and in this way to
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guide the selection and search process towards a population performing best on the chosen indicator.
Most commonly, indicators compliant with Pareto non-dominance and satisfying monotonicity
property are used, such as hypervolume and epsilon indicators.

S-metric Selection Evolutionary Multi-objective Algorithm (SMS-EMOA) [15], which at each iter-
ation removes the individual with the worst hypervolume contribution to the overall hypervolume
of population, is based on a similar idea to IBEA. More recently, Portfolio Optimization Selection
Evolutionary Algorithm (POSEA) was proposed [57], which selects a portfolio of the most diverse
individuals of best quality by evaluating Sharpe ratio indicator.

The performance indicator’s specific features should be considered when choosing an indicator
to guide the search, and in this way they may reflect the decision maker’s preferences. In this paper,
we use IBEA with the hypervolume indicator, which has been shown to select extreme points and
concentrate search around the knee region of the Pareto front [15].

A.2.4 MOEA/D and NSGA-III. Multi-objective Evolutionary Algorithm Based on Decomposition
(MOEA/D) [58] and Evolutionary Many-Objective Optimization Algorithm Using Reference-point
Based Non-dominated Sorting Approach (NSGA-III) [10], [24] were developed specifically to handle
many objectives. Both MOEA/D and NSGA III use reference points to guide the search towards a
limited number of directions in the search space.
MOEA/D decomposes the initial problem into a number of scalar optimization sub-problems

and optimizes them simultaneously. Each sub-problem is associated with a weight vector and
each individual in the population is associated with a sub-problem randomly. Mating is arranged
between neighbouring sub-populations, resulting in an offspring which is associated with one or
more sub-problems. Association is based on metrics typical for classic multi-objective optimization
with scalarizing functions, such as the Tchebycheff metric.

NSGA-III modifies NSGA-II in its diversity maintenance mechanism. Instead of eliminating
individuals in the most crowded part of the last front, NSGA-III uses a set of reference points to
cluster points on the last front and then select some points from each cluster. The reference points
are either provided by the user or generated in a predefined way, e.g. by placing points evenly on a
normalized hyper-plane [10]. Each member of the last front is associated with its closest reference
point and the next population is filled from the last front members by adding one random individual
from each reference point association at a time.

A.2.5 Multi-Objective Covariance Matrix Adaptation. Multi-Objective Covariance Matrix Adap-
tation Evolutionary Strategy (MO-CMA-ES) [23] extends the single-objective CMA-ES to the
multi-objective case using nondominated sorting either with crowding distance, used in a similar
way to NSGA-II [11], or with hypervolume. Covariance matrix self-adaptation evolution strat-
egy (CMSA-ES) [7] is a variation of CMA-ES that replaces cumulative step-size adaptation with
self-adaptation.

A.2.6 Multi-Objective Differential Evolution. Generalized Differential Evolution 3 (GDE3) [28] is a
multi-objective version of the Differential Evolution algorithm. GDE3 considers both constraint
handling and preservation of non-dominating solutions (elitism) in the next iterations of the
algorithm. Out of the offspring and parent solutions the selection is made based on the feasibility
w.r.t. constraints and non-dominance w.r.t. each other. If both solutions are infeasible, the one
which non-dominates the other one in constraint violation space is selected. Out of feasible and
infeasible solutions, feasible is selected. In case both solutions are non-dominating w.r.t. each other,
they both pass to the next generation, which might lead to increased population size. In the last
case, NSGA-II principles of non-dominated sorting and crowding distance checking are applied to
reduce the size to the needed one.
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A.2.7 Particle Swarm Optimization. Particle swarm optimization (PSO) metaheuristic was also
extended to solving multi-objective optimization problems. Two recent versions of PSO for multi-
objective optimization are Optimized Multi-Objective Optimization PSO (OMOPSO) and Speed-
constrained Multi-objective PSO (SMPSO). OMOPSO [46] uses an external archive to keep the
best solutions based on NSGA-II’s crowding distance, with the size of the archive truncated by
ϵ-dominance. SMPSO [39] extends OMOPSO by using a velocity construction technique to control
swarm explosion.

A.3 Performance Measures for Multi-objective Algorithms
Evaluating the performance of MOEAs is complex because of the need to compare solution sets,
not just single solutions. The quality of solution sets, or Pareto front approximations, depends on
multiple aspects [33], such as how close solutions are to the real Pareto front (convergence); how
widely the solutions are distributed along the Pareto front approximation (spread); how uniformly
or evenly solutions are distributed on the Pareto front approximation (uniformity); and how many
solutions are on the Pareto front approximation (cardinality). Some quality indicators integrate
several of these aspects into a single value.
Unary quality indicators evaluate the quality of the Pareto front approximation for a single

solution set, and binary quality indicators compare pairs of solution sets, either two Pareto front
approximations or one approximation and the true Pareto front. In this work, we selected one
binary and four unary indicators that cover all four quality aspects [33]: C indicator, Hypervolume,
Generational Distance, Inverted Generational Distance, and Spacing.

Hypervolume (HV) computes the objective space volume covered by the solutions belonging to
the Pareto front approximation set. Hypervolume is probably the most often used unary quality
indicator because it covers all four aspects of solution set quality: convergence, uniformity, spread
and cardinality, and because of its important Pareto compliance property. Pareto compliant indicators
preserve the order of sets induced by the non-dominance relation: if one set is “at least as good as”
the other set, its hypervolume is bigger.

Generational Distance (GD) [52] is a distance-based indicator for convergence. For each solution,
it computes its distance to the Pareto front as the Euclidean distance to the closest solution on the
true Pareto front. GD is then given by the quadratic mean of these distances. Inverted Generational
Distance (IGD) is similar to GD, but measures the distance from the Pareto front to each solution
and uses the arithmetic mean in its computation. Lower values are preferable for both GD and IGD.
Spacing (SP) measures the uniformity of the distribution of solutions along the Pareto front

approximation as the variation of the distances between solutions [43]. The smaller the value
of SP(A) the better uniformity of the set is, that is, the value SP(A) = 0 means equal distance
between all solutions of the set. Hence, lower values of this indicator are preferred. However, to
fully represent diversity of the set other quality indicators need to be used.

The binary C Indicator [62] checks the non-dominance relation between all pairs of solutions in
two solution sets and calculates the proportion of solutions in the set B that are weakly dominated
by at least one solution in the set A. The C indicator is not symmetric, i.e. the value of C(A,B)
is different from C(B,A). Its value range is in [0, 1], with C(A,B) = 1 indicating that A weakly
dominates B, i.e. all solutions in B are weakly dominated by at least one solution inA. Hence, higher
values indicate a better solution set. The limitation of the C indicator is that it does not express
how much one set is better than the other set.

B RESULTS: PERFORMANCE OF OPTIMIZATION ALGORITHMS
In this section we report on the performance of both single-objective and multi-objective optimiza-
tion algorithms using a range of performance indicators.
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B.1 Single-objective optimization
Even though we have defined our problem as a 5-objective optimization problem – with the goal to
find well-rounded metrics suites that perform well on all five objectives – we have also argued that
the monotonicity objective is the most important of the five and should take precedence over the
other objectives. Therefore, we first use single-objective optimization to estimate what the best
monotonicity values are for each of the three datasets. To do this, we applied four single-objective
optimization algorithms – CMA-ES, DE, PSO, and Subplex – to maximize the monotonicity objective
M1 (Equation 2) without considering the other objectives. We can then use these monotonicity
values as a baseline to evaluate the solutions found by multi-objective optimization algorithms.

Table 4 shows the best monotonicity values achieved by each of the algorithms for each of the
datasets. We represent monotonicity as the portion of adversary strength levels that were ranked
correctly by WPM, resulting in a range of [0, 1]. The table shows that for the genomics and vanet
datasets, most of the algorithms are able to find perfect metrics suites that rank all adversary
strength levels correctly. For the graph dataset, the best monotonicity values are just above 90%,
with particle swarm optimization finding the best metrics suite with 90.5% monotonicity.

Table 4 also shows how many metrics the shortest metrics suite consisted of that achieved
the best monotonicity. We can see that the metrics suites are undesirably large, with more than
ten metrics in most metrics suites. While these metrics suites may have excellent monotonicity
properties, they are likely to be impractical for most applications, due to the overheads of having
to implement, analyze and interpret the large number of metrics. This shows that multi-objective
optimization is indeed needed for the problem of finding metrics suites.

Table 4. Results for single-objective optimization algorithms

Dataset Algorithm Best monotonicity Smallest number of metrics
Genomics CMA-ES 1.0 7
Genomics DE 1.0 7
Genomics PSO 1.0 9
Genomics SBPLX 1.0 6
Graph CMA-ES 0.901 9
Graph DE 0.903 13
Graph PSO 0.905 14
Graph SBPLX 0.901 19
Vanet CMA-ES 1.0 11
Vanet DE 1.0 11
Vanet PSO 1.0 10
Vanet SBPLX 0.992 14

B.2 MO optimization: number of function evaluations
Before we evaluate the performance of the multi-objective optimization algorithms, we need to
verify that the number of 50,400 function evaluations we selected for the optimization process is
sufficient for the algorithms to generate good solutions. To do so, we performed initial runs of
the optimization with between 75 and 240 generations. Figure 7 shows the hypervolume indicator
for each dataset after each generation. We can see that most algorithms converged after 50–100
generations, with the exception of CMA-ES-deap, which converged only after about 350 generations
for the graph and vanet datasets (not shown). This means that our choice of 50,400 function
evaluations is sufficiently large to allow most optimization algorithms to converge.
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Fig. 7. Convergence of the hypervolume indicator during the optimization process.

B.3 MO optimization: performance
We now evaluate the performance of multi-objective algorithms according to four established
performance indicators: hypervolume, generational distance, inverted generational distance, and
spacing as described in Section A.3. Our aim is to determine which algorithms are particularly
suitable for our problem, and which algorithms are not, by excluding the algorithms that perform
worst on each performance indicator.

The plots in this section are color-coded to indicate semantic similarities between algorithms:
we chose different shades of red for MOEA/D implementations, shades of blue for NSGA-II and
SPEA2, greens for NSGA-III, purples for covariance matrix based algorithms, pinks for particle
swarm algorithms, and greys for algorithms that are not similar to any of the others (EpsMOEA,
GDE3, IBEA).

B.3.1 Hypervolume (HV). Hypervolume is a general-purpose indicator that evaluates the conver-
gence, spread, and cardinality of solution sets. As Figure 8 shows, most algorithms perform well on
this indicator. However, there are some exceptions. The worst algorithm is CMSA-ES, which has
a hypervolume of 0 in almost all cases. This is because CMSA-ES generates only a single unique
solution and thus has a low cardinality. The two implementations from the pymoo package, NSGA-II
and NSGA-III, as well as IBEA, also perform noticeably worse than the other algorithms. Both
implementations of CMA-ES, although below the best in the graph and vanet datasets, perform
very well in the genomics dataset.

B.3.2 Generational Distance (GD). The generational distance is a specialized indicator that shows
how well solution sets converge to the Pareto front. As Figure 9 shows, most algorithms that
performed worst on hypervolume are also among the worst performers on generational distance. In
addition, the particle swarm algorithms, SMPSO in particular, are worse than the others. OMOPSO
and EpsMOEA perform badly for the genomics and graph datasets, but very well for the vanet
dataset. IBEA, on the other hand, performs quite well on all datasets.

B.3.3 Inverted generational distance (IGD). Inverted generational distance indicates both the spread
and the convergence properties of solution sets. Compared to the results for hypervolume in Figure 8,
IGD in Figure 10 shows bigger differences in performance between the 16 algorithms. The reason for
this is that HV includes the cardinality of solution sets, which in our case pushes most algorithms
towards high HV values. Because IGD does not consider cardinality, the spread and convergence
properties are more pronounced. This allows us to identify additional algorithms that clearly
perform worse than others. The MOEA/D implementation from the pagmo2 package, CMA-ES
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Fig. 8. Hypervolume for all algorithms and datasets. The light-green horizontal line indicates the best median
hypervolume achieved by any of the algorithms. Higher values indicate better performance.
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Fig. 9. Generational Distance for all algorithms and datasets. Lower values indicate better performance.

(deap package), EpsMOEA, IBEA, and the MOEA/D implementation from Platypus all perform
worse in at least two of three datasets.

The NSGA-II implementations from the pagmo2 and Platypus packages belong to the best
performers on all indicators so far. This is a surprising result because NSGA-II is typically said to
be unsuitable for problems with more than three objectives.

B.3.4 Spacing (SP). Spacing indicates how uniformly solutions are distributed in the solution
space. Importantly, it neither takes into account the size of the solution space, nor how far solutions
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Fig. 10. Inverted Generational Distance. Lower values indicate better performance.

are from the Pareto front. This means that algorithms whose solutions are spread uniformly on a
very small portion of the solution space would perform very well, but may not be the best choice
of algorithm because they do not cover the entire Pareto front. As such, we treat spacing as a
supplementary indicator.

Most algorithms in our experiment achieve roughly comparable spacings. The only exception is
CMSA-ES which clearly achieves the best spacing (see Figure 11). However, further analysis shows
that this is because CMSA-ES produces only one unique non-dominated solution. The range of the
solution space is thus limited to one solution, and this solution is perfectly spaced. This illustrates
that spacing alone cannot adequately describe the performance of optimization algorithms.

B.4 Differences between MO implementations
Our evaluation includes algorithms that are semantically similar, i.e. that are based on similar ideas,
as well as different implementations of the same algorithms. We now compare these groups of
algorithms and implementations to analyze further which algorithms are most suitable for our
problem.

We use the C indicator, i.e. the portion of solutions generated by one algorithm that are dominated
by at least one solution generated by the other algorithm, for pairwise comparison of algorithms.
In contrast to the indicators above, set coverage thus allows to compare implementations directly
with each other.

B.4.1 NSGA-II and SPEA2. Conceptually, NSGA-II and SPEA2 are very similar. We compare three
implementations of NSGA-II and one implementation of SPEA2. The hypervolume indicator (see
Figure 8) showed that the NSGA-II implementation from the pymoo package performed clearly
worse than the other implementations. These other implementations performed at a comparable
level, at least in their medians across all replications.

Figure 12 shows the pairwise C indicator, aggregated to compare the four implementations with
each other. The scores indicate how frequently an algorithm generates solutions that are dominated
by solutions from the other algorithms. Lower scores thus indicate better algorithms. Figure 12
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Fig. 11. Spacing. Lower values indicate better performance.

confirms that the pymoo implementation performs worst across all datasets and shows that the
performance of the other three implementations depends on the dataset. Overall, the NSGA-II and
SPEA2 implementations from Platypus have a slight advantage over the others.
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Fig. 12. C indicator for NSGA-II and SPEA2. The y axis indicates the portion of solutions that are dominated
by at least one solution from another algorithm in the comparison. Lower values thus indicate more non-
dominated solutions, i.e. a preferable algorithm.

B.4.2 NSGA-III and MOEA/D. NSGA-III and MOEA/D are algorithms that have been reported to
perform best for many-objective problems. We compare two implementations for each algorithm.
The hypervolume indicator (see Figure 8) showed that the NSGA-III implementation from the pymoo
package performed worst, but did not show a large difference when compared to the other three
implementations. The C indicator in Figure 13 shows that in fact, both MOEA/D implementations
generate more dominated solutions, and thus perform worse, than the NSGA-III implementations.
The NSGA-III implementation from Platypus performs clearly best in all three datasets.
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Fig. 13. C indicator for NSGA-III and MOEA/D.
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(a) C indicator for OMOPSO and
SMPSO.
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(b) C indicator for multiobjective CMA-ES
and CMSA-ES.

Fig. 14. C indicator for (a) particle swarm and (b) covariance matrix based algorithms

B.4.3 Particle Swarm Algorithms. The hypervolume indicator in Figure 8 did not show a large
difference between the two particle swarm algorithms OMOPSO and SMPSO. However, the pairwise
C indicator (see Figure 14a) clearly shows that solutions generated by SMPSO are often dominated
by OMOPSO solutions, across all three datasets. This is a surprising finding, because SMPSO is the
newer algorithm that was developed as an improvement of OMOPSO.

B.4.4 Covariance Matrix Algorithms. We compared three implementations of covariance matrix
based algorithms, two of them implementing the CMA-ES algorithm (from Platypus and DEAP), and
one implementing CMSA-ES. The unary indicators showed that CMSA-ES performs worst on our
problem, and that the DEAP implementation seems slightly better than the Platypus implementation
of CMA-ES.
The C indicator in Figure 14b confirms that solutions generated by CMSA-ES are always domi-

nated by solutions from the other implementations. However, the figure also indicates that solutions
from the DEAP implementation are dominated more often than those generated by the Platypus
implementation, contradicting the findings from the unary indicators.

, Vol. 1, No. 1, Article . Publication date: November 2020.


	Abstract
	1 Introduction
	2 Background
	2.1 Privacy Domains
	2.2 Privacy Measurement
	2.3 Optimization Problems

	3 Problem Formulation
	3.1 Preliminaries
	3.2 Objective M1: Monotonicity
	3.3 Objective M2: Diversity of metrics
	3.4 Objective M3: Evenness
	3.5 Objective M4: Shared Value Range
	3.6 Objective M5: Number of metrics
	3.7 Five-objective Optimization Problem

	4 Solution Algorithms
	5 Experiments
	5.1 Datasets
	5.2 Implementation
	5.3 Settings for optimization algorithms
	5.4 Performance of optimization algorithms

	6 Results: Performance of metrics suites
	6.1 Metrics suites vs. single metrics
	6.2 Number of metrics in a suite
	6.3 Metrics suites for genomics privacy
	6.4 Metrics suites for graph privacy
	6.5 Metrics suites for vanet privacy

	7 Discussion
	7.1 Application example: ranking of graph anonymization algorithms
	7.2 Limitations of our approach

	8 Conclusion
	References
	A Solution algorithms
	A.1 Single-objective optimization
	A.2 Multi-objective and many-objective optimization
	A.3 Performance Measures for Multi-objective Algorithms

	B Results: Performance of optimization algorithms
	B.1 Single-objective optimization
	B.2 MO optimization: number of function evaluations
	B.3 MO optimization: performance
	B.4 Differences between MO implementations


