# Optimization of Water Distribution Networks Using a 

## Deterministic Approach

Gustavo Cassiolato ${ }^{\text {a }}$, Esdras P. Carvalho ${ }^{\text {a }}$, Jose A. Caballero ${ }^{\text {b }}$, Mauro A. S. S. Ravagnani* ${ }^{*}$, b<br>${ }^{\text {a }}$ Chemical Engineering Graduate Program, State University of Maringá<br>Av. Colombo5790, Jd. Universitário - 87020900 - Maringá - Brazil<br>guhcassiolato@hotmail.com<br>epcarvalho@uem.br<br>* massravagnani@uem.br (corresponding author)<br>${ }^{\mathrm{b}}$ Institute of Chemical Processes Engineering, University of Alicante Carretera de San Vicente, SN - 03690 - Alicante - Spain<br>caballer@ua.es


#### Abstract

Water Distribution Networks (WDN) are the main component of industrial and urban water distribution systems and are currently formed by pipes, nodes, and loops. In the present paper a deterministic Mathematical Programming approach is proposed, aiming to minimize the cost of looped WDN, considering known pipe lengths and a discrete set of available commercial diameters. The optimization model constraints are mass balances in nodes, energy balances in loops and hydraulic equations, in such a way that no additional software is needed to find the appropriated pressure drops and water velocities. Generalized Disjunctive Programming is used to reformulate the discrete optimization problem to a Mixed Integer Non-Linear Programming (MINLP) problem. GAMS (General Algebraic Modeling System) environment is used to solve


the problem. Four cases were studied to test the model applicability and the results show compatibility with the literature.

Keywords: Water Distribution Networks, Optimization, Generalized Disjunctive Programming, MINLP, GAMS.

## 1. Introduction

Water is a natural resource of fundamental importance for the life in our planet and water supply services are part of the basic necessities in the contemporary urban centers and industries, in the industrial society. Water supply systems involve water acquisition, treatment, and distribution to the final users. Pumping stations are responsible by the water network pressurization with the aid of elevated reservoirs. In general, these systems are complex and must consider the topology heterogeneity in the zones to be supplied and must attend simultaneously adequate water flow rates, pressures and velocities along the network with proper quality, considering structures, piping and equipment design.

A water distribution network (WDN) is composed of a set of special equipment intended to transport water to the demand points in a continuous and safe way. The main used devices are pipes, pumps, valves, reservoirs, meters, among other accessory destined to do this job.

Looped WDN can be represented by a set of connected nodes and branches. Nodes can represent reservoirs or demand points and branches represent pipes, valves or pumps. It is important to consider the flow direction and if loops exist or not. It can be situated at different levels if the city relief is rugged. Generally main conducts have large diameters to feed secondary branches and to achieve the demand points. To the water distribution network (WDN)
optimization problem, two different approaches can be used. The first one considers a unique diameter per pipe and is known as Single pipe. The second approach, known as Split-pipe, considers one or more diameters in the network.

Most of the published papers in WDN optimization, like the ones that will be cited in this section, consider the minimization of the pipe diameters cost, subject to mass balances in the network nodes, energy balances in the network loops and pressure and velocity limits. In general, the diameters are chosen among a set of commercial ones. The hydraulic problem of finding the adequate node pressures and pipe velocities is a complex non-linear optimization problem, mainly due to the complex correlations available in the literature to calculate the pressure drop in pipes.

In the present work, the main objective is to achieve the optimal piping commercial diameters configuration for the WDN. The Single pipe approach is used to avoid solutions with a large number of diameters in the length pipe. Besides, additional pressure drop can exist in the pipe junctions and must be significative if a large number of different diameters exist in the pipe length. An MINLP optimization model is proposed and GAMS (General Algebraic Modeling System) environment is used to solve the problem, without the use of hydraulic simulators in order to calculate pressure drops and velocities. GAMS is a high-level modeling system, very appropriated in solving mathematical programming and optimization problems. It consists of a language compiler and a set of highperformance solvers. In GAMS it is possible to model linear, nonlinear and mixed-integer optimization problems.

Four case studies with different levels of complexity were used to test the model applicability.
Research development in Water Distribution Networks (WDN) is increasing and in the last decades, several approaches have been published in this important field of research. WDN design can be formulated as an optimization problem and involves discrete variables if a set of available
commercial diameters and pipe lengths is considered. Also, the problem is nonlinear and nonconvex and global optimization techniques are not commonly able to solve it. So, the development of new models is, certainly, a substantial contribution to solving this type of problem.

WDNs are a vital part of the water supply systems and represent one of the largest infrastructure assets. Simulation of hydraulic behavior within a pressurized and looped pipe network is not a trivial task, once it means effectively solving a system of non-linear equations. Hydraulic simulators have been used to solve the problem and the most used is EPANET (Rossman, 2000).

Stochastic and deterministic approaches have been used to solve the WDN optimization problem. In deterministic optimization approaches the output is determined by the parameter values and initial conditions. The same parameters and initial values will always provide the same results. In stochastic approaches, the output is the result of a random search procedure and the same set of parameters can lead to different results. Linear Programming (LP), Nonlinear Programming (NLP), Mixed Integer Linear Programming (MILP) and Mixed-Integer Nonlinear Programming (MINLP) formulations were used in solving WDN optimization problems. The Nonlinear Programming formulations are more representative for the real WDN optimization problems, according to the existing hydraulic calculation equations. In the majority of the studied cases, the problems are also nonconvex. In these cases, it is not possible to ensure optimal global solutions.

The pioneering works focusing on deterministic approaches used Linear Programming. Alperovits and Shamir (1977) applied the method known as Linear Programming Gradient (LPG) to the WDN optimization. They presented a well-known case study named Two Loop WDN, one of the most used benchmark problems in this area. Morsi et al. (2012) proposed a MILP model to solve WDN
systems and a Branch and Bound approach was used. With good upper and lower bounds their method is able to find good solutions.

Watanatada (1973) proposed an NLP formulation to solve the WDN design problem and equality constraints corresponding to the mass and energy conservation equations and inequality constraints corresponding to physical limits were used in the model development. Bragalli et al. (2008), Bragalli et al. (2012) and D'Ambrosio et al. (2014) proposed MINLP models to solve the WDN optimization problem and the solver Bonmin was used, in the environment AMPL - A Mathematical Programming Language (Fourer et al., 2003), in the first work and spatial branch and bound and piecewise linear relaxations was used in the second work.

Caballero and Ravagnani (2019) presented an MINLP model to the optimal design of WDN when the flow directions are unknown. A convex hull reformulation was used in the model and the global optimization solver BARON was used to solve the problem. Two case studies were used to test the model and results showed compatibility with the literature.

Because of the great difficulties in solving MINLP models for WDN optimization problems with large scale using deterministic methods, the majority of published papers in this area use metaheuristic methods. Genetic Algorithms (GA), in Savic and Walters (1997) and Kadu et al. (2008), Ant Colony Optimization (ACO) in Zecchin et al. (2006), Honey Bee Mating Optimization (HBMO), in Mohan and Babu (2009), Harmony Search (HS), in Geem (2006), Particle Swarm Optimization (PSO), in Ezzeldin et al. (2014) and Surco et al. (2017) and Simulated Annealing (SA), in Cunha and Sousa (1999), among others methods have been used.

De Corte and Sorensen (2016) presented an overview of the metaheuristic techniques developed for the WDN design optimization problem. However, most of the published papers using
metaheuristic techniques use also a hydraulic simulator to solve pressure drop and velocity equations, like EPANET (Rassman, 2000).

## 2. Material and method

The design of a WDN must consider the optimal tube diameters to carry water from one or more reservoirs to the demand points at adequate pressures and velocities. In the present paper, an optimization model is proposed, based on the papers of Surco et al. (2017) and Surco et al. (2018) to solve the problem.

### 2.1 Optimization model

The optimization model can be formulated as the minimization of the network cost considering a set of pipe commercial diameters, constrained to mass balances in the nodes and energy balances in the loops of the WDN. Each element of this set has a cost per length unity and a specific rugosity. The following sets, parameters, and variables are defined:

Sets:

| Diameters | Commercially available diameters |
| :--- | :--- |
| Pipes | WDN pipes |
| Nodes | WDN nodes |
| $F I_{k}$ | Pipes with flow entering node $k$ |
| $F O_{k}$ | Pipes with flow going out node $k$ |
| Loops | WDN loops |
| $P P D_{\gamma}$ | Positive pressure drops |
| $N P D_{\gamma}$ | Negative pressure drops |
| Pumps | WDN pumps |
| $\tau_{k}$ | Pipes in which a flow path is determined, beginning in the reservoir |
|  | and finishing in node $k$ |

Parameters:

| $L_{j}$ | Pipes length $(\mathrm{m})$ |
| :--- | :--- |
| $d m d(j)$ | Nodes demand $\left(\mathrm{m}^{3} / \mathrm{h}\right)$ |
| $E_{P}^{\eta}(\gamma)$ | Pump energy $(\mathrm{m})$ |
| $C_{j}$ | Hazen-Williams rugosity coefficient |
| $\alpha, \beta$ and $\omega$ | Hazen-Williams equation constants |
| $p r_{\min ( }(k)$ | Minimum allowed pressure $(\mathrm{m})$ |
| $e l v(k)$ | Node elevation $k(\mathrm{~m})$ |
| $e l v(r e)$ | Reservoir elevation $(\mathrm{m})$ |
| $v_{\text {min }}, v_{\text {max }}$ | Minimum and maximum velocities $(\mathrm{m} / \mathrm{s})$ |
| $n_{d}$ | Number of available diameters |
| $n_{n}$ | Number of nodes |
| $D_{i}$ | Diameter $(\mathrm{m})$ |
| $\operatorname{Cost}\left(D_{i}\right)$ | Cost $(\$ / \mathrm{m})$ |
| $R_{i}$ | Pipe rugosity |
| Variables: |  |


| $x_{j}$ | Pipe diameter $(\mathrm{m})$ |
| :--- | :--- |
| $\operatorname{Cost}\left(x_{j}\right)$ | Pipe cost $(\$ / \mathrm{m})$ |
| $C_{T}$ | Total cost $(\$)$ |
| $q_{j}$ | Volumetric flowrate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ |
| $h_{f}(j)$ | Pressure loss $(\mathrm{m})$ |
| $p r(k)$ | Pressure $(\mathrm{m})$ |
| $v_{j}$ | Water velocity $(\mathrm{m} / \mathrm{s})$ |
| $Y_{i, j}$ | Boolean variable |
| $\lambda_{j}$ | Cost $(\$)$ |
| $\sigma_{j}$ | Pipe $j$ rugosity coefficient |
| $y_{i, j}$ | Binary variable |

In the model, Diameters $=\left\{D_{1}, D_{2}, \ldots, D_{n d}\right\}$, and the following inequality must be respected:
$D_{\min }=D_{l}<\cdots<D_{n d}=D_{\max }$.
The objective function must consider the sum of all tube diameters and its costs:

$$
C_{T}=\sum_{j \in \text { Pipes }} L_{j} \operatorname{Cost}\left(x_{j}\right)
$$

where $C_{T}$ is the total installation cost, $L_{j}$ is the $j$ pipe length, $x_{j}$ is the $j$ tube diameter, Pipes is the set of links between nodes and $\operatorname{Cost}\left(x_{j}\right)$ is the $j$ pipe cost per length.

The network pressurized design problem consists in solving simultaneously the continuity and the pressure drop equations. Consider Nodes the set of nodes and $k=1, \ldots, n_{n}$ the elements of the set, being $n_{n}$ the number of nodes in the WDN. The model constraints are:

1) Material balance:

The difference between the node inlet flow rate and the node outlet flow rate must be equal to the node demand. Consider $F I_{k}$ and $F O_{k}$ the sets in which the elements are the branches corresponding to the inlet and outlet flow rates in the node $k$, respectively, in the flow direction:

$$
\begin{gather*}
F I_{k}=\left\{j \mid q_{j} \text { flow rate that enters node } k\right\} \\
F O_{k}=\left\{j \mid q_{j} \text { flow rate that leaves node } k\right\} \\
\sum_{j \in F I_{k}} q_{j}-\sum_{j \in F O_{k}} q_{j}=d m d(k), \quad \forall k \in \text { Nodes } \tag{2}
\end{gather*}
$$

where $q_{j}$ is the branch $j$ flow rate and $\operatorname{dmd}(k)$ is the node $k$ demand.
2) Energy balance:

Consider Loops the set of loops $\gamma$ in the WDN and $P P D_{\gamma}$ and $N P D_{\gamma}$, the sets where the pressure drops are positive and negative in the loop $\gamma$, respecting the flow rate direction in each loop:
$P P D \gamma=\{j \mid$ is the positive pressure drop $h f(j)$ belonging to the loop $\gamma\}, \forall j \in$ Pipes $N P D \gamma=\{j \mid$ is the negative pressure drop $h f(j)$ belonging to the loop $\gamma\}, \forall j \in$ Pipes.

Consider, also, that Pumps is the set of $\eta$ pumps in the network if they exist.
The sum of pressure drops in the branches belonging to a loop must be equal to the energy liberated by a pump, in case it exists:

$$
\begin{equation*}
\sum_{j \in P P D_{\gamma}} h_{f}(j)-\sum_{j \in N P D_{\gamma}} h_{f}(j)=\sum_{\eta \in P u m p s} E_{P}^{\eta}(\gamma), \quad \forall \gamma \in \text { Loops } \tag{3}
\end{equation*}
$$

where $h_{f}(j)$ is the pressure drop in the pipe $j$ and $E_{P}^{\eta}(\gamma)$ is the energy of the pump $\eta$ in the loop $\gamma$.
The pressure in any point in the piping network must attend a minimum limit:

$$
\begin{equation*}
p r_{\min } \leq p r(k), \quad \forall k \in \text { Nodes } \tag{4}
\end{equation*}
$$

where $p r_{\text {min }}(k)$ is the minimum pressure limit in the node $k$ and $p r(k)$ is the pressure in the node $k$.
The flow velocities must also attend minimum and maximum limits:

$$
\begin{equation*}
v_{\min } \leq v_{j} \leq v_{\max }, \quad \forall j \in \text { Pipes } \tag{5}
\end{equation*}
$$

where $v_{\text {min }}$ and $v_{\max }$ are the minima and maximum velocities allowed in the WDN and $v_{j}$ is the water velocity in the pipe $j$.

The most used equation to the pressure drop calculations is the Hazen-Williams equation:

$$
\begin{equation*}
h_{f(j)}=\frac{\omega q_{j}^{\alpha} L_{j}}{C_{j}^{\alpha} D^{\beta}}, \quad \forall j \in \text { Pipes } \tag{6}
\end{equation*}
$$

where $C$ is the Hazen-Williams rugosity coefficient and is non-dimensional. The parameters $\omega$, $\alpha$ and $\beta$ depend on the unities system being used and can vary in the literature. Savic and Walters (1977) presented a series of different equations and coefficients, with the most used unity systems used in this type of problem.

To the pressure drop calculations, it must be considered the existing pressure in each node. Consider $\tau_{k}$ a set in which is defined a flow path, initiating in the reservoir and finishing in the node $k, k \in$ Nodes. If the node $k=k_{r}$ corresponds to the reservoir, then its pressure is:

$$
\begin{gather*}
\operatorname{pr}\left(k_{r}\right)=\operatorname{elv}\left(k_{r}\right)=\operatorname{elv}(r e)  \tag{7}\\
\text { else }, \\
\operatorname{pr}(k)=-\sum_{j \in \tau_{k}} h_{f}(j)+[\operatorname{elv}(r e)-\operatorname{elv}(k)], \quad \forall k \in \text { Nodes, } k \neq k r
\end{gather*}
$$

where $e l v(k)$ is the altimetric quota of each node $k$, i.e., the elevation of each node and $e l v(r e)$ is the reservoir elevation.

The flow velocities can be calculated by:

$$
\begin{equation*}
v_{j}=\frac{4 q_{j}}{\pi D_{j}^{2}}, \quad \forall j \in \text { Pipes. } \tag{9}
\end{equation*}
$$

The optimization model can be described as:

$$
\begin{align*}
\min C_{T}= & \sum_{j \in \text { Pipes }} L_{j} \operatorname{Cost}\left(x_{j}\right), \quad \forall x_{j} \in \text { Diameters } \\
& \text { s.t. } \quad \sum_{j \in F I_{k}} q_{j}-\sum_{j \in F O_{k}} q_{j}=\operatorname{dmd}(k), \quad \forall k \in \text { Nodes }  \tag{10}\\
& \sum_{j \in P P D_{\gamma}} h_{f}(j)-\sum_{j \in N P D_{\gamma}} h_{f}(j)=\sum_{\eta \in P u m p s} E_{P}^{\eta}(\gamma), \quad \forall k \in \text { Nodes } \\
& p r_{\min }(k) \leq \operatorname{pr}(k), \quad \forall k \in \text { Nodes } \\
& v_{\min } \leq v_{j} \leq v_{\max }, \forall j \in \text { Pipes }
\end{align*}
$$

### 2.2 MINLP reformulation

Given $j \in$ Pipes, the pipes sequence and $y_{i}^{j}$ the binary variables associated to the Boolean variable $Y_{i, j}$ for the pipe $j$ and diameter $D_{i .}$. Given, also, $\lambda_{j}$ and $\sigma_{j,}$, are the cost and the rugosity associated to the same diameter, in such a way that:

$$
\begin{align*}
& y_{i}^{j} \in\{0,1\}, \quad \forall i \in \text { Diameters and } \forall j \in \text { Pipes } \\
& \lambda_{j}=L_{j} \operatorname{Cost}\left(D_{i}\right), \quad \forall i \in \text { Diameters and } j \in \text { Pipes }  \tag{11}\\
& \sigma_{j}=R_{i}, \quad \forall i \in \text { Diameters and } j \in \text { Pipes }
\end{align*}
$$

$$
\stackrel{\vee}{\vee} \in\left\{1, \ldots, n_{d}\right\}\left[\begin{array}{c}
Y_{i, j} \\
x_{j}=D_{i} \\
\lambda_{j}=L_{j} \operatorname{Cost}\left(D_{i}\right) \\
\sigma_{j}=R_{i}
\end{array}\right]
$$

The hull reformulation of the previous disjunction, according to Trespalacios and Grossmann (2015) yields the following equations:

$$
\begin{gather*}
x_{j}=\sum_{i \in \text { Diameters }} D_{i} y_{i, j} \forall i \in \text { Diameters and } j \in \text { Pipes }  \tag{12}\\
\lambda_{j}=L_{j} \sum_{i \in \text { Diameters }} \operatorname{Cost}\left(D_{i}\right) y_{i, j}, \forall i \in \text { Diameters and } j \in \text { Pipes } \\
\sigma_{j}=\sum_{i \in \text { Diameters }} R_{i} y_{i, j}, \forall i \in \text { Diameters and } j \in \text { Pipes }
\end{gather*}
$$

So, the reformulated MINLP is:

$$
\min C_{T}=\sum_{j \in \text { Pipes }} \lambda_{j}
$$

s.t. $\quad \sum_{j \in F I_{k}} q_{j}-\sum_{j \in F O_{k}} q_{j}=\operatorname{dmd}(k), \quad \forall k \in$ Nodes

$$
\begin{gathered}
\sum_{j \in P P D_{\gamma}} h_{f}(j)-\sum_{j \in N P D_{\gamma}} h_{f}(j)=\sum_{\eta \in \text { Pumps }} E_{P}^{\eta}(\gamma), \quad \forall \gamma \in \text { Loops } \\
p r_{\text {min }}(k) \leq p r(k), \quad \forall k \in \text { Nodes } \\
v_{\min } \leq v_{j} \leq v_{\max }, \forall j \in \text { Pipes } \\
x_{j} \in \text { Diameters }=\left\{D_{1}, \ldots, D_{n d}\right\} \\
x_{j}=\sum_{i \in \text { Diameters }} D_{i} y_{i, j}, \forall j \in \text { Pipes } \\
\lambda_{j}=L_{j} \sum_{i \in \text { Diameters }} \operatorname{Cost}\left(D_{i}\right) y_{i, j}, \forall j \in \text { Pipes } \\
\sigma_{j}=\sum_{i \in \text { Diameters }} R_{i} y_{i, j}, \forall j \in \text { Pipes }
\end{gathered}
$$

Figure 1 presents a block diagram to better understand the optimization model and a simultaneous approach to solve the problem.

### 2.3 Case studies

To test the model applicability, four case studies from the literature with different levels of complexity were used. In this section, the cases will be introduced and the results and discussions will be presented in the next section.

### 2.3.1 Case Study 1

Case study 1 is the well-known benchmark problem, named Two Loop WDN. This network can be classified as a small case and was originally proposed by Alperovits and Shamir (1977). Figure 2 presents the WDN topology with flow directions. This WDN has two loops, 1 reservoir, 8 links ( $1,000 \mathrm{~m}$ length each one) and 7 nodes. The minimum pressure required in each node is 30 water column meters and this value can be considered as the lower bound for the pressure in the

WDN nodes. Velocity limits are $0.3 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$, respectively. Hazen-Williams coefficients are $\omega=10.667, \alpha=4.871$ and $\beta=1.852$ and the dimensionless roughness coefficient $C$ is 130 for all links. The diameters set is composed by 14 types of diameters (mm): $D=\{25.4,50.8,76.2,101.6$, $152.4,203.2,254.0,304.8,355.6,406.4,457.2,508.0,558.8,609.6\}$. Table 1 presents costs for the specified diameters and Table 2 presents the nodes elevation and demands.

### 2.3.2 Case Study 2

The second case study considered in the present paper was presented originally by Gomes et al. (2009). In the network there exists 72 pipes, 61 demand nodes, 1 reservoir, and 11 loops. Figure 3 presents the WDN topology.

Table 3 presents diameters, Hazen-Williams roughness coefficient and costs. The diameters set is composed by 10 elements. Table 4 presents demands, elevations and minimum pressures in each one of the nodes. Table 5 presents tube lengths.

### 2.3.3 Case Study 3

In this case study it is considered a WDN with two reservoirs, known as Two Source WDN. The problem was originally proposed by Kadu et al. (2008) and the network has 26 nodes, 34 links and 9 loops. Figure 4 presents the network topology. A Hazzen-Williams rugosity coefficient of 130 is supposed for all pipes. Table 6 presents the diameters set, with the respective costs and lengths. Table 7 presents nodes demand and the minimum allowed pressure. Table 8 presents link lengths.

### 2.3.4 Case Study 4

This case study was first published by Carvalho (2007) and is known as Bessa WDN. Figure 5 presents the network topology, with flowrate directions, tubes length and nodes elevation and
demands. The reservoir is at 54 m . The set with 10 available commercial diameters, with the correspondent costs and rugosity coefficients, is presented in Table 9 . Velocities are between $v_{\min }=$ $0,3 \mathrm{~m} / \mathrm{s}$ and $v_{\max }=3 \mathrm{~m} / \mathrm{s}$ and the minimum nodes pressure is 25 m . Hazzen-Williams coefficients are $\omega=10.674, \alpha=4.871$ and $\beta=1.852$.

## 3 Results and Discussion

Case Study 1 was solved in GAMS using the global optimization solver BARON, and Table 10 presents the results for velocities and pressure drops for each pipe. Table 11 presents a comparison of the achieved results for the optimal diameters and the total WDN cost with some literature works using a single pipe approach. With the exception of the work of Suribabu (2012), whose optimal value was $\$ 420,000$, the global optimum solution of $\$ 419,000$ was achieved. This solution is exactly the same obtained by other researchers, even with different values of $w$, like Surco et al. (2017), Zhuo et al. (2016), Eryigit (2015), Ezzeldin et al. (2014) and Geem (2006), among others authors. In the present paper, a single pipe approach is used, different from the Alperovits and Shamir (1977), who used a split pipe approach.

In Case Study 2, the model was solved in GAMS, using the solver SBB. Table 12 presents the pressures in the nodes and Table 13 presents a comparison with the final results and some literature papers. As it can be observed in Table 13, the result achieved in the present paper is the best, among the published two ones. Other important information is that no additional software was used in finding the best solution, contrary to the papers used in order to compare the results, Gomes et al. (2009) and Surco et al. (2017), which used EPANET2 as a hydraulic simulator. As SBB is not a global optimization solver, it is not possible to ensure that this is the global optimum.

In Case Study 3, the model was solved in GAMS and the solver SBB was used. Table 14 presents the results obtained and a comparison with other solutions in the literature. In order to
compare our results with the literature, two distinct values for the Hazzen-Williams $\omega$ parameter were used, $\omega=10.667$ and $\omega=10.6744$. In both cases, the solutions achieved in the current paper are better than published in the literature. Table 15 presents calculated nodes pressures when compared to the values reported by Kadu et al. (2008). In the papers of Suribabu (2012) and Ezzeldin et al. (2014) pressure values are not presented. It is interesting to relate that Kadu et al. (2008) used the values $\omega=2.234 \times 10^{12}, \alpha=1.85$ and $\beta=4.87\left(q \mathrm{in} \mathrm{m}^{3} / \mathrm{min}\right.$ and $\left.D \mathrm{in} \mathrm{mm}\right)$ and obtained a WDN cost of R\$123,268,864. Suribabu (2012) used $\omega=10.667, \alpha=1.852$ and $\beta=$ $4.871\left(q\right.$ in $\mathrm{m}^{3} / \mathrm{min}$ and $D$ in mm$)$ and the WDN cost obtained was R\$ $140,177,210$. However, the author reported in his paper that the result of Kadu et al. (2008) exhibits a deficit in hydraulic gradient level at node 26 when analyzed under EPANET software. This point was also reported by Ezzeldin et al. (2012), who recalculated the results of Kadu et al. (2008) and, considering the pressure violation, reported a new cost of $\mathrm{R} \$ 126,368,865$.

In Case Study 4 the problem was solved using the solver SBB in GAMS. Table 16 presents the results obtained and a comparison with the work of Carvalho (2007). As can be observed, the results achieved with the current approach were better than the ones presented in the literature.

## 4 Conclusions

In the present paper, the synthesis of WDN was formulated as an optimization problem. An MINLP model was proposed and solved using a deterministic Mathematical Programming approach. Four case studies were used to test the model applicability. Two of them are benchmark problems, one with a unique reservoir and two loops (Two Loop WDN) and other considering the existence of two reservoirs (Two Source WDN). The other two cases study belong to real cases, in small cities in Brazil (R9 WDN and Bessa WDN).

In all cases, the mathematical model was solved in GAMS. For the first (Two Loop WDN) problem, the solution corresponds to the global optimum, being the same value found by other authors. The result was achieved using the global optimization solver BARON. The other three cases were solved using the solver SBB and have distinct degrees of complexity. The solutions for all problems are the best found in the literature.

The great novelty and the main contribution of this paper is that the model developed is able to calculate pressures and velocities, without the use of additional software. In all case studies results were compared with literature, with papers that used additional software to the hydraulic calculus and results are compatible, in the case study 1 and better, in cases 2,3 and 4 . Besides, this independence of extra software was combined with the best results found when compared to the papers published in the literature. Also, the model includes only integer and continuous variables and no approximations are used to find the diameter values in the discrete set of available commercial diameters.

## 5 Acknowledgments

The authors would like to acknowledge the financial support from the National Council for Scientific and Technological Development - CNPq (Brazil) and the Coordination for the Improvement of Higher Education Personnel - Process 88881.171419/2018-01- CAPES (Brazil).

## References

Alperovits, E., and U. Shamir. 1977. "Design of optimal water distribution systems." Water Resources Research 13 (6): 885-900.

Bragalli, C., C. D'Ambrosio, J. Lee, A. Lodi, and P. Toth. 2006. "An MINLP Solution Method for a Water Network Problem". Proceedings of the Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13.

Bragalli, C., C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. 2008. "Water network design by MINLP". IBM Research Report RC24495(W0802-056).

Bragalli, C., C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. 2012. "On the optimal design of water distribution networks: a practical MINLP approach". Opimization Engineering 13: 219-246.

Caballero, J. A. and Ravagnani, M. A. S. S. 2019. "Water distribution networks optimization considering unknown flow directions and pipe diameters". Computers \& Chemical Engineering, 127: 41-48.

Carvalho, P. S. O. 2007. EficientE: um método de dimensionamento econômico para redes de distribuição de água. M. Sc. Dissertation. Universidade Federal da Paraíba, João Pessoa, PB, Brazil. (In Portuguese).

Cunha, M. C., and J. Sousa. 1999. "Water distribution network design optimization: simulated annealing approach." Journal of Water Resource Planning and Management, 125 (4): 215221.

D'Ambrosio, C., A. Lodi, S. Wiese, and C. Bragalli. 2014. "Mathematical programming techniques in water network optimization." European Journal of Operational Research, 243 (3): 774-788.

De Corte, A., and K. Sörensen. 2016. "An iterated local search algorithm for water distribution network design optimization." Networks, 67 (3): 187-98.

Eryiğit, M. 2015. "Cost optimization of water distribution networks by using artificial immune systems." Journal of Water Supply: Research and Technology-Aqua, 64 (1): 47-63.

Eusuff, M. M., and K. E. Lansey. 2003. "Optimization of water distribution network design using the shuffled frog leaping algorithm." Journal of Water Resource Planning and Management, 129 (3): 210-225.

Ezzeldin, R., B. Djebedjian, and T. Saafan. 2014. "Integer Discrete Particle Swarm Optimization of Water Distribution Networks." Journal of Pipeline Systems Engineering and Practice, 5 (1), 04013013-1 04013013-11.

Fourer, M., D. M. Gay, and B. W. Kernigham. 2003. AMPL - A Mathematical Program Language $-2^{\text {nd }}$ Edition, Duxbury Tomson, USA.

Geem, Z. W. 2006. "Optimal cost design of water distribution networks using harmony search." Engineering and Optimization, 38 (3), 259-277.

Gomes, H. P., S. T. M., Bezerra, P. S. O., Carvalho, and M. M. Salvino. 2009. "Optimal dimensioning model of water distribution systems." Water SA, 35 (4): 421-4431.

Hansen, C. T., K., Madsen, and H. B. Nielsen. 1991. "Optimization of pipe networks". Mathematical Programming, 52 (1-3), 45-58.

Kadu, M. S., Gupta, R. \& Bhave, P. R. 2008. Optimal design of water networks using a modified genetic algorithm with reduction in search space. Journal of Water Resource Planning and Management, 134 (2), 147-160.

Liong, S.-Y. \& Atiquzzaman, M. 2004. Optimal design of water distribution network using shuffled complex evolution. Journal of the Institution of Engineers, 44 (1), 93-107.

Mohan, S. A. \& Babu, K. J. 2009. Optimal water distribution network design with honey-bee mating optimization. Journal of Computing in Civil Engineering, 24 (1), 117-126.

Morsi, A., Geissler, B. \& Martin, A. 2012. Mixed integer optimization of water supply networks, in Mathematical Optimization of Water Networks, Springer, Heidelberg.

Rossman, L. A. 2000. EPANET 2 - User Manual, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati.

Savic, D. A. \& Walters, G. A. 1997. Genetic algorithms for least-cost design of water distribution networks. Journal of Water Resource Planning and Management, 123 (2), 67-77.

Surco, D. F., Vecchi, T. P. \& Ravagnani, M. A. S. S. 2017. Optimization of water distribution networks using a modified particle swarm optimization algorithm. Water Science and Technolology: Water Supply, 18 (2), 660-678.

Surco, D. F., Vecchi, T. P. \& Ravagnani, M. A. S. S. 2018. Rehabilitation of water distribution networks using particle swarm optimization. Desalination and Water Treatment, 106, 312-329.

Suribabu, C. 2012. Heuristic-based pipe dimensioning model for water distribution networks. Journal of Pipeline Systems Engineering and Practice, 3 (4), 115-124.

Trespalacios, F. \& Grossmann, I. E. 2015. Improved Big-M reformulation for generalized disjunctive programs. Computers \& Chemical Engineering, 76, 98-103.

Watanatada, T. 1973. Least-cost design of water distribution systems. Journal of Hydraulic Division ASCE, 99 (9), 1497-513.

Zecchin, A. C., Simpson, A. R., Maier, H. R., Leonard, M., Roberts, A. J. \& Berrisford, M. J. 2006. Application of two ant colony optimization algorithms to water distribution system optimization. Mathematical and Computer Modelling, 44 (5-6), 451-468.

Zhou, X., Gao, D. Y. \& Simpson, A. R. 2016. Optimal design of water distribution networks by a discrete state transition algorithm. Engineering Optimization, 48 (4), 603-28.


Figure 1 - Optimization problem block diagram


Figure 2 - Two Loop WDN


Figure 3 - R9 WDN


Figure 4 - R9 network topology


Figure 5 -Bessa WDN

Table 1 - Costs for the commercial available diameters set

| Diameter <br> $(m m)$ | Cost <br> $(\$ / m)$ |
| :---: | :---: |
| 25.4 | 2 |
| 50.8 | 5 |
| 76.2 | 8 |
| 101.6 | 11 |
| 152.4 | 16 |
| 203.2 | 23 |
| 254.0 | 32 |
| 304.8 | 50 |
| 355.6 | 60 |
| 406.4 | 90 |
| 457.2 | 130 |
| 508.0 | 170 |
| 558.8 | 300 |
| 609,6 | 550 |

Table 2 - Nodes characteristic for the Two Loop WDN

| Node | Elevation $(m)$ | Demand $\left(m^{3} / h\right)$ |
| :---: | :---: | :---: |
| 1 | 210 | -1120 |
| 2 | 150 | 100 |
| 3 | 160 | 100 |
| 4 | 155 | 120 |
| 5 | 150 | 270 |
| 6 | 165 | 330 |
| 7 | 200 | 160 |

Table 3 - Available diameters, Hazen-Williams roughness coefficients and costs for the Gomes et al. (2009) WDN

| Diameter <br> $(\mathrm{mm})$ | Hazzen-Williams roughness <br> coefficient C | Cost <br> $(U S \$ / m)$ |
| :---: | :---: | :---: |
| 100 | 145 | 17.98 |
| 150 | 145 | 44.75 |
| 200 | 145 | 63.68 |
| 250 | 145 | 85.19 |
| 300 | 130 | 101.95 |
| 350 | 130 | 121.55 |
| 400 | 130 | 136.83 |
| 450 | 130 | 171.09 |
| 500 | 130 | 195.21 |
| 600 | 130 | 255.32 |

Table 4 - Nodes demands, elevations and minimum pressures in the for the Gomes et al. (2009) WDN

| Node | Demand <br> $(L / s)$ | Elevation <br> $(m)$ | Minimum <br> Pressure $(m)$ | Node | Demand <br> $(L / s)$ | Elevation <br> $(m)$ | Minimum <br> Pressure $(m)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.51 | 5.0 | 25 | 31 | 4.94 | 3.5 | 15 |
| 2 | 44.07 | 5.0 | 25 | 32 | 4.09 | 4.5 | 15 |
| 3 | 41.24 | 4.0 | 25 | 33 | 3.68 | 5.0 | 15 |
| 4 | 1.04 | 4.5 | 25 | 34 | 4.04 | 5.0 | 15 |
| 5 | 0.86 | 4.5 | 25 | 35 | 3.22 | 6.0 | 15 |
| 6 | 1.32 | 4.5 | 25 | 36 | 2.53 | 4.5 | 15 |
| 7 | 1.35 | 4.5 | 15 | 37 | 2.31 | 4.5 | 15 |
| 8 | 8.59 | 5.0 | 15 | 38 | 2.50 | 4.0 | 15 |
| 9 | 6.40 | 4.5 | 15 | 39 | 2.89 | 4.0 | 15 |
| 10 | 6.07 | 5.0 | 15 | 40 | 2.48 | 4.0 | 15 |
| 11 | 4.95 | 3.5 | 15 | 41 | 4.61 | 4.0 | 15 |
| 12 | 8.38 | 3.5 | 15 | 42 | 3.47 | 4.0 | 15 |
| 13 | 11.70 | 3.5 | 15 | 43 | 3.61 | 4.0 | 15 |
| 14 | 5.63 | 5.0 | 15 | 44 | 5.17 | 4.0 | 15 |
| 15 | 5.57 | 6.0 | 15 | 45 | 6.48 | 4.0 | 15 |
| 16 | 6.30 | 6.0 | 15 | 46 | 4.91 | 4.5 | 15 |
| 17 | 3.26 | 6.0 | 15 | 47 | 6.50 | 4.0 | 15 |
| 18 | 3.60 | 6.0 | 15 | 48 | 4.97 | 4.5 | 15 |
| 19 | 4.83 | 6.0 | 15 | 49 | 2.97 | 3.0 | 15 |
| 20 | 4.50 | 6.0 | 15 | 50 | 1.80 | 5.0 | 15 |
| 21 | 2.80 | 5.0 | 15 | 51 | 2.96 | 4.0 | 15 |
| 22 | 5.46 | 3.0 | 15 | 52 | 4.66 | 3.0 | 15 |
| 23 | 62.45 | 3.5 | 15 | 53 | 4.54 | 4.5 | 15 |
| 24 | 8.19 | 6.0 | 15 | 54 | 8.80 | 4.5 | 15 |
| 25 | 58.87 | 3.5 | 15 | 55 | 4.26 | 4.5 | 15 |
| 26 | 3.26 | 3.5 | 15 | 56 | 2.98 | 5.0 | 15 |
| 27 | 4.36 | 4.3 | 15 | 57 | 3.91 | 5.0 | 15 |
| 28 | 4.25 | 4.0 | 15 | 58 | 3.70 | 4.7 | 15 |
| 29 | 4.56 | 2.5 | 15 | 59 | 1.86 | 5.0 | 15 |
| 30 | 8.32 | 2.5 | 15 | 60 | 3.12 | 5.0 | 15 |
|  |  |  |  | 61 | 3.52 | 4.5 | 15 |
|  |  |  |  |  |  |  |  |

Table 5 - Pipe Lengths for the Gomes et al. (2009) WDN

| Pipe | Length ( $m$ ) | Origin | Destination | Pipe | Length (m) | Origin | Destination |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2540 | --- | 1 | 37 | 285 | 31 | 32 |
| 2 | 350 | 1 | 2 | 38 | 210 | 38 | 33 |
| 3 | 1140 | 2 | 3 | 39 | 240 | 34 | 33 |
| 4 | 1430 | 3 | 4 | 40 | 250 | 5 | 34 |
| 5 | 1020 | 5 | 4 | 41 | 340 | 34 | 35 |
| 6 | 1430 | 6 | 5 | 42 | 270 | 35 | 36 |
| 7 | 1710 | 1 | 6 | 43 | 240 | 37 | 36 |
| 8 | 220 | 4 | 7 | 44 | 160 | 38 | 37 |
| 9 | 190 | 7 | 8 | 45 | 260 | 39 | 38 |
| 10 | 295 | 8 | 9 | 46 | 250 | 28 | 39 |
| 11 | 390 | 9 | 10 | 47 | 330 | 38 | 40 |
| 12 | 370 | 10 | 11 | 48 | 230 | 40 | 41 |
| 13 | 190 | 11 | 12 | 49 | 385 | 42 | 41 |
| 14 | 310 | 13 | 12 | 50 | 160 | 43 | 42 |
| 15 | 205 | 7 | 13 | 51 | 330 | 44 | 43 |
| 16 | 305 | 8 | 14 | 52 | 210 | 28 | 44 |
| 17 | 295 | 14 | 15 | 53 | 150 | 43 | 45 |
| 18 | 300 | 16 | 15 | 54 | 255 | 45 | 46 |
| 19 | 290 | 17 | 16 | 55 | 260 | 47 | 46 |
| 20 | 180 | 18 | 17 | 56 | 230 | 30 | 47 |
| 21 | 315 | 10 | 18 | 57 | 115 | 6 | 48 |
| 22 | 300 | 17 | 19 | 58 | 180 | 48 | 49 |
| 23 | 295 | 19 | 20 | 59 | 140 | 49 | 50 |
| 24 | 215 | 21 | 20 | 60 | 215 | 50 | 51 |
| 25 | 140 | 22 | 25 | 61 | 175 | 51 | 52 |
| 26 | 220 | 23 | 22 | 62 | 180 | 52 | 53 |
| 27 | 220 | 24 | 23 | 63 | 260 | 54 | 53 |
| 28 | 285 | 10 | 24 | 64 | 205 | 55 | 54 |
| 29 | 300 | 23 | 25 | 65 | 255 | 56 | 55 |
| 30 | 315 | 25 | 26 | 66 | 260 | 6 | 56 |
| 31 | 170 | 11 | 26 | 67 | 275 | 56 | 57 |
| 32 | 110 | 5 | 27 | 68 | 315 | 57 | 58 |
| 33 | 280 | 27 | 28 | 69 | 200 | 58 | 59 |
| 34 | 225 | 28 | 29 | 70 | 175 | 59 | 60 |
| 35 | 200 | 29 | 30 | 71 | 300 | 61 | 60 |
| 36 | 190 | 30 | 31 | 72 | 250 | 49 | 61 |

Table 6 - Diameters cost for the Two Source WDN

| Diameter $(m)$ | Cost (Indian Rupias $/ m$ ) |
| :---: | :---: |
| .15 | 1,115 |
| .20 | 1,600 |
| .25 | 2,154 |
| .30 | 2,780 |
| .35 | 3,475 |
| .40 | 4,255 |
| .45 | 5,172 |
| .50 | 6,092 |
| .60 | 8,189 |
| .70 | 10,670 |
| .75 | 11,874 |
| .80 | 13,261 |
| .90 | 16,151 |
| 1.00 | 19,395 |

Table 7 - Nodes demand and minimum required pressure for the Two Source WDN

| Node | Demand <br> $\left(m^{3} / m i n\right)$ | Minimum pressure <br> $(m)$ |
| :---: | :---: | :---: |
| 1 | --- | 100 |
| 2 | --- | 95 |
| 3 | 18.4 | 85 |
| 4 | 4.5 | 85 |
| 5 | 6.5 | 85 |
| 6 | 4.2 | 85 |
| 7 | 3.1 | 82 |
| 8 | 6.2 | 82 |
| 9 | 8.5 | 85 |
| 10 | 11.5 | 85 |
| 11 | 8.2 | 85 |
| 12 | 13.6 | 85 |
| 13 | 14.8 | 82 |
| 14 | 10.6 | 82 |
| 15 | 10.5 | 85 |
| 16 | 9.0 | 82 |
| 17 | 6.8 | 82 |
| 18 | 3.4 | 85 |
| 19 | 4.6 | 82 |
| 20 | 10.6 | 82 |
| 21 | 12.6 | 82 |
| 22 | 5.4 | 80 |
| 23 | 2.0 | 82 |
| 24 | 4.5 | 80 |
| 25 | 3.5 | 80 |
| 26 | 2.2 | 80 |

Table 8 - Links length for the Two Source WDN

| Link | From node to node | Length $(m)$ |
| :---: | :---: | :---: |
| 1 | 1 to 3 | 300 |
| 2 | 3 to 4 | 820 |
| 3 | 4 to 5 | 940 |
| 4 | 5 to 6 | 730 |
| 5 | 6 to 7 | 1,620 |
| 6 | 7 to 8 | 600 |
| 7 | 4 to 9 | 800 |
| 8 | 6 to 10 | 1,400 |
| 9 | 8 to 13 | 1,175 |
| 10 | 8 to 14 | 750 |
| 11 | 2 to 14 | 210 |
| 12 | 9 to 10 | 700 |
| 13 | 10 to 11 | 310 |
| 14 | 11 to 12 | 500 |
| 15 | 12 to 13 | 1,960 |
| 16 | 9 to 15 | 900 |
| 17 | 15 to 18 | 850 |
| 18 | 10 to 19 | 650 |
| 19 | 13 to 20 | 760 |

Table 9 - Available diameters for the Bessa WDN

| Diameter $(\mathrm{m})$ | Cost <br> $(\$ / \mathrm{m})$ | Rugosity <br> coefficient | Diameter <br> $(\mathrm{m})$ | Cost <br> $(\$ / \mathrm{m})$ | Rugosity <br> coefficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0,10 | 1.629 | 145 | 0,35 | 11.012 | 130 |
| 0,15 | 4.054 | 145 | 0,40 | 12.397 | 130 |
| 0,20 | 5.769 | 145 | 0,45 | 15.501 | 130 |
| 0,25 | 7.769 | 145 | 0,50 | 17.696 | 130 |
| 0,30 | 9.237 | 130 | 0,60 | 23.132 | 130 |

Table 10 - Velocities and pressure losses for the Two Loop WDN

| Pipe | Velocity $(\mathrm{m} / \mathrm{s})$ | Pressure drops $(\mathrm{m})$ |
| :---: | :---: | :---: |
| 1 | 1.9 | 6.76 |
| 2 | 1.85 | 12.79 |
| 3 | 1.46 | 4.80 |
| 4 | 1.12 | 14.65 |
| 5 | 1.14 | 3.00 |
| 6 | 1.1 | 4.90 |
| 7 | 1.3 | 6.66 |
| 8 | 0.31 | 6.75 |

Table 11 - Optimal diameters (mm) comparison for the Two Loop WDN

|  | Geem <br> $(2006)$ <br> $w=10.4973$ <br> $w=10.5879$ | Suribabu <br> $(2012)$ <br> $w=10.667$ | Ezzeldin et <br> al. (2014) <br> $w=10.6744$ | Eryigit <br> $(2015)$ <br> $w=10.4973$ <br> $w=10.5088$ <br> $w=10.667$ | Zhou et al. <br> $(2016)$ <br> $w=10.5088$ <br> $w=10.6744$ | Surco et <br> al. (2017) <br> $w=10.667$ | Present <br> work <br> $w=10.667$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 457.2 | 508 | 457.2 | 457.2 | 457.2 | 457.2 | 457.2 |
| 2 | 254 | 254 | 254 | 254 | 254 | 254 | 254 |
| 3 | 406.4 | 406.4 | 406.4 | 406.4 | 406.4 | 406.4 | 406.4 |
| 4 | 101.6 | 25.4 | 101.6 | 101.6 | 101.6 | 101.6 | 101.6 |
| 5 | 406.4 | 355.6 | 406.4 | 406.4 | 406.4 | 406.4 | 406.4 |
| 6 | 254 | 254 | 254 | 254 | 254 | 254 | 254 |
| 7 | 254 | 254 | 254 | 254 | 254 | 254 | 254 |
| 8 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 |
| Cost $(\$)$ | 419,000 | 420,000 | 419,000 | 419,000 | 419,000 | 419,000 | 419,000 |

Table 12 - Nodes Pressure and demand for the Gomes et al. (2009) WDN

| Node | Demand <br> $(L / s)$ | Elevation <br> $(m)$ | Minimum <br> Pressure $(m)$ | Node | Demand <br> $(L / s)$ | Elevation <br> $(m)$ | Minimum <br> Pressure $(m)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.51 | 5.0 | 39.72 | 31 | 4.94 | 3.5 | 18.09 |
| 2 | 44.07 | 5.0 | 38.24 | 32 | 4.09 | 4.5 | 16.85 |
| 3 | 41.24 | 4.0 | 35.62 | 33 | 3.68 | 5.0 | 16.51 |
| 4 | 1.04 | 4.5 | 25.32 | 34 | 4.04 | 5.0 | 17.82 |
| 5 | 0.86 | 4.5 | 26.69 | 35 | 3.22 | 6.0 | 15.12 |
| 6 | 1.32 | 4.5 | 34.64 | 36 | 2.53 | 4.5 | 16.37 |
| 7 | 1.35 | 4.5 | 24.80 | 37 | 2.31 | 4.5 | 16.38 |
| 8 | 8.59 | 5.0 | 23.19 | 38 | 2.50 | 4.0 | 17.09 |
| 9 | 6.40 | 4.5 | 22.24 | 39 | 2.89 | 4.0 | 18.88 |
| 10 | 6.07 | 5.0 | 19.96 | 40 | 2.48 | 4.0 | 16.54 |
| 11 | 4.95 | 3.5 | 15.36 | 41 | 4.61 | 4.0 | 16.52 |
| 12 | 8.38 | 3.5 | 15.10 | 42 | 3.47 | 4.0 | 17.66 |
| 13 | 11.70 | 3.5 | 16.85 | 43 | 3.61 | 4.0 | 19.14 |
| 14 | 5.63 | 5.0 | 17.66 | 44 | 5.17 | 4.0 | 21.91 |
| 15 | 5.57 | 6.0 | 15.27 | 45 | 6.48 | 4.0 | 16.95 |
| 16 | 6.30 | 6.0 | 15.28 | 46 | 4.91 | 4.5 | 15.98 |
| 17 | 3.26 | 6.0 | 17.40 | 47 | 6.50 | 4.0 | 16.38 |
| 18 | 3.60 | 6.0 | 18.36 | 48 | 4.97 | 4.5 | 26.76 |
| 19 | 4.83 | 6.0 | 15.38 | 49 | 2.97 | 3.0 | 2.54 |
| 20 | 4.50 | 6.0 | 15.24 | 50 | 1.80 | 5.0 | 16.05 |
| 21 | 2.80 | 5.0 | 16.59 | 51 | 2.96 | 4.0 | 16.68 |
| 22 | 5.46 | 3.0 | 19.37 | 52 | 4.66 | 3.0 | 16.63 |
| 23 | 62.45 | 3.5 | 19.47 | 53 | 4.54 | 4.5 | 15.06 |
| 24 | 8.19 | 6.0 | 18.10 | 54 | 8.80 | 4.5 | 15.56 |
| 25 | 58.87 | 3.5 | 15.14 | 55 | 4.26 | 4.5 | 20.05 |
| 26 | 3.26 | 3.5 | 15.12 | 56 | 2.98 | 5.0 | 29.35 |
| 27 | 4.36 | 4.3 | 26.09 | 57 | 3.91 | 5.0 | 22.84 |
| 28 | 4.25 | 4.0 | 24.57 | 58 | 3.70 | 4.7 | 19.41 |
| 29 | 4.56 | 2.5 | 22.76 | 59 | 1.86 | 5.0 | 15 |
| 30 | 8.32 | 2.5 | 20.64 | 60 | 3.12 | 5.0 | 15 |
|  |  |  |  | 61 | 3.52 | 4.5 | 15 |
|  |  |  |  |  |  |  |  |

Table 13 - Results comparison for the Gomes et al. (2009) WDN ( $\omega=10.674$ )

| Cost (US\$) |  | Gomes et al. (2009) |  | Surco et al. (2017) |  | present paper |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2,200,784.60 |  |  | 23,238.50 | 2,121,618.90 |  |
| Diameters (mm) |  |  |  |  |  |  |  |
| Pipe | Gomes et al. (2009) | Surco et al. (2017) | present <br> paper | Pipe | Gomes et al. (2009) | Surco et al. (2017) | present <br> paper |
| 1 | 600 | 600 | 600 | 37 | 100 | 100 | 100 |
| 2 | 600 | 500 | 500 | 38 | 100 | 100 | 100 |
| 3 | 600 | 450 | 500 | 39 | 100 | 100 | 100 |
| 4 | 500 | 450 | 400 | 40 | 150 | 100 | 100 |
| 5 | 350 | 100 | 100 | 41 | 100 | 100 | 100 |
| 6 | 100 | 300 | 300 | 42 | 100 | 100 | 100 |
| 7 | 250 | 400 | 400 | 43 | 100 | 100 | 100 |
| 8 | 400 | 400 | 500 | 44 | 100 | 100 | 100 |
| 9 | 200 | 400 | 400 | 45 | 100 | 100 | 100 |
| 10 | 100 | 400 | 400 | 46 | 100 | 100 | 100 |
| 11 | 100 | 400 | 400 | 47 | 100 | 100 | 100 |
| 12 | 100 | 100 | 100 | 48 | 100 | 100 | 100 |
| 13 | 400 | 100 | 100 | 49 | 100 | 100 | 100 |
| 14 | 400 | 100 | 100 | 50 | 100 | 100 | 100 |
| 15 | 400 | 100 | 100 | 51 | 150 | 150 | 150 |
| 16 | 150 | 100 | 100 | 52 | 150 | 150 | 150 |
| 17 | 150 | 100 | 100 | 53 | 100 | 100 | 100 |
| 18 | 100 | 100 | 100 | 54 | 100 | 100 | 100 |
| 19 | 100 | 100 | 100 | 55 | 100 | 100 | 100 |
| 20 | 100 | 150 | 150 | 56 | 150 | 100 | 100 |
| 21 | 100 | 200 | 200 | 57 | 150 | 150 | 100 |
| 22 | 100 | 100 | 100 | 58 | 150 | 100 | 100 |
| 23 | 100 | 100 | 100 | 59 | 100 | 100 | 100 |
| 24 | 150 | 100 | 100 | 60 | 100 | 100 | 150 |
| 25 | 150 | 100 | 100 | 61 | 100 | 100 | 100 |
| 26 | 150 | 150 | 150 | 62 | 100 | 100 | 100 |
| 27 | 100 | 350 | 350 | 63 | 100 | 100 | 100 |
| 28 | 100 | 350 | 400 | 64 | 100 | 100 | 100 |
| 29 | 300 | 200 | 200 | 65 | 150 | 100 | 100 |
| 30 | 350 | 100 | 100 | 66 | 150 | 150 | 150 |
| 31 | 350 | 100 | 100 | 67 | 100 | 100 | 100 |
| 32 | 250 | 250 | 250 | 68 | 100 | 100 | 100 |
| 33 | 250 | 250 | 250 | 69 | 100 | 100 | 100 |
| 34 | 150 | 150 | 150 | 70 | 100 | 100 | 100 |


| 35 | 150 | 150 | 150 | 71 | 100 | 100 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | 100 | 100 | 100 | 72 | 100 | 100 | 100 |

Table 14 - Diameters (mm) for the Two Source WDN

|  | $\begin{gathered} \text { Kadu et al. (2008) } \\ \omega=2.234 \times 10^{12} \end{gathered}$ | $\begin{gathered} \hline \text { Ezzeldin } \text { et al. } \\ (2014) \\ \omega=10.6744 \\ \hline \end{gathered}$ | Present work $\omega=10.6744$ | Suribabu (2012) $\omega=10.667$ | $\begin{gathered} \text { Ezzeldin } \text { et al. } \\ (2014) \\ \omega=10.667 \\ \hline \end{gathered}$ | Present work $\omega=10.667$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1000 | 900 | 900 | 1000 | 900 | 900 |
| 2 | 900 | 900 | 900 | 1000 | 900 | 900 |
| 3 | 350 | 400 | 350 | 400 | 350 | 350 |
| 4 | 250 | 250 | 300 | 200 | 300 | 300 |
| 5 | 150 | 150 | 150 | 150 | 150 | 150 |
| 6 | 250 | 200 | 250 | 250 | 250 | 250 |
| 7 | 800 | 800 | 800 | 1000 | 800 | 800 |
| 8 | 150 | 150 | 150 | 150 | 150 | 150 |
| 9 | 600 | 400 | 450 | 450 | 450 | 500 |
| 10 | 700 | 500 | 600 | 600 | 500 | 600 |
| 11 | 900 | 900 | 900 | 1000 | 800 | 900 |
| 12 | 700 | 700 | 700 | 800 | 700 | 700 |
| 13 | 500 | 600 | 500 | 500 | 600 | 500 |
| 14 | 450 | 450 | 300 | 350 | 450 | 300 |
| 15 | 150 | 150 | 150 | 150 | 150 | 150 |
| 16 | 450 | 500 | 500 | 500 | 500 | 500 |
| 17 | 350 | 350 | 350 | 300 | 350 | 350 |
| 18 | 400 | 350 | 350 | 450 | 400 | 400 |
| 19 | 450 | 200 | 150 | 150 | 150 | 250 |
| 20 | 150 | 150 | 200 | 150 | 150 | 150 |
| 21 | 600 | 700 | 750 | 900 | 700 | 700 |
| 22 | 150 | 150 | 150 | 150 | 150 | 150 |
| 23 | 150 | 500 | 450 | 450 | 450 | 400 |
| 24 | 400 | 350 | 350 | 300 | 350 | 350 |
| 25 | 500 | 700 | 600 | 750 | 700 | 600 |
| 26 | 200 | 250 | 250 | 150 | 250 | 250 |
| 27 | 350 | 300 | 300 | 300 | 250 | 300 |
| 28 | 250 | 300 | 250 | 250 | 300 | 250 |
| 29 | 150 | 200 | 250 | 150 | 200 | 250 |
| 30 | 300 | 250 | 300 | 300 | 300 | 300 |
| 31 | 150 | 150 | 150 | 150 | 150 | 150 |
| 32 | 150 | 150 | 150 | 150 | 150 | 150 |
| 33 | 150 | 150 | 150 | 150 | 150 | 150 |
| 34 | 200 | 150 | 150 | 150 | 150 | 150 |
| Cost (R\$) | 123,268,864 ${ }^{\text {a }}$ | 125,843,995 | 124,986,030 | 140,177,210 | 125,501,130 | 125,136,870 |

Table 15 - Nodes calculated pressure for the Two Source WDN

| Nodes | Kadu et al. <br> $(2008)$ | Present work <br> $\omega=10.667$ | Present work <br> $\omega=10.6744$ |
| :---: | :---: | :---: | :---: |
| 3 | 98.98 | 98.31 | 98.31 |
| 4 | 95.76 | 95.14 | 95.14 |
| 5 | 88.79 | 87.88 | 87.80 |
| 6 | 85.28 | 86.20 | 86.07 |
| 7 | 88.01 | 87.84 | 88.40 |
| 8 | 91.64 | 91.09 | 91.52 |
| 9 | 91.84 | 91.31 | 91.31 |
| 10 | 88.89 | 88.55 | 88.58 |
| 11 | 87.11 | 86.88 | 86.89 |
| 12 | 85.15 | 85.21 | 85.16 |
| 13 | 86.81 | 85.58 | 84.18 |
| 14 | 94.13 | 94.14 | 94.14 |
| 15 | 87.12 | 88.26 | 88.20 |
| 16 | 82.10 | 82.08 | 82.26 |
| 17 | 90.26 | 91.26 | 91.88 |
| 18 | 85.25 | 85.85 | 85.67 |
| 19 | 85.97 | 85.95 | 83.90 |
| 20 | 83.89 | 82.22 | 82.49 |
| 21 | 84.03 | 85.81 | 85.70 |
| 22 | 84.23 | 86.80 | 87.38 |
| 23 | 82.20 | 83.74 | 83.27 |
| 24 | 83.70 | 82.41 | 80.69 |
| 25 | 80.64 | 80.10 | 80.23 |
| 26 | 80.16 | 82.05 | 82.07 |

Table 16 - Calculated diameters, velocities, pressures and final cost for the Bessa WDN

| Pipe/Node | Diameter (m) <br> Carvalho (2007) | Diameter (m) <br> Present work | Velocity <br> $(\mathrm{m} / \mathrm{s})$ <br> Present <br> work | Pressure <br> $(\mathrm{m})$ <br> Carvalho <br> $(2007)$ | Pressure <br> $(\mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Present |  |  |  |  |  |
| work |  |  |  |  |  |$|$

