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Abstract 

Water Distribution Networks (WDN) are the main component of industrial and urban water 

distribution systems and are currently formed by pipes, nodes, and loops. In the present paper a 

deterministic Mathematical Programming approach is proposed, aiming to minimize the cost of 

looped WDN, considering known pipe lengths and a discrete set of available commercial 

diameters. The optimization model constraints are mass balances in nodes, energy balances in 

loops and hydraulic equations, in such a way that no additional software is needed to find the 

appropriated pressure drops and water velocities. Generalized Disjunctive Programming is used 

to reformulate the discrete optimization problem to a Mixed Integer Non-Linear Programming 

(MINLP) problem. GAMS (General Algebraic Modeling System) environment is used to solve 
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the problem. Four cases were studied to test the model applicability and the results show 

compatibility with the literature. 

Keywords: Water Distribution Networks, Optimization, Generalized Disjunctive 

Programming, MINLP, GAMS.  

 

 

1. Introduction 

Water is a natural resource of fundamental importance for the life in our planet and water supply 

services are part of the basic necessities in the contemporary urban centers and industries, in the 

industrial society. Water supply systems involve water acquisition, treatment, and distribution to 

the final users. Pumping stations are responsible by the water network pressurization with the aid 

of elevated reservoirs. In general, these systems are complex and must consider the topology 

heterogeneity in the zones to be supplied and must attend simultaneously adequate water flow 

rates, pressures and velocities along the network with proper quality, considering structures, piping 

and equipment design.  

A water distribution network (WDN) is composed of a set of special equipment intended to 

transport water to the demand points in a continuous and safe way. The main used devices are pipes, 

pumps, valves, reservoirs, meters, among other accessory destined to do this job. 

Looped WDN can be represented by a set of connected nodes and branches. Nodes can 

represent reservoirs or demand points and branches represent pipes, valves or pumps. It is 

important to consider the flow direction and if loops exist or not. It can be situated at different 

levels if the city relief is rugged. Generally main conducts have large diameters to feed secondary 

branches and to achieve the demand points. To the water distribution network (WDN) 
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optimization problem, two different approaches can be used. The first one considers a unique 

diameter per pipe and is known as Single pipe. The second approach, known as Split-pipe, 

considers one or more diameters in the network. 

Most of the published papers in WDN optimization, like the ones that will be cited in this 

section, consider the minimization of the pipe diameters cost, subject to mass balances in the network 

nodes, energy balances in the network loops and pressure and velocity limits. In general, the 

diameters are chosen among a set of commercial ones. The hydraulic problem of finding the adequate 

node pressures and pipe velocities is a complex non-linear optimization problem, mainly due to the 

complex correlations available in the literature to calculate the pressure drop in pipes.  

In the present work, the main objective is to achieve the optimal piping commercial diameters 

configuration for the WDN. The Single pipe approach is used to avoid solutions with a large number 

of diameters in the length pipe. Besides, additional pressure drop can exist in the pipe junctions and 

must be significative if a large number of different diameters exist in the pipe length. An MINLP 

optimization model is proposed and GAMS (General Algebraic Modeling System) environment is 

used to solve the problem, without the use of hydraulic simulators in order to calculate pressure drops 

and velocities. GAMS is a high-level modeling system, very appropriated in solving mathematical 

programming and optimization problems. It consists of a language compiler and a set of high-

performance solvers. In GAMS it is possible to model linear, nonlinear and mixed-integer 

optimization problems.  

Four case studies with different levels of complexity were used to test the model applicability. 

Research development in Water Distribution Networks (WDN) is increasing and in the last 

decades, several approaches have been published in this important field of research. WDN design 

can be formulated as an optimization problem and involves discrete variables if a set of available 
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commercial diameters and pipe lengths is considered. Also, the problem is nonlinear and nonconvex 

and global optimization techniques are not commonly able to solve it. So, the development of new 

models is, certainly, a substantial contribution to solving this type of problem. 

WDNs are a vital part of the water supply systems and represent one of the largest infrastructure 

assets. Simulation of hydraulic behavior within a pressurized and looped pipe network is not a trivial 

task, once it means effectively solving a system of non-linear equations. Hydraulic simulators have 

been used to solve the problem and the most used is EPANET (Rossman, 2000). 

Stochastic and deterministic approaches have been used to solve the WDN optimization 

problem. In deterministic optimization approaches the output is determined by the parameter 

values and initial conditions. The same parameters and initial values will always provide the same 

results. In stochastic approaches, the output is the result of a random search procedure and the 

same set of parameters can lead to different results. Linear Programming (LP), Nonlinear 

Programming (NLP), Mixed Integer Linear Programming (MILP) and Mixed-Integer Nonlinear 

Programming (MINLP) formulations were used in solving WDN optimization problems. The 

Nonlinear Programming formulations are more representative for the real WDN optimization 

problems, according to the existing hydraulic calculation equations. In the majority of the studied 

cases, the problems are also nonconvex. In these cases, it is not possible to ensure optimal global 

solutions. 

The pioneering works focusing on deterministic approaches used Linear Programming. Alperovits 

and Shamir (1977) applied the method known as Linear Programming Gradient (LPG) to the WDN 

optimization. They presented a well-known case study named Two Loop WDN, one of the most 

used benchmark problems in this area. Morsi et al. (2012) proposed a MILP model to solve WDN 



5 

 

systems and a Branch and Bound approach was used. With good upper and lower bounds their 

method is able to find good solutions.  

Watanatada (1973) proposed an NLP formulation to solve the WDN design problem and 

equality constraints corresponding to the mass and energy conservation equations and inequality 

constraints corresponding to physical limits were used in the model development. Bragalli et al. 

(2008), Bragalli et al. (2012) and D’Ambrosio et al.  (2014) proposed MINLP models to solve the 

WDN optimization problem and the solver Bonmin was used, in the environment AMPL - A 

Mathematical Programming Language (Fourer et al., 2003), in the first work and spatial branch 

and bound and piecewise linear relaxations was used in the second work.  

Caballero and Ravagnani (2019) presented an MINLP model to the optimal design of WDN 

when the flow directions are unknown. A convex hull reformulation was used in the model and 

the global optimization solver BARON was used to solve the problem. Two case studies were 

used to test the model and results showed compatibility with the literature. 

Because of the great difficulties in solving MINLP models for WDN optimization problems with 

large scale using deterministic methods, the majority of published papers in this area use 

metaheuristic methods. Genetic Algorithms (GA), in Savic and Walters (1997) and Kadu et al. 

(2008), Ant Colony Optimization (ACO) in Zecchin et al. (2006), Honey Bee Mating 

Optimization (HBMO), in Mohan and Babu (2009), Harmony Search (HS), in Geem (2006), 

Particle Swarm Optimization (PSO), in Ezzeldin et al.  (2014) and Surco et al. (2017) and 

Simulated Annealing (SA), in Cunha and Sousa (1999), among others methods have been used. 

De Corte and Sorensen (2016) presented an overview of the metaheuristic techniques developed 

for the WDN design optimization problem. However, most of the published papers using 
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metaheuristic techniques use also a hydraulic simulator to solve pressure drop and velocity equations, 

like EPANET (Rassman, 2000). 

 

2. Material and method  

 The design of a WDN must consider the optimal tube diameters to carry water from one or more 

reservoirs to the demand points at adequate pressures and velocities. In the present paper, an 

optimization model is proposed, based on the papers of Surco et al. (2017) and Surco et al. (2018) 

to solve the problem. 

 

2.1 Optimization model 

The optimization model can be formulated as the minimization of the network cost considering a 

set of pipe commercial diameters, constrained to mass balances in the nodes and energy balances in 

the loops of the WDN. Each element of this set has a cost per length unity and a specific rugosity. 

The following sets, parameters, and variables are defined: 

Sets:  

Diameters Commercially available diameters 

Pipes WDN pipes 

Nodes WDN nodes 

FIk Pipes with flow entering node k 

FOk Pipes with flow going out node k 

Loops WDN loops 

PPDγ Positive pressure drops 

NPDγ Negative pressure drops 

Pumps WDN pumps 

τk 
Pipes in which a flow path is determined, beginning in the reservoir 

and finishing in node k 
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In the model, Diameters = {D1, D2,..., Dnd}, and the following inequality must be respected: 

Dmin = D1 < ⋯ < Dnd = Dmax. 

The objective function must consider the sum of all tube diameters and its costs: 

 

Parameters: 
 

Lj Pipes length (m) 

dmd(j) Nodes demand (m3/h) 

EP

η
(γ) Pump energy (m) 

Cj Hazen-Williams rugosity coefficient 

α, β and ω Hazen-Williams equation constants 

prmin(k) Minimum allowed pressure (m) 

elv(k) Node elevation k (m) 

elv(re) Reservoir elevation (m) 

vmin, vmax Minimum and maximum velocities (m/s) 

nd Number of available diameters 

nn Number of nodes 

Di Diameter (m) 

Cost(Di) Cost ($/m) 

Ri Pipe rugosity 

Variables:  

xj 
Pipe diameter (m) 

Cost(xj) Pipe cost ($/m) 

CT Total cost ($) 

qj Volumetric flowrate (m3/s) 

hf(j) Pressure loss (m) 

pr(k) Pressure (m) 

vj Water velocity (m/s) 

Yi,j Boolean variable  

λj Cost ($) 

σj Pipe j rugosity coefficient  

yi,j Binary variable  

(1) 
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𝐶𝑇 = ∑ 𝐿𝑗𝐶𝑜𝑠𝑡(𝑥𝑗)

𝑗∈𝑃𝑖𝑝𝑒𝑠

 

 

where CT is the total installation cost, Lj is the j pipe length, xj is the j tube diameter, Pipes is the set 

of links between nodes and Cost (xj) is the j pipe cost per length. 

The network pressurized design problem consists in solving simultaneously the continuity and the 

pressure drop equations.  Consider Nodes the set of nodes and k = 1,..., nn the elements of the set, 

being nn the number of nodes in the WDN. The model constraints are: 

1) Material balance: 

The difference between the node inlet flow rate and the node outlet flow rate must be equal to the 

node demand. Consider FIk and FOk the sets in which the elements are the branches corresponding 

to the inlet and outlet flow rates in the node k, respectively, in the flow direction: 

𝐹𝐼𝑘 = {𝑗 | 𝑞𝑗𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑒𝑛𝑡𝑒𝑟𝑠 𝑛𝑜𝑑𝑒 𝑘} 

𝐹𝑂𝑘 = {𝑗 | 𝑞𝑗𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑙𝑒𝑎𝑣𝑒𝑠 𝑛𝑜𝑑𝑒 𝑘} 

 

∑ 𝑞𝑗

𝑗∈𝐹𝐼𝑘

− ∑ 𝑞𝑗

𝑗∈𝐹𝑂𝑘

= 𝑑𝑚𝑑(𝑘), ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠  

 

where qj is the branch j flow rate and dmd(k) is the node k demand. 

2) Energy balance: 

Consider Loops the set of loops γ in the WDN and PPDγ and NPDγ, the sets where the 

pressure drops are positive and negative in the loop γ, respecting the flow rate direction in each 

loop: 

(2) 
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𝑃𝑃𝐷𝛾 =  {𝑗 | 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 ℎ𝑓(𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝 𝛾}, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

𝑁𝑃𝐷𝛾 =  {𝑗 | 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 ℎ𝑓(𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝 𝛾}, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠. 

Consider, also, that Pumps is the set of  pumps in the network if they exist. 

The sum of pressure drops in the branches belonging to a loop must be equal to the energy 

liberated by a pump, in case it exists: 

∑ ℎ𝑓(𝑗)

𝑗𝜖𝑃𝑃𝐷

− ∑ ℎ𝑓(𝑗)

𝑗𝜖𝑁𝑃𝐷

= ∑ 𝐸𝑃
𝜂(𝛾)

𝜂𝜖𝑃𝑢𝑚𝑝𝑠

, ∀ 𝛾 ∈ 𝐿𝑜𝑜𝑝𝑠 

where hf(j) is the pressure drop in the pipe j and 𝐸𝑃
𝜂(𝛾) is the energy of the pump  in the loop .  

The pressure in any point in the piping network must attend a minimum limit: 

𝑝𝑟𝑚𝑖𝑛  ≤  𝑝𝑟(𝑘), ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠 

where prmin(k) is the minimum pressure limit in the node k and pr (k ) is the pressure in the node k. 

The flow velocities must also attend minimum and maximum limits:   

 

𝑣𝑚𝑖𝑛  ≤  𝑣𝑗  ≤  𝑣𝑚𝑎𝑥 , ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

where vmin and vmax are the minima and maximum velocities allowed in the WDN and vj is the water 

velocity in the pipe j.   

The most used equation to the pressure drop calculations is the Hazen-Williams equation: 

ℎ𝑓(𝑗) =
𝜔𝑞𝑗

𝛼𝐿𝑗

𝐶𝑗
𝛼𝐷𝛽 ,       ∀  𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

where C is the Hazen-Williams rugosity coefficient and is non-dimensional. The parameters 𝜔, 

𝛼 and 𝛽 depend on the unities system being used and can vary in the literature. Savic and Walters 

(1977) presented a series of different equations and coefficients, with the most used unity 

systems used in this type of problem. 

(3) 

(4) 

(5) 

(6) 
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To the pressure drop calculations, it must be considered the existing pressure in each node. 

Consider τk a set in which is defined a flow path, initiating in the reservoir and finishing in the 

node k, k ∈ 𝑁𝑜𝑑𝑒𝑠 . If the node k = kr corresponds to the reservoir, then its pressure is: 

 

𝑝𝑟(𝑘𝑟)  =  𝑒𝑙𝑣(𝑘𝑟)  =  𝑒𝑙𝑣(𝑟𝑒) 

𝑒𝑙𝑠𝑒, 

𝑝𝑟(𝑘) =  − ∑ ℎ𝑓(𝑗) + [𝑒𝑙𝑣(𝑟𝑒) − 𝑒𝑙𝑣(𝑘)]

𝑗∈𝜏𝑘

, ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠, 𝑘 ≠  𝑘𝑟 

where elv (k ) is the altimetric quota of each node k, i.e., the elevation of each node and elv (re) is the 

reservoir elevation. 

The flow velocities can be calculated by: 

 

𝑣𝑗 =
4𝑞𝑗

𝜋𝐷𝑗
2 ,   ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠. 

The optimization model can be described as: 

 

min𝐶𝑇 = ∑ 𝐿𝑗𝐶𝑜𝑠𝑡(𝑥𝑗), ∀ 𝑥𝑗  ∈  𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑗∈𝑃𝑖𝑝𝑒𝑠

 

𝑠. 𝑡.            ∑ 𝑞𝑗 − ∑ 𝑞𝑗

𝑗∈𝐹𝑂𝑘𝑗∈𝐹𝐼𝑘

= 𝑑𝑚𝑑(𝑘), ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠 

∑ ℎ𝑓(𝑗)

𝑗∈𝑃𝑃𝐷𝛾

− ∑ ℎ𝑓(𝑗)

𝑗∈𝑁𝑃𝐷𝛾

= ∑ 𝐸𝑃
𝜂(𝛾)

𝜂𝜖𝑃𝑢𝑚𝑝𝑠

, ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠  

𝑝𝑟𝑚𝑖𝑛(𝑘) ≤ 𝑝𝑟(𝑘), ∀  𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑚𝑎𝑥, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

(7) 

(9) 

(10) 
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2.2 MINLP reformulation 

Given 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠, the pipes sequence and yi
j the binary variables associated to the Boolean 

variable Yi,j for the pipe j and diameter Di. Given, also, λj and σj, are the cost and the rugosity 

associated to the same diameter, in such a way that: 

𝑦𝑖
𝑗
 ∈  {0,1}, ∀ 𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

𝜆𝑗  =  𝐿𝑗 𝐶𝑜𝑠𝑡(𝐷𝑖), ∀ 𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠  

𝜎𝑗  =  𝑅𝑖, ∀  𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠  

∨
𝑖 ∈ {1, … , 𝑛𝑑}  

[
 
 
 
 

𝑌𝑖,𝑗

𝑥𝑗 = 𝐷𝑖

𝜆𝑗 = 𝐿𝑗𝐶𝑜𝑠𝑡(𝐷𝑖)

𝜎𝑗 = 𝑅𝑖 ]
 
 
 
 

 

The hull reformulation of the previous disjunction, according to Trespalacios and 

Grossmann (2015) yields the following equations: 

𝑥𝑗 = ∑ 𝐷𝑖𝑖∈𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑦𝑖,𝑗 ∀ 𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

𝜆𝑗 = 𝐿𝑗 ∑ 𝐶𝑜𝑠𝑡(𝐷𝑖)

𝑖∈𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑦𝑖,𝑗, ∀ 𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠  

𝜎𝑗 = ∑ 𝑅𝑖

𝑖∈𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑦𝑖,𝑗 , ∀ 𝑖 ∈ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠  

So, the reformulated MINLP is: 

 

min𝐶𝑇 = ∑ 𝜆𝑗

𝑗∈𝑃𝑖𝑝𝑒𝑠

 

𝑠. 𝑡.            ∑ 𝑞𝑗 − ∑ 𝑞𝑗

𝑗∈𝐹𝑂𝑘𝑗∈𝐹𝐼𝑘

= 𝑑𝑚𝑑(𝑘), ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠 

(11) 

(12) 

(13) 
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∑ ℎ𝑓(𝑗)

𝑗∈𝑃𝑃𝐷𝛾

− ∑ ℎ𝑓(𝑗)

𝑗∈𝑁𝑃𝐷𝛾

= ∑ 𝐸𝑃
𝜂(𝛾)

𝜂𝜖𝑃𝑢𝑚𝑝𝑠

, ∀ 𝛾 ∈ 𝐿𝑜𝑜𝑝𝑠 

𝑝𝑟𝑚𝑖𝑛(𝑘) ≤ 𝑝𝑟(𝑘), ∀ 𝑘 ∈ 𝑁𝑜𝑑𝑒𝑠 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑚𝑎𝑥 , ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠   

𝑥𝑗  ∈  𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  {𝐷1, … ,𝐷𝑛𝑑} 

𝑥𝑗 = ∑ 𝐷𝑖𝑦𝑖,𝑗

𝑖𝜖𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

𝜆𝑗 = 𝐿𝑗 ∑ 𝐶𝑜𝑠𝑡(𝐷𝑖)𝑦𝑖,𝑗

𝑖𝜖𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

𝜎𝑗 = ∑ 𝑅𝑖𝑦𝑖,𝑗

𝑖𝜖𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠

, ∀ 𝑗 ∈ 𝑃𝑖𝑝𝑒𝑠 

Figure 1 presents a block diagram to better understand the optimization model 

and a simultaneous approach to solve the problem. 

 

2.3 Case studies 

To test the model applicability, four case studies from the literature with different levels of 

complexity were used. In this section, the cases will be introduced and the results and discussions 

will be presented in the next section. 

2.3.1 Case Study 1 

Case study 1 is the well-known benchmark problem, named Two Loop WDN. This network 

can be classified as a small case and was originally proposed by Alperovits and Shamir (1977). 

Figure 2 presents the WDN topology with flow directions. This WDN has two loops, 1 reservoir, 8 

links (1,000 m length each one) and 7 nodes. The minimum pressure required in each node is 30 

water column meters and this value can be considered as the lower bound for the pressure in the 
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WDN nodes. Velocity limits are 0.3 m/s and 3 m/s, respectively. Hazen-Williams coefficients are 

= 10.667, = 4.871 and  = 1.852 and the dimensionless roughness coefficient C is 130 for all 

links. The diameters set is composed by 14 types of diameters (mm): D = {25.4, 50.8, 76.2, 101.6, 

152.4, 203.2, 254.0, 304.8, 355.6, 406.4, 457.2, 508.0, 558.8, 609.6}. Table 1 presents costs for the 

specified diameters and Table 2 presents the nodes elevation and demands. 

 

2.3.2 Case Study 2 

The second case study considered in the present paper was presented originally by Gomes et 

al. (2009). In the network there exists 72 pipes, 61 demand nodes, 1 reservoir, and 11 loops. Figure 

3 presents the WDN topology. 

Table 3 presents diameters, Hazen-Williams roughness coefficient and costs. The diameters 

set is composed by 10 elements. Table 4 presents demands, elevations and minimum pressures in 

each one of the nodes. Table 5 presents tube lengths. 

 

2.3.3 Case Study 3 

In this case study it is considered a WDN with two reservoirs, known as Two Source WDN. 

The problem was originally proposed by Kadu et al. (2008) and the network has 26 nodes, 34 links 

and 9 loops. Figure 4 presents the network topology. A Hazzen-Williams rugosity coefficient of 

130 is supposed for all pipes. Table 6 presents the diameters set, with the respective costs and 

lengths. Table 7 presents nodes demand and the minimum allowed pressure. Table 8 presents link 

lengths.  

2.3.4 Case Study 4 

This case study was first published by Carvalho (2007) and is known as Bessa WDN. Figure 

5 presents the network topology, with flowrate directions, tubes length and nodes elevation and 
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demands. The reservoir is at 54 m. The set with 10 available commercial diameters, with the 

correspondent costs and rugosity coefficients, is presented in Table 9. Velocities are between vmin = 

0,3 m/s and vmax = 3 m/s and the minimum nodes pressure is 25 m. Hazzen-Williams coefficients are 

 = 10.674, = 4.871 and  = 1.852. 

 

3 Results and Discussion 

Case Study 1 was solved in GAMS using the global optimization solver BARON, and Table 

10 presents the results for velocities and pressure drops for each pipe. Table 11 presents a 

comparison of the achieved results for the optimal diameters and the total WDN cost with some 

literature works using a single pipe approach. With the exception of the work of Suribabu (2012), 

whose optimal value was $ 420,000, the global optimum solution of $ 419,000 was achieved. This 

solution is exactly the same obtained by other researchers, even with different values of w, like 

Surco et al. (2017), Zhuo et al. (2016), Eryigit (2015), Ezzeldin et al. (2014) and Geem (2006), 

among others authors. In the present paper, a single pipe approach is used, different from the 

Alperovits and Shamir (1977), who used a split pipe approach. 

In Case Study 2, the model was solved in GAMS, using the solver SBB. Table 12 presents the 

pressures in the nodes and Table 13 presents a comparison with the final results and some literature 

papers. As it can be observed in Table 13, the result achieved in the present paper is the best, among 

the published two ones. Other important information is that no additional software was used in 

finding the best solution, contrary to the papers used in order to compare the results, Gomes et al. 

(2009) and Surco et al. (2017), which used EPANET2 as a hydraulic simulator. As SBB is not a 

global optimization solver, it is not possible to ensure that this is the global optimum. 

In Case Study 3, the model was solved in GAMS and the solver SBB was used. Table 14 

presents the results obtained and a comparison with other solutions in the literature.  In order to 



15 

 

compare our results with the literature, two distinct values for the Hazzen-Williams  parameter 

were used,  = 10.667 and  = 10.6744. In both cases, the solutions achieved in the current paper 

are better than published in the literature. Table 15 presents calculated nodes pressures when 

compared to the values reported by Kadu et al. (2008). In the papers of Suribabu (2012) and 

Ezzeldin et al. (2014) pressure values are not presented. It is interesting to relate that Kadu et al. 

(2008) used the values  = 2.234x1012,  = 1.85 and  = 4.87 (q in m3/min and D in mm) and 

obtained a WDN cost of R$ 123,268,864. Suribabu (2012) used  = 10.667,  = 1.852 and  = 

4.871 (q in m3/min and D in mm) and the WDN cost obtained was R$ 140,177,210. However, the 

author reported in his paper that the result of Kadu et al. (2008) exhibits a deficit in hydraulic 

gradient level at node 26 when analyzed under EPANET software. This point was also reported by 

Ezzeldin et al. (2012), who recalculated the results of Kadu et al. (2008) and, considering the 

pressure violation, reported a new cost of R$ 126,368,865. 

In Case Study 4 the problem was solved using the solver SBB in GAMS. Table 16 presents 

the results obtained and a comparison with the work of Carvalho (2007). As can be observed, the 

results achieved with the current approach were better than the ones presented in the literature.   

 

4 Conclusions 

In the present paper, the synthesis of WDN was formulated as an optimization problem. An 

MINLP model was proposed and solved using a deterministic Mathematical Programming 

approach.  Four case studies were used to test the model applicability. Two of them are benchmark 

problems, one with a unique reservoir and two loops (Two Loop WDN) and other considering the 

existence of two reservoirs (Two Source WDN). The other two cases study belong to real cases, in 

small cities in Brazil (R9 WDN and Bessa WDN). 
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In all cases, the mathematical model was solved in GAMS. For the first (Two Loop WDN) 

problem, the solution corresponds to the global optimum, being the same value found by other 

authors. The result was achieved using the global optimization solver BARON. The other three 

cases were solved using the solver SBB and have distinct degrees of complexity. The solutions for 

all problems are the best found in the literature.   

The great novelty and the main contribution of this paper is that the model developed is able 

to calculate pressures and velocities, without the use of additional software. In all case studies 

results were compared with literature, with papers that used additional software to the hydraulic 

calculus and results are compatible, in the case study 1 and better, in cases 2, 3 and 4. Besides, this 

independence of extra software was combined with the best results found when compared to the 

papers published in the literature. Also, the model includes only integer and continuous variables 

and no approximations are used to find the diameter values in the discrete set of available 

commercial diameters. 
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Figure 1 – Optimization problem block diagram 
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Figure 2 – Two Loop WDN 
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Figure 3 – R9 WDN 
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Figure 4 – R9 network topology 
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Figure 5 –Bessa WDN 
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Table 1 – Costs for the commercial available diameters set 

 

Diameter 

(mm) 

Cost 

($/m) 

25.4 2 

50.8 5 

76.2 8 

101.6 11 

152.4 16 

203.2 23 

254.0 32 

304.8 50 

355.6 60 

406.4 90 

457.2 130 

508.0 170 

558.8 300 

609,6 550 
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Table 2 – Nodes characteristic for the Two Loop WDN 

 

Node Elevation (m) Demand (m3/h) 

1 210 -1120 

2 150 100 

3 160 100 

4 155 120 

5 150 270 

6 165 330 

7 200 160 
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Table 3 – Available diameters, Hazen-Williams roughness coefficients and costs for the Gomes et 

al. (2009) WDN 

 

Diameter  

(mm) 

Hazzen-Williams roughness  

coefficient C 

Cost  

(US$/m) 

100 145 17.98 

150 145 44.75 

200 145 63.68 

250 145 85.19 

300 130 101.95 

350 130 121.55 

400 130 136.83 

450 130 171.09 

500 130 195.21 

600 130 255.32 
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Table 4 – Nodes demands, elevations and minimum pressures in the for the Gomes et al. (2009) 

WDN  

 

Node 
Demand 

(L/s) 

Elevation 

(m) 

Minimum 

Pressure (m) 
 Node 

Demand 

(L/s) 

Elevation 

(m) 

Minimum 

Pressure (m) 

1 2.51 5.0 25  31 4.94 3.5 15 

2 44.07 5.0 25  32 4.09 4.5 15 

3 41.24 4.0 25  33 3.68 5.0 15 

4 1.04 4.5 25  34 4.04 5.0 15 

5 0.86 4.5 25  35 3.22 6.0 15 

6 1.32 4.5 25  36 2.53 4.5 15 

7 1.35 4.5 15  37 2.31 4.5 15 

8 8.59 5.0 15  38 2.50 4.0 15 

9 6.40 4.5 15  39 2.89 4.0 15 

10 6.07 5.0 15  40 2.48 4.0 15 

11 4.95 3.5 15  41 4.61 4.0 15 

12 8.38 3.5 15  42 3.47 4.0 15 

13 11.70 3.5 15  43 3.61 4.0 15 

14 5.63 5.0 15  44 5.17 4.0 15 

15 5.57 6.0 15  45 6.48 4.0 15 

16 6.30 6.0 15  46 4.91 4.5 15 

17 3.26 6.0 15  47 6.50 4.0 15 

18 3.60 6.0 15  48 4.97 4.5 15 

19 4.83 6.0 15  49 2.97 3.0 15 

20 4.50 6.0 15  50 1.80 5.0 15 

21 2.80 5.0 15  51 2.96 4.0 15 

22 5.46 3.0 15  52 4.66 3.0 15 

23 62.45 3.5 15  53 4.54 4.5 15 

24 8.19 6.0 15  54 8.80 4.5 15 

25 58.87 3.5 15  55 4.26 4.5 15 

26 3.26 3.5 15  56 2.98 5.0 15 

27 4.36 4.3 15  57 3.91 5.0 15 

28 4.25 4.0 15  58 3.70 4.7 15 

29 4.56 2.5 15  59 1.86 5.0 15 

30 8.32 2.5 15  60 3.12 5.0 15 
     61 3.52 4.5 15 
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Table 5 – Pipe Lengths for the Gomes et al. (2009) WDN 

 

Pipe Length (m) Origin Destination  Pipe Length (m) Origin Destination 

1 2540 --- 1  37 285 31 32 

2 350 1 2  38 210 38 33 

3 1140 2 3  39 240 34 33 

4 1430 3 4  40 250 5 34 

5 1020 5 4  41 340 34 35 

6 1430 6 5  42 270 35 36 

7 1710 1 6  43 240 37 36 

8 220 4 7  44 160 38 37 

9 190 7 8  45 260 39 38 

10 295 8 9  46 250 28 39 

11 390 9 10  47 330 38 40 

12 370 10 11  48 230 40 41 

13 190 11 12  49 385 42 41 

14 310 13 12  50 160 43 42 

15 205 7 13  51 330 44 43 

16 305 8 14  52 210 28 44 

17 295 14 15  53 150 43 45 

18 300 16 15  54 255 45 46 

19 290 17 16  55 260 47 46 

20 180 18 17  56 230 30 47 

21 315 10 18  57 115 6 48 

22 300 17 19  58 180 48 49 

23 295 19 20  59 140 49 50 

24 215 21 20  60 215 50 51 

25 140 22 25  61 175 51 52 

26 220 23 22  62 180 52 53 

27 220 24 23  63 260 54 53 

28 285 10 24  64 205 55 54 

29 300 23 25  65 255 56 55 

30 315 25 26  66 260 6 56 

31 170 11 26  67 275 56 57 

32 110 5 27  68 315 57 58 

33 280 27 28  69 200 58 59 

34 225 28 29  70 175 59 60 

35 200 29 30  71 300 61 60 

36 190 30 31  72 250 49 61 
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Table 6 – Diameters cost for the Two Source WDN 

 

Diameter (m) Cost (Indian Rupias/m) 

.15 1,115 

.20 1,600 

.25 2,154 

.30 2,780 

.35 3,475 

.40 4,255 

.45 5,172 

.50 6,092 

.60 8,189 

.70 10,670 

.75 11,874 

.80 13,261 

.90 16,151 

1.00 19,395 
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Table 7 – Nodes demand and minimum required pressure for the Two Source WDN 

 

Node 
Demand  

(m3/min) 

Minimum pressure  

(m) 

1 --- 100 

2 --- 95 

3 18.4 85 

4 4.5 85 

5 6.5 85 

6 4.2 85 

7 3.1 82 

8 6.2 82 

9 8.5 85 

10 11.5 85 

11 8.2 85 

12 13.6 85 

13 14.8 82 

14 10.6 82 

15 10.5 85 

16 9.0 82 

17 6.8 82 

18 3.4 85 

19 4.6 82 

20 10.6 82 

21 12.6 82 

22 5.4 80 

23 2.0 82 

24 4.5 80 

25 3.5 80 

26 2.2 80 
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Table 8 – Links length for the Two Source WDN 

 

Link From node to node Length (m) 

1 1 to 3 300 

2 3 to 4 820 

3 4 to 5 940 

4 5 to 6 730 

5 6 to 7 1,620 

6 7 to 8 600 

7 4 to 9 800 

8 6 to 10 1,400 

9 8 to 13 1,175 

10 8 to 14 750 

11 2 to 14 210 

12 9 to 10 700 

13 10 to 11 310 

14 11 to 12 500 

15 12 to 13 1,960 

16 9 to 15 900 

17 15 to 18 850 

18 10 to 19 650 

19 13 to 20 760 
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Table 9 – Available diameters for the Bessa WDN 

 

Diameter (m) 
Cost 

($/m) 

Rugosity 

coefficient  

Diameter 

(m)  

Cost 

($/m) 

Rugosity 

coefficient 

0,10 1.629 145 0,35 11.012 130 

0,15 4.054 145 0,40 12.397 130 

0,20 5.769 145 0,45 15.501 130 

0,25 7.769 145 0,50 17.696 130 

0,30 9.237 130 0,60 23.132 130 
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Table 10 – Velocities and pressure losses for the Two Loop WDN 

 

Pipe Velocity (m/s) Pressure drops (m) 

1 1.9 6.76 

2 1.85 12.79 

3 1.46 4.80 

4 1.12 14.65 

5 1.14 3.00 

6 1.1 4.90 

7 1.3 6.66 

8 0.31 6.75 
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Table 11 – Optimal diameters (mm) comparison for the Two Loop WDN 

 

Pipe 

Geem 

(2006) 
w = 10.4973 

w = 10.5879  

Suribabu 

(2012) 
w = 10.667 

Ezzeldin et 

al. (2014) 
w = 10.6744 

Eryigit 

(2015)  
w = 10.4973 

w = 10.5088 

w = 10.667 

Zhou et al. 

(2016) 
w = 10.5088 

w = 10.6744 

Surco et 

al. (2017) 
w = 10.667 

Present 

work 
w = 10.667 

1 457.2 508 457.2 457.2 457.2 457.2 457.2 

2 254 254 254 254 254 254 254 

3 406.4 406.4 406.4 406.4 406.4 406.4 406.4 

4 101.6 25.4 101.6 101.6 101.6 101.6 101.6 

5 406.4 355.6 406.4 406.4 406.4 406.4 406.4 

6 254 254 254 254 254 254 254 

7 254 254 254 254 254 254 254 

8 25.4 25.4 25.4 25.4 25.4 25.4 25.4 

Cost ($) 419,000 420,000 419,000 419,000 419,000 419,000 419,000 
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Table 12 – Nodes Pressure and demand for the Gomes et al. (2009) WDN 

 

Node 
Demand 

(L/s) 

Elevation 

(m) 

Minimum 

Pressure (m) 
 Node 

Demand 

(L/s) 

Elevation 

(m) 

Minimum 

Pressure (m) 

1 2.51 5.0 39.72  31 4.94 3.5 18.09 

2 44.07 5.0 38.24  32 4.09 4.5 16.85 

3 41.24 4.0 35.62  33 3.68 5.0 16.51 

4 1.04 4.5 25.32  34 4.04 5.0 17.82 

5 0.86 4.5 26.69  35 3.22 6.0 15.12 

6 1.32 4.5 34.64  36 2.53 4.5 16.37 

7 1.35 4.5 24.80  37 2.31 4.5 16.38 

8 8.59 5.0 23.19  38 2.50 4.0 17.09 

9 6.40 4.5 22.24  39 2.89 4.0 18.88 

10 6.07 5.0 19.96  40 2.48 4.0 16.54 

11 4.95 3.5 15.36  41 4.61 4.0 16.52 

12 8.38 3.5 15.10  42 3.47 4.0 17.66 

13 11.70 3.5 16.85  43 3.61 4.0 19.14 

14 5.63 5.0 17.66  44 5.17 4.0 21.91 

15 5.57 6.0 15.27  45 6.48 4.0 16.95 

16 6.30 6.0 15.28  46 4.91 4.5 15.98 

17 3.26 6.0 17.40  47 6.50 4.0 16.38 

18 3.60 6.0 18.36  48 4.97 4.5 26.76 

19 4.83 6.0 15.38  49 2.97 3.0 20.54 

20 4.50 6.0 15.24  50 1.80 5.0 16.05 

21 2.80 5.0 16.59  51 2.96 4.0 16.68 

22 5.46 3.0 19.37  52 4.66 3.0 16.63 

23 62.45 3.5 19.47  53 4.54 4.5 15.06 

24 8.19 6.0 18.10  54 8.80 4.5 15.56 

25 58.87 3.5 15.14  55 4.26 4.5 20.05 

26 3.26 3.5 15.12  56 2.98 5.0 29.35 

27 4.36 4.3 26.09  57 3.91 5.0 22.84 

28 4.25 4.0 24.57  58 3.70 4.7 19.41 

29 4.56 2.5 22.76  59 1.86 5.0 15 

30 8.32 2.5 20.64  60 3.12 5.0 15 
     61 3.52 4.5 15 
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Table 13 – Results comparison for the Gomes et al. (2009) WDN = 10.674) 

 

Cost (US$) 
Gomes et al. (2009)  Surco et al. (2017) 

present paper 

 

2,200,784.60  2,123,238.50 2,121,618.90 

Diameters (mm) 

Pipe 
Gomes et al. 

(2009) 

Surco et al. 

(2017) 

present 

paper 
 Pipe 

Gomes et al. 

(2009) 

Surco et al. 

(2017) 

present 

paper 

1 600 600 600  37 100 100 100 

2 600 500 500  38 100 100 100 

3 600 450 500  39 100 100 100 

4 500 450 400  40 150 100 100 

5 350 100 100  41 100 100 100 

6 100 300 300  42 100 100 100 

7 250 400 400  43 100 100 100 

8 400 400 500  44 100 100 100 

9 200 400 400  45 100 100 100 

10 100 400 400  46 100 100 100 

11 100 400 400  47 100 100 100 

12 100 100 100  48 100 100 100 

13 400 100 100  49 100 100 100 

14 400 100 100  50 100 100 100 

15 400 100 100  51 150 150 150 

16 150 100 100  52 150 150 150 

17 150 100 100  53 100 100 100 

18 100 100 100  54 100 100 100 

19 100 100 100  55 100 100 100 

20 100 150 150  56 150 100 100 

21 100 200 200  57 150 150 100 

22 100 100 100  58 150 100 100 

23 100 100 100  59 100 100 100 

24 150 100 100  60 100 100 150 

25 150 100 100  61 100 100 100 

26 150 150 150  62 100 100 100 

27 100 350 350  63 100 100 100 

28 100 350 400  64 100 100 100 

29 300 200 200  65 150 100 100 

30 350 100 100  66 150 150 150 

31 350 100 100  67 100 100 100 

32 250 250 250  68 100 100 100 

33 250 250 250  69 100 100 100 

34 150 150 150  70 100 100 100 
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35 150 150 150  71 100 100 100 

36 100 100 100  72 100 100 100 
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Table 14 – Diameters (mm) for the Two Source WDN 

 

 
 

Kadu et al.  (2008) 

 = 2.234x1012 

Ezzeldin et al. 
(2014) 

 = 10.6744 

Present work

 = 10.6744 

Suribabu 
(2012) 

 = 10.667 

Ezzeldin et al. 
(2014) 

 = 10.667 

Present work

 = 10.667 

1 1000 900 900 1000 900 900 

2 900 900 900 1000 900 900 

3 350 400 350 400 350 350 

4 250 250 300 200 300 300 

5 150 150 150 150 150 150 

6 250 200 250 250 250 250 

7 800 800 800 1000 800 800 

8 150 150 150 150 150 150 

9 600 400 450 450 450 500 

10 700 500 600 600 500 600 

11 900 900 900 1000 800 900 

12 700 700 700 800 700 700 

13 500 600 500 500 600 500 

14 450 450 300 350 450 300 

15 150 150 150 150 150 150 

16 450 500 500 500 500 500 

17 350 350 350 300 350 350 

18 400 350 350 450 400 400 

19 450 200 150 150 150 250 

20 150 150 200 150 150 150 

21 600 700 750 900 700 700 

22 150 150 150 150 150 150 

23 150 500 450 450 450 400 

24 400 350 350 300 350 350 

25 500 700 600 750 700 600 

26 200 250 250 150 250 250 

27 350 300 300 300 250 300 

28 250 300 250 250 300 250 

29 150 200 250 150 200 250 

30 300 250 300 300 300 300 

31 150 150 150 150 150 150 

32 150 150 150 150 150 150 

33 150 150 150 150 150 150 

34 200 150 150 150 150 150 

Cost (R$) 123,268,864a 125,843,995 124,986,030 140,177,210 125,501,130 125,136,870 
a value corrected by Ezzeldin et al. (2014): R$ 126,368,865. 
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Table 15 – Nodes calculated pressure for the Two Source WDN 

 

Nodes 
Kadu et al.   

(2008) 

Present work 

 = 10.667 

 Present work 

 = 10.6744 

3 98.98 98.31  98.31 

4 95.76 95.14  95.14 

5 88.79 87.88  87.80 

6 85.28 86.20  86.07 

7 88.01 87.84  88.40 

8 91.64 91.09  91.52 

9 91.84 91.31  91.31 

10 88.89 88.55  88.58 

11 87.11 86.88  86.89 

12 85.15 85.21  85.16 

13 86.81 85.58  84.18 

14 94.13 94.14  94.14 

15 87.12 88.26  88.20 

16 82.10 82.08  82.26 

17 90.26 91.26  91.88 

18 85.25 85.85  85.67 

19 85.97 85.95  83.90 

20 83.89 82.22  82.49 

21 84.03 85.81  85.70 

22 84.23 86.80  87.38 

23 82.20 83.74  83.27 

24 83.70 82.41  80.69 

25 80.64 80.10  80.23 

26 80.16 82.05  82.07 
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Table 16 – Calculated diameters, velocities, pressures and final cost for the Bessa WDN 
 

Pipe/Node 
Diameter (m) 

Carvalho (2007) 

Diameter (m) 

Present work 

Velocity 

(m/s) 

Present 

work 

Pressure 

(m) 

Carvalho 

(2007) 

Pressure 

(m) 

Present 

work 

1 0,6 0,6 1,49 Reservoir 

2 0,5 0,45 1,82 41,03 41,02 

3 0,35 0,35 1,37 39,69 38,8 

4 0,45 0,45 1,54 35,33 34,45 

5 0,4 0,4 1,63 26,26 25,4 

6 0,1 0,1 0,48 36,39 36,36 

7 0,3 0,3 1,19 29,79 29,69 

Cost ($) 127.574.470 126.806.220    
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