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 11 

Abstract 12 

The outwelling paradigm argues that mangrove and saltmarsh wetlands export much excess 13 

production to downstream marine systems. However, outwelling is difficult to quantify and currently 14 

40-50% of fixed carbon is unaccounted for. Some carbon is thought outwelled through mobile fauna, 15 

including fish, which visit and feed on mangrove produce during tidal inundation or early life stages 16 

before moving offshore, yet this pathway for carbon outwelling has never been quantified. We studied 17 

faunal carbon outwelling in three arid mangroves, where sharp isotopic gradients across the boundary 18 

between mangroves and down-stream systems permitted spatial differentiation of source of carbon 19 

in animal tissue. Stable isotope analysis (C, N, S) revealed 22-56% of the tissue of tidally migrating 20 

fauna was mangrove derived. Estimated consumption rates showed that 1.4% (38 kg C ha-1 yr-1) of 21 

annual mangrove litter production was directly consumed by migratory fauna, with <1% potentially 22 
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exported. We predict that the amount of faunally-outwelled carbon is likely to be highly correlated 23 

with biomass of migratory fauna. While this may vary globally, the measured migratory fauna biomass 24 

in these arid mangroves was within the range of observations for mangroves across diverse 25 

biogeographic ranges and environmental settings. Hence, this study provides a generalised prediction 26 

of the relatively weak contribution of faunal migration to carbon outwelling from mangroves and the 27 

current proposition, that the unaccounted-for 40-50% of mangrove C is exported as dissolved 28 

inorganic carbon, remains plausible.  29 

Key words: trophic relay; mangrove; carbon budget; outwelling hypothesis; mangrove litter; carbon 30 

flux; fish; food webs 31 

 32 

1. Introduction 33 

Mangrove forests are amongst the world’s most productive marine ecosystems (Alongi 2014), with 34 

net primary productivity (NPP) in the order of 208 Tg C yr-1 (Bouillon et al. 2008a). Mangrove forests 35 

achieve a steady state once the forest reaches maximum biomass at around 20-30 years through a 36 

constant process of mortality and renewal (Lugo 1980) so, assuming the living biomass is not becoming 37 

more carbon dense, then carbon has to be lost at a rate equal to the amount of carbon fixed as NPP. 38 

Hence this productivity is either retained within the mangrove forest, as a standing stock of live 39 

material such as wood, buried in sediments, or exported to neighbouring habitats as litter, particulate 40 

and dissolved organic carbon (POC and DOC) and dissolved inorganic carbon (DIC), or lost to the 41 

atmosphere (Bouillon et al. 2008a, Maher et al. 2013, Alongi 2014). The out-welling hypothesis argues 42 

that export of locally-derived POC and DOC is an important ecosystem function of mangroves, which 43 

drives detrital based food webs in adjacent coastal habitats (Odum 1968, Odum and Heald 1972). 44 

Export of mangrove carbon has been estimated to make a significant trophic contribution to adjacent 45 

ecosystems (Lee 1995, Jennerjahn and Ittekkot 2002, Dittmar et al. 2006, Abrantes et al. 2015). The 46 

theory of outwelling is supported by mass balance evaluations that show the amount of carbon fixed 47 
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by mangroves normally greatly exceeds the amount stored within the forest (Alongi 2014, Twilley et 48 

al. 2017), although the scale of outwelling varies considerably between forests (Guest and Connolly 49 

2004), due to differences in coastal geomorphology, tidal regimes, freshwater flow and productivity 50 

(Granek et al. 2009, Vaslet et al. 2012). In the 1990s, global estimates could account for 48% of the 51 

total global mangrove primary production (Figure 1) of 218 ± 72 million tons C yr-1, by incorporating 52 

information on carbon burial, CO2 efflux and carbon outwelled as leaf litter, POC and DOC; the 53 

remaining 52% was thought outwelled as DIC, albeit there was insufficient data to confirm this 54 

(Bouillon et al. 2008a). More recent assessments of DIC export at two sites in Australia (Maher et al. 55 

2013, Santos et al. 2019) supported the estimates of Bouillon et al. (2008a), although Alongi (2014) 56 

suggested that only 40% of NPP was exported as DIC. Here, we explore the extent to which faunal 57 

outwelling accounts for some of the un-explained losses in mangrove NPP.  58 

While the outwelling of mangrove carbon as POC, DOC and DIC may represent an important tropic 59 

subsidy to other coastal habitats (Dittmar et al. 2006), the movement of fauna out of the mangrove, 60 

and their subsequent capture or predation, is an additional plausible direct mechanism for export of 61 

mangrove carbon, as well as a route for mangrove contribution to coastal food webs and fisheries. 62 

Fauna that feed in the mangrove during high tides and then move offshore to defecate and respire 63 

during low tide should also contribute to carbon outwelling (Figure 1). At present, however, there is 64 

little evidence to clarify what proportion of fauna-mediated export may benefit fisheries production 65 

(Saenger et al. 2013)  66 
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 67 

Figure 1: A.) Fate of mangrove primary production and importance of each component, as a 68 

percentage of net mangrove primary productivity. Percentages are based on data in * Bouillon et al. 69 

(2008a) and ** Alongi (2014). B.) Isotopic profile of sediments across the transition from mangrove to 70 

intertidal mudflats and seagrass beds, illustrating the retention of mangrove productivity within the 71 

forest. 72 

Adult and juvenile fauna use mangroves as spawning and feeding grounds and as a refuge from 73 

predation (Saenger et al. 2013). Faunal outwelling occurs when mangrove carbon that has been 74 

ingested by animals within the mangrove either directly, through eating mangrove leaves or indirectly 75 

through eating fauna containing mangrove C, is then transferred out of the mangrove into 76 

downstream/subtidal habitats. Two forms of direct faunal mediated mangrove outwelling have been 77 

proposed, although we do not differentiate between them in the current study: ontogenetic 78 

outwelling, where juveniles/larvae that have been sustained on mangrove production migrate out of 79 

the mangroves as they mature; and trophic relay, where predators transfer mangrove carbon out of 80 
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the forest after feeding on mangrove-sustained prey (Kneib 1997, Connolly and Lee 2007). Indirect 81 

faunal outwelling includes the mangrove carbon assimilated by fauna feeding at the base of the food 82 

web transforming the refractory mangrove material into more labile carbon that may then be 83 

exported by transfer up the food chain or water mediated tidal export after mineralization. 84 

Tree litter (leaves, fruits, etc) on average represents 31% of mangrove production (Bouillon et al. 85 

2008a) and its fate is central to unravelling mass-balance budgets. Some litter is exported directly on 86 

the tide (Boto and Bunt 1981) and the contribution of litter export to coastal food webs has been 87 

questioned, as mangrove litter has low nutritional value (high C:N ratios) and is highly refractory 88 

(Rodelli et al. 1984, Loneragan et al. 1997, Bouillon et al. 2002, Skov and Hartnoll 2002, Connolly et al. 89 

2005). Much litter is retained in the mangrove through herbivory, as many invertebrates are highly 90 

dependent on mangrove produce as a food source (eg. Rodelli et al. 1984, Chong et al. 2001, Walton 91 

et al. 2014). This is especially true of the old world mangroves in Indo-West Pacific biogeographic 92 

region (McIvor and Smith 1995, Lee 1998). Litter feeders and microbes process and nutritionally enrich 93 

litter transforming it to detritus, making it available for uptake by deposit and filter feeders 94 

(Poovachiranon et al. 1986, Skov and Hartnoll 2002). In turn, litter, detritus and filter feeders are 95 

consumed by tidal predators and thus litter may be indirectly exported through trophic relay (Lee 96 

1995), although this outwelling mechanism is rarely considered and has never been quantified.  97 

The idea of faunal outwelling has been around for 50 years (Heald and Odum (1970), yet its 98 

significance to mangrove carbon budgets remains untested, probably because generating the 99 

evidential data is technically challenging. First, the abundance of migratory fauna per unit area of 100 

mangrove has to be estimated. This can be achieved catching fauna at the mangrove edge during the 101 

ebbing tide in water draining from a known area of mangrove (Thayer et al. 1987, Blaber and Milton 102 

1990, Barletta et al. 2003, Castellanos-Galindo and Krumme 2013, Shahraki and Fry 2016), although 103 

estimating the size of the catchment area can be difficult if the mangrove has complex drainage/creek 104 

morphology (Huxham et al. 2008). Secondly, the proportion of mangrove carbon in the tissues of 105 
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migratory fauna needs quantification. This step has been facilitated by the development of chemical 106 

tracers, such as stable isotopes and fatty acids, which utilize the principle of “you are what you eat” 107 

(eg. Rodelli et al. 1984, Meziane and Tsuchiya 2000). Thirdly, the tracers used to account for mangrove 108 

carbon should only be present inside the mangrove to ensure that the mangrove carbon in the fauna 109 

was acquired within the mangrove forest. Fourthly, the NPP of the site needs to be known. Typically, 110 

litter production is used as a proxy for NPP as this is simple to measure and typically accounts for 31% 111 

of NPP (Bouillon et al. 2008a).  112 

We undertook the first empirical study of the role of aquatic faunal-mediated outwelling to mangrove 113 

carbon budgets and tested the hypothesis that outwelling by marine migratory faunal represents a 114 

significant component of mangrove productivity. Two estimates of outwelling were considered: (1) 115 

direct outwelling, that is mediated by feeding in mangrove forests at high tide by non-mangrove 116 

resident species, and their subsequent excretion or mortality in adjacent subtidal; and (2) indirect 117 

outwelling, represented by the proportion of the mangrove carbon food web that supports fauna 118 

migrating between the mangrove and down-stream habitats.  119 

 120 

2. Methods  121 

2.1. Study Sites:  122 

We used arid mangroves in Qatar as an ideal system for studying faunal outwelling. Firstly, Qatar 123 

mangroves have gently sloping shorelines with relatively simplified systems of creeks and drainage 124 

channels that enables positioning of the traps and estimation of their catchment area. In arid 125 

mangroves outwelling to adjacent food webs is limited (Walton et al. 2014, Ray and Weigt 2018), as 126 

lack of rainfall greatly restricts flushing and the resulting outwelling of particulate organic material 127 

(POM) that is otherwise characteristic in wetter, tropical climates (Loneragan et al. 1997, Al-128 

Maslamani et al. 2012, Al-Maslamani et al. 2013). The high retention of productivity within Qatar 129 

mangrove forests leads to a sharp isotopic boundary in sediments and sedentary fauna at the 130 
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seaward edge of forests, between a mangrove area which is depleted in 13C,  and down-stream tidal 131 

flats and subtidal seagrass habitats, which are more enriched in 13C (Figure 1: Below)(Walton et al. 132 

2014). The low export of litter, and associated sharp isotopic boundary, makes Qatar mangroves 133 

ideal sites for investigating faunal mediated carbon export, as any mangrove carbon incorporated 134 

into the tissue of migratory fauna has to have been consumed within the mangrove area; it is 135 

unlikely to have been outwelled and consumed down-stream. 136 

 137 

The study sampled the three largest mangrove forests in Qatar: Al Khor, West Al Dhakira and South Al 138 

Dhakira (Figure 2). These had 2m tidal ranges, silty sediments and mono-specific Avicenna marina 139 

stands. Trees ranged from ~5 m tall at the seaward fringe to stunted <1m mature trees at landward 140 

fringes (Chatting et al. 2020). Sites had a central tidal channel, but on either side were dominated by 141 

a flat substrate that drained evenly across the surface, except, where the gradient was slightly steeper 142 

and small channels (2-5 cm deep, <50 cm wide) formed. These flatter areas were selected for sampling, 143 

in order to represent the majority of the mangrove area. A broad, gently sloping mudflat exists to the 144 

west of the mangroves in Al Khor, with sediments similar to the mangrove. Non-mangrove intertidal 145 

areas at Al Dhakira sites were steep and relatively narrow. Subtidally, sites had patchy seagrass beds, 146 

mainly Halodule uninervis, with some Halophila stipulacea occasionally reaching intertidal areas close 147 

to the mangrove fringe (Walton et al. 2016). Anthropogenic impacts from fishing, tourism and sewage 148 

input is limited in these mangroves (Walton et al. 2016), they are protected with no fishing permitted 149 

under the Protected Area Management Plan 2008-2013 (SCENR 2007). 150 

 151 

2.2. Sampling Design: At each mangrove site three fyke nets (3mm mesh) were placed along the 152 

seaward mangrove fringe (Fig 3, S1. Table 1). Previous trials indicated 1mm was easily blocked and 153 

5mm mesh permitted smaller shrimp and fish to escape. All traps were at the same tidal elevation. 154 

Nets were 1m tall (well above high tide level) and with 5 m wings, resulting in a 5.8-9.2 m trapping 155 
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gape per trap, with gape variation due to wing placement. Bottom edges of nets were buried in the 156 

sediment. In West Al Dhakira and Al Khor fyke nets were set over small drainage channels (Figure 3). 157 

South Al Dhakira had no clear drainage channels and traps were randomly positioned along the 158 

mangrove edge. To simplify the estimation of the area from which water drained through each fyke 159 

net, nets were placed where the ebbing water flowed perpendicular to the mangrove edge. Prior 160 

trapping trials conducted in 2013-2016 indicated that small channels perpendicular to the shore line 161 

produced the least variable estimates of faunal density.  Sampling took place on one spring-tide day 162 

in spring (29 April – 1 May 2017) and in the autumn (8 – 10 October 2017), to represent the spawning 163 

season and the appearance of juveniles in coastal habitats, respectively. These periods were selected 164 

to capture the maximum migratory biomass and was informed by the previous campaigns to traps fish 165 

detailed in Walton et al (2014) and the trial use of larger nets (30m) to block the larger mangrove 166 

channels, in addition to field observations of fish migratory pattern during our extended presence in 167 

the mangroves over a two year period. As the major spring tides occurred at night, fyke nets were set 168 

in the afternoon at low water and emptied the next morning at the following low water. Thus, 169 

sampling quantified mobile fauna using the mangrove during the nocturnal spring tide. During the 170 

second sampling, a mudflat site at Al Khor was also sampled, to evaluate whether migratory fauna 171 

were specific to mangroves or generalist fauna present in other intertidal habitats. Only Al Khor had a 172 

suitable mudflat site for sampling, with intertidal flats of the same intertidal height, slope and 173 

sediment characteristics as the mangrove. 174 

 175 
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 176 

Figure 2: Location of traps in the mangrove forests of Al Khor, West and South Al Dhakira. 177 

 178 
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Figure 3: Fyke nets placed across (a) a small mangrove drainage channel and (b) on the un-vegetated 179 

mudflat at Al Khor. 180 

The catch, mainly fish and shrimp, was stored on ice until sorting. All species other than Aphanius 181 

dispar and Gerres longirostris, were separated out, counted and the total length and wet weight 182 

noted. The remaining catch of A. dispar and G. longirostris which formed 94% of the biomass was 183 

subsampled and each species weighed, measured and counted, and scaled up by the total biomass 184 

from that species to determine population structure. Fish biomass estimates from mangrove areas in 185 

October (n=9) were compared with those from mudflat areas (n=3) using a two sample T-test on 186 

normally distributed data. More detailed analysis of catch composition data is presented in 187 

Supplementary Material 1. 188 

 189 

2.3. Tracing the food source of fauna (trophic linkage). Stable isotopes of C, N and S were used to 190 

assess the contribution of mangroves and alternative dietary sources to the tissues of migratory fauna. 191 

Muscle tissue was extracted (~1g dw/specimen) from 5 specimens per species per trapping event. 192 

Three potential food sources were sampled. Mangrove leaves were collected from 5 stations along 193 

seaward to landward transects through each of the 3 mangrove forests (For transect details see 194 

Chatting et al. 2020), seagrass leaves were collected from 12 stations across Al Khor and Al Dhakira 195 

bays. Yellow leaves (n = 5 per site) of the mangrove Avicenna marina and leaves of the seagrass 196 
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Halodule uninervis were cleaned under distilled water to remove encrusting organisms and sediment. 197 

Phytoplankton (n = 3 samples) were collected at the bay mouths using a 50 µm phytoplankton net; 198 

the sample were sieved and particles >100um were excluded to minimise contamination by 199 

zooplankton. Samples were dried (50⁰C, 48h), homogenised and weighed into tin cups (Elemental 200 

Microanalysis Ltd.), before elemental analysis and isotope ratio mass spectrometry (EA–IRMS) by a 201 

Europa Hydra 20/20 stable-isotope mass spectrometer were performed by Iso-Analytical Ltd. Isotopic 202 

results are reported as δ values, where δ13C, δ15N and δ34S are equal to 1000 × [(Rsample − 203 

Rstandard/Rstandard) − 1], in which Rsample and Rstandard equal the 13C/12C, 15N/14N and 34S/32S ratios of 204 

samples and standards, respectively. Laboratory standards, traceable to inter-laboratory comparison 205 

standards distributed by the International Atomic Energy Agency (for further detail see 206 

http://www.iso-analytical.co.uk/standards.html), were run interspersed with samples which resulted 207 

in standard deviations of <0.4‰ for δ13C, <0.3‰ for δ15N and <0.3‰ for δ34S.  208 

 209 

2.4. Construction of carbon outwelling budget. The amount of mangrove carbon consumed by 210 

migratory aquatic fauna (MCF, Kg C ha-1 yr-1) was derived by Equation 1 (broadly based on consumption 211 

models in Scheiffarth and Nehls (1997) and Walton et al. (2015)), which includes five main parameters, 212 

the estimation of which are outlined in sections further down:  213 

Equation 1.   MCF = ∑B × Q/B × pM × DWt:WWt  × pMCc 214 

 215 

where B (kg ha-1) was the mean biomass of migratory aquatic species per catchment area of mangrove 216 

forest; Q/B was the consumption rate per year by that biomass of fauna; pM was the proportion of 217 

that food that was mangrove-derived; and MCF estimates were converted to leaf dry weight using 218 

0.342 (the mean dry weight to wet weight ratio (DWt:WWt) of yellow mangrove leaves (Fourqurean 219 

and Schrlau 2003)) as Q/B is a WWt:WWt ratio; and pMC is the proportion of C in yellow mangrove 220 

http://www.iso-analytical.co.uk/standards.html
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leaves (Mean C%±SE=39.7±0.47, n=11). The amount of carbon outwelled by fauna (FCO) was 221 

estimated for each species using our Equation 2 and is formed of two parts excretion and mortality: 222 

Equation 2.  FCO = MCF × 0.9 × TRE + ∑ (B × Mortyr × DWt:WWt  × pM × pFC)                                                                                   223 

                             224 

Excretion   Mortality 225 

Where TRE was the proportion of the time migratory fauna spent outside the mangrove respiring and 226 

excreting (estimated at 60% - see below section 2.4.5) and 0.9 the trophic transfer efficiency (Pauly 227 

and Christensen 1995); while pFC is the proportion of C in the fauna from the isotopic analysis, 228 

DWt:WWt is the wet to dry weight ratio of 0.226 (unpublished data) and Mortyr was the annual 229 

mortality rate, as estimated using literature values for instantaneous mortality for each species. We 230 

assumed that mortality of fauna was predominantly outside the mangrove, as mangroves are 231 

considered a refuge from predation.  232 

 233 

2.4.1. Faunal biomass per catchment area, B (kg ha-1): Faunal biomass values from fyke-net catches 234 

(kg wet weight), were expressed relative to an estimate of the catchment area. In Qatar the relatively 235 

homogenous mangrove surface and simple drainage facilitates estimates of catchment area. The 236 

method for calculation of the catchment area for each fyke net depended on the presence or absence 237 

of drainage channels in the sampling area.  Where no drainage channels were present (South Al 238 

Dhakira), the catchment area equalled the gape width of the fyke net multiplied by the mangrove 239 

depth (the distance between the seaward and landward mangrove forest boundaries (Fig 4a). Where 240 

the net straddled a channel, the catchment area equalled the mangrove depth multiplied by half the 241 

distance between the trapped drainage channel and the adjacent drainage channels on each side (ie. 242 

x/2+y/2. Figure 4b). The logic of the latter was that adjacent channels had similar sizes (confirmed by 243 

visual inspection) and thus were likely to have equal shares in the catchment area between them.  244 

 245 
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Figure 4: Diagrammatic representation of the catchment area (shaded) for fyke-nets placed without 246 

(a) and with (b) a drainage channel. 247 

 248 

2.4.2. Food Consumption rate, Q/B (yr-1): Body weight has been used to estimate daily energy 249 

expenditure in birds and animals (eg. Nagy 1987). Here, the amount of food ingested, expressed as a 250 

proportion of the consumer’s biomass (Q/B), was estimated using a combination of body weight and 251 

the aspect ratio of the caudal fin (following Palomares and Pauly 1998), in the equation 252 

Equation 3  logQ/B = 7.964 – 0.204logW∞ – 1.965T’+ 0.083A + 0.532h + 0.398d 253 

where W∞ was the asymptotic weight (g), T’ was the mean annual water temperature (27.05°C) 254 

expressed as 1000/Kelvin (Kelvin = °C + 273.15), A was the caudal fin aspect ratio, h and d represented 255 

the type of food consumed (if herbivore h=1, d=0; if detritivore h=0,d=1; and if carnivore h and d=0), 256 

with fish dietary habits derived from δ15N values (see trophic level estimates below). Caudal fin aspect 257 

ratio was estimated with Image J (version 1.51j8) to measure the caudal fin area and height, on images 258 

obtained from FishBase (2019). Q/B values of 21.9 and 10.75 yr-1 were used for crustaceans and other 259 

rare fish species (<1% of the total biomass), respectively, with values derived from the mangrove 260 

studies of Wolff et al. (2000) and Vega-Cendejas and Arreguın-Sánchez (2001).  261 
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 262 

2.4.3. Proportion of faunal diet that was mangrove derived, pM: The source of carbon assimilated in 263 

faunal tissues were derived from stable isotopes of 13C, 15N and 34S. For the four species that 264 

individually represented >1% of the caught biomass (combined they composed 98% of the biomass), 265 

the contribution of primary producers to faunal tissues was estimated using the Bayesian isotopic 266 

mixing model mixSIAR (Stock and Semmens 2013). For the remaining 16 species, which individually 267 

formed <1% of the trapped biomass, the combined average dietary contribution of mangroves, as 268 

estimated by the mixing model, was used. The MixSIAR model was selected as it is incorporates the 269 

isotopic variability in the sources and consumers, as well as the uncertainty of the trophic 270 

discrimination factor (Stock and Semmens 2013). MixSIAR was run in JAGS and called through R (R 271 

Core Development Team, 2016) and the ‘MixSIAR’ package (Stock and Semmens 2013). The models 272 

were run with no informative priors and specified both residual and process error. Mangrove site was 273 

entered as a random effect. The longest Markov Chain Monte Carlo settings were used: chains = 3, 274 

chain length = 1,000,000, burn-in rate = 500,000 and thinning rate = 500, as this produces the best 275 

convergence on the true posterior distribution for each variable (Stock and Semmens 2013). 276 

Convergence was evaluated by Gelman-Rubin diagnostics (Gelman and Rubin 1992). The trophic level 277 

of a consumer was estimated using 2.3‰ for the first trophic step above the mean δ15N values of the 278 

primary producers and an additional 2.9‰ for each higher trophic level (McCutchan et al. 2003, Shang 279 

et al. 2008, Walton et al. 2014). To account for the isotopic discrimination that occurs between primary 280 

producers and primary consumers trophic enrichment factors (±1SD) of 0.5±1.32‰, 2.3±1.54‰ and 281 

0.5±0.52‰ were applied and for subsequent trophic steps values of 1.3±0.85‰, 2.9±1.24‰ and 282 

0.5±0.52‰ were used for C, N and S respectively (McCutchan et al. 2003). MIcrophytobenthos (MPB) 283 

was not included in isotopic mixing models, as it was present in very low concentrations (~0.1% of 284 

sediment carbon, Chatting unpublished data) and as MPB δ13C values of 29-26‰ indicated that 285 

mineralised mangrove carbon was incorporated into MPB (David et al. 2019). 286 

 287 
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2.4.4. Estimation of mangrove-derived biomass consumed, MCF: The amount of mangrove biomass 288 

that was consumed either directly by the migratory fauna, or indirectly by all the organisms that form 289 

the base of the food web on which the migratory fauna feed.  290 

a) Direct consumption: The annual consumption of mangrove derived carbon (Direct MCF 291 

estimated using Equation 1) eaten by the migratory fauna feeding either on mangrove 292 

biomass or fauna that contain mangrove carbon (part of indirect consumption) 293 

b) Indirect consumption: The annual mangrove carbon consumed by herbivores and 294 

detritivores at the base of the food web that supports the migratory fauna. It is an estimate 295 

of the biomass of mangrove primary production supporting each of mobile faunal species, 296 

assuming 10% transfer between trophic steps (Pauly and Christensen, 1995) using the 297 

equation 298 

Indirect MCF = Direct MCF × 10(TL-2) 299 

where TL equates to trophic level. A proportion of the indirect consumption will end up being 300 

ingested by the migratory fauna. 301 

An average mangrove litter production estimate for these three mangrove sites of 6847 kg ha-302 

1 yr-1 (Chatting pers. comm.), the equivalent of 2718 kg C ha-1 yr-1 (using the below yellow leaf 303 

carbon content estimate), was used to covert dry wieght consumption estimates to 304 

percentage of mangrove litter production. All estimates were converted to C using the C to 305 

dry weight ratio of 0.397 derived from the carbon content of oven dried yellow A. marina 306 

leaves.  307 

2.4.5. Proportion of time fauna spend outside the mangrove, TRE: The mean tidal height of the lower 308 

mangrove fringe was measured using DGPS during spring tides in February 2016 and found to be 0.2m 309 

above mean tide. Tidal charts were used to estimate the proportion of the day when the tidal level 310 
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was below this mean tidal level of 0.2m, this was regarded as the time when fauna are all clear of the 311 

mangrove. 312 

 313 

3. Results 314 

The catchment area that drained through each of the traps varied from just over one hectare for the 315 

traps in West Al Dhakira to under a tenth of hectare for one of the traps in Al Khor. Species 316 

compositions and biomass varied markedly between mangrove and the mudflat, but not between 317 

mangrove sites: Area-adjusted catches indicted that ~ 3 times more fish (by biomass) used the 318 

mangroves than the mudflat area, with pooled mangrove catches significantly higher than mudflat 319 

catches (t-test, on October data only: T = -2.72,  P = 0.026, DF = 8)(Table 1). Mangrove traps caught in 320 

total 74.49 kg (74,420 individuals) in May and 76.42 kg (79,290 individuals) in October and 1.19 kg 321 

(340 individuals) on the mudflat (see Supplementary information table 2 for further information). 322 

Sampled individuals ranged in size from ~1cm for the smallest Paleamon khori to 34cm for a garfish 323 

(Belone belone) with the majority of the catch 2-7cm in length. On average (±SE), mangrove forests 324 

were visited by ~ 14 kg ha-1 of fish and crustaceans during a single tide; 97±2% of that was fish, and 325 

78±3% was the Arabian pupfish A. dispar. The other major contributors were the strongspine 326 

silverbiddy Gerres longirostris (16±3%), the milkfish Chanos chanos (2±1%) and the shrimp Palaemon 327 

khorii (3±2%). In contrast crustaceans formed 70±19% of the smaller mudflat catches, with the blue 328 

swimming crab Portunus pelagicus forming 69±19% of the biomass. For details on areas trapped, catch 329 

biomass, biodiversity and non-parametric statistical tests used to detect differences, see 330 

supplementary material S1.  331 

Table 1: Faunal biomass (kg ha-1) caught at mangrove and mudflat sites (mean±SD, n = 3 fyke nets/site).  332 

Site May  October 

Al Khor mangrove (n=3) 12.26 ± 6.40 16.21 ± 17.98 
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South Al Dhakira mangrove (n=3) 12.16 ± 6.78 10.23 ± 9.33 

West Al Dhakira mangrove (n=3) 17.14 ± 1.35 16.50 ± 2.19 

Al Khor mudflat (n=3) 4.49 ± 1.15 

Combined average of all mangrove areas (n=9) 13.85 ± 5.32 14.32 ± 10.64 

 333 

3.1.  Consumption rate (Q/B, yr-1): The three major fish species, A. dispar, G. longirostris, and C. 334 

chanos, consumed 52.2, 16.8 and 27.8 times their body mass per year, respectively, estimated using 335 

the body mass and caudal fin ratios. Literature derived values of Q/B of 21.9 and 10.75 were used for 336 

P. khori and the less frequently occurring (<1% of biomass) species (Vega-Cendejas and Arreguın-337 

Sánchez 2001). 338 

 339 

3.2. Mangrove derived dietary proportion and trophic level: Primary producers had distinct δ13C and 340 

δ34S values, averaging -28.6‰ and 0.3‰ for mangrove (yellow leaves), -16.4‰ and 19.2‰ for 341 

phytoplankton and -9.1‰ and 8.6‰ for seagrass, respectively (Figure 5). However, only seagrass δ15N 342 

values of -4.9‰ were well separated from the other two primary producers: mangroves (1.1‰) and 343 

phytoplankton (0.7‰). Of the consumers P. khori was the most depleted in 13C at -18.4‰, C. chanos 344 

the most depleted in 34S at -2.7‰, while G. longirostris was the most enriched in 15N at 7.2‰. The δN 345 

values of the main consumers, relative to those of the primary producers, showed the trophic level 346 

(TL) of the dominant species ranged from omnivores to carnivores (C. chanos – TL 2.6, A. dispar - TL 347 

3.3, P. khori - TL 3.5, G. longirostris – TL 4.0). The higher the trophic level, the larger the amount of 348 

primary production required to support the consumer (Pauly and Christensen 1995). 349 

G. longirostris and A. dispar used different sources of primary productivity, with the latter much more 350 

reliant on phytoplankton-derived productivity than the former (Figure 6). The Bayesian mixing models 351 

indicate that the mean (±1SD) mangrove contribution to animal tissue was 40‰ (±13) for A. dispar, 352 
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43‰ (±13) for G. longirostris, 51‰ (±18) for C. chanos, 57‰ (±9) for P. khori and 22‰ (±7) for the 353 

pooled remaining species (Figure 6).  354 

 355 
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Figure 5: Stable isotope values (‰) of carbon and sulphur (δ13C,  δ34S) (above) and nitrogen and 356 

sulphur (δ15N, δ34S)  (below) for A. dispar, G. longirostris, C. chanos, P. khori (corrected for isotopic 357 

discrimination) and primary producers (mangrove, seagrass (SG) and phytoplankton) in the sampled 358 

mangrove areas of Al Khor (AK in red), West Al Dhakira (WD in blue) and South Al Dhakira (SD in green), 359 

Qatar 360 

 361 
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 362 

Figure 6: Mean percentage of diets originating from the primary producers (mangrove, seagrass (SG) 363 

and phytoplankton) in the 3 sampled habitats for A. dispar, G. longirostris, C. chanos, and P. khori and 364 

the other 14 minor species that formed <2% of the total biomass, estimated using the Bayesian model 365 

mixSIAR. Error bars represent 1 standard deviation from the mean. 366 

 367 

3.3. Biomass consumed.  368 

Direct consumption (Direct MCF): On average (±1SD) 35 ± 33 and 2 ± 3 kg (C) ha-1yr-1 of mangrove 369 

carbon were consumed by the two main species A. dispar and G. longirostris (Table 2). Table 2 shows 370 

the steps by which the annual consumption of mangrove material by migratory fauna is estimated. 371 

Faunal biomass is derived from fyke net catches, daily consumption rates of the biomass are based on 372 

the Q/B estimated from Equation 3. To reiterate, the proportion of the consumption that originated 373 

from mangrove production was estimated from the proportion of mangrove derived carbon in the 374 

sampled fauna (from the isotopic modelling and assumed assimilation and ingestion rates were 375 

similar) and extrapolated to a yearly rate. These estimates of mangrove consumption as wet weight 376 

were then converted to dry weight using a value of 0.342, the dry to wet weight ratio of yellow 377 

mangrove leaves determined by Fourqurean and Schrlau (2003), and finally to carbon using our value 378 

of 39.7% as carbon content of yellow mangrove leaves. 379 
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 In total, 37.7 ± 32.8 kg C ha-1 yr-1 of mangrove material or 1.4 ± 1.2% of the annual (C) litter production 380 

was directly consumed by the migratory fauna and, thus, available for export (Table 2).  381 

Indirect consumption (Indirect MCF): Significantly more, 928 ± 698 kg C ha-1 yr-1 of mangrove 382 

production, was on average (±SD) processed by the food web that supported the migratory fauna 383 

(indirect consumption). Thus, 34.1% (=0.928*100/2.72 t C ha-1 yr-1) of the leaf litter produced in these 384 

mangroves passed through the food web that supported the migratory fauna, assuming a mean 385 

annual litter production of 2.72 t C ha-1 yr-1 for Qatar mangroves. Of this only 4% (Direct consumption 386 

= 37.7 kg C ha-1 yr-1) were passed on to the migratory fauna. 387 

Litter production has been estimated to account for 31% of mangrove net primary production (MNNP) 388 

(Bouillon et al. 2008a), and these consumption values therefore represent 0.4% (=1.4% × 0.31) and 389 

10.6% of mangrove net primary production, for direct and indirect consumption respectively.  390 

 391 
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Fish biomass (Kg wet wt ha-1)  11.92±7.1 1.98±1.4 0.28±0.52 0.24±0.59 0.27±0.06 

Consumption by fish (Kg ha-1d-1) 1.73±1.1 0.09±0.1 0.02±0.04 0.01±0.04  0.01±0.002 

Annual mangrove consumed (kg wet 

t ha-1yr-1)  
254.22±240.5 15.83±19.3 3.95±8.7 2.78±7.2 0.64±0.3 

Annual mangrove consumed (kg dry 

wt ha-1yr-1)  
86.94±82.3 5.41±6.6 1.35±3.0 0.95±2.5 0.22±0.1 
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Table 2: Estimation of the mean (±SD) proportion of mangrove litter production consumed and 392 

potentially outwelled by migratory fauna. 393 

 394 

3.4. Proportion of time fauna spend outside the mangrove TRE: The mean height of the mangrove 395 

fringe was 0.2m above mean tide level with the water level high enough to enter the mangroves on 396 

average 40% of the time, so conversely the mangrove were dry 60% of the time forcing the fauna into 397 

subtidal habitats. A TRE of 60% of the time was used to calculate the amount of respiration/excretion 398 

that occurred outside the mangroves. 399 

 400 

3.5. Faunal Carbon Outwelling (FCO)  401 

The amount of faunally outwelled carbon (FCO) estimated from Equation 2 is composed of two parts, 402 

excretion/respiration and mortality. Outwelling due to carbon excretion/respiration was estimated 403 

assuming that 90% of the food ingested is later respired or excreted, based on the 10% assimilation 404 

rate of Pauly and Christensen (1995). Therefore of the 38 kg C ha-1 yr-1 of mangrove material directly 405 

consumed, 34 kg C ha-1 yr-1 is lost through excretion/respiration but only 60% is lost outside the 406 

mangrove while the tide is out and is thus estimated to be 20.8±18.0 kg C ha-1 yr-1 or 0.8% of leaf litter 407 

production.  Mean outwelling of mangrove biomass from mortality of migratory species, is estimated 408 

at 0.48±27 kg C ha-1 yr-1 or 0.02% of leaf litter production. This was based on annual mortality rates 409 

Annual mangrove consumed (kg (C) 

ha-1yr-1) 
34.52±32.6 2.15±2.6 0.54±1.2 0.38±0.98 0.09±0.05 

Percentage of mangrove litter 

directly consumed by migratory 

fauna (%) 

1.27±1.2 0.08±0.1 0.02±0.04 0.01±0.04 0.003±0.002 

Indirect annual consumption of 

mangrove biomass (kg (C) ha-1yr-1) 
672.56±636.4 234.41±285.3 2.24±5.0 13.04±33.9 5.37±2.9 
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(derived from instantaneous mortality rates) that ranged from > 90% for A. dispar and P. khori to 40% 410 

for larger-sized minor species and C percentages with a range of 44-46% obtained from the isotope 411 

analysis.  412 

 413 

4. Discussion 414 

This study provides a first estimate of the proportion of mangrove productivity that is outwelled by 415 

migratory fauna. The idea that fauna are a significant pathway for the movement of carbon out of 416 

mangroves was first suggested by Beever et al. (1979) after describing the outwelling of larvae from 417 

mangrove resident crabs. Later, Lee (1995) hypothesised that faunal outwelling of mangrove-derived 418 

carbon maybe an important and neglected pathway of mangrove C export, and the idea has since 419 

been reiterated (eg. Connolly and Lee 2007, Bouillon and Connolly 2009, Saenger et al. 2013), but its 420 

significance has never been quantified until now.  421 

For Qatari mangroves direct consumption of mangrove carbon by all fauna that move in and out of 422 

the mangroves with the tides was very minor, at 37.7±32.8 kg (C) ha-1 yr-1 or 1.4% of mangrove litter 423 

production, suggesting mobile fauna have a relatively insignificant role in the consumption of 424 

mangrove production. Estimates of faunally induced outwelling of that consumed mangrove material 425 

resulting from Equation 2 were only 20.8 kg C ha-1 yr-1 (equivalent to 0.77±0.66 % of mangrove litter 426 

production or 0.26% of mangrove NPP). This faunal carbon export had two modes: the excretion and 427 

respiration of fauna during the period when the mangrove forest was dry; and from the mortality of 428 

migratory fauna, that we assumed occurred outside the mangrove. Our estimates of the mangrove 429 

carbon both consumed and outwelled by migratory fauna are 30 to 50 times smaller than estimates 430 

for C outwelled to neighbouring habitats as POC (1312 and 1187 kg C ha-1 yr-1) and DOC (1500 and 431 

2029 kg C ha-1 yr-1) (Bouillon et al. 2008a, Alongi 2014, respectively).  432 

Our estimate for indirect consumption, that part of the mangrove productivity that is consumed by 433 

the food web supporting the migratory fauna, is much more significant, accounting for 34.1% of the 434 
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mangrove litter production or 10.6% of NPP, however it is unclear how much is outwelled. Other 435 

studies have shown the importance of fauna in processing mangrove carbon, in a review Lee (1998) 436 

reported high densities of grapsid crabs could process all the litter in some Indo-Pacific mangroves 437 

resulting in the retention of mangrove material within the forest. Similarly in Northern Australia 438 

isopod densities of >7000 individuals m-2 producing faecal pellets at a maximal rate of 4 g C m-2 d-1 and 439 

was equivalent to litter production rates (Poovachiranon et al. 1986). In Qatar only 4.1% of this indirect 440 

consumption is passed up the food web to the migratory fauna and just 2.2% faunally outwelled, with 441 

the rest likely recycled or ending in the DIC, DOC or POC pathways. Previous studies of the same 442 

systems have found evidence of only limited biogeochemical outwelling (Walton et al. 2014), yet 443 

present results show that a significant proportion of migratory faunal biomass is derived from 444 

mangrove production and in agreement with findings across a wide range of mangroves (Hemminga 445 

et al. 1994, Primavera 1996, Abrantes and Sheaves 2009, Al-Maslamani et al. 2012, Al-Maslamani et 446 

al. 2013, Walton et al. 2014).  447 

The propagation of errors through our model has resulted in large standard deviations about the mean 448 

values, most of which come from variation in catches and the uncertainty around the estimates for 449 

mangrove dietary proportion from the isotope modelling. Biomass estimates were especially varied 450 

between traps in the autumn sampling of the Al Khor and South Al Dhakira mangroves, in contrast to 451 

the traps in West Al Dhakira where estimates of biomass were remarkably consistent, this was likely 452 

due to changes in drainage patterns or the presence of a larger more mobile predator eliciting an 453 

evasion response from the smaller species. Invariably, traps will underestimate fish abundance. 454 

However, when compared to other studies (Table 3) our study showed some of the tightest estimates 455 

of biomass variation including those conducted in the mangroves of neighbouring Iran (Shahraki and 456 

Fry 2016). Sampling seasons were selected based on observations of when the highest numbers of 457 

fish are seen at the mangrove fringe, these coincide with spring spawning season in the Gulf 458 

(Sivasubramaniam and Ibrahim 1982) and the appearance of juveniles in the autumn. These sampling 459 

times were similar to those of Shahraki and Fry (2016) although our second sampling was performed 460 
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later in the year as our aim was to estimate peak fish abundance so as to be able to estimate the 461 

maximum amount of carbon outwelling due to faunal movement. Our estimates do not attempt to 462 

include other methods of faunally induced outwelling resulting from sedentary or resident mangrove 463 

fauna such as the release of eggs/larvae or the outwelling of excretory products as detailed in Beever 464 

et al. (1979) although some of this is captured through our indirection consumption estimates. These 465 

traps with 3 mm mesh were selected as mesh size is a balance between capturing relevant sized 466 

organisms and the allowing the free passage of water to prevent net avoidance by the target species. 467 

Trap size was based on previous trapping trials using both non quantitative smaller fyke nets reported 468 

in (Walton et al. 2014) and large larger nets employed across major drainage channels, where water 469 

pressure caused sub-net erosion regardless of measures taken. We did not try to assess organisms 470 

smaller than the 3mm mesh size, which may have included both larval stages and zooplankton. 471 

Zooplankton has been found to feed mostly on phytoplankton in mangrove areas (Bouillon et al. 2000, 472 

Chew et al. 2012) indicating a limited role in the outwelling of mangrove material. Our biomass 473 

estimates are from fairly pristine arid mangroves that have been protected under the Protected Area 474 

Action Plan 2008-2013 (SCENR 2007). Nutrient inputs to our sites are also limited, as water from waste 475 

water treatment plants are used for inland irrigation and only a small amount of nutrient enrichment 476 

was detected in the west of Al Khor bay, furthest from the studied mangroves (Walton et al. 2016). 477 

While the mangroves are currently surrounded by substantial amounts of sabkha/salt marshes in 478 

which to expand as climate change causes sea level to rise, this situation could be jeopardised by 479 

future coastal developments. 480 

Our estimates of Q/B of 10 to 52 fall within the range estimated for marine fish  of 1-115 and are close 481 

to the only mangrove associated species Signus canalicutatus that has a Q/B of 61.7 (Palomares and 482 

Pauly 1998). The highest consumption rates were calculated for A. dispar which would have significant 483 

positive impact on the resulting mangrove consumption estimates and hence faunal outwelling. We 484 

reran the analysis using a Q/B of 23.7, which assumes A. dispar to be a carnivore, and not an omnivore 485 
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as indicated by the isotope data, and this led to a fall in the proportion of mangrove litter production 486 

consumed by the migratory fauna from 1.4% to 0.7%. 487 

We used isotopes rather than stomach contents to determine contribution of mangrove carbon to the 488 

diet, as the carbon present in tissues of mobile fauna represent food that has been assimilated over a 489 

period of weeks and hence will include periods where access to the mangrove might be limited. 490 

Isotopic values of primary producers (mangrove, seagrass and phytoplankton) were similar to those 491 

of other studies with the exception of the depleted δ15N values of H. uninervis (Newell et al. 1995, 492 

Bouillon et al. 2008b, Walton et al. 2014), however previous research has shown these values 493 

widespread in these bays (Walton et al. 2016). We included sulphur isotopes to increase the isotopic 494 

distance between primary producers as recommended by Connolly et al. (2004). Mangrove and 495 

phytoplankton have similar δ15N and only differ by ~10‰ δ13C, but phytoplankton is enriched in 34S by 496 

17‰.  Isotopic Bayesian mixing models showed the 4 species with the highest biomass were much 497 

more reliant on mangrove production for their nutrition 40—57% compared with 20% for the less 498 

abundant “minor” species. Moreover these 4 species showed strong attachment to the mangroves 499 

having a biomass at least 10 fold higher in the October mangrove than mudflat catches perhaps 500 

indicating that the higher biomass is related to feeding activity Whereas many of the minor species 501 

such as Portunus pelagicus, Terapon jarbua, Platycephalus indicus, and Sillago sihama were also found 502 

in mudflat catches suggesting more widespread use of coastal habitats. Further evidence of the 503 

distinct and significant differences in the species composition of catches from mangroves and mudflats 504 

are provided by PCoA and PERMANOVA analysis (S1.). We modelled the source contribution of 505 

mangroves to the tissue of migratory fauna, based on using yellow mangrove leaves but omitted MPB 506 

from the analysis to simplify the otherwise complicated isotopic influences between mangrove litter, 507 

MPB and sediment. We feel justified in this approach, because the biomass and productivity of MPB 508 

is very low in Qatar and the carbon incorporated into the MPB is of mangrove in origin (Davis et al. 509 

2009, Walton et al. 2014). Further discussion of the interpretation of the isotopic evidence related to 510 

MPB is presented in the supplementary material (S2). The isotope Bayesian mixing models suggested 511 
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that the contribution of mangrove carbon to the tissue of the migratory fauna ranged from 21 to 58%, 512 

with P. khori most reliant on the mangroves as a carbon source. The high reliance of P. khori on 513 

mangrove material as a dietary source is likely due to its strong attachment to the mangroves, it is a 514 

mangrove resident that has never been found in catches over the surrounding mudflat/seagass beds 515 

(Al-Maslamani et al. 2013).  516 

Mangroves are found intertidally between mean sea level and high water, although these vary with 517 

location (Ellison 2009). In Qatar, mangroves are found 0.2 m above mean sea level, and from tidal 518 

charts we estimated that the mangroves were dry for 60% of the time when migratory fauna are 519 

forced out of the mangrove, where they continue to respire and excrete mangrove-sourced nutrients. 520 

We found that of the mangrove material consumed, 34 kg C ha-1 yr-1 (i.e. 90% from Pauly and 521 

Christensen 1995) is lost through excretion/respiration but only 60% is lost outside the mangrove 522 

while the tide is out and is thus estimated to be 20.8±18.0 kg C ha-1 yr-1 or 0.8% of leaf litter production. 523 

We assumed that this carbon loss was lost in proportions equal to that of the carbon composition of 524 

the migratory fauna, so that the tissue and excretion of A. dispar had a carbon content of 40% 525 

mangrove, 32% phytoplankton and 28% seagrass. The increase in metabolism after eating, known as 526 

specific dynamic action, indicates that respiration rates are not uniform (Jobling 1981). Similarly 527 

digestion times and assimilation efficiency, as mangrove carbon is regarded as especially refractory 528 

(Rodelli et al. 1984) may result in the unequal release of consumed material in neighbouring habitats. 529 

The impact of this could be explored further however it is unlikely to significantly increase the 530 

proportion mangrove carbon outwelled by fauna. 531 

 The values reported for outwelled POC and DOC of around 30% each of leaf litter production (Bouillon 532 

et al. 2008a), are much larger than our estimates of outwelled C in fish biomass (mortality estimates). 533 

However mangrove carbon outwelled as fish tissue, may be of much greater importance to coastal 534 

food webs than DOC or POC, as it directly enters at a high trophic level through predation; fish biomass 535 

in the present study had an average trophic level of ~3. Hence, while faunal-mediated direct export of 536 
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mangrove matter might be a small fraction of primary productivity, it may be much more significant 537 

to coastal fisheries than carbon outwelled as DIC, POC and DOC that has to pass through various 538 

trophic levels, before being incorporated into an exploitable species, with the potential associated 539 

trophic transfer loss by two orders of magnitude  (Pauly and Christensen 1995). Moreover, while 540 

mangrove POC is highly refractory with high C:N ratios of 20 -30 (Canfield et al. 2005) but enriched 541 

compared to recently fallen leaf litter (Mean C:N ± 1SD = 93.7 ± 9.8 unpublished data),  mangrove 542 

carbon outwelled as mortality of fish biomass has a C:N of 4.2 to 5.1 that is more easily assimilated by 543 

consumers. In the studied mangroves (201 ha), the total outwelling associated with the mortality of 544 

the migratory fauna is equivalent to 96 kg of mangrove C yr-1 or 947 kg yr-1 of mangrove derived fish 545 

biomass wet weight. If commercial species were preying directly on the this outwelled mangrove fish 546 

biomass, this small area of mangrove may support commercial fish catches of 95 kg yr-1, using the 10:1 547 

trophic efficiency ratios of Pauly and Christensen (1995). However this does not consider the greater 548 

quantities of carbon outwelled through respiration and excretion by the mobile fauna. 549 

The amount of the mangrove litter that is consumed is related to the biomass of the migratory fauna. 550 

A. dispar formed 80% of the biomass and is responsible for 91% of the mangrove carbon consumed 551 

(Table 3), the proportions are not equal as this species also had the highest consumption rate. We 552 

highlighted earlier, the impact of reducing consumption rates of A. dispar from 52 to 24, on the 553 

decreased mangrove consumption by the migratory fauna. The other important factor influencing 554 

mangrove consumption is the dietary reliance on mangrove as estimated by isotopic modelling, the 555 

biomass and consumption rates of P. khori and minor species are similar but isotopic values of P. khori 556 

suggest 57% of its diet is mangrove derived compared to the 22% of minor species resulting in 557 

consumption rates of mangrove that are much greater (Table 3).  Our faunal biomass sampling 558 

indicates that arid mangroves support similar richness of migratory fauna to other mangroves (Table 559 

3). The differences in species composition and biomass found between the Al Khor mudflat and our 560 

experimental mangrove forest sites suggests that the faunal outwelling is specific to mangrove sites 561 

and not generalized coastal outwelling. To determine if the lack of rainfall at the current sites might 562 
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have some influence on the biomass of migratory fauna, and hence one of the most important factors 563 

in faunal consumption and outwelling of mangrove carbon, we compiled data from other studies that 564 

estimated mobile faunal biomass from around the world (Table 3). We used Pearson’s correlation 565 

analysis to examine strength and direction of any relationship between logged biomass of mobile 566 

mangrove fauna with annual rainfall, logged total mangrove area, logged mean trap catchment area, 567 

and species numbers using the values given in Table 3. We found no relationships between faunal 568 

biomass and annual rainfall, nor with mangrove area, nor mean trapped area, nor the number of 569 

species (p>0.05). Of course it is likely that other factors such as mangrove productivity, retention of 570 

productivity within the mangrove, and the amount bioprocessed within the mangrove, as well as 571 

faunal biomass in surrounding habitats will be important in influencing the biomass of mobile faunal 572 

that feeds in the mangrove forests. Hence, there may well be differences between old and new world 573 

mangrove due to the feeding traits of the mangrove fauna that can impact energy flow (McIvor and 574 

Smith 1995, Lee 1998). As the biomass of migratory faunal does not relate to aridity, we cautiously 575 

suggest that the results of the current study ought to be applicable to other higher rainfall areas. 576 

Rainfall-generated wash out of particulate mangrove carbon can lead to less defined isotopic 577 

boundaries, so that it becomes impossible, using stable isotopes, to determine whether mangrove 578 

carbon in mobile fauna is outwelled or derives from the ingestion of previously outwelled mangrove 579 

material. However in old world mangroves where the leaf litter is highly processed (McIvor and Smith 580 

1995, Lee 1998) and there is a large biomass of migratory fauna a correspondingly great proportion of 581 

the mangrove carbon may be faunally outwelled. However we suggest that migratory faunal biomass 582 

and amount (not proportion) of mangrove C exported by this faunal group are likely to be correlated. 583 

Table 3: Estimates of fish biomass and number of species reported in mangrove forests around the 584 

world with estimates of total mangrove area, sampled mangrove area and annual rainfall. Sampling 585 

gears both measure density though by catching fauna from a known area of mangrove. Block nets by 586 

blocking the seaward migration of fauna during the ebbing tide, and enclosure nets are nets raised at 587 

high tide that enclose an area of mangrove. 588 
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Location and 

habitat 

Total 

Mangrove 

Area (ha) 

Annual 

rainfall 

(mm) 

Trap 

catchment 

area (m2) 

 Sampling 

gear  

No. 

spp.  

Biomass mean 

±SD (g m–2) Source 

Bahía Málaga, 

Pacific Columbia 4400 7399 6245 Block net 50 0.851 ± 1.194 

Castellanos-Galindo and 

Krumme (2013)  

Caeté Estuary, 

North Brazil 9900(1) 2545 5896  Block net  49 2.1 Barletta et al. (2003)  

Everglades National 

Park, USA 144447(2) 1520 42 

 Block net  

and 

rotenone 63 14 Thayer et al. (1987)  

Solomon Islands, 

Pacific Ocean 64200(3) 3541(4) 83.6 

Block net 

and 

rotenone 85 11.6±12.4  Blaber and Milton (1990) 

Moreton Bay, 

Eastern Australia 15200(5) 1008 3340 

Enclosure 

net  41 25.3 ± 20.4 Morton (1990)  

Embley River, 

Northern Australia 8300 1787 585 

Enclosure 

net  55 3.9 Vance et al. (1996)  

Pagbilao Bay, 

Philippines 110·7 2242 161 

Enclosure 

net  46 10.4 ± 13.2 Ronnback et al. (1999)  

Gazi Bay, Kenya 661 1074 9 

Enclosure 

net  49 0.9±1.5 Crona and Ronnback (2007)  

Qeshm Island, Iran 6750 200 6837 Block net 26 0.0085 ± 0.02 Shahraki and Fry (2016)  

Al Khor & Al 

Dhakira, Qatar 234.5 75 5400 Block net 20 1.4 ± 0.8 This study 

1 Wolff et al. (2000); 2 Simard et al. (2006); 3 UNEP (2006); 4 SOPAC (2007); 5 Accad et al. (2016) 589 

 590 
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This study presents a first estimate of the proportion of the primary productivity that may be 592 

outwelled by mobile aquatic species through the phenomenon known as trophic relay. The study 593 

indicates that only small amounts (1.4%) of mangrove leaf litter produced is consumed and only 0.8% 594 

outwelled by fauna via two modes: through the excretion and respiration of the ingested mangrove 595 

matter by migratory fauna during low water periods when the mangroves are dry; and through the 596 

mortality of migratory fauna.  Our trapping studies produced biomass estimates with lower statistical 597 

variation than other studies, and our isotopic evidence supports the dietary reliance of migratory 598 

fauna on mangrove production.  Our sites were flooded just 40% of the time, meaning that these 599 

water-dependent fauna were spending at least 60% of the time in habitats subtidal to the mangrove. 600 

We suggest arid mangroves are ideal sites for studying the faunal movement of carbon due to the lack 601 

of rainfall driven outwash of mangrove carbon that increases the certainty that the mangrove carbon 602 

in the tissues of mobile fauna originated from feeding within the mangrove forest. We suggest that 603 

the biomass of migratory fauna moving between mangrove and subtidal habitats and the amount of 604 

faunally outwelled mangrove carbon is likely to be highly correlated. However the proportion of NPP 605 

that is faunally outwelled may vary according to the difference in mangrove leaf litter processing and 606 

retention in old and new world mangrove. The differences in biomass estimates from mangrove 607 

forests in some other regions of the world suggest that migratory faunal biomass has the potential to 608 

contribute correspondingly more to the outwelling of carbon. Finally, although the proportion of 609 

faunal outwelled carbon is small, that carbon is more readily bioavailable to coastal foodwebs than 610 

other forms of outwelled carbon (DIC, DOC & POC), given the value of fauna to higher consumers in 611 

the coastal foodweb. Thus, faunal-mediated carbon export may be of much greater significance, for 612 

example in support of commercial fish biomass, than its relatively small proportion of the total 613 

mangrove carbon budget suggests. The small proportion of carbon outwelled by migratory fauna 614 

supports the current mass-balance models that suggest 40-50% of mangrove production is indeed 615 

outwelled as DIC.  616 

  617 
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