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Abstract

Purpose – The purpose of this paper is to extend a methodology for solving multi-objective linear
programming (MOLP) problems, when the objective functions and constraints coefficients are stated
as interval numbers.

Design/methodology/approach – The approach proposed in this paper for the considered problem
is based on the maximization of the sum of membership degrees which are defined for each objective of
multi objective problem. These membership degrees are constructed based on the deviation from
optimal solutions of individual objectives. Then, the final model based on membership degrees is itself
an interval linear programming which can be solved by current methods.

Findings – The efficiency of the solutions obtained by the proposed method is proved. It is shown
that the obtained solution by the proposed method for an interval multi objective problem is Pareto
optimal.

Research limitations/implications – The proposed method can be used in modeling and
analyzing of uncertain systems which are modeled in the context of multi objective problems and in
which required information is ill defined.

Originality/value – The paper proposed a novel and well-defined algorithm to solve the considered
problem.

Keywords Multi objective linear programming, Interval numbers, Order relations, Membership degree,
Pareto optimallity, Linear programming, Fuzzy logic, Programming and algorithm theory, Modelling,
Decision making

Paper type Research paper

1. Introduction
The main purpose of decision making methods is to provide a holistic criterion to
evaluate the utility of an action or choice based on multiple criteria. Practical and real
world decision making problems often must satisfy several goals which are sometimes
conflicting and inconsistent. Such a problem is the subject of multiple criteria decision
making (MCDM) methods. This class is further divided into multi-objective decision
making (MODM) and multi-attribute decision making (MADM) (Climaco, 1997).
MODM problems are optimization type problems. Optimization is an inherent behavior
of all human, physical, and natural systems. The major cause of this behavior
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is limitation in resources (Nocedal and Wright, 1999). MODM is a generalization of
more traditional, single-objective approach. Cohon (2004) believed that considering
more than one objective have the following advantages:

. Promotes more appropriate roles for the participants in the decision-making
process.

. A wider range of alternatives is usually identified.

. Models or the analyst’s perception of a problem will be more realistic.

These aspects provide a widespread range of methods and algorithms to deal with and
to solve MODM problems. The main focus of this paper is on a class of multi-objective
linear programming (MOLP) problems which their parameters and variables information
are specified uncertainly. Classical MOLP solving procedures are extended based on the
assumption of crispness. In fact, they suppose that all of the data that are needed for
modeling and solving an MOLP are specified. But in practice, this assumption is often
violated. Uncertainty can occur because:

. the information is partial; or

. the information is approximate (Yovits, 1984).

Different frameworks are introduced in response for modeling and analyzing the
uncertainty of systems. Liu and Lin (2006) classified the uncertainty frameworks into
three distinct fields:

(1) probability and statistics;

(2) fuzzy sets theory; and

(3) grey systems theory.

A key note in modeling uncertain systems is that a complicated model is not always
necessary to deal with incomplete information and inaccurate data (Liu et al., 2012).
Interval numbers are a framework which aids to avoid such an unnecessary
complexity. Moore (1966) originally introduced interval numbers. An interval number
is a number whose exact value is unknown, but a range within which the value lies is
known (Moore et al., 2009). An interval number allows analyst to make his/her
approximations about parameters on an interval rather than a crisp number. This
flexibility caused interval numbers to had great applications in optimization problems.

The literature on the applications of interval number in decision making problems is so
wide. The focus of this paper, however, is just on the application of interval number
in mathematical optimization problems. In the field of interval linear programming,
Ishibuchi and Tanaka (1990), Inuiguchi and Sakawa (1995), Chanas and Kuchta (1996),
Chinneck and Ramadan (2000), Sengupta et al. (2001) and Chen et al. (2004) developed
different procedures to deal with these problems. In real world applications, problems
often deal with multiple conflict objectives which may be modeled in the context of
multi-objective problems. For a more detailed discussion of multi-objective programming
see Tamiz (1996), Cohon (2004) and Barichard et al. (2009). Like any other decision making
problem, multi-objective models deal with uncertainty in their information. In this context,
some frameworks are proposed to solve multi-objective problems with interval
parameters. Das et al. (1999), Ida (1999, 2000a, b, 2005) and Wang and Wang (2001a, b)
are some works on interval MOLP. Oliveira and Antunes (2007) presented an overview on
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some current procedures of interval MOLP. The above methods have some disadvantages,
like a considerable computational efforts (Ida, 1999), sensitivity to the ordering of rows in
ray generation methods (Ida, 2000a, b, 2005), and computational inefficiency when the
number of objective functions increases (Wang and Wang, 2001a, b), which encourages to
develop a new framework for IMOLP problems.

In this paper, a new framework is developed to treat with interval MOLP problems.
In the first step, the proposed method applied a compromise programming based logic
to obtain the best and worst solutions of each interval objectives. In the second phase,
the proposed method tries to find the better compromise solution which simultaneously
satisfied different objectives based on a fuzzy set approach. The rest of the paper is
organized as follows. A brief overview of grey theory is presented in Section 2.
A definition of interval MOLP problem is given in Section 3. The proposed approach
and its related issues are explained in Section 4. In Section 5, a numerical example is
solved by the proposed procedure. Finally, Section 6 consists of conclusions.

2. Interval numbers
An interval number is a number whose exact value is unknown, but a range within
which the value lies is known (Moore et al., 2009). Interval number is a number with
both lower and upper bounds, ~x [ ½x; �x�, where x # �x. The main arithmetic operations
can be defined on interval numbers. Let ~x1 ¼ ½x1; �x1� and ~x2 ¼ ½x2; �x2� be two interval
numbers. The following operations can be defined (Moore et al., 2009):

~x1 þ ~x2 ¼ ½x1 þ x2; �x1 þ �x2� ð1Þ

~x1 2 ~x2 ¼ ½x1 2 �x2; �x1 2 x2� ð2Þ

~x1 £ ~x2 ¼
min ðx1x2; x1 �x2; �x1x2; �x1 �x2Þ;

max ðx1x2; x1 �x2; �x1x2; �x1 �x2Þ

" #
ð3Þ

~x1 4 ~x2 ¼ ½x1; �x1� £
1

�x2
;

1

x2

� �
ð4Þ

When ~x [ ½x; �x� is an interval number, its absolute value is the maximum of the
absolute value of its endpoints: ~xj j ¼ maxð xj j; �xj jÞ (Huang, 1994).

The center, xC, and width, xW of a grey number ~x [ ½x; �x� is defined as follows:

xC ¼
1

2
ðxþ �xÞ ð5Þ

xW ¼
1

2
ð�x2 xÞ ð6Þ

It is easily verifiable that �x ¼ xC þ xW and x ¼ xC 2 xW . Ishibuchi and Tanaka (1990)
defined the following order relations between intervals.

Definition 1. If ~x ¼ ½x; �x� and ~y ¼ b y; �yc are two interval numbers, then the order
relation #LR is defined as:

~x #LR ~y iff x # y and �x # �y ð7Þ

~x aLR ~y iff ~x #LR ~y and x – y ð8Þ
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Definition 2. The order relation #CW between two grey numbers ~x and ~y is defined
as:

~x #CW ~y iff xC # yC and xW $ yW ð9Þ

~x aCW ~y iff ~x #CW ~y and x – y ð10Þ

The order relations #CW and #LR never conflicts with each other. Similarly, Ishibuchi
and Tanaka (1990) defined #*

LR and #*
CW as follows.

Definition 3. If ~x ¼ ½x; �x� and ~y ¼ b y; �yc are two interval numbers, then the order
relation #*

LR is defined as:

~x#*
LR
~y iff x # y and �x # �y ð11Þ

~xa*
LR
~y iff ~x#*

LR
~y and x – y ð12Þ

Definition 4. The order relation #*
CW between two grey numbers ~x and ~y is defined

as:

~x#*
CW

~y iff xC # yC and xW # yW ð13Þ

~xa*
CW

~y iff ~x#*
CW

~y and x – y ð14Þ

3. Interval multi-objective linear programming
An interval MOLP problem can be stated as follows:

maxðminÞ ~Z1 ¼
Xn
j¼1

~c1j ~xj

maxðminÞ ~Z2 ¼
Xn
j¼1

~c2j ~xj

..

.

maxðminÞZk ¼
Xn
j¼1

~ckj ~xj

S:T:

Xn
j¼1

~aij ~xj

#

¼

$

0
BBB@

1
CCCAb; i ¼ 1; 2; . . . ;m

~xj $ 0; j ¼ 1; 2; . . . ; n

ð15Þ

where:

~xj [ b xj; �xjc, j ¼ 1,2, . . . ,n are the interval decision variables.
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~cij [ bcij; �cijc, i ¼ 1,2, . . . ,k; j ¼ 1,2, . . . ,n are interval objective functions’
coefficients.

~aij [ baij; �aijc, i ¼ 1,2, . . . ,m; j ¼ 1,2, . . . ,n and ~bi [ bbij; �bic, i ¼ 1,2, . . . ,m are
interval constrains coefficients and right hand sides.

The problem here is to find the optimal solution for above interval MOLP problem.

4. Fuzzy approach to solve interval MOLP
The proposed method to solve the interval MOLP (15) is a multi-stage procedure. In the
first step, the problem (15) is decomposed to a set of k interval linear programming
problems. Each problem optimizes one of the k objective functions regard to
constraints set. For a given objective l, this problem is as follows:

maxðminÞ ~Zl ¼
Xn
j¼1

~clj ~xj; l ¼ 1; 2; . . . ; k

S:T:

Xn
j¼1

~aij ~xj

#

¼

$

0
BBB@

1
CCCAb; i ¼ 1; 2; . . . ;m

~xj $ 0; j ¼ 1; 2; . . . ; n

ð16Þ

The problem (16) is an interval linear programming model which can be solved by
current methods. Razavi Hajiagha et al. (2012) proposed a method to solve such
problems. This method transformed an interval linear programming method into two
equivalent models for its lower bound and upper bound. Suppose that K þ includes
those variables that their objective coefficients have both positive lower and upper
bound, K 2 includes those variables that their objective coefficients have both negative
lower and upper bound and K 0 includes those variables that their objective coefficients
have different sign and contain zero in their intervals. Then, the objective function
~Zl can be written as follows:

~zlðxÞ ¼

j[kþ

P
cþj x

þ
j þ

j[k2

P
c2j �x

2
j þ

j[k 0

P
c0
j x

0
j ;

j[kþ

P
�cþj �x

þ
j þ

j[k2

P
�c2j x

2
j þ

j[k 0

P
�c0
j �x

0
j

2
6664

3
7775 ð17Þ

Also, the left hand side (LHS) of each constraint can be written as
Xn
j¼1

~aij · ~xj, where
~aij [ baij; �aijc. The extended form of LHS is as follows:

j[kþ

X
~aþij · ~xþj þ

j[k2

X
~a2ij · ~x2j þ

j[k 0

X
~a0
ij · ~x0

j ð18Þ

where, ~aþij , ~a2ij , and ~a0
ij are the associated coefficients of the variables in K þ , K 2 , and

K 0 sets. The equation (18) is an interval number which can be shown as ½LHSi;LHSi�,
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using the arithmetic operations of interval numbers. Now, the ith constraint can be

justified as follows:
. If ½LHSi;LHSi� # ½bi; �bi�, then according to the order relation #*

RC , it is
transformed into:

LHSi # �bi ð19Þ

ðLHSiÞC # bC ð20Þ

. If ½LHSi;LHSi� $ ½b i; �bi�, then according to the order relation #LC , it is
transformed into:

LHS i $ b i ð21Þ

ðLHSiÞC $ bC ð22Þ

. If ½LHSi;LHSi� ¼ ½bi; �bi�, then it is transformed into:

LHSi ¼ b i ð23Þ

LHSi ¼ �bi ð24Þ

It can be shown that there is a direct relationship between the above relations with the
notion of possibility degree, introduced by Li et al. (2007) (Razavi Hajiagha et al., 2012).

If the original objective is to minimize ~Zl , l [ {1; 2; . . . ; k}, the solution of model (16)
can be determined as the set of Pareto optimal solutions of the following bi-objective
problem:

MinðzlCðxÞ; �zlðxÞÞ ð25Þ

where, �zlðxÞ is the upper bound of interval function ~zlðxÞ and zlcðxÞ is its center. If the
original objective is to maximize ~Zl , l [ {1; 2; . . . ; k}, the solution of model (16) can be
determined as the set of Pareto optimal solutions of the following bi-objective problem:

Maxðz lðxÞ; zlCðxÞÞ ð26Þ

In equation (26) also zlðxÞ is the lower bound of interval function ~zlðxÞ. Finally, by

solving the equation (16) based on equations (17)-(26) for each objective function, the

range of optimal objective functions are determined as ~z*l [ z*l ; �z
*
l

h i
, l ¼ 1,2, . . . ,k.

Now, consider the lth objective again. If this objective is a maximization type, its
membership function can be defined as follows:

~mlðxÞ ¼

1 if ~zlðxÞ $ �z*l

~zlðxÞ2 z*l

�z*l 2 z*l
if ~zlðxÞ # �z*l

8>>><
>>>:

ð27Þ

where the increasing of ~zlðxÞ will increase the membership degree ~mlðxÞ. This
membership function is shown in Figure 1.

MOLP with
interval

coefficients

487



In a same way, for minimization type objective, the membership function can be
defined as follows:

~mlðxÞ ¼

1 if ~zlðxÞ # z*l

�z*l 2 ~zlðxÞ

�z*l 2 z*l
if z*l # ~zlðxÞ

8>>><
>>>:

ð28Þ

where the decreasing of ~zlðxÞ will increase the membership degree ~mlðxÞ. Figure 2
shows this membership function.

Lemma 1 shows an important fact in modeling process.
Lemma 1. From equation (27) it always holds that ~mlðxÞ # 1.
Proof. Suppose that ~mlðxÞ $ 1. Then based on equation (27) it follows that:

~mlðxÞ $ 1 )
~zlðxÞ2 z*l

�z*l 2 z*l
$ 1 ) ~zlðxÞ2 z*l $ �z*l 2 z*l ) ~zlðxÞ $ �z*l

Figure 1.
Membership function for
maximization objectives

1

Zl
*–Zl

*
–

Figure 2.
Membership function for
minimization objectives

1

Zl
*–Zl

*
–
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According to equations (21) and (22):

~zlðxÞ $ �z*l :
zlðxÞ $ �z*l

zlcðxÞ $ �z*l

8<
:

From z lðxÞ $ �z*l it required that �zlðxÞ $ �z*l which contradicts with the optimality of �z*l .
It completed the proof.

A similar lemma can be proved for equation (28). Then, the final step is to formulate
the interval MOLP problem as follows:

max{ ~m1ðxÞ; ~m2ðxÞ; . . . ; ~mkðxÞ}

~mlðxÞ # 1; l ¼ 1; 2; . . . ; k

Xn
j¼1

~aij ~xj

#

¼

$

0
BBB@

1
CCCAb;

i ¼ 1; 2; . . . ;m

~xj $ 0; j ¼ 1; 2; . . . ; n

~mlðxÞ : unrestricted; l ¼ 1; 2; . . . ; k

ð29Þ

This problem is transformed into the following equivalent form:

max
Xk

l¼1

~mlðxÞ

~mlðxÞ # 1

Xn
j¼1

~aij ~xj

#

¼

$

0
BBB@

1
CCCAb; i ¼ 1; 2; . . . ;m

~xj $ 0; j ¼ 1; 2; . . . ; n

~mlðxÞ : unrestricted; l ¼ 1; 2; . . . ; k

ð30Þ

It is notable that if decision maker has some preemptive preferences over different
objectives, the objective function in model (30) can be replaced by a weighted sum
function, i.e. max

Pk
l¼1wl ~mlðxÞ, where Wl, l ¼ 1,2,. . .k are the weights of objective

functions such that wl $ 0, l ¼ 1,2,. . .k.
The model (30) itself is an interval linear programming problem which can be solved

by Razavi Hajiagha et al. (2012) method. It can be shown that the optimal solution
obtained by model (30) is a fuzzy efficient solution for the problem (29) and consequently,
a Pareto optimal solution to the interval MOLP problem (15). The notions of Pareto
optimal and fuzzy efficient solution are defined as follows.
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Definition 5. A decision plan x 0 [ X (X is the feasible space of interval MOLP
problem) is said to be a Pareto optimal solution to the interval MOLP problem (15)
if and only if there does not exist another y [ X such that ~zlð yÞ $ ~zlðx

0Þ for all l and
~zpð yÞ s ~zpðx

0Þ for at least one p. A
Definition 6. Suppose that the feasible set of a fuzzy multi-objective linear

programming problem is X. A decision plan x 0 [ X is said to be a fuzzy-
efficient solution to the problem (29) if and only if there does not exist another y [ Xsuch
that ~mlð yÞ $ ~mlðx

0Þ for all l and ~mpð yÞ $ ~mpðx
0Þ for at leas one p (Werners, 1987a, b;

Jimenez and Bilbao-Terol, 2009).
Lemma 2. Let x 0 be an optimal solution of problem (30). Then x 0 is a fuzzy

efficient solution to the fuzzy MOLP (29).
Proof. On the contrary, suppose that x 0 is not a fuzzy efficient solution to problem (29).

Therefore, there is another solution y such that ~mlð yÞ $ ~mlðx
0Þ for all l and ~mpð yÞ $ ~mpðx

0Þ
for at leas one p. Consequently,

Pk
l¼1 ~mlð yÞ $

Pk
l¼1 ~mlðx

0Þ andx 0 is not an optimal solution
to the problem (30), a contradiction that complete the proof. A

Lemma 3. Let x 0 be a fuzzy efficient solution to the fuzzy MOLP (29). Then x 0 is a
Pareto optimal solution to the interval MOLP (15).

Proof. According to the proof of the Lemma 1, the fuzzy efficiency of x 0 to problem
(29) means that there does not exist a solution y such that ~mlð yÞ $ ~mlðx

0Þ for all l and
~mpð yÞ $ ~mpðx

0Þ for at leas one p. It is enough to show that this condition is equivalent to
the definition of Pareto optimality in Definition 5. In fact, it must be shown that
~mlðx

0Þ $ ~mlð yÞ is equivalent to say that ~zlðx
0Þ $ ~zlð yÞ (when objective function is

maximization) which is obvious from the definition of membership functions in
equations (27) and (28). Since there is not a solution that violates the fuzzy efficiency of
x 0 to the problem (29), and then there does not exist another solution that violates the
Pareto optimality of x 0 to the problem (15) and it complete the proof.

Therefore, solving the problem (30) determines the Pareto optimal solution of
an interval MOLP problem.

Oliveira and Antunes (2007) comprehensively reviewed the advantages and
disadvantages of other interval MOLP methods, from different points include their
required computational efforts. Some methods, like Ida (1999), are based on enumeration
concept which is computationally burden. Also, the exponential growth of the number of
objective functions in the sub problems of F-cone algorithm (Steuer, 1980, 1986) led it
beyond the acceptable computational limits. On the other hand, the Inuiguchi and
Kume (1991) proposed a method which solved four formulations based on goal
programming, which two formulations are non-convex problems and as they proposed,
can be solved by branch and bound algorithm. About the computational efficiency
of the proposed method it can be noted that the proposed algorithm for a problem
consisting k objectives, includes solving (2k þ 1) linear programming problems
and a bi-objective linear model which can be easily solved by one of the current
methods (i.e. the compromise programming (Zeleny, 1976) or goal programming
(Charnes and Cooper, 1959)). In fact, the proposed method does not require solving any
non-convex or complex problem. Also, the number of linear programs is increased
linearly. A

5. Numerical example
In this section, three numerical examples of interval MOLP problems are discussed.
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Example 1. Consider the following interval MOLP:

MaxZ 1 ¼ ½1; 3�~x1 þ ½21; 1:5�~x2

MaxZ 2 ¼ ½0:5; 2�~x1 þ ½21:5;21�~x2

S:T:

½1; 2�~x1 þ ½1:5; 3�~x2 # ½4; 6�

½1; 3�~x1 þ ½2:5; 3:5�~x2 # 12

~x1; ~x2 $ 0

ð31Þ

The problem (29) is decomposed to two equivalent interval linear programming.
Problem 1.

MaxZ 1 ¼ ½1; 3�~x1 þ ½21; 1:5�~x2

S:T:

½1; 2�~x1 þ ½1:5; 3�~x2 # ½4; 6�

½1; 3�~x1 þ ½2:5; 3:5�~x2 # 12

~x1; ~x2 $ 0

Problem 2.

MaxZ 2 ¼ ½0:5; 2�~x1 þ ½21:5;21�~x2

S:T:

½1; 2�~x1 þ ½1:5; 3�~x2 # ½4; 6�

½1; 3�~x1 þ ½2:5; 3:5�~x2 # 12

~x1; ~x2 $ 0

Both problems (1) and (2) are then solved based on the above method. Consider the
problem (1). This problem further is transformed into a multi-objective linear
programming model as follows:

MaxZ 1 ¼ x1 2 x2

MaxZ 1c ¼
1

2
x1 þ

3

2
�x1 2

1

2
x 2 þ

3

4
�x2

S:T:

2�x1 þ 3�x2 # 6

1

2
x1 þ �x1 þ

3

4
x 2 þ

3

2
�x2 # 5

3�x1 þ 3:5�x2 # 12

1

2
x1 þ

3

2
�x1 þ

5

4
x 2 þ

7

4
�x2 # 12

x 2; �x1; x 2; �x2 $ 0
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Solving the Z 1 and Z 1c problems distinctly, by the proposed method, will result in
~Z
*
1 ¼ ½3; 9� Similarly, the problem (2) is analyzed and its optimal objective function

is obtained as ~Z
*
2 ¼ ½1:5; 6�. Now, the membership functions of objective functions

are constituted as follows:

~m1ðxÞ ¼

1 if ~z1ðxÞ $ 9

~z1ðxÞ2 3

6
if ~z1ðxÞ # 9

8><
>: ~m2ðxÞ ¼

1 if ~z2ðxÞ $ 6

~z2ðxÞ2 1:5

4:5
if ~z2ðxÞ # 6

8><
>:

Consequently, the problem is transformed as follows based on model (30):

Max
5

18
;
17

18

� �
~x1 þ 2

1

2
;

1

36

� �
~x2 2

5

6

S:T:

½1; 3�~x1 þ ½21; 1:5�~x2 $ 3

½0:5; 2�~x1 þ ½21:5;21�~x2 $ 1:5

½1; 2�~x1 þ ½1:5; 3�~x2 # ½4; 6�

½1; 3�~x1 þ ½2:5; 3:5�~x2 # 12

~x1; ~x2 $ 0

ð32Þ

The model (32) is an interval linear programming model which can be solved by first
finding its optimum lower bound and center. Then, a bi-objective function is constructed
and is solved with a simple weighted summation model with equal weights. The optimal
solution is obtained as ~x*1 ¼ ½3; 3�, ~x*2 ¼ ½0; 0�, ~Z

*
1 ¼ ½3; 9� and ~Z

*
2 ¼ ½1:5; 6�.

Example 2. Das et al. (1999) solved the following multiobjective transportation
problem by their proposed method:

Min ~Z1 ¼
X3

i¼1

X4

j¼1

~c1
ijxij

Min ~Z2 ¼
X3

i¼1

X4

j¼1

~c2
ijxij

S:T:

X4

j¼1

x1j ¼ 8;
X4

j¼1

x2j ¼ 19;
X4

j¼1

x3j ¼ 17;

X3

i¼1

xi1 ¼ 11;
X3

i¼1

xi2 ¼ 3;
X3

i¼1

xi3 ¼ 14;
X3

i¼1

xi4 ¼ 16;

xij $ 0; i ¼ 1; 2; 3; j ¼ 1; 2; 3; 4

ð33Þ
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where:

C 1 ¼

½1; 2� ½1; 3� ½5; 9� ½4; 8�

½1; 2� ½7; 10� ½2; 6� ½3; 5�

½7; 9� ½7; 11� ½3; 5� ½5; 7�

2
664

3
775; C 2 ¼

½3; 5� ½2; 6� ½2; 4� ½1; 5�

½4; 6� ½7; 9� ½7; 10� ½9; 11�

½4; 8� ½1; 3� ½3; 6� ½1; 2�

2
664

3
775

Das et al. (1999) determined the Pareto optimal solution of the above problem as

x12 ¼ 3, x14 ¼ 5, x21 ¼ 11, x23 ¼ 4.14, x24 ¼ 3.86, x33 ¼ 9.86, and x34 ¼ 7.14. Also, ~Z
*
1 ¼

½119:14; 214:42� and ~Z
*
2 ¼ ½180:64; 214:1�.

Based on the proposed method, the optimal ranges of objective are determined

Z*1c ¼ 148:5, �Z*1 ¼ 187, Z*2c ¼ 171 and �Z*2 ¼ 211. Therefore, ~Z
*
1 ¼ ½110; 187� and ~Z

*
2 ¼

½131; 211�. Then, the membership functions are constructed as follows:

~m1ðxÞ ¼

1; ~Z1 # 110

187 2 ~Z1

77
; ~Z1 $ 110

8><
>: ; ~m2ðxÞ ¼

1; ~Z2 # 133

211 2 ~Z2

78
; ~Z2 $ 133

8><
>:

Now, developing the model (30) as an interval linear programming model and solving it
by the described method, the following solutions are achieved:

. x12 ¼ 3, x14 ¼ 5, x21 ¼ 11, x23 ¼ 8, x33 ¼ 6, and x34 ¼ 11, with ~Z
*1

1 ¼ ½123; 226�

and ~Z
*1

2 ¼ ½140; 247�,
. x12 ¼ 3, x13 ¼ 5, x21 ¼ 11, x23 ¼ 8, x33 ¼ 1, and x34 ¼ 16, with ~Z

*2

1 ¼ ½138; 241�

and ~Z
*2

2 ¼ ½135; 222�,

Applying the grey possibility degree of Li et al. (2007) to compare the obtained results,

it can be seen that ~Z
*1

1 . ~Z
*
1 , ~Z

*1

2 , ~Z
*
2 , ~Z

*2

1 , ~Z
*
1 , and ~Z

*2

2 . ~Z
*
2 which implies the

Pareto optimality of the obtained solutions. Also, it is clear that the integrity
characteristic of transportation problems solution is hold in the proposed method.

Example 3. Oliveira and Antunes (2007) solved the following interval MOLP with
Urli and Nadeau (1992) method:

Min ~Z1 ¼ ½0:5; 1:8�x1 þ ½20:5; 0:5�x2

Min ~Z2 ¼ ½0:3; 0:8�x1 þ ½1; 1:2�x2

S:T:

½1:5; 2:5�x1 þ ½0:5; 1�x2 # ½6; 10�

½0:5; 2�x1 þ ½3; 6�x2 # ½14; 16�

x1; x2 $ 0

ð34Þ

Solving the problem (34) with Urli and Nadeau (1992), the following solution is obtained:
x1 ¼ 3.166, x2 ¼ 1.188, ~Z

1

1 ¼ ½0:989; 6:2928�, and ~Z
1

2 ¼ ½2:1378; 3:9584�. Solving this

problem with the proposed method, the obtained results are as follows: x1 ¼ 3.384615,
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x2 ¼ 1.538462, ~Z
2

1 ¼ ½0:9230765; 6:954317�; and ~Z
2

2 ¼ ½2:5538465; 4:5538464�. For both

objectives, it follows that ~Z
2

1 .
~Z

1

1 and ~Z
2

2 .
~Z

1

2. In fact the proposed method achieved a

preferred solution in both objectives.

6. Conclusion
In this paper, the problem of linear multi-objective programming is considered when the
model parameters, or coefficients, are stated as interval numbers. The uncertainty is an
inevitable characteristic of mathematical modeling of practical systems. Often, the user
does not have enough information to determine an exact value for the required values in
a model. In this case, the user has to estimate these parameters. Interval numbers
provide a framework for expressing the systems’ information as interval numbers,
rather than crisp and deterministic numbers. This framework provides a great
flexibility in modeling the uncertain systems. In this paper, the problem of
multi-objective programming is considered, where all of the model’s parameters and
coefficients are stated as interval numbers. The proposed approach, introduce a process
where an interval MOLP problem is transformed into a single objective linear
programming model which maximizes the sum of membership functions of different
interval objectives. This single objective program itself is an interval linear
programming model which can be solved by transforming it into a bi-objective linear
model and this model can be solved by current linear multi-objective programming
approaches. Also, the efficiency of obtained solution based on the proposed method is
proved. Finally, application of the proposed method is examined in two numerical
examples. The proposed approach provides a simple, logical and clear framework to
deal with interval MOLP problems.
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