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Summary. Background: Platelet activationby collagendepends
on signals transduced by the glycoprotein (GP)VI–Fc receptor

(FcR)c-chain collagen receptor complex,which involves recruit-

ment of phosphatidylinositol 3-kinase (PI3K) to phosphory-

lated tyrosines in the linker for activation of T cells (LAT). An

interaction between the p85 regulatory subunit of PI3K and the

scaffolding molecule Grb-2-associated binding protein-1

(Gab1), which is regulated by binding of the Src homology 2

domain-containing protein tyrosine phosphatase-2 (SHP-2) to

Gab1,hasbeen shown inother cell types to sustainPI3Kactivity

to elicit cellular responses. Platelet endothelial cell adhesion

molecule-1 (PECAM-1) functions as a negative regulator of

platelet reactivity and thrombosis, at least in part by inhibiting

GPVI–FcRc-chain signaling via recruitment of SHP-2 to

phosphorylated immunoreceptor tyrosine-based inhibitory

motifs in PECAM-1. Objective: To investigate the possibility

that PECAM-1 regulates the formation of the Gab1–p85

signaling complexes, and thepotential effect of such interactions

onGPVI-mediatedplatelet activation inplatelets.Methods:The

ability of PECAM-1 signaling to modulate the LAT signalo-

some was investigated with immunoblotting assays on human

platelets and knockout mouse platelets. Results: PECAM-1-

associated SHP-2 in collagen-stimulated platelets binds to p85,

which results in diminished levels of associationwith bothGab1

and LAT and reduced collagen-stimulated PI3K signaling. We

therefore propose that PECAM-1-mediated inhibition of

GPVI-dependent platelet responses result, at least in part, from

recruitment of SHP-2–p85 complexes to tyrosine-phosphory-

latedPECAM-1,whichdiminishes the associationof PI3Kwith

activatory signaling molecules, such as Gab1 and LAT.
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Introduction

Platelet endothelial cell adhesion molecule-1 (PECAM-1,

CD31) is a 130-kDa membrane-spanning glycoprotein (GP)

that belongs to the immunoglobulin (Ig) family of cell adhesion

molecules and consists of a 574-residue extracellular domain

composed of six Ig-like homology domains, a 19-residue

transmembrane domain, and an 118-residue cytoplasmic tail

[1–3]. PECAM-1 is expressed on the surfaces of endothelial

cells and several hematopoietic cell types, including platelets,

megakaryocytes, monocytes, neutrophils, natural killer cells,

and naı̈ve subsets of T and B cells [4,5].

PECAM-1 is a signaling molecule that plays diverse roles in

vascular biology, including modulation of platelet function [6–

9], angiogenesis [10], vasculogenesis [11], integrin regulation

[12,13], T-cell and B-cell activation [14,15], and mediation of

leukocyte migration across the endothelium [16,17]. This

receptor also plays an important role in the inhibition of both

systemic and tissue-specific inflammatory responses [18–20],

and, more recently, has been implicated in both proathero-

sclerotic and atheroprotective effects, influencing the initiation

and progression of atherosclerosis [21,22].

In platelets, we and others have shown that clustering or

ligation of PECAM-1 inhibits signal transduction by the

activatory collagen receptor GPVI, which hinders platelet

aggregation and thrombus formation [8,9], although the
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mechanism for this inhibitory effect remains to be established.

The inhibition of GPVI-stimulated platelet activation by

PECAM-1 is associated with diminished protein tyrosine

phosphorylation and decreased calcium mobilization [7]. We

have found, however, that early tyrosine kinase-dependent

signaling, including phosphorylation of the Fc receptor

(FcR)c-chain, spleen tyrosine kinase (Syk) and linker for

activation of T cells (LAT), following stimulation of GPVI is

largely unaffected by stimulation of PECAM-1 (data not

shown). In this study, we therefore explored the next steps

downstream, coordinated through the assembly of the LAT

signalosome. Upon homophilic ligation and antibody-medi-

ated clustering or following stimulation with collagen or

thrombin, PECAM-1 becomes tyrosine-phosphorylated by

Src-family kinases [6,23,24]. PECAM-1 also becomes tyrosine-

phosphorylated following activation and aggregation of plate-

lets, which is proposed to represent a negative feedback

mechanism [6,7,23]. The cytoplasmic tail of human PECAM-1

has two distinct immunoreceptor tyrosine-based inhibitory

motifs (ITIMs) surrounding tyrosines at positions 663 and 686

[25]. These ITIMs can serve as docking sites for signaling

molecules such as non-receptor Src homology 2 (SH2) domain-

containing protein tyrosine phosphatase-2 (SHP-2), which

binds to the phosphorylated ITIMs through tandem SH2

domain-dependent interactions [26,27]. Several reports have

strongly implicated SHP-2 in the functions of PECAM-1 in

several cell systems [15,23,24,28,29].

SHP-2 is involved in the signaling pathways of a variety of

growth factor-initiated and cytokine-initiated signal trans-

duction processes, thereby regulating a range of cellular

responses [30–33]. Although protein tyrosine phosphatases act

to counter the effects of tyrosine kinase-dependent pathways,

SHP-2, in most circumstances, plays a positive regulatory role

in signal transduction, as previously reported for the regula-

tion of growth factor receptor signaling [34]. Previous studies

have demonstrated that a number of signaling proteins, such

as Grb2, the p85 subunit of phosphatidylinositol 3-kinase

(PI3K), and Grb2-associated binding protein 1 (Gab1),

associate with SHP-2 after cytokine and growth factor

receptor activation, leading to enhanced signal transduction

[35]. Gab1 belongs to a family of scaffolding adaptor proteins,

which have an N-terminal pleckstrin homology domain,

multiple tyrosine-based motifs, and proline-rich sequences

[36,37]. Upon growth factor, cytokine and antigen receptor

stimulation, Gab1 provides a number of docking sites to

mediate interactions with SH2 domain-containing proteins,

such as SHP-2 and the p85 subunit of PI3K, mediating

intracellular responses. Given the physiologic importance of

the Gab1–SHP-2 association, it has been suggested that a

primary role of Gab1 is to recruit SHP-2 [38]. Furthermore,

SHP-2 regulates the amount of p85 that is bound to Gab1 by

dephosphorylating p85-binding sites on Gab1 [38]. The

physical association between p85 and Gab1 is important in

mediating the PI3K signaling pathway induced by growth

factors [37]. In this way, SHP-2 negatively regulates theGab1–

p85 interaction, controlling the kinetics and reducing the

extent of PI3K signaling following epidermal growth factor

stimulation [38].

LAT is an adaptor molecule that, upon phosphorylation by

Syk, nucleates the formation of a protein complex that enables

recruitment and activation of phospholipase C (PLC)c2
following GPVI stimulation [39,40]. The activation of PLCc2
in response to GPVI stimulation depends on recruitment of

PI3K to phosphorylated LAT via the SH2 domains of the p85

subunit. Once recruited to the plasma membrane, PI3K

phosphorylates phosphatidylinositol 4,5-bisphosphate to form

phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], to

which multiple pleckstrin homology domain-containing

proteins, such as PLCc2 itself, Tec family kinases required

for PLCc2 activation, protein kinase B (PKB)/Akt and

3-phosphoinositide-dependent protein kinase 1 (PDK1),

which phosphorylates and activates PKB/Akt, can bind, and

become activated and mediate their functions [40,41].

In this study, we investigated the possibility that PECAM-1

regulates the formation of the LAT–Gab1–p85 signaling

complexes and the potential effect of such interactions on

GPVI-mediated platelet activation in platelets. We demon-

strate that PECAM-1 interferes with the formation of Gab1–

p85–SHP-2 complexes upon GPVI stimulation. These results

provide a molecular explanation for PECAM-1-mediated

inhibition of collagen-stimulated PI3K signaling, and thereby

the inhibition of platelet function.

Materials and methods

Reagents

Anti-PECAM-1 monoclonal antibody for crosslinking

(AB468) and an appropriate isotype control (AB600) were

obtained from Autogen Bioclear (Nottingham, UK), and

were dialyzed to remove azide. Goat anti-mouse IgG F(ab¢)2
fragment antibody was obtained from Sigma Chemical

(Poole, UK). Anti-PECAM-1 for immunoprecipitation

(WM59) was obtained from Serotec (Oxford, UK). Anti-

PECAM-1 for immunoblotting (C-20), anti-SHP-2 (C-18),

anti-Gab1 (H-198) and protein A/G agarose were obtained

from Santa Cruz (Autogen Bioclear, London, UK). Anti-

PI3K p85 subunit (06-195) and anti-Akt/PKBawere obtained

from Upstate Biotechnology (Dundee, UK). Anti-horserad-

ish peroxidase (HRP)-conjugated secondary antibodies were

obtained from New England Biolabs (Hitchin, UK), and

enhanced chemiluminescence reagents were obtained from

GE Healthcare (Chalfont St Giles, UK). Horm-Chemie

collagen (collagen fibers from equine tendons) was obtained

from Nycomed (Munich, Germany), and collagen-related

peptide (CRP) was obtained from R. Farndale (University of

Cambridge, UK). A plasmid containing cDNA encoding a

glutathione-S-transferase (GST) fusion protein containing

the N-terminal SH2 domain of p85 (GST–p85-N-SH2) was a

gift from T. Pawson (University of Toronto, Ontario,

Canada). PECAM-1 knockout mice were provided by T.

Mak (University of Toronto, Ontario Canada). All protocols
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involving the use of animals were approved by the University

of Reading Local Ethical Review Panel and authorized by a

Home Office licence.

Mouse platelet preparation and activation

Blood was obtained from PECAM-1 knockout and con-

trol mice via cardiac puncture after death. Blood (1 mL) was

drawn into a syringe containing acidic citrate dextrose

(100 lL;120 mM sodium citrate, 110 mM glucose, 80 mM citric

acid) as anticoagulant. Platelets were prepared from whole

blood by differential centrifugation in the presence of prosta-

cyclin (0.1 lg mL)1), resuspended in modified Tyrode�s–
HEPES buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM

KCl, 12 mM NaHCO3, 20 mM HEPES, 5 mM glucose, 1 mM

MgCl2, pH 7.3) to a density of 4 · 108 cells mL)1, and rested

for 30 min at 30 �C prior to experiments, as described

previously [9,42,43]. For aggregation studies, platelets were

suspended at a final concentration of 2.5 · 108 cells mL)1, and

aggregometry was performed at 37 �C in an optical platelet

aggregometer (Chrono-log Corp., Havertown, PA, USA), as

described previously [9].

Platelets from PECAM-1-deficient mice were found to have

similar levels of LAT, Gab-1, p85, SHP-2 and PLCc2 as

platelets derived from wild-type mice (Fig. S1).

Human platelet preparation and activation

Washed platelets were prepared from fresh blood obtained

from aspirin-free donors by differential centrifugation, as

described previously [44], and resuspended in modified

Tyrode�s–HEPES buffer to a density of 4 · 108 cells mL)1.

Aggregation studies were performed at 37 �C in an optical

platelet aggregometer (Chrono-log Corp.), as described

previously [7]. For protein precipitation experiments, plate-

lets were resuspended at 8 · 108 cells mL)1 and rested for

30 min at 30 �C prior to experiments. PECAM-1 signaling

was induced by antibody crosslinking with mouse monoclo-

nal antibody AB468 (1 lg mL)1) and goat anti-mouse IgG

(30 lg mL)1) for 5 min prior to agonist stimulation, as

reported previously [7]. Mouse IgG antibody AB600

(1 lg mL)1) was used as the antibody control. Preincubation

with IV.3 F(ab¢) fragments, to block the low-affinity receptor

for IgG FccRIIA, did not alter the inhibitory effect of

PECAM-1 crosslinking [45]. Stimulation of platelets with

collagen (25 lg mL)1) or with crosslinking PECAM-1 anti-

bodies in the presence of EGTA (1 mM) to prevent aggrega-

tion was performed at 37 �C in an optical platelet

aggregometer (Chrono-log Corp.) with continuous stirring

at 1200 r.p.m.. Informed consent from all human subjects

donating blood was obtained, and procedures were approved

by the University of Reading Research Ethics Committee.

Immunoprecipitation and immunoblotting

For protein precipitation assays, platelets were suspended in

buffer containing 1 mM EGTA, 10 lM indomethacin and

2 U mL–1 apyrase to prevent platelet aggregation, release of

thromboxane A2, and the secondary effects of secreted ADP,

respectively. Immunoprecipitation, sodium dodecylsulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and immuno-

blotting onto poly(vinylidine difluoride) (PVDF) membranes

were performed with the use of standard techniques [7,43].

Normal IgG control was added to our immunoprecipitation

experiments, and showed no effect on the interactions revealed

in this study (Fig. S3). Quantification was performed following

chemifluorescence detection with TYPHOON FLUORESCENCE

IMAGING software (GE Healthcare).

Far-western blotting

GST–p85-N-SH2 was prepared as described previously [39].

SHP-2 immunoprecipitates from control or collagen-stimu-

lated platelets were resolved by SDS-PAGE, transferred to

PVDF membranes, blocked with bovine serum albumin

protease-free solution, and incubated for 3 h with GST–p85-

N-SH2 (10 lg mL)1), followed by anti-GST antibody

(1 : 1000). Blots were washed and incubated for 2 h with

HRP-conjugated anti-goat IgG antibody (1 : 8000), and

signals were detected with a fluorescence imager (Typhoon;

GE Healthcare).

Statistical analysis

Determination of statistical significance was performed using

Student�s paired t-test. Results are expressed as means ± stan-

dard errors of the mean.

Results

SHP-2 and p85 (PI3K) associate with PECAM-1 upon PECAM-

1 or GPVI stimulation

PECAM-1 tyrosine phosphorylation and subsequent activa-

tion of signaling molecules is stimulated following PECAM-1

clustering (antibody or homophilic ligation) or following

platelet activation [6,7]. Phosphorylation of PECAM-1 is

associated with the inhibition of platelet function (Fig. 1A,B),

as well as secretion and adhesion responses [6,7,9]. The

activation of PECAM-1 signaling is also stimulated down-

stream of platelet activation, and has been proposed to

represent a negative feedback mechanism [6,7]. The association

of PECAM-1 with SHP-2 has been described previously, and

shown to be mediated by the SH2 domains of this phosphatase

[23,24,28,29]. In order to determine the kinetics and extent of

SHP-2 recruitment by PECAM-1 following crosslinking of

PECAM-1 orGPVI stimulation with collagen, human platelets

were stimulated for 45 s, 1 min 30 s and 3 min, in the presence

of EGTA (1 mM), apyrase (2 U mL)1) and indomethacin

(10 lM) to prevent aggregation and ensure the study of primary

signaling events. The level of SHP-2 associated with immuno-

precipitated PECAM-1wasmeasured by immunoblot analysis.

The extent of association between PECAM-1 and SHP-2 was
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Fig. 1. Stimulation of platelet endothelial cell adhesion molecule-1 (PECAM-1) signaling results in recruitment of phosphatidylinositol 3-kinase (PI3K).

Washed human platelets were incubated with antibody specific for PECAM-1 crosslinking (XL) or isotype control prior to stimulation with collagen-

related peptide (0.5 lg mL)1) for 90 s (A), or wild-type and PECAM-1-deficient mouse platelets were stimulated with collagen (2.5 lg mL)1) (B) and

aggregation wasmeasured under constant stirring conditions at 37 �C.Washed human platelets were treated with EGTA (1 mM), apyrase (2 U mL)1) and

indomethacin (10 lM) prior to stimulation of PECAM-1 by antibody crosslinking (C, E) or with collagen (D, F) for 45, 90 and 180 s. (C, D) Levels of

Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) associated with PECAM-1 were detected before equivalent protein loading

was verified by reprobing for PECAM-1. Levels of p85 subunit of PI3K associated with PECAM-1 detected after stimulation with glycoprotein VI agonist

collagen (25 lg mL)1) (E) or antibody specific for PECAM-1 crosslinking (1 lg mL)1) (F). Equivalent protein loading was verified by reprobing

for PECAM-1. Immunoblots were visualized by fluorescence imaging, quantified, and normalized for protein loading. Numerical data represent the

percentage change of PECAM-1–SHP-2 association in stimulated samples as compared with control (mean ± standard error of the mean; n = 4). t-test:

*P £ 0.05, **P £ 0.01, ***P £ 0.001. IP, immunoprecipitation.
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dependent on the duration of stimulation, and was propor-

tional to the increase in the level of tyrosine phophorylation of

SHP-2 (Fig. 1C,D; Fig. S2). Changes in tyrosine phosphory-

lation, SHP-2 binding and PECAM-1 binding were detected at

early time points (detectable at 45 s in Fig. S2) and continued

to rise for 3 min. Under the conditions used, similar kinetics for

PECAM-1–SHP-2– interactions were observed for PECAM-1

crosslinking and stimulation of platelets with collagen. In

subsequent experiments, a time point of 90 s was chosen to

ensure that quantification of association could be reliably

measured with this approach.

To explore the possibility that components of the activatory

GPVI pathway interact with PECAM-1, we investigated the

potential association between the p85 subunit of PI3K and

PECAM-1 following PECAM-1 or GPVI stimulation. Human

platelets were incubated with or without crosslinking with

an antibody specific for PECAM-1 for 90 s, as described in

Materials andmethods. The p85 subunit of PI3Kwas found to

associate with PECAM-1, and the level of this association was

increased significantly upon stimulation of either PECAM-1 or

GPVI signaling (Fig. 1E,F).

p85 associates with SHP-2 upon PECAM-1 crosslinking or

GPVI stimulation

Previousstudies inothercellmodelshavesuggestedthat theSH2

domains of p85 direct the interaction of the PI3K complexwith

activated growth factor receptors and signaling intermediate

moleculessuchSHP-2,Gab1,Grb-2-associatedbindingprotein-

2, Grb2, and SHIP [38]. Given the role of PECAM-1 in the

negative regulation of platelet function and the recruitment of

SHP-2 to this ITIM-containing receptor, we investigated

whether the p85 subunit of PI3K associates with SHP-2 upon

PECAM-1 crosslinking or GPVI stimulation. As shown in

Fig. 2A,B, SHP-2 was immunoprecipitated from the lysates of

resting platelets and following stimulation of PECAM-1 and

GPVI signaling. Low levels of p85 were found to be present in

SHP-2immunoprecipitatesfromunstimulatedplatelets,andthis

association was increased notably following stimulation of

PECAM-1 or activation of platelets with collagen. In order to

exploreapotentialdirect interactionbetweenSHP-2andthep85

subunitofPI3K,weusedGST–p85-N-SH2 in far-westernblots.

Restingandcollagen-stimulated sampleswere lysed, andSHP-2

was immunoprecipitated. Immunoprecipitates were separated

by SDS-PAGE and transferred to PVDF membranes. After

incubation with GST–p85-N-SH2 or GST alone (control), the

presenceofboundfusionproteinwasdetectedwithananti-GST

antibodyandchemifluorescencedetection.Anincrease inGST–

p85-N-SH2 binding to immunoprecipitated SHP-2 following

GPVI stimulation (Fig. 2C) suggested that the p85 subunit of

PI3K is capable of binding directly to SHP-2.

PECAM-1 modulates SHP-2–p85 association

As SHP-2 is capable of binding p85 directly, it is possible that

PECAM-1 (or binding of PECAM-1 to SHP-2) drives this

association.We therefore evaluated the interaction between p85

and SHP-2 in whole platelet lysates from control (wild-type)

and PECAM-1-deficient platelets stimulated with collagen.

Substantially lower levels of collagen-stimulated SHP-2–p85

association were detected in PECAM-1-deficient platelets than

in control platelets (Fig. 2D). These data strongly indicate that

PECAM-1 modulates SHP-2–p85 association.

PECAM-1 signaling destabilizes a collagen-stimulated Gab1–

p85 complex

In different cell types, Gab1 has been shown to contain a

number of different docking sites that mediate independent

interactions with SH2 domain-containing proteins such as

SHP-2 and the p85 subunit of PI3K. The formation of these

complexes is involved in signaling events mediated by cytokine

and tyrosine kinase receptors [36,37]. Given our finding that, in

human platelets, SHP-2 interacts directly with p85 in a manner

that depends on the presence of PECAM-1, we hypothesized

that PECAM-1 may bind to SHP-2–p85 complexes and

interfere with the ability of either of these molecules to bind

to Gab1. To test this hypothesis, we investigated the effect of

PECAM-1 crosslinking or PECAM-1 deficiency on the ability

of SHP-2 and p85 to interact with Gab1 in GPVI-activated

platelets. PECAM-1 crosslinking had no effect on the levels

of association of either SHP-2 (Fig. 3A) or p85 (Fig. 3B)

withGab1 in unstimulated platelets.We found that the levels of

association of SHP-2 and p85 with Gab1 in Gab1 immuno-

precipitates, which are low in resting human platelets, increased

upon stimulation of platelets with collagen (Fig. 3C,D).

Gab1–SHP-2 interactions were also found to be increased in

SHP-2 immunoprecipitates (Fig. S3F). The effect of PECAM-1

on levels of association of p85 or SHP-2 with Gab1 was

investigated with mouse platelets deficient in PECAM-1.

Significantly higher levels of association of SHP-2 (Fig. 3E)

or p85 (Fig. 3F) with Gab1 were observed in collagen-

stimulated platelets derived from PECAM-1-deficient mice

than in those fromwild-typemice.On thebasis of thesefindings,

we conclude that PECAM-1 competes with Gab1 for associ-

ation with SHP-2 in GPVI-stimulated platelets. Furthermore,

the ability of PECAM-1-associated SHP-2 to complex with the

p85 subunit of PI3K limits the amount of p85 available to bind

to Gab1 downstream of GPVI stimulation.

LAT-mediated PI3K signaling is modulated by PECAM-1

Upon GPVI stimulation, LAT forms a platform for the

assembly of a signaling complex that includes PI3K and other

downstream molecules, which results in the activation of PI3K

signaling [39,40,46].

On the basis of our finding that PECAM-1–SHP-2–p85

complex formation limits the amount of p85 available to Gab1

in GPVI-stimulated platelets, we hypothesized that PECAM-1

would also affect the assembly of the LAT signalosome. To test

this hypothesis, the effect of PECAM-1 on interactions between

LAT and p85 was investigated in control and PECAM-1-
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deficient mouse platelets following stimulation with collagen.

We found that the absence of PECAM-1 was associated with a

significant increase in the levels of interaction between LAT

and p85 (Fig. 4A). Consistent with this and increased levels of

PI3K signaling in the absence of PECAM-1, collagen-stimu-

lated PLCc2 tyrosine phosphorylation was also found to be
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increased (Fig. 4B). These results indicate that PECAM-1

modulates the assembly of the LAT signalosome, which is

consistent with the regulation of PI3K signaling leading

to reductions in the PLCc2 functions of calcium regulation

and a-granule secretion [6,7,45]. To further substantiate this

model, and also in human platelets, the effect of stimulation of

PECAM-1 on GPVI-mediated recruitment of PI3K to LAT

was tested. For these experiments, the GPVI-specific agonist

CRP was used, because, with the combinations of antibodies

present, this allowed reliable quantification. The levels of LAT-

associated p85 were determined in resting and collagen-

stimulated human platelets. As shown in Fig. 4C, low levels

of p85 were found to be present in LAT immunoprecipitates

from resting platelets, and this association was increased

significantly following stimulation of platelets with CRP. In

order to explore whether this association would be affected by

PECAM-1 downstream signaling on GPVI signaling, levels of

LAT-associated p85 were determined upon stimulation of
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(SHP-2) and phosphatidylinositol 3-kinase on platelet activation. These associations are enhanced in the absence of platelet endothelial cell adhesion
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PECAM-1 following GPVI-mediated activation with CRP.

The levels of p85 associated with LAT decreased significantly

when PECAM-1 was stimulated by crosslinking prior to CRP

stimulation (Fig. 4D). To confirm that this resulted in dimin-

ished PI3K signaling, we investigated the effect of PECAM-1

crosslinking on PKB/Akt activation, which is a downstream
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consequenceofrecruitmentofPI3KtoLAT, inGPVI-activated

human platelets. PKB/Akt is activated by PDK1-mediated

phosphorylation of Ser473; therefore, PKB/Akt activationwas

measuredby immunoblot analysiswith an antibody specific for

the phosphorylated form of Ser473 (pSer473). We found that

PECAM-1 crosslinking resulted in inhibition of GPVI-stimu-

lated PKB/Akt Ser473 phosphorylation (Fig. 4E). PECAM-1

crosslinking antibody alone did not affect PKB/Akt phosphor-

ylation. These results indicate that collagen-stimulated PI3K

activation, which is dependent on recruitment of p85 toLAT in

responsetoGPVIsignaling, isnegativelyregulatedbyPECAM-

1 in human platelets. On the basis of these results, we propose

that PECAM-1-mediated inhibition ofGPVI-dependent plate-

letresponsesresults,at least inpart, fromrecruitmentofSHP-2–

p85 complexes to tyrosine-phosphorylated PECAM-1, which

destabilizes the PI3K association with the activatory signaling

molecules Gab1 andLAT.

Discussion

A number of recent studies have shown that the scaffolding

adaptor protein Gab1 is critical for signaling by a number of

receptor tyrosine kinases, cytokines, and antigen receptors [38].

Tyrosine-phosphorylated Gab1 provides docking sites for

multiple SH2 domain-containing signaling molecules, such as

SHP-2, the p85 regulatory subunit of PI3K, Crk, and PLCc,
which transduce signals following cytokine receptor stimulation

[37]. One of these binding partners, SHP-2, which is able to

dephosphorylate a number of signalingmolecules [47], has been

shown to interact with Gab1, causing dephosphorylation of

Gab1-associated phosphoproteins [47]. In platelets, it has been

found that Gab1 is associated with SHP-2 and p85 in response

to thrombopoietin [48], and one possible explanation for the

role of the association of SHP-2 with Gab1 is that this

associationmay influence the interaction betweenGab1 and the

p85 subunit of PI3K, therefore affecting downstream signaling.

Our working model (Fig. 5) shows that the activation of

platelets results in PECAM-1 phosphorylation and signaling,

providing negative feedback to activation pathways. Collagen

stimulation of platelets results in the formation of a complex

between PI3K and the adaptor protein Gab1, which also binds

to LAT, forming a signaling complex. Gab1 also interacts with

SHP-2, another component capable of joining this complex, in

collagen-stimulated platelets, and this interaction is enhanced

in the absence of PECAM-1 signaling. The stimulation of

PECAM-1 results in the recruitment of p85 to PECAM-1, and

enhances the ability of SHP-2 to interact with p85. The ability

in vitro of SHP-2 to directly interact with p85 supports the

notion that the interaction of p85 with PECAM-1 is mediated

indirectly by the phosphatase. Furthermore, the substantial

reduction in the interaction between SHP-2 and p85 in the

absence of PECAM-1 suggests that PECAM-1 controls this

association. Consistent with what has been found for other cell

types [38], our model highlights the ability of PECAM-1 to

modulate the assembly of the LAT signalosome, where

PECAM-1 activation and SHP-2 recruitment result in dimin-

ished association of the p85 subunit of PI3K with Gab1 and

LAT, moving p85 from a substrate-rich to a substrate-poor

environment (80% of PECAM-1 is excluded from lipid rafts)

[49]. This would lead to a redistribution of p85 from LAT-

containing lipid raft compartments to PECAM-1 signaling

complexes, causing a reduction in collagen-mediated signaling

through relocation of the enzyme away from the activated

collagen receptor complex.

In platelet activation, LAT forms a platform for the

assembly of a signaling complex that includes PLCc2, which
in turn becomes tyrosine-phosphorylated. PI3K is also

recruited and, through the generation of PtdIns(3,4,5)P3,

influences the recruitment and activation of PLCc2, which
liberates the second messengers 1,2-diacylglycerol and inositol

1,4,5-trisphosphate [39,40]. The formation of these molecules is

responsible for the mobilization of calcium from intracellular

stores and activation of isoforms of protein kinase C, leading

GPVI
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Fig. 5. Working model for the modulation of collagen-stimulated

phosphatidylinositol 3-kinase (PI3K) signaling and platelet function by

platelet endothelial cell adhesion molecule-1 (PECAM-1). Homophilic

ligand binding or clustering of PECAM-1 or glycoprotein (GP)VI

activation by collagen results in stimulation of tyrosine phosphorylation of

the immunoreceptor tyrosine-based inhibitory motifs present in the cyto-

plasmic tail of PECAM-1. This results in the recruitment and activation of

the tyrosine phosphatase Src homology 2 domain-containing protein

tyrosine phosphatase-2 (SHP-2). Collagen stimulation of platelets results

in the formation of a complex between PI3K and the adaptor protein

Grb-2-associated binding protein-1 (Gab1), which also binds to linker for

activation of T cells (LAT), forming a signaling complex. SHP-2 is also

capable of joining this complex, an interaction that is enhanced in the

absence of PECAM-1 signaling. The stimulation of PECAM-1 results in

the recruitment of p85 to bind to PECAM-1. The ability in vitro of SHP-2

to directly interact with p85 suggests that the interaction of p85 and

PECAM-1 is mediated indirectly by the phosphatase. Indeed, the

interaction between SHP-2 and p85 is dramatically reduced in the absence

of PECAM-1, suggesting that PECAM-1 controls this interaction.

Consistent with studies in another cell types where SHP-2 disrupts Gab1

and p85 interactions, through dephosphorylation of a tyrosine required for

binding, the absence of PECAM-1 results in stabilization of the interaction

between Gab1 and p85. This indicates that PECAM-1 signaling results in

the loss of PI3K from the LAT signalosome and reduced levels of PI3K

signaling. The relative redistribution of p85 from the LAT signalosome

may be correlated with the inhibition of PI3K signaling. This provides a

mechanism by which the activation of PECAM-1 results in negative

feedback to activation pathways. GEM, glycolipid-enriched membrane;

Syk, spleen tyrosine kinase.

2538 L. A. Moraes et al

� 2010 International Society on Thrombosis and Haemostasis



to secretion and aggregation. PI3K activity also results in the

regulation of PKB, which is important for platelet function and

thrombus formation [39,41]. We recently demonstrated that

PECAM-1 signaling is capable of inhibiting activatory signal-

ing stimulated by ADP and thrombin [45], suggesting that

PECAM-1 may control a broad inhibitory mechanism in these

cells. This potential has been also reported for another platelet

ITIM receptor, G6B [50]. As LAT and its role in platelet

signaling is restricted to ITAM receptors, it is not yet fully

understood how PECAM-1 may inhibit signaling stimulated

by ADP and thrombin. One possible explanation is that

calcium mobilization following stimulation of platelets is

diminished through PECAM-1 signaling [7], indicating that

modulation of PI3K and PLCc2 may also underlie inhibition

in this context. Given the ability of PECAM-1 to modulate

signaling protein complex formation (e.g. LAT–Gab1–p85 and

SHP-2–p85) following collagen stimulation, the potential role

of PECAM-1 in regulating isoforms of PI3K that are involved

inGPVI-mediated and non-GPVI-mediated platelet activation,

such as p110b [51,52], which couples to the p85 regulatory

subunit, will be a focus of future investigations.

Our working model suggests that the relative redistribution

of p85 from lipid raft compartments may be correlated with

the inhibition of PI3K signaling and downstream effects such

as the inhibition of calcium mobilization, as we have

previously described [7]. This may represent a competitive

relationship between the LAT and PECAM-1 signalosomes,

providing a balance between ITAM-containing and ITIM-

containing receptors when they are required on the same cell.

Further work is required to understand the kinetics and

activation of these and other molecules involved in this

complex process.

Our findings indicate that PECAM-1, through regulation of

protein complex formation, modulates the subcellular locali-

zation of PI3K, thereby diminishing GPVI-stimulated PI3K

signaling.
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