
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/19561

To cite this version :

Quercus HERNÁNDEZ, Alberto BADÍAS, David GONZÁLEZ, Francisco CHINESTA, Elías
CUETO - Structure-preserving neural networks - Journal of Computational Physics p.1-16 - 2020

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/19561
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Structure-preserving neural networks ✩

Quercus Hernández a, Alberto Badías a, David González a, Francisco Chinesta b,
Elías Cueto a,∗
a Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, Maria de Luna 3, E-50018 Zaragoza, Spain
b ESI Chair and PIMM Lab, ENSAM ParisTech, 155 Boulevard de l’Hôpital, 75013 Paris, France

a b s t r a c t

Keywords:
Scientific machine learning
Neural networks
Structure preservation
GENERIC

We develop a method to learn physical systems from data that employs feedforward
neural networks and whose predictions comply with the first and second principles
of thermodynamics. The method employs a minimum amount of data by enforcing
the metriplectic structure of dissipative Hamiltonian systems in the form of the so-
called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC
(Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of
balance equation, and thus no previous knowledge on the nature of the system is needed.
Conservation of energy and dissipation of entropy in the prediction of previously unseen
situations arise as a natural by-product of the structure of the method.
Examples of the performance of the method are shown that comprise conservative as well
as dissipative systems, discrete as well as continuous ones.

1. Introduction

With the irruption of the so-called fourth paradigm of science [17] a growing interest is detected on the machine learning
of scientific laws. A plethora of methods have been developed that are able to produce more or less accurate predictions 
about the response of physical systems in previously unseen situations by employing techniques ranging from classical 
regression to the most sophisticated deep learning methods.

For instance, recent works in solid mechanics have substituted the constitutive equations with experimental data [1,25], 
while conserving the traditional approach on physical laws with high epistemic value (i.e., balance equations, equilibrium). 
Similar approaches have applied this concept to the unveiling (or correction) of plasticity models [21], while others cre-
ated the new concept of constitutive manifold [20,22]. Other approaches are designed to unveil an explicit, closed form 
expression for the physical law governing the phenomenon at hand [3].

An interest is observed in the incorporation of the already existing scientific knowledge to these data-driven procedures. 
This interest is two-fold. Indeed, we prefer not to get rid of centuries of scientific knowledge and rely exclusively on powerful 

✩ This project has been partially funded by the ESI Group through the ESI Chair at ENSAM ParisTech and through the project “Simulated Reality: an
intelligence augmentation system based on hybrid twins and augmented reality” at the University of Zaragoza. The support of the Spanish Ministry
of Economy and Competitiveness through grant number CICYT-DPI2017-85139-C2-1-R and by the Regional Government of Aragon, through the project
T24_20R, and the European Social Fund, are also gratefully acknowledged.

* Corresponding author.
E-mail addresses: quercus@unizar.es (Q. Hernández), abadias@unizar.es (A. Badías), gonzal@unizar.es (D. González), francisco.chinesta@ensam.eu

(F. Chinesta), ecueto@unizar.es (E. Cueto).

https://doi.org/10.1016/j.jcp.2020.109950
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:quercus@unizar.es
mailto:abadias@unizar.es
mailto:gonzal@unizar.es
mailto:francisco.chinesta@ensam.eu
mailto:ecueto@unizar.es
https://doi.org/10.1016/j.jcp.2020.109950


machine learning strategies. Existing theories have proved to be useful in the prediction of physical phenomena and are still 
in the position of helping to produce very accurate predictions. This is the procedure followed in the so-called data-driven 
computational mechanics approach mentioned before. On the other hand, these theories help to keep the consumption of 
data to a minimum. Data are expensive to produce and to maintain. Already existing scientific knowledge could alleviate 
the amount of data needed to produce a successful prediction.

The mentioned works on data-driven computational mechanics usually rely on traditional machine learning algorithms, 
which are very precise and tested but usually computationally expensive. With the recent advances in data processing, 
computing resources and machine learning, neural networks have become a powerful tool to analyze traditionally hard 
problems such as image classification [26,45], speech recognition [12,18] or data compressing [42,46]. These new machine 
learning methods outperform many of the traditional ones, both in modeling capacity and computational time (once trained, 
certain neural networks can easily handle real time requirements). Recent works in the machine learning community [29,
31,34] have shown that neural networks are also versatile in constraint optimizations.

This is the approach followed by several authors in the context of physical simulations, which aim to solve a set of partial 
differential equations (PDEs) in complex dynamical systems. Physical problems must satisfy inherently certain conditions 
dictated by physics, often formulated as conservation laws, and can be imposed to a neural network using extra loss terms 
in the constrained optimization process [32].

Similar constraints are imposed in the so-called physically-informed neural networks approach [40,48]. This family of 
methods employs neural networks to solve highly nonlinear partial differential equations (PDEs) resulting in very accurate 
and numerically stable results. However, they rely on prior knowledge of the governing equations of the problem.

The authors have introduced the so-called thermodynamically consistent data-driven computational mechanics [7,9,10]. 
Unlike other existing works, this approach does not impose any particular balance equation to solve for. Instead, it relies 
on the imposition of the right thermodynamic structure of the resulting predictions, as dictated by the so-called GENERIC 
formalism [15]. As will be seen, this ensures conservation of energy and the right amount of entropy dissipation, thus 
giving rise to predictions satisfying the first and second principles of thermodynamics. These techniques, however, employ 
regression to unveil the thermodynamic structure of the problem at the sampling points. For previously unseen situations, 
they employ interpolation on the matrix manifold describing the system.

Recent works in symplectic networks [23] have by-passed those drawbacks by exploiting the mathematical properties of 
Hamiltonian systems, so no prior knowledge of the system is required. However, this technique only operates on conserva-
tive systems with no entropy generation.

The aim of this work is the development of a new structure-preserving neural network architecture capable of predicting 
the time evolution of a system based on experimental observations on the system, with no prior knowledge of its governing 
equations, to be valid for both conservative and dissipative systems. The key idea is to merge the proven computational 
power of neural networks in highly nonlinear physics with thermodynamic consistent data-driven algorithms. The resulting 
methodology, as will be seen, is a powerful neural network architecture, conceptually very simple—based on standard feed-
forward methodologies—that exploits the right thermodynamic structure of the system as unveiled from experimental data, 
and that produces interpretable results [33].

The outline of the paper is as follows. A brief description of the problem setup is presented in Section 2. Next, in 
Section 3, the methodology is presented of both the GENERIC formalism and the feed-forward neural networks used to 
solve the stated problem. This technique is used in different physical systems of increasing complexity: a double thermo-
elastic pendulum (Section 4) and a Couette flow in a viscoelastic fluid (Section 5). The paper is completed with a discussion 
in Section 6.

2. Problem statement

Weinan E seems to be the first author in interpreting the process of learning physical systems as the solution of a 
dynamical system [6]. Consider a system whose governing variables will be hereafter denoted by z ∈M ⊆Rn , with M the 
state space of these variables, which is assumed to have the structure of a differentiable manifold in Rn .

The problem of learning a given physical phenomenon can thus be seen as the one of finding an expression for the time 
evolution of their governing variables z,

ż = dz

dt
= F (x, z, t), x ∈ � ∈RD , t ∈ I = (0, T ], z(0) = z0, (1)

where x and t refer to the space and time coordinates within a domain with D = 2, 3 dimensions. F (x, z, t) is the function 
that gives, after a prescribed time horizon T , the flow map z0 → z(z0, T ).

While this problem can be seen as a general supervised learning problem (we fix both z0 and z), when we have addi-
tional information about the physics being represented by the sought function F , it is legitimate to try to include it in the 
search procedure. W. E seems to have been the first in suggesting to impose a Hamiltonian structure on F if we know that 
energy is conserved, for instance [6]. Very recently, two different approaches follow this same rationale [2,23].

For conservative systems, therefore, imposing a Hamiltonian structure seems a very appealing way to obtain thermo-
dynamics-aware results. However, when the system is dissipative, this method does not provide with valid results. Given 



the importante of dissipative phenomena (viscous solids, fluid dynamics, ...) we explore the right thermodynamic structure 
to impose to the search methodology.

The goal of this paper is to develop a new method of solving Eq. (1) using state of the art deep learning tools, in order to 
predict the time evolution of the state variables of a given system. The solution is forced to fulfill the basic thermodynamic 
requirements of energy conservation and entropy inequality restrictions via the GENERIC formalism, presented in the next 
section.

3. Methodology

In this section we develop the appropriate thermodynamic structure for dissipative systems. Classical systems modeling
can be done at a variety of scales. We could think of the most detailed (yet often impractical) scale of molecular dynam-
ics, where energy conservation applies and the Hamiltonian paradigm can be imposed. However, the number of degrees of 
freedom and, noteworthy, the time scale, renders this approach of little interest for many applications. On the other side 
of the spectrum lies thermodynamics, where only conserved, invariant, quantities are described and thus there is no need 
for conservation principles. At any other (mesoscopic) scale, unresolved degrees of freedom give rise to the appearance of 
fluctuation in the results (or its equivalent, dissipation). At these scales, traditional modeling procedures imply expressing 
physical insights in the form of governing equations [13]. These equations are then validated from experimental observa-
tions.

Alternatively, thermodynamics can be thought of as a meta-physics, in the sense that it is actually a theory of theories 
[14]. It provides us with the right theoretic framework in which basic principles are met. And, in particular for any of 
these intermediate or mesoscopic scales, a so-called metriplectic structure emerges. The term metriplectic comes for the 
combination of symplectic and Riemannian (metric) geometry and emphasizes the fact that there are conservative as well 
as dissipative contributions to the general evolution of such a system. Once such a geometric structure is found for the 
system, we are in the position of fixing the framework in which our neural networks can look for the adequate prediction 
of the future states of the system. The particular metriplectic structure that we employ for such a task is known, as stated 
before, as GENERIC.

3.1. The GENERIC formalism

The “General Equation for Non-Equilibrium Reversible-Irreversible Coupling”, GENERIC, formalism [15,36] establishes a 
mathematical framework in order to model the dynamics of a system. Furthermore, it is compatible with classical equi-
librium thermodynamics [35], preserving the symmetries of the system as stated in Noether’s theorem. It has served as 
the basis for the development of several consistent numerical integration algorithms that exploit these desirable properties 
[11,41].

The GENERIC structure for the evolution in Eq. (1) is obtained after finding two algebraic or differential operators

L : T ∗M → TM, M : T ∗M → TM,

where T ∗M and TM represent, respectively, the cotangent and tangent bundles of M. As in general Hamiltonian systems, 
there will be an energy potential, which we will denote hereafter by E(z). In order to take into account the dissipative 
effects, a second potential (the so-called Massieu potential) is introduced in the formulation. It is, of course, the entropy 
potential of the GENERIC formulation, S(z). With all these ingredients, we arrive at a description of the dynamics of the 
system of the type

dz

dt
= L

∂ E

∂z
+ M

∂ S

∂z
. (2)

As shown in Eq. (2), the time evolution of the system described by the nonlinear operator F (x, z, t) presented in Eq. (1)
is now split in two separated terms:

• Reversible Term: It accounts for all the reversible (non-dissipative) phenomena of the system. In the context of classical
mechanics, this term is equivalent to Hamilton’s equations of motion that relates the particle position and momentum.
The operator L(z) is the Poisson matrix—it defines a Poisson bracket—and is required to be skew-symmetric (a cosym-
plectic matrix).

• Non-Reversible Term: The rest of the non-reversible (dissipative) phenomena of the system are modeled here. The
operator M(z) is the friction matrix and is required to be symmetric and positive semi-definite.

The GENERIC formulation of the problem is completed with the following so-called degeneracy conditions

L
∂ S

∂z
= M

∂ E

∂z
= 0. (3)

The first condition expresses the reversible nature of the L contribution to the dynamics whereas the second requirement 
expresses the conservation of the total energy by the M contribution. This means no other thing that the energy potential 



does not contribute to the production of entropy and, conversely, that the entropy functional does not contribute to re-
versible dynamics. This mutual degeneracy requirement in addition to the already mentioned L and M matrix requirements 
ensure that:

∂ E

∂t
= ∂ E

∂z
· ∂z

∂t
= ∂ E

∂z

(
L
∂ E

∂z
+ M

∂ S

∂z

)
= 0,

which expresses the conservation of energy in an isolated system, also known as the first law of thermodynamics. Applying 
the same reasoning to the entropy S:

∂ S

∂t
= ∂ S

∂z
· ∂z

∂t
= ∂ S

∂z

(
L
∂ E

∂z
+ M

∂ S

∂z

)
= ∂ S

∂z
M

∂ S

∂z
≥ 0,

which guarantees the entropy inequality, this is, the second law of thermodynamics.

3.2. Proposed integration algorithm

Once the learning procedure is accomplished, our neural network is expected to integrate the system dynamics in time, 
given previously unseen initial conditions. In order to numerically solve the GENERIC equation, we formulate the discretized 
version of Eq. (2) following previous works [11]:

zn+1 − zn

�t
= L · DE

Dz
+ M · DS

Dz
. (4)

The time derivative of the original equation is discretized with a forward Euler scheme in time increments �t , where 
zn+1 = zt+�t . L and M are the discretized versions of the Poisson and friction matrices. Last, DE

Dz and DS
Dz represent the 

discrete gradients, which can be approximated in a finite element sense as:

DE

Dz
� Az,

DS

Dz
� Bz, (5)

where A and B represent the discrete matrix form of the gradient operators.
Finally, manipulating algebraically Eq. (4) with Eq. (5) and including the degeneracy conditions of Eq. (3), the proposed 

integration scheme for predicting the dynamics of a physical system is the following

zn+1 = zn + �t (L · Azn + M · Bzn) (6)

subject to:

L · Bzn = 0,

M · Azn = 0,

ensuring the thermodynamical consistency of the resulting model.
To sum up, the main objective of this work is to compute the form of the A(z) and B(z) gradient operator matrices, 

subject to the degeneracy conditions, in order to integrate the initial system state variables z0 over certain time steps �t
of the time interval I . Usually, the form of matrices L and M is known in advance, given the vast literature in the field. If 
necessary, these terms can also be computed [11].

3.3. Feed-forward neural networks

In the introduction we already mentioned the intrinsic power of neural networks in many fields. The main reason under 
the fact that neural networks are able to learn and reproduce such a variety of problems is that they are considered to 
be universal approximators [4,19], meaning that they are capable of approximating any measurable function to any desired 
degree of accuracy. The main limitation of this technique is the correct selection of the tuning parameters of the network, 
also called hyperparameters.

Another universal approximator are polynomials, as they can approximate any infinitely differentiable function as a Taylor 
power series expansion. The main difference is that neural networks rely on composition of functions rather than sum of 
power series:

ŷ = ( f [L] ◦ f [L−1] ◦ ... ◦ f [l] ◦ ... ◦ f [2] ◦ f [1])(x). (7)

Eq. (7) shows that the desired output ŷ from a defined input x of a neural network is a composition of different functions 
f [l] as building blocks of the network in L total layers. The challenge is to select the best combination of functions in the 
correct order such that it approximates the solution of the studied problem.



Fig. 1. Representation of a single neuron (left) as a part of a fully connected neural net (right).

The simplest building block of artificial deep neural network architectures is the neuron or perceptron (Fig. 1, left). 
Several neurons are stacked in a multilayer perceptron (MLP), which is mathematically defined as follows

x[l] = σ(w [l]x[l−1] + b[l]), (8)

where l is the index of the current layer, x[l−1] and x[l] are the layer input and output vector respectively, w [l] is the weight 
matrix of the last layer, b[l] is the bias vector of the last layer and σ is the activation function. If no activation function is 
applied, the MLP is equivalent to a linear operator. However, σ is chosen to be a nonlinear function in order to increase 
the capacity of modeling more complex problems, which are commonly nonlinear. In classification problems, the traditional 
activation function is the logistic function (sigmoid) whereas in regression problems, Rectified Linear Unit (ReLU) [8] or 
hyperbolic tangent are commonly used.

In this work, we use a deep neural network architecture known as feed-forward neural network [44]. It consists of a 
several layer of multilayer perceptrons with no cyclic connections, as shown in Fig. 1 (right).

The input of the neural net is the vector state of a given time step zn , and the outputs are the concatenated GENERIC 
matrices Anet

n and Bnet
n : for a system with n state variables the number of inputs and outputs are Nin = n and Nout = 2n2. 

Then, using the GENERIC integration scheme, the state vector at the next time step znet
n+1 is obtained. This method is repeated 

for the whole simulation time T with a total of NT snapshots.
The state variables of a general dynamical system may differ in several orders of magnitude from each other, due to their 

own physical nature or measurement units. Then, a pre-processing of the input data (scaling or normalization) can improve 
the model performance and stability.

The number of hidden layers Nh depends on the complexity of the problem. Increasing the net size raises the computa-
tional power of the net to model more complex phenomena. However, it slows the training process and could lead to data 
overfitting, limiting its generalization and extrapolation capacity. The size of the hidden layers is chosen to be the same as 
the output size of the net Nout.

The cost function for our neural network is composed of three different terms:

• Data loss: The main loss condition is the agreement between the network output and the real data. It is computed as
the squared error sum, computed between the predicted state vector znet

n+1 and the ground truth solution zGT
n+1 for each

time step.

Ldata
n = ‖zGT

n+1 − znet
n+1‖2

2. (9)

• Fulfillment of the degeneracy conditions: The cost function will also account for the degeneracy conditions in order
to ensure the thermodynamic consistency of the solution, implemented as the sum of the squared elements of the 
degeneracy vectors for each time step,

Ldegen
n = ‖L · Bnet

n znet
n ‖2

2 + ‖M · Anet
n znet

n ‖2
2. (10)

This term acts as a regularization of the loss function and, at the same time, is the responsible of ensuring thermody-
namic consistency. So to speak, it is the cornerstone of our method.

• Regularization: In order to avoid overfitting, an extra L2 regularization term Lreg is added to the loss function, defined
as the sum over the squared weight parameters of the network.

Lreg =
L∑
l

n[l]∑
i

n[l+1]∑
j

(w[l]
i, j)

2. (11)

The total cost function is computed as the sum squared error (SSE) of the data loss and degeneracy residual, in addi-
tion to the regularization term, at the end of the simulation time T for each train case. The regularization loss is highly 



Fig. 2. Sketch of a structure-preserving neural network training algorithm.

dependent on the size of the network layers and has different scaling with respect to the other terms, so it is compensated 
with the regularization hyperparameter (weight decay) λr . An additional weight λd is added to the data loss term, which 
accounts for the relative scaling error with respect to the degeneracy conditions.

L =
NT∑

n=0

(λdLdata
n +Ldegen

n ) + λrLreg. (12)

The usual backpropagation algorithm [37] is then used to calculate the gradient of the loss function for each net param-
eter (weight and bias vectors), which are updated with the gradient descent technique [43]. The process is then repeated 
for a maximum number of epochs nepoch. The resulting training algorithm is sketched in Fig. 2.

The proposed methodology is tested with two different databases of nonlinear physical systems, split in a partition of 
train cases (Ntrain = 80% of the database) and test cases (Ntest = 20% of the database). The net performance is evaluated 
with the mean squared error (MSE) of the state variables prediction, associated with the data loss term, Eq. (9), over all the 
time snapshots,

MSEdata (zi) = 1

NT

NT∑
n=0

(
zGT

i,n − znet
i,n

)2
. (13)

The same procedure is applied to the degeneracy constraint, associated with the degeneracy loss term, Eq. (10), over all the 
time snapshots,

MSEdegen (zi) = 1

NT

NT∑
n=0

(
L · Bnet

i,n znet
i,n + M · Anet

i,n znet
i,n

)
. (14)

As a general error magnitude of the algorithm, the average MSE of both the train (N = Ntrain) and test trajectories 
(N = Ntest) is also reported for both the data (m = data) and degeneracy (m = degen) constraints,

MSE
m

(z) = 1

N

N∑
i=1

MSEm (zi). (15)

Algorithm 1 and Algorithm 2 show a pseudocode of our proposed algorithm to both the training and test processes. The 
proposed method is fully implemented in PyTorch [38] and trained in an Intel Core i7-8665U CPU.

4. Validation examples: double thermo-elastic pendulum

4.1. Description

The first example is a double thermo-elastic pendulum (Fig. 3) consisting of two masses m1 and m2 connected by two 
springs of variable lengths λ1 and λ2 and natural lengths at rest λ0

1 and λ0
2.

The set of variables describing the double pendulum are here chosen to be

S = {z = (q1,q2, p1, p2, s1, s2) ∈ (R2 ×R2 ×R2 ×R2 ×R×R), q1 
= 0, q1 
= q2}, (16)

where qi , pi and si are the position, linear momentum and entropy of each mass i = 1, 2.



Algorithm 1 Pseudocode for the train algorithm.
Load train database: zGT (train partition), �t , L, M;
Define network architecture: Nin , Nout = 2N2

in , Nh , σ j ;
Define hyperparameters: η, λd , λr ;
Initialize wi, j , b j ;
for epoch ← 1, nepoch do

for train_case ← 1, Ntrain do
Initialize state vector: znet

0 ← zGT
0 ;

Initialize losses: Ldata, Ldegen = 0;
for snapshot ← 1, NT do

Forward propagation: [Anet
n , Bnet

n ] ← Net(zGT
n ); � Eq. (8)

Time integration:
znet

n+1 ← znet
n + �t (L · Anet

n znet
n + M · Bnet

n znet
n ); � Eq. (4)

Update data loss: Ldata ← Ldata +Ldata
n ; � Eq. (9)

Update degeneracy loss: Ldegen ← Ldegen +Ldegen
n ; � Eq. (10)

end for
SSE loss function: L ← λdLdata +Ldegen + λrLreg � Eq. (11), Eq. (12)
Backward propagation;
Optimizer step;

end for
Learning rate scheduler;

end for

Algorithm 2 Pseudocode for the test algorithm.
Load test database: zGT (test partition), �t , L, M;
Load network parameters;
for test_case ← 1, Ntest do

Initialize state vector: znet
0 ← zGT

0 ;
for snapshot ← 1, NT do

Forward propagation: [Anet
n , Bnet

n ] ← Net(znet
n ); � Eq. (8)

Time step integration:
znet

n+1 ← znet
n + �t (L · Anet

n znet
n + M · Bnet

n znet
n ); � Eq. (4)

Update state vector: znet
n ← znet

n+1;
Update snapshot: n ← n + 1;

end for
Compute MSEdata, MSEdegen; � Eq. (13), Eq. (14)

end for
Compute MSE

data
, MSE

degen
; � Eq. (15)

Fig. 3. Double thermo-elastic pendulum.

The lengths of the springs λ1 and λ2 are defined solely in terms of the positions as

λ1 = √
q1 · q1, λ2 = √

(q2 − q1) · (q2 − q1).

The total energy of the system can be expressed as the sum of the kinetic energy of the two masses Ki and the internal 
energy of the springs ei for i = 1, 2,

E = E(z) =
∑

i

Ki(z) +
∑

i

ei(λi, si),

Ki = 1

2mi
|pi|2. (17)



Fig. 4. Loss evolution of data and degeneracy constraints for each epoch of the structure-preserving neural network training process of the double pendulum
example.

The total entropy of the double pendulum is the sum of the entropies of the two masses si ,

S = S(z) = s1 + s2. (18)

This model includes thermal effects in the stretching of the springs due to the Gough-Joule effect. The absolute temper-
atures Ti at each spring are obtained through Eq. (19). These temperature changes induce a heat flux between both springs, 
being proportional to the temperature difference and a conductivity constant κ > 0,

Ti = ∂ei

∂si
. (19)

In this case, there is a clear contribution of both conservative Hamiltonian mechanics (mass movement) and non-
Hamiltonian dissipative effects (heat flux), resulting in a non-zero Poisson matrix (M 
= 0). Thus, the GENERIC matrices 
associated with this physical system are known to be [11]

L =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1/2
0 0 0 0 −1/2 1

⎤
⎥⎥⎥⎥⎥⎦

. (20)

4.2. Database and hyperparameters

The training database is generated with a thermodynamically consistent time-stepping algorithm [41] in MATLAB. The 
masses of the double pendulum are set to m1 = 1 kg and m2 = 2 kg, joint with springs of a natural length of λ0

1 = 2 m and 
λ0

2 = 1 m and thermal constant of C1 = 0.02 J and C2 = 0.2 J and conductivity constant of κ = 0.5. The simulation time of 
the movement is T = 60 s in time increments of �t = 0.3 s (NT = 200 snapshots).

The database consists of the state vector, Eq. (16), of 50 different trajectories with random initial conditions of position 
qi and linear momentum pi of both masses mi (i = 1, 2) around a mean position and linear momentum of q1 = [4.5, 4.5]�
m, p1 = [2, 4.5]� kg·m/s, and q2 = [−0.5, 1.5]� m, p2 = [1.4, −0.2]� kg·m/s respectively. Although the initial conditions 
of the simulations are similar, it results in a wide variety of the mass trajectories due to the chaotic behavior of the system. 
This database is split randomly in 40 train trajectories and 10 test trajectories. Thus, there is a total of 80.000 training 
snapshots and 20.000 test snapshots.

The net input and output size is Nin = 10 and Nout = 2N2
in = 200. The state vector is normalized based on the training 

set statistical mean and standard deviation. The number of hidden layers is Nh = 5 with ReLU activation functions and linear 
in the last layer. It is initialized according to the Kaiming method [16] with normal distribution and the optimizer used is 
Adam [24] with a weight decay of λr = 10−5 and data loss weight of λd = 102. A multistep learning rate scheduler is used, 
starting in η = 10−3 and decaying by a factor of γ = 0.1 in epochs 600 and 1200. The training process ends when a fixed 
number of epochs nepoch = 1800 is reached.

The time evolution of the data Ldata and degeneracy Ldegen loss terms for each training epoch are shown in Fig. 4.



Fig. 5. Time evolution of the state variables in a test trajectory of a double thermo-elastic pendulum using a time-stepping solver (Ground Truth, GT) and
the proposed GENERIC integration scheme (SPNN). Since every variable has a vectorial character, both components are depicted and labeled as X and Y ,
respectively.

Table 1
Mean squared error of the data loss (MSE

data
) and degeneracy loss (MSE

degen
) for 

all the state variables of the double pendulum.

State Variables MSE
data

MSE
degen

Train Test Train Test

q1 [m] X 1.95 · 10−2 3.87 · 10−2 3.56 · 10−8 4.43 · 10−8

Y 2.72 · 10−2 8.21 · 10−2 4.74 · 10−8 5.77 · 10−8

q2 [m] X 2.04 · 10−2 3.65 · 10−2 9.28 · 10−8 8.55 · 10−8

Y 2.72 · 10−2 3.73 · 10−2 3.55 · 10−8 5.01 · 10−8

p1 [kg·m/s] X 6.43 · 10−4 1.33 · 10−4 4.00 · 10−8 7.08 · 10−8

Y 1.06 · 10−3 4.06 · 10−3 1.21 · 10−7 1.40 · 10−7

p2 [kg·m/s] X 4.88 · 10−4 9.84 · 10−4 6.00 · 10−8 4.58 · 10−8

Y 8.47 · 10−4 1.79 · 10−4 9.76 · 10−8 1.20 · 10−7

s1 [J/K] 1.21 · 10−5 3.51 · 10−5 1.31 · 10−7 2.06 · 10−7

s2 [J/K] 1.22 · 10−5 3.18 · 10−5 2.40 · 10−7 2.95 · 10−7

Table 2
Mean squared error of the energy (MSE (E))
and entropy (MSE (s)) of the double pendu-
lum.

Variable Train Test

E [J] 7.99 · 10−3 8.86 · 10−3

S [J/K] 6.52 · 10−8 6.33 · 10−8

4.3. Results

Fig. 5 shows the time evolution of the state variables (position, momentum and entropy) of each mass given by the 
solver and the neural net.

Table 1 shows the mean squared error of the data and degeneration loss terms for all the state variables of the double 
pendulum. The results are computed separately as the mean over all the train and test trajectories using Eq. (15).

Fig. 6 and Fig. 7 show the time evolution of the internal and kinetic energy (Eq. (17)) and the entropy (Eq. (18)) re-
spectively for the two pendulum masses (i = 1, 2). The total energy is conserved and the total entropy satisfies the entropy 
inequality, fulfilling the first and second laws of thermodynamics respectively. The mean error for both train and test trajec-
tories is reported in Table 2.



Fig. 6. Time evolution of the energy in a test trajectory of a double thermo-elastic pendulum using a time-stepping solver (Ground Truth, GT) and the
proposed GENERIC integration scheme (Net).

Fig. 7. Time evolution of the entropy in a test trajectory of a double thermo-elastic pendulum using a time-stepping solver (Ground Truth, GT) and the
proposed GENERIC integration scheme (SPNN).

5. Couette flow of an Oldroyd-B fluid

5.1. Description

The second example is a shear (Couette) flow of an Oldroyd-B fluid model. This is a constitutive model for viscoelastic 
fluids, consisting of linear elastic dumbbells (representing polymer chains) immersed in a solvent.

The Oldroyd-B model arises in the modeling of flows of diluted polymeric solutions. This model can be obtained both 
from a purely macroscopic point of view as well as from a microscopic one, by modeling polymer chains as linear dumbbells 
diluted in a Newtonian substrate. Alternatively, it can also be obtained by considering the deviatoric part T of the stress 
tensor σ (the so-called extra-stress tensor), to be of the form

T + λ1
∇
T = η0

(
γ̇ + λ2

∇
γ̇

)
, (21)



Fig. 8. Couette flow in an Oldroyd-B fluid.

where the triangle denotes the non-linear Oldroyd’s upper-convected derivative [39]. Coefficients η0, λ1 and λ2 are model 
parameters. It is standard to denote the strain rate tensor by γ̇ = (∇s v) = D .

Finally, the stress in the solvent (denoted by a subscript s) and polymer (denoted by a subscript p) are given by

T = ηsγ̇ + τ ,

so that

τ + λ1
∇
τ= ηp γ̇ ,

which is the constitutive equation for the elastic stress.
Pseudo-experimental data are obtained by the CONNFFESSIT technique [27], based on the Fokker-Plank equation [28]. 

This equation is solved by converting it in its corresponding Itô stochastic differential equation,

drx =
(

∂ v

∂ y
ry − 1

2We
rx

)
dt + 1√

We
dVt,

dry = − 1

2We
rydt + 1√

We
dWt , (22)

where v is the flow velocity, r = [rx, ry]� , rx = rx(y, t) the position vector and assuming a Couette flow so that ry = ry(t)
depends only on time, we stand for the Weissenberg number and Vt , Wt are two independent one-dimensional Brownian 
motions. This equation is solved via Monte Carlo techniques, by replacing the mathematical expectation by the empirical 
mean.

The model relies on the microscopic description of the state of the dumbbells. Thus, it is particularly useful to base the 
microscopic description on the evolution of the conformation tensor c = 〈rr〉, this is, the second moment of the dumbbell 
end-to-end distance distribution function. This tensor is in general not experimentally measurable and plays the role of an 
internal variable. The expected xy stress component tensor will be given by

τ = ε

We

1

K

K∑
k=1

rxry,

where K is the number of simulated dumbbells and ε = νp
νp

is the ratio of the polymer to solvent viscosities.

The state variables selected for this problem are the position of the fluid on each node of the mesh, see Fig. 8, its velocity 
v in the x direction, internal energy e and the conformation tensor shear component τ ,

S = {z = (q, v, e, τ ) ∈ (R2 ×R×R×R)}. (23)

The GENERIC matrices associated with each node of this physical system are the following

L =

⎡
⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 0 0

−1 0 0 0 1 −1
0 0 −1 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ . (24)

In order to simulate a measurement of real captured data, Gaussian noise is added to the state vector, computed as 
a random variable following a normal distribution with zero mean and standard deviation proportional to the standard 
deviation of the database σz and noise level ν ,



Fig. 9. Loss evolution of data and degeneracy constraints for each epoch of the neural network training process of the Couette flow example.

zGT
noise = zGT + ν · σz ·N (0,1) (25)

The results of both the noise-free and the noisy database are compared with two different network architectures:

• Unconstrained network: This architecture is the same as the proposed network but removing the degeneracy conditions
of the energy and entropy, Eq. (10), in the loss function. These conditions ensure the thermodynamic consistency of the
resulting integrator, so not including them affects negatively in the accuracy of the results, as will be seen.

• Black-Box network: In this case, no GENERIC architecture is imposed, acting as a black-box integrator trained to di-
rectly predict the state vector time evolution zt+1 from the previous time step zt . This naive approach is shown to be
inappropriate, as no physical restrictions are given to the model.

5.2. Database and hyperparameters

The training database for this Oldroyd-B model is generated in MATLAB with a multiscale approach [28] in the dimen-
sionless form. The fluid is discretized in the vertical direction with N = 100 elements (101 nodes) in a total height of H = 1. 
A total of 10,000 dumbells were considered at each nodal location in the model. The lid velocity is set to V = 1, the vis-
coelastic Weissenberg number We = 1 and Reynolds number of Re = 0.1. The simulation time of the movement is T = 1 in 
time increments of �t = 0.0067 (NT = 150 snapshots).

The database consisted of the state vector (Eq. (23)) of the 100 nodes trajectories (excluding the node at h = H , for 
which a no-slip condition v = 0 has been imposed). This database is split in 80 train trajectories and 20 test trajectories.

The net input and output size is Nin = 5 and Nout = 2N2
in = 50. The number of hidden layers is Nh = 5 with ReLU acti-

vation functions and linear in the last layer. It is initialized according to the Kaiming method [16], with normal distribution 
and the optimizer used is Adam [24], with a weight decay of λr = 10−5 and data loss weight of λd = 103. A multistep 
learning rate scheduler is used, starting in η = 10−3 and decaying by a factor of γ = 0.1 in epochs 500 and 1000. The 
training process ends when a fixed number of epochs nepoch = 1500 is reached. The same parameters are considered also 
for the noisy database network (ν = 1%) and the unconstrained network.

The black-box network training parameters are analogous to the structure-preserving network, except for the output size 
Nout = Nin = 5. Several network architectures were tested, and the lowest error is achieved with Nh = 5 hidden layers and 
25 neurons each layer.

The time evolution of the data Ldata and degeneracy Ldegen loss terms for each training epoch are shown in Fig. 9.

5.3. Results

Fig. 10 shows the time evolution of the state variables (position q, velocity v , internal energy e and conformation tensor 
shear component τ ) given by the solver and the neural net. There is a good agreement between both plots. Moreover, the 
proposed scheme is able to predict the time evolution of the flow for several snapshots beyond the training simulation time 
T = 1, as shown in the same figure.

Table 3 show the mean squared error of the data and degeneration loss terms for all the state variables of the Couette 
flow of an Oldroyd-B fluid. The results are computed separately as the mean over all the train and test trajectories using 
Eq. (15).

Fig. 11 shows a box plot of the data error (MSEdata) for the train and test sets in the four studied architectures. The 
results of the structure-preserving neural network outperform the other two approaches even with noisy training data. 
The error of the unconstrained neural network is greater than one order of magnitude than our approach, proving the 
importance of the degeneracy conditions in the GENERIC formulation. Last, the naive black-box approach shows the worst 
performance of the four networks, as no physical restriction is considered.



Fig. 10. Time evolution of the state variables in five test nodes of a Couette flow using a solver (Ground Truth, GT) and the proposed GENERIC integration
scheme (Net). The dotted vertical line represents the simulation time T = 1 of the training dataset.

Table 3
Mean squared error of the data loss (MSE

data
) and degeneracy loss (MSE

degen
) 

for all the state variables of the Couette flow.

State Variables MSE
data

MSE
degen

Train Test Train Test

q [-] X 5.40 · 10−6 6.29 · 10−6 1.72 · 10−7 1.96 · 10−7

Y 0.00 0.00 0.00 0.00

v [-] 3.23 · 10−5 4.75 · 10−5 1.19 · 10−6 1.48 · 10−6

e [-] 7.85 · 10−6 6.60 · 10−6 7.06 · 10−7 9.11 · 10−7

τ [-] 2.36 · 10−5 1.26 · 10−5 1.07 · 10−6 1.31 · 10−6

Fig. 11. Box plots for the data integration mean squared error (MSEdata) of the Couette flow in both train and test cases.

With respect to our previous work [11], that employed a piece-wise linear regression approach, these examples show 
similar levels of accuracy, but a much greater level of robustness. For instance, this same example was included in the 
mentioned reference. However, in that case, the problem had to be solved with the help of a reduced order model with 
only six degrees of freedom, due to the computational burden of the approach. In our former approach, the GENERIC 
structure was identified by piece-wise linear regression for each of the few global modes of the approximation. So to speak, 
in that case, we learnt the characteristics of the flow. Here, on the contrary, the net is able to find an approximation for 
any velocity value at the 101 nodes of the mesh—say, fluid particles—without any difficulty. In this case, we are learning the 



Table 4
Computation training time of the proposed algorithm
for the two reported examples in the noise free net-
works.

Example Epoch Time Total Time

Double Pendulum 2.44 s/epoch 73.18 min
Couette Flow 1.22 s/epoch 30.53 min

behavior of fluid particles. It will be interesting, however, to study to what extent the employ of variational autoencoders, 
as in Bertalan et al. [2], could help in solving more intricate models. Autoencoders help in determining the actual number 
of degrees of freedom needed to represent a given physical phenomenon.

6. Conclusions

In this work we have presented a new methodology to ensure thermodynamic consistency in the deep learning of 
physical phenomena. In contrast to existing methods, this methodology does not need to know in advance any information 
related to balance equations or the precise form of the PDE governing the phenomena at hand. The method is constructed 
on top of the right thermodynamic principles that ensure the fulfillment of the energy dissipation and entropy production. 
It is valid, therefore, for conservative as well as dissipative systems, thus overcoming previous approaches in the field.

When compared with our previous works in the field (see Gonzalez et al. [11]), the present methodology showed to be 
more robust, allowing us to find approximations for systems with orders of magnitude more degrees of freedom. This new 
approach is also less computationally demanding. For the double pendulum case, the snapshot optimization of the GENERIC 
matrices proposed in [11] has a measured performance of 10 min per trajectory, which add up to 400 minutes considering 
the 40 studied trajectories, whereas our new neural-network approach trains in only 73.18 minutes. The computational time 
of the other examples is shown in Table 4.

The reported results show good agreement between the network output and the synthetic ground truth solution, even 
with moderate noisy data. We have also shown the importance of including the degeneracy conditions of the GENERIC for-
mulation to the neural network constraints, as it ensures the thermodynamical consistency of the integrator. The structure-
preserving neural network outperforms other naive black-box approaches, since the physical constraints act as an inductive 
bias, facilitating the learning process. However, the error can be reduced using several techniques:

• Database: As a general method of increasing the precision of an Euler integration scheme, the time step �t can be
decreased so the total number of snapshots is increased. On the contrary, the database will be larger, slowing the
training process. The same way, the database can be enriched with a wider variety of cases, improving the net predictive
capabilities.

• Integration Scheme: A higher order Runge-Kutta integration scheme could be introduced in Eq. (4) in order to get
higher solution accuracy [47]. However, it requires several forward passes through the neural net for each time step, in-
crementing the complexity of the integration scheme and the training process. Additionally, GENERIC-based integration
schemes have showed very good performance even for first-order approaches. [41]

• Net Architecture: To increase the computational power of the net, more and larger hidden layers Nh can be added.
However, this could lead to a more over-fitted solution which limit the prediction power and versatility of the net. It
also increases the computational cost of both the training process and the testing of the net.

• Training Hyperparameters: The neural networks trained in this work could be optimized using several hyperparameter
tuning methods such as random search, Bayesian optimization or gradient-based optimization to get a more efficient
solution.

Several open questions remain as a future work. A more exhaustive analysis can be performed to evaluate the influence 
of noisy data to the integrator evolution, in order to add robustness to the method and even predict wider simulation times 
using incremental learning [5,30].

CRediT authorship contribution statement

• Quercus Hernandez: software, investigation, validation
• Alberto Badias: software, investigation, validation
• David González: data, investigation, validation
• Francisco Chinesta: methodology, validation
• Elias Cueto: conceptualization, methodology, investigation, writing



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This project has been partially funded by the ESI Group through the ESI Chair at ENSAM Arts et Metiers Institute of 
Technology, and through the project 2019-0060 “Simulated Reality” at the University of Zaragoza. The support of the Span-
ish Ministry of Economy and Competitiveness through grant number CICYT-DPI2017-85139-C2-1-R and by the Regional 
Government of Aragon, grant T24_20R, and the European Social Fund, are also gratefully acknowledged.

References

[1] Jacobo Ayensa-Jiménez, Mohamed H. Doweidar, Jose A. Sanz-Herrera, Manuel Doblaré, A new reliability-based data-driven approach for noisy experi-
mental data with physical constraints, Comput. Methods Appl. Mech. Eng. 328 (2018) 752–774.

[2] Tom Bertalan, Felix Dietrich, Igor Mezić, Ioannis G. Kevrekidis, On learning Hamiltonian systems from data, Chaos: Interdiscip. J. Nonlinear Sci. 29 (12)
(Dec 2019) 121107.

[3] Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems,
Proc. Natl. Acad. Sci. (2016).

[4] Euntae Choi, Kyungmi Lee, Kiyoung Choi, Approximation by superpositions of a sigmoidal function, arXiv preprint, arXiv:1907.07872, 2019.
[5] George Cybenko, Autoencoder-based incremental class learning without retraining on old data, Math. Control Signals Syst. 2 (4) (1989) 303–314.
[6] Weinan E, A proposal on machine learning via dynamical systems, Commun. Math. Stat. 5 (1) (Mar 2017) 1–11.
[7] Chady Ghnatios, Iciar Alfaro, David González, Francisco Chinesta, Elias Cueto, Data-driven generic modeling of poroviscoelastic materials, Entropy

21 (12) (2019).
[8] Xavier Glorot, Antoine Bordes, Yoshua Bengio, Deep sparse rectifier neural networks, in: Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, AISTATS, 2011, pp. 315–323.
[9] D. González, F. Chinesta, E. Cueto, Consistent data-driven computational mechanics, AIP Conf. Proc. 1960 (1) (2018) 090005.

[10] David González, Francisco Chinesta, Elías Cueto, Learning corrections for hyperelastic models from data, Front. Mater. 6 (2019) 14.
[11] David González, Francisco Chinesta, Elías Cueto, Thermodynamically consistent data-driven computational mechanics, Contin. Mech. Thermodyn. 31 (1)

(2019) 239–253.
[12] Alex Graves, Abdel-rahman Mohamed, Geoffrey Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 6645–6649.
[13] Miroslav Grmela, Generic guide to the multiscale dynamics and thermodynamics, Comput. Phys. Commun. 2 (3) (2018) 032001.
[14] Miroslav Grmela, Vaclav Klika, Michal Pavelka, Gradient and generic evolution towards reduced dynamics, 2019.
[15] Miroslav Grmela, Hans Christian Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E 56 (6)

(1997) 6620.
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in:

Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015, pp. 1026–1034.
[17] Tony Hey, Stewart Tansley, Kristin Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, October 2009.
[18] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara

N. Sainath, et al., Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups, IEEE Signal Process.
Mag. 29 (6) (2012) 82–97.

[19] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al., Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989)
359–366.

[20] Rubén Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elias Cueto, Francisco Chinesta, A manifold learning approach to
data-driven computational elasticity and inelasticity, Arch. Comput. Methods Eng. 25 (1) (2018) 47–57.

[21] Rubén Ibáñez, Emmanuelle Abisset-Chavanne, David González, Jean-Louis Duval, Elias Cueto, Francisco Chinesta, Hybrid constitutive modeling: data-
driven learning of corrections to plasticity models, Int. J. Mater. Forming 12 (4) (2019) 717–725.

[22] Ruben Ibañez, Domenico Borzacchiello, Jose Vicente Aguado, Emmanuelle Abisset-Chavanne, Elías Cueto, Pierre Ladevèze, Francisco Chinesta, Data-
driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech. 60 (5) (2017) 813–826.

[23] Pengzhan Jin, Aiqing Zhu, George Em Karniadakis, Yifa Tang, Symplectic networks: intrinsic structure-preserving networks for identifying Hamiltonian
systems, arXiv preprint, arXiv:2001.03750, 2020.

[24] Diederik P. Kingma, Jimmy Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv:1412 .6980, 2014.
[25] Trenton Kirchdoerfer, Michael Ortiz, Data-driven computational mechanics, Comput. Methods Appl. Mech. Eng. 304 (2016) 81–101.
[26] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks, in: F. Pereira, C.J.C. Burges, L.

Bottou, K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.
[27] Manuel Laso, Hans Christian Öttinger, Calculation of viscoelastic flow using molecular models: the connffessit approach, J. Non-Newton. Fluid Mech.

47 (1993) 1–20.
[28] Claude Le Bris, Tony Lelievre, Multiscale modelling of complex fluids: a mathematical initiation, in: Multiscale Modeling and Simulation in Science,

Springer, 2009, pp. 49–137.
[29] Jay Yoon Lee, Sanket Vaibhav Mehta, Michael Wick, Jean-Baptiste Tristan, Jaime Carbonell, Gradient-based inference for networks with output con-

straints, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2009.
[30] Zhizhong Li, Derek Hoiem, Learning without forgetting, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
[31] Pablo Márquez-Neila, Mathieu Salzmann, Pascal Fua, Imposing hard constraints on deep networks: promises and limitations, arXiv preprint, arXiv:

1706 .02025, 2017.
[32] Jim Magiera, Deep Ray, Jan S. Hesthaven, Christian Rohde, Constraint-aware neural networks for Riemann problems, J. Comput. Phys. 409 (2020)

109345.
[33] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, Bin Yu, Interpretable machine learning: definitions, methods, and applications, arXiv

preprint, arXiv:1901.04592, 2019.
[34] Yatin Nandwani, Abhishek Pathak, Parag Singla, et al., A primal dual formulation for deep learning with constraints, in: Advances in Neural Information

Processing Systems, 2019.

http://refhub.elsevier.com/S0021-9991(20)30724-5/bib7DA21D69BE733536D0519D60F887DE54s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib7DA21D69BE733536D0519D60F887DE54s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4AAD5DA8EF3517298DE2FD3709B651C7s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4AAD5DA8EF3517298DE2FD3709B651C7s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibF9033FDDEAB4972FF8DF8631F6788740s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibF9033FDDEAB4972FF8DF8631F6788740s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib7C1BC1F9205D66540C060701CBACD75Es1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib59BBBC2789CD57B5FA95C21595E29F4Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib2D89B4EF20DFF24CC384AAF931CEE875s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCB172B1B7E22766C39F7E1F3DEE40F15s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCB172B1B7E22766C39F7E1F3DEE40F15s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib01AD37B87E80448AC7A8054C8BF08D9Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib01AD37B87E80448AC7A8054C8BF08D9Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib632337134B503109545B32B0E663A5ADs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib17A63229280D6B090E42FFA7BD36137Fs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib51200AC5BB4A02B9A8BADF3C2EFC24D2s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib51200AC5BB4A02B9A8BADF3C2EFC24D2s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4E50E8F7DDB8B9EF4EF9ACD30B0F8B4Es1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4E50E8F7DDB8B9EF4EF9ACD30B0F8B4Es1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibD702ED1A9A23311178E767C61D28E6E2s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib78DE540C398498D14801D2562ED4C9B4s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib78DE540C398498D14801D2562ED4C9B4s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4367FD9C17EA8F0310AA489697E82CD8s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib4367FD9C17EA8F0310AA489697E82CD8s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibC9AEEA0D4CC2097AFA765253845EC31Fs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib5A89250201CE334ABAEFCA4E65AFB49Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib5A89250201CE334ABAEFCA4E65AFB49Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib5A89250201CE334ABAEFCA4E65AFB49Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib6DA9ADBA933EF9697E21C56A70624F0As1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib6DA9ADBA933EF9697E21C56A70624F0As1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib5F772DA3D3A7AED4F169B2895BE44D11s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib5F772DA3D3A7AED4F169B2895BE44D11s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib35400F6A0051BF44679BAAE177EDA3F3s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib35400F6A0051BF44679BAAE177EDA3F3s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB279258C1A29F7CE870B38B298AC45DAs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB279258C1A29F7CE870B38B298AC45DAs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibFB16BC1AA19A40E201033E3529819B6Bs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib3C34DCA6396B36E024787CB654EDBD8Ds1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib3C34DCA6396B36E024787CB654EDBD8Ds1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEAC0ADEECE96DE0C79366C2DC65505D8s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEAC0ADEECE96DE0C79366C2DC65505D8s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib7BDBB23A5C798D2F8947FA6B71BA268Fs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib7BDBB23A5C798D2F8947FA6B71BA268Fs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibC6D33415F9A91F1540158BE5E59A23DAs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibC6D33415F9A91F1540158BE5E59A23DAs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibB6F2A48FFFAFD83C567632E818FB83A4s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEEA81B5927926B121ACB7DB488968C50s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEEA81B5927926B121ACB7DB488968C50s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib9B9780492670678F02E723E289EBF7A6s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib9B9780492670678F02E723E289EBF7A6s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib1DE8FFFD76678DD648C9BE001D052320s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib1DE8FFFD76678DD648C9BE001D052320s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib8A0F505FA584A6A81082CE0D2C393A35s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib8A0F505FA584A6A81082CE0D2C393A35s1


[35] Hans Christian Öttinger, Beyond Equilibrium Thermodynamics, John Wiley & Sons, 2005.
[36] Hans Christian Öttinger, Miroslav Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E 56 (6)

(1997) 6633.
[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer,

Automatic differentiation in pytorch, in: Autodiff Workshop: The Future of Gradient-Based Machine Learning Software and Techniques, 2017.
[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
Soumith Chintala, Pytorch: an imperative style, high-performance deep learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E.
Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019, pp. 8026–8037.

[39] R.G. Owens, T.N. Phillips, Computational Rheology, Imperial College Press, 2002.
[40] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[41] Ignacio Romero, Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems, Int. J. Numer. Methods Eng. 79 (6)

(2009) 706–732.
[42] Jonathan Romero, Jonathan P. Olson, Alan Aspuru-Guzik, Quantum autoencoders for efficient compression of quantum data, Quantum Sci. Technol.

2 (4) (2017) 045001.
[43] Sebastian Ruder, An overview of gradient descent optimization algorithms, arXiv preprint, arXiv:1609 .04747, 2016.
[44] Jürgen Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.
[45] Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura, Ronald M. Summers, Deep convolutional

neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imaging 35 (5) (2016)
1285–1298.

[46] Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár, Lossy image compression with compressive autoencoders, arXiv preprint, arXiv:1703 .
00395, 2017.

[47] Yi-Jen Wang, Chin-Teng Lin, Runge-Kutta neural network for identification of dynamical systems in high accuracy, IEEE Trans. Neural Netw. 9 (2) (1998)
294–307.

[48] Dongkun Zhang, Ling Guo, George Em Karniadakis, Learning in modal space: solving time-dependent stochastic pdes using physics-informed neural
networks, SIAM J. Sci. Comput. 42 (2) (2020) A639–A665.

http://refhub.elsevier.com/S0021-9991(20)30724-5/bib9D15655AE3F86C93BFD817BC538875D1s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEDAC64A3F93E37C679425E0436021A9Ds1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibEDAC64A3F93E37C679425E0436021A9Ds1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib8610301B1FEDD2397477515B319EDF88s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib8610301B1FEDD2397477515B319EDF88s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibDC2054AFD537DDC98AFD9347136494ACs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib46BFAC1EE17B9F8378BBFE73CFDAAA1Cs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib46BFAC1EE17B9F8378BBFE73CFDAAA1Cs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib9ED1E0851C2D69191DAFE1CDCBD3A940s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib9ED1E0851C2D69191DAFE1CDCBD3A940s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib8FF8A93C4777B6AD443DEC473D64316Ds1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib13A7E28FB3EBDA0FE1E793E32755D0EFs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibFC4B5BACEB30644EB9E88D11CE6A25DCs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibFC4B5BACEB30644EB9E88D11CE6A25DCs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibFC4B5BACEB30644EB9E88D11CE6A25DCs1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib40E911AA285F2722F5B545092FB99A41s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bib40E911AA285F2722F5B545092FB99A41s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibF69638A5F4BA9D51F9CA923E051B2DD0s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibF69638A5F4BA9D51F9CA923E051B2DD0s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibA8917DE1BCEC76338E7B2339734FB202s1
http://refhub.elsevier.com/S0021-9991(20)30724-5/bibA8917DE1BCEC76338E7B2339734FB202s1

	Structure-preserving neural networks
	1 Introduction
	2 Problem statement
	3 Methodology
	3.1 The GENERIC formalism
	3.2 Proposed integration algorithm
	3.3 Feed-forward neural networks

	4 Validation examples: double thermo-elastic pendulum
	4.1 Description
	4.2 Database and hyperparameters
	4.3 Results

	5 Couette flow of an Oldroyd-B fluid
	5.1 Description
	5.2 Database and hyperparameters
	5.3 Results

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References




