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Abstract  

This review aims to cover the uses of the commercially available protease Alcalase 

in the production of biologically active peptides since 2010. Immobilization of Alcalase has 

also been reviewed, as immobilization of the enzyme may improve the final reaction design 

enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this 

review presents the production, via Alcalase hydrolysis of different proteins, of peptides 

with antioxidant, angiotensin I–converting enzyme inhibitory, metal binding, antidiabetic, 

anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that 

improve the functional, sensory and nutritional properties of foods. Alcalase has proved to 

be among the most efficient proteases for this goal, using different protein sources, being 

especially interesting the use of the protein residues from food industry as feedstock, as this 

also solves nature pollution problems. Very interestingly, the bioactivities of the protein 

hydrolysates further improved when Alcalase is used in a combined way with other 

proteases both in a sequential way or in a simultaneous hydrolysis (something that could be 

related to the concept of combi-enzymes), as the combination of proteases with different 

selectivities and specificities enable the production of a larger amount of peptides and of a 

smaller size. 

 

Key words: protease immobilization, protein hydrolysis, bioactive peptides, 

combienzymes, enzyme selectivity, enzyme specificity. 
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1. Introduction  

Proteases are recognized as widely applicable enzymes, standing out for their uses 

in the pharmaceutical, cleaning, and food industries [1]. More recently, their application in 

the area of nutraceuticals has been highlighted, finding a wide application in the liberation 

of bioactive peptides. Peptides, even more so than proteins, have been showing potential for 

bioactivities that were not detected or occurred with less intensity in the intact protein [2, 

3]. These bioactivities have been highly related to the type of protein used as raw material 

for the hydrolysis, since its size (number of amino acids) and the terminal amino acids 

(amino and carboxyl-terminal amino acids) can determine the potential bio-activity of the 

produced peptides. The final properties of the hydrolysate will be also determined by the 

specificity and selectivity of the utilized enzymes [4]. Alcalase has been shown to be one of 

the most efficient enzymes in the release of bioactive peptides from different protein 

sources. This review addresses these characteristics and potentialities of Alcalase, 

especially related to applications in the release of peptides with outstanding bio-

functionalities. 

 

1.1. Proteases  

The most striking function of proteases is their role in promoting proteolysis, which 

classifies them as ―Hydrolases‖ into the international system for the classification and 

nomenclature of enzymes (EC number), class 3, and subclass 3.4. - hydrolysis of peptide 

bonds [5]. Due to the different hydrolysis selectivity, proteases are classified as 

endopeptidases and exopeptidases, a characteristic that indicates the position in which the 

protease exercises its function in the substrate protein chain, but also indicates the 
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characteristic of the final products. Using endoproteases, for example, the researcher can 

generate products with larger peptides than using exoproteases. Amino exopeptidases are 

generally associated with the release of products with one, two, or three amino acid 

residues from the N-terminus, while carboxy exopeptidases are able to release free amino 

acids or dipeptides from the C terminus [6]. Endopeptidases are not restricted to terminal 

peptide linkages and find a much wider range of options for cleaving sites, and may also be 

more selective. 

This hydrolytic function of proteases is not exercised randomly and it is usually not 

coincident between different proteases. Proteases have distinct specificities and 

selectivities, and this fact makes the final product of protein extract hydrolysis extremely 

varied depending on the enzyme even using the same substrate protein extract. This 

difference between the actions of different proteases can be seen as an advantage in the 

sense of having a huge variety of "tools" to be chosen and thus obtaining a wide range of 

final products from the same hydrolyzed protein source [1, 7]. These protease features 

determine how the enzyme active center interacts with the protein substrate chain, which 

largely depends on the configuration of the enzyme active site. In this way, proteases can 

also be divided into clans that highlight the particularities of their tertiary structure and 

catalytic sites, classifying proteases according to the iconic amino acid in the active site or 

metal present in its structure. That way, proteases are classified as: aspartic peptidases, 

cysteine peptidases, metallo peptidases, or serine peptidases, in addition to those with 

mixed catalytic type or unknown catalytic mechanism - unknown type [8, 9]. 

 

1.2. Alcalase 
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In the context of proteases, Alcalase is considered a ―serine endopeptidase‖, which 

provides information about the catalytic structure known for the classical catalytic triad of 

amino acids, being serine one of them. This enzyme also cleaves proteins in the middle of 

the amino acid chain [8, 9]. It was initially obtained from Bacillus subtilis and called 

―Subtilisin Carlsberg‖. It was discovered by Linderstrom-Lang and Ottesen and purified by 

Gtintelberg and Ottesen [10]. Other proteases were produced from different strains of 

Bacillus subtilis. They presented broad specificity with an alkaline pH optimum. This 

enzyme has also been called subtilisin A, subtilopeptidase A, and when launched by 

Novozymes, "Alcalase". Nowadays this enzyme is produced by submerged fed-batch 

fermentation using Bacillus licheniformis. 

Alkaline proteases are very significant from an industrial point of view, because of 

their activity and stability at alkaline pH values, having been used primarily as additives in 

detergent formulations. But their applications are increasingly broadly. They can be 

employed in the dehairing and bating leather, meat tenderizing, cheese flavor development, 

baked manufacture, or improving digestibility of animal feeds [11-14].  

Alcalase, like other alkaline proteases, was first applied widely as a component of  

cleaning products, being the first detergent protease developed by Novozymes during the 

1960s [15]. Later, other applications of Alcalase have been proposed, such as auxiliary in 

degumming of silk fibers process [16] or other fabric processes such as the enzymatic 

surface modification of polyamide [17]. Alcalase found a wide field of application in the 

production and modification of food. This application gained a huge impact, as it will be 

exposed in this review, with its use in the production of protein hydrolysates. These 

applications were highlighted in the 70s, as in the report of Hale (1972) with its application 

in making fish protein concentrates after Alcalase catalyzed hydrolysis [18]. 
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Commercial ―Alcalase‖ is a registered trademark of Novozymes Corp. and 

consists of a liquid enzymatic preparation composed of about 50% (w/w) glycerol, 41% 

(w/w) water and 9% (w/w) protease extract from Bacillus licheniformis. Its activity is 

expressed in Anson Units (AU) and the most typically activity is ≥2.4 U/g, which may have 

purity specifications for food-grade product, according to conditions by the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA) and the Food Chemical Codex 

(FCC). 

The positions of the amino acids in the substrate around the hydrolysis site are 

conventionally numbered in P1, P2, P3, etc., to the left of the scissile bond and as P1', P2', 

etc., those to the right of the hydrolysis site. Considering that in a protein chain it is 

assumed that the first amino acid has the N-terminus and the last the C-terminus, when the 

peptide bond is broken, the amino acid corresponding to P1 will be the one that presents the 

radical carboxyl terminal of the new fragment or newly generated peptide. Equally, the 

amino acid present in P1' will be the new terminal amino of the second fragment released 

[19].  

Alcalase specificity is described as preferential for a large uncharged residue in P1, 

but other specifications have already been pointed out. Adamson and Reynolds (1996) 

observed the cleavage of peptide bonds when the amino acids Glu, Met, Leu, Tyr, Lys, and 

Gln are positioned at P1, preferentially if Glu was at P1 and also another hydrophobic 

residue in P2' or P3′ [19]. . In this way, Alcalase can be used to obtain peptides with general 

hydrophobic characteristics. Due to the wide range of amino acids that it can recognize, the 

reaction of protein hydrolysis catalyzed by Alcalase has a strong tendency to give a 

hydrolysate with many peptides of small size. 
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This broad enzyme selectivity and specificity permit the use of Alcalase in a wide 

variety of protein substrates always yielding a high protein hydrolysis degree, either applied 

individually or in association with other proteases. When Ahmadifard et al. (2016) 

performed a comparison between the efficiencies of Alcalase, papain and a commercial 

cocktail containing trypsin, thymotrypsin, and aminopeptidase in the enzymatic hydrolysis 

of rice bran protein concentrate and soybean protein the results showed that Alcalase 

presented a higher capability for hydrolysis (about 10 times higher than the other tested 

enzymes) [20]. 

In the study by Kula et al. (2020), when the enzymes Trypsin and Alcalase were 

used separately, they reached a degree of hydrolysis of Trachinus draco proteins of about 

44%, but when they were used in a sequential way (2h for trypsin hydrolysis and, after, 2h 

of hydrolysis using Alcalase) the hydrolysis degree reached a value of about 78%. These 

results illustrate the synergy effect of two enzymes that act in different sites of the protein 

to be digested, since they present different specificities [21]. 

The interest in protein hydrolysates has been progressively growing in the last 

times, being an interesting alternative to the use of intact proteins both in foods [22] and 

feed applications [23]. The interest in protein hydrolysates is founded on improving the 

characteristics of the protein, increasing its digestibility or reducing its allergenic 

characteristic. Moreover, the production of new compounds, free amino acids and peptides 

of varying sizes and sequences, may improve the functional properties of the original 

protein, depending on the source the substrate protein and of the employed protease [1, 7]. 

Among these peptides, many can have bio-functions, that is, they can positively impact 

human and animal metabolism and health, which has intensively attracted research in order 
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to establish protocols for the production of these peptides [24]. Alcalase has found a broad 

field of application in this matter. That is in fact the main objective of the current review. 

 Alcalase is remarkably stable at moderately alkaline pH values. This has made it a 

very adequate enzyme for detergents [25]. However, it is not so stable under other pH 

conditions. The company reports that optimal activity may be found at pH 10, maximum 

activity at 70ºC and that the enzyme maintains full activity at room temperature in the pH 

range 5 to 11, with a deeper decrease in activity at more acidic pH vales than at more 

alkaline pH values [26]. The enzyme is also quite stable in organic medium, and this has 

permitted to use it in many different reactions [27]. For example, in 2- methyl-2-propanol 

and ethanol, 50% of the initial activity was retained after 5 days, and in tert-amyl alcohol, 

Alcalase remained fully active for weeks. However, in methanol, only 50% of the initial 

activity was retained after 35 min. The stability increased as the polarity or dipole moment 

of the solvents decreased. This means that Alcalase was 4 fold more stable than Subtilisin 

Carlsberg in ethanol [27]. That is, even if the enzyme is very stable, further stabilization 

may enlarge the range of operational conditions.  

1.3. Bioactive peptides 

Proteins are important health promoting agents due to their nutritional and 

nutraceutical potential. Both the intact form of proteins and their free amino acids or 

peptides can perform these functions, but it has been shown that peptides present a greater 

potential to exhibit bioactivities, due to their particular potential to be better absorbed 

through the small-intestinal epithelium by passive transcellular mechanisms, carrier-

mediated transport via PEPT1, transcytosis, or via paracellular mechanisms [4]. This way, 
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peptides are effectively able to be applied as health promoters, whether in curative and/or 

preventive metabolic aspects in vivo [3].   

Many bio-functionalities of peptides have been demonstrated on in vitro and in vivo 

studies, including positive impacts on cardiovascular, immune or nervous systems, such as 

inhibitors of the angiotensin-I-converting or dipeptidyl peptidase IV enzymes, antioxidant, 

antithrombotic, opioid, hypocholesterolemic or immunomodulating activities [2]. One fact 

that is usually unexplored is that some of the bioactivities of peptides may be negative, as 

the possibilities of sequence, confirmation, size, etc. are huge. These negative peptides will 

be presented when analyzing the whole protein hydrolysate, and they can hide the effects of 

some beneficial peptides. That way, a purification (at least a fractioning) of the peptides 

may help detect positive bioactive peptides. The negative ones could be useful to 

understand some mechanism of action. 

The combination of these potential activities and their capability to reach the site of 

action makes these molecules extremely interesting. These capabilities seem to be related to 

specific characteristics of the peptides, such as size and sequence [4]. Some of the 

relationships between the concentration and/or certain characteristics of the peptide that 

make it preferable (or not) for a given adsorption route are already evident. For example, 

when peptides are in low concentration, the route through absorption transport by PepT1 is 

the major contributor to the total transport rate, with passive transport being favored when 

high peptide concentrations are available in the absorption environment [28]. But the 

concentration of the peptide is not the defining factor of the absorption pathway. The 

pathway through PepT1 is preferably used by small peptides, as di- or tri-peptides with 

neutral charge and hydrophobic nature, with special affinity for peptides containing 

nonpolar amino acids. The same may be said for peptide transport by transcytosis, while the 
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paracellular route preferably transports low molecular weight and hydrophilic peptides [4, 

28, 29]. Regarding the bioactivities exhibited by the peptides, these are also related to their 

characteristics. As highlighted by Nwachukwu and Aluko, low molecular weight peptides 

exhibited antioxidant potential activity, mainly if they present hydrophobic amino acids 

such as Leu or Val in their N-terminal regions, and even stronger antioxidant activity may 

be found if they presented a sulfur‐  (Cys and Met) , aromatic amino (Phe, Trp, and Tyr) or 

His residues [30]. Lee and Hur showed that  the presence of proline, isoleucine or leucine at 

the N-terminus of the peptide increased the ACE-inhibitory activity of the peptides [31].  

 The characteristics of the peptides are closely related to the protein chain from 

which they were released and the protease used for this hydrolysis. With regard to the 

protein chain, different proteins, with their different sequences of amino acids and sizes, 

may be susceptible to hydrolysis, and they can release very different peptides, even if the 

same enzyme is used in the hydrolysis process. That way, different protein sources have 

been used in the generation of protein hydrolysates such as plants, fish, milk, egg or even 

insects [32, 33]; which produce a very wide repertoire of final products. Although the 

source of the protein does not exactly define the characteristic of the protein itself, the 

matrix where this protein is immersed may be very different depending on the enzyme 

source, and some characteristics of this matrix can influence the performance of the enzyme 

chosen for the protein hydrolysis [34-38]. The cellular structure of the material, tissue 

integrity, presence or absence of protease inhibitors, are some examples of characteristics 

that make the environment in which the protein is more or less adequate to be hydrolyzed 

by a specific enzyme. The selection among the different protein fractions of a material, or 

types of previous processing of the protein substrate material before the hydrolysis step, can 

make a protein source more or less suitable for hydrolysis and release of bioactive peptides 
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[32, 33, 39]. Alcalase stands out as a protease able to release peptides with potential for 

bioactivities [40]. These matters will be the subject of the current review. 

 

2. Immobilization of enzymes  

Enzymes have some properties that make them highly desirable catalysts with very 

good prospects for industrial implementation; they are very active under mild conditions, 

very selective and specific [41-45]. This is stressed nowadays with the huge public demand 

for green chemistry [45-48]. However, their biologic origin means that they have evolved 

under natural selection to give a rapid answers to stress conditions, making some enzyme 

properties not desirable for industrial use: enzymes are inhibited, unstable, present 

saturation kinetics, etc. [49]. Moreover, enzymes are water-soluble molecules, making their 

recovery and reuse difficult [50]. Mainly in food uses, enzyme solubility causes the enzyme 

or enzyme fragments to be incorporated to the aliment, and this is not always desired as it 

can give rise to some allergic reactions. Enzyme immobilization solved this problem, 

enabling the preparation of heterogeneous biocatalysts [51, 52].  

Together with enzyme reuse, an immobilized enzyme may be utilized in many 

reactor configurations and permits a stricter control of the reaction [53, 54]. Moreover, 

modern enzyme immobilization pursues other objectives [55]. The most usual is the 

improvement of enzyme stability [56-58]. Enzyme operational stabilization may be 

accomplished just by having the enzymes immobilized on the surface of the pores of porous 

particles, that will prevent enzyme intermolecular interactions (preventing enzyme 

proteolysis or enzyme aggregation) or interactions with external surfaces (e.g. gas bubbles 

or drops of solvents) [59, 60] that can lead to enzyme inactivation [61]. More interestingly, 
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immobilization of enzymes via multipoint covalent attachment may permit the 

rigidification of the enzyme structure, limiting the possibility of conformational changes 

and improving enzyme stability caused by any distorting agent. This can allow extending 

the range of conditions where the enzyme is utilized [62-64]. When the enzyme is a 

multimeric enzyme, and the first step of enzyme inactivation is subunit dissociation, 

immobilization via all enzyme subunits will fully prevent this inactivation cause [65], once 

again permitting the use of the immobilized enzyme under conditions where the free 

enzyme cannot be used [66]. Moreover, a proper immobilization can allow purifying the 

enzyme during the immobilization process [67]. 

Immobilization may also improve enzyme activity (e.g., that is the case of lipases 

immobilized on hydrophobic supports via interfacial activation at very low ionic strength) 

[68-71], reduce inhibition and tune enzyme selectivity or specificity [56]. That way, 

enzyme immobilization is not just a simple way to enable enzyme reuse, but it may become 

a powerful tool in the design of an industrial biocatalyst. However, this can only be 

obtained if the support, active group and immobilization protocol are properly designed 

[72-75] .  

2.1. Immobilization of proteases 

Proteases, as stated before, have many possible applications [76-81]. Proteases 

immobilization and all advantages derived therefrom may be also a very important tool to 

permit the use of these enzymes in industry [1, 82]. For example, in many instances 

proteases are used to hydrolyze precipitated proteins (e.g., after oil extraction with benzene) 

that need to be redissolved using chaotropic agents [83, 84]. An extensively rigidified 

enzyme by multipoint covalent attachment may be used even in these media [85-87] 
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(Figure 1). Using proteases, one of the additional advantages of enzyme immobilization is 

the prevention of autolysis, a general phenomenon using proteases [88-91]. This protection 

mainly occurs if the enzymes are immobilized on porous supports (using non-porous 

supports, the enzymes on one particle can hydrolyze the enzyme molecules located on 

another particle) [61] (Figure 2). When the enzymes are used in the hydrolysis of proteins, 

in many instances the hydrolysis degree is a key point to reach the desired properties in the 

product [92-96], and the use of immobilized proteases may facilitate the control of the 

hydrolysis degree. Using free enzymes, the only way to stop the reaction is protease 

inactivation, and this inactivated enzyme will become part of the final product. Some new 

applications of immobilized proteases have been reported. For example, immobilized 

proteases may be utilized in the two-step coagulation of milk proteins, using during the 

hydrolysis step a temperature at which the hydrolysate precipitation does not occur, and 

then, changing the conditions after filtration to recover the immobilized enzyme, where the 

hydrolysate precipitation step takes place [97-102]. Immobilized proteases have been used 

to produce antimicrobial packages, as they can destroy bacteria and some fungi [103-107].  

However, even with the many advantages and applications of immobilized 

proteases; there are some specific problems that need to be considered in protease 

immobilization. If they are going to be employed in fine chemistry using small substrates, 

enzyme orientation will not be a key point in the final immobilized enzyme performance. 

However, if the enzyme is used in the hydrolysis of proteins some additional problems may 

appear [1, 61] (Figure 3). Only properly oriented enzyme molecules can attack these large 

substrates, any enzyme molecule with the active center oriented towards the support surface 

will be fully inactive at least in the first hydrolysis steps, although perhaps it may attack to 
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the successively smaller protein fragments generated in the hydrolysis [108]. Moreover, the 

enzyme support loading determines the requirements for a proper enzyme orientation [85, 

86, 109]. A lowly loaded enzyme biocatalyst, with the enzyme molecules dispersed on the 

support surface, may have no steric hindrances to  hydrolyze the protein substrate even if 

the enzyme molecules have not the active center fully oriented opposite to the support 

surface (Figure 4). However, only perfectly well oriented enzyme molecules will be active 

versus the proteins using a fully loaded protease biocatalyst. This is valid for porous and 

non-porous supports (Figure 4). 

The problems will be also influenced by the size of the substrate protein. If the 

substrate protein is much larger than the protease, this can result in the pore diameter of the 

support having a significant proteolytic activity, as pore diameters that permit the entry of 

the enzyme may not permit the entry of the protein substrate (Figure 5). The use of supports 

with larger pores reduces the volumetric loading capacity of the support and also their 

mechanical resistance, both undesired effects [72]. If this is not considered, it may be that 

an immobilized protease biocatalyst with perfectly oriented enzyme molecules may be 

almost fully inactive in the target process. 

The situation using porous supports becomes more dramatic using insoluble 

substrates, such as textile materials, as only the enzyme immobilized on the support 

external surface will be able to  hydrolyze  the substrate [61] (Figure 6). This may be under 

0.1% of the enzyme molecules immobilized on a porous support. Using solids as substrates, 

only non-porous nanoparticles can be utilized as catalysts, as in this case at least a 

significant proportion of the enzyme molecules can to the solid (if properly oriented) 

(Figure 7). Magnetic nanomaterials may permit the handling of these small particles [82]. 
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However, it should be stressed that now the enzyme is neither protected from interfaces nor 

proteolysis [110].  

All the steric problems are critical at the beginning of the reaction. However, the 

expected reaction course may be quite different from those when these steric problems do 

not exist. The initial protein substrate is very large, but the smaller fragments produced by 

the hydrolysis caused by the few available enzyme molecules that can attack the substrate,  

may be later subject of hydrolysis by more enzyme molecules no so favorably  

immobilized, and when the size is very reduced, by all enzyme molecules (Figure 8). That 

is, a progressive acceleration of the reaction may be found when the protein hydrolysis 

reaction advance. 

There are some problems when analyzing the effects of immobilization on protease 

stability. The first one is that if autolysis plays an important role in protease inactivation 

[110], an enzyme just immobilized and dispersed in a porous support may, apparently, 

greatly increase enzyme stability, as this autolysis is no longer possible [61]. In this 

instance, the protease concentration in free form may determine the apparent stability: the 

more concentrated the enzyme is, the more autolysis occurs. Mixing the enzyme with some 

inert protein, or competitive inhibitors, may reduce this problem, enhancing proteases 

storage stability. Another problem is that the liquid formulations of proteases may have 

some agents to prevent this autolysis, usually presenting stabilizing effects on the enzyme 

[111]. That way, the use of the concentrated enzyme solutions will have a high 

concentration of these reagents, while diluted concentrations of this extract will reduce their 

concentration. That is, the protease stability may increase when the crude protease solution 

concentration increases. To prevent this, the best solution is to compare the immobilized 
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enzyme with one-point covalently immobilized enzyme, as this should have stability 

properties very similar to those of the free enzyme, but in the absence of any intermolecular 

process [112, 113] (Figure 9). Next, we will focus on the examples of immobilization of 

Alcalase. 

2.2. Immobilization of Alcalase 

We will next review the different strategies applied to immobilize Alcalase since 

2010. Alcalase immobilization will be important to facilitate its reuse. Moreover, although 

the enzyme is very stable compared to other proteases, (mainly under alkaline conditions  

and also in some organic solvents (see a section 1.2), further stabilization of the enzyme 

may permit to enlarge the range of conditions where the enzyme may be used [63, 64].  

In a first example, Alcalase was immobilized on glyoxyl agarose and utilized to 

produce hydrolysates of chickpea protein [114]. This biocatalyst was selected due to the 

high stabilization achieved when the enzyme was immobilized [115-117]. The protein 

hydrolysates feature improved when compared to the intact proteins, being this more 

remarkable at pHs near the isoelectric point of the intact chickpea proteins. Although the 

emulsifying activity did not improve, this treatment improved many other functional 

chickpea protein properties [114]. This biocatalyst was used by another group in the 

hydrolysis of whey protein isolate to reduce its antigenicity [118]. However, the 

immobilized enzyme did not reduce α- and β-lactoglobulins as efficiently as the free 

enzyme.  

In another research, lauroyl glycine lipoaminoacid was synthetized using a 

kinetically controlled strategy, comparing the performance of the octyl-agarose 
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immobilized lipase from Pseudomonas stutzeri and Alcalase immobilized on glyoxyl-

silica supports [119]. Both enzymes favor the lauroyl glycine synthesis over the Gly-Gly 

peptide synthesis, but the immobilized protease gave the best yield and selectivity balance: 

less than 5% for dipeptide and 40% yield for lauroyl glycine [119]. 

Later, Alcalase was immobilized in another research report using glass sol-gel 

matrices and tetramethoxysilane and the biocatalysts were used for catalyzing C-terminal 

amidation of Z-Ala-Phe-OMe [120]. The immobilized biocatalyst prepared with 

dimethyldimethoxysilane gave the best performance in the ammoniolysis of Z-Ala-Phe-

OMe. 115 mg of proteins could be immobilized per gram of dry silica xerogel. The 

immobilization improved the enzyme thermal stability at 70 °C threefold [120]. 

Vossenberg and coworkers were very active in the immobilization and use of 

immobilized Alcalase in this time period. In an interesting paper, they tried to 

simultaneously utilize a lipase and Alcalase as catalysts for the one-pot enzymatic synthesis 

of peptides [121]. The lipase could be hydrolyzed by the Alcalase if both enzymes were 

used in free forms. To avoid this, the lipase and the proteases were immobilized onto 

macroporous beads, showing that immobilization of either the lipase or the protease (and 

even better both enzymes) reduced this problem [121]. In another research, this research 

group studied the Alcalase catalyzed coupling of the carbamoylmethyl ester of N-protected 

phenylalanine with phenylalanine amide in tetrahydrofuran, using different immobilized 

Alcalase forms [122]. This is a kinetically controlled process, where the yields are 

determined by the kinetic properties of the enzyme and they are transient, as the product 

may be the substrate of the enzyme [123]. In this reaction, the maximum yields are 

determined by the enzyme properties and even by the way the enzyme is immobilized [62, 
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66, 124]. In this new research effort, the authors analyzed the effect of enzyme hydration 

prior to drying, and found a significant increase in the activity of the enzyme in this 

reaction by the hydration treatment. The best activity was obtained using dicalite activated 

using glutaraldehyde as immobilization support, but their low stability led the authors to 

conclude that the most promising Alcalase covalently immobilized biocatalyst for these 

reactions was the one prepared utilizing macroporous acrylic beads [122]. In a new research 

effort, this group studied the same reaction using the optimal Alcalase catalysts, and 

controlling the water activity during the reaction [125]. The kinetics of the process was 

analyzed, and they found that it followed a two-substrate kinetic model with two 

competitive product inhibition terms. The authors proposed the continuous removal of the 

strongest inhibitor (the glycol amide) to improve the reaction course [125]. Later, they 

focused their efforts on the stability of the immobilized Alcalase in this reaction [126]. The 

addition of molecular sieve beads reduced the operational stability of the immobilized 

enzyme (mainly because of the mechanical breakage of the biocatalyst particles), and 

intermediate rehydration of the immobilized enzyme also promoted some activity losses. 

The inactivation produced by the molecular sieves was studied in more detail in a further 

paper [127]. Enzyme inactivation followed three phases, a fast and initial enzyme 

inactivation induced by the dehydration, an inactivation that follows first-order kinetics, 

and a plateau. This was used to build a model that predicted the enzyme behavior in a 

reactor. Then, they moved the immobilization technique to the immobilization via 

crosslinking of enzyme aggregates. This technique is a carrier-free immobilization method 

that consists in the chemical crosslinking of enzymes that have been previously 

precipitated, permitting the use of the enzyme aggregates under any experimental condition 

[128, 129]. This research group, using the coupling of carbamoylmethyl ester of N-
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protected phenylalanine and phenylalanine amide as model reaction, employed Alcalase 

CLEA-OM (commercially available from CLEA Technologies). This catalyst was used 

again to analyze the effect of the water activity on the hydrolysis reaction (of the activated 

acyl donor) [130]. Results suggested that hydrolysis was relevant only if the water activity 

was over 0.2. This commercial biocatalyst was used later by another research group, to 

analyze the promiscuous capacity of the enzyme to produce C-C bonds (aldol, Henry and 

Mannich reactions) [131]. Moreover, Bayllis-Hillman reaction between methyl vinyl 

ketone and 4 -nitrobenzaldehyde happened through unspecific catalysis. Aza- Michael 

addition reactions of pyrrolidine, piperidine, and more efficiently using diethylamine to 

acrylonitrile were catalyzed by this commercial preparation [131]. This immobilized 

catalyst was also utilized to prepare (S)-clopidogrel, by resolving the building block(RS)-

N-Boc-2-chlorophenylglycine methyl ester [132].  

Alcalase has also been immobilized on magnetic nanoparticles, for example in 

chitosan-coated magnetic nanoparticles activated with glutaraldehyde [133]. This 

immobilization broadened the pH and temperature range where the enzyme could be 

utilized. The biocatalyst was employed in a proteolysis reaction, obtaining a hydrolysis 

degree of 18.38 %, versus the 17.50 % obtained using the free enzyme [133]. Immobilized 

Alcalase was found to be useful in the resolution of racemic mixtures of N-benzyl-3-

hydroxypyrrolidine and N-benzyl-3-hydroxypiperidine, as it exhibits the opposite 

enantiospecificity to other enzymes [134]. Alcalase was hydrophobically adsorbed onto 

macroporous silica gels submitted to diverse modifications [135]. The biocatalysts were 

stable in the dynamic kinetic resolution of racemic N-Boc-phenylalanine ethyl thioester via 

aminolysis with benzylamine producing (S)-N-Boc-phenylalanine benzylamide in high 
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enantiomeric purity. To reach this goal, the researchers coupled alternatively six 

biocatalyst-filled and five grafted silica gel-filled reactors, the enzymatic reaction was 

performed at 50 °C and the base-racemization was carried out at 150 °C [135].  

In another research, the profiles of produced peptides in the hydrolysis of whey 

protein were studied using free and immobilized Alcalase under different conditions [136]. 

The proposed conditions were a substrate concentration of 7%, pH between 8 and 9 and 

50°C, producing a hydrolysate with very good organoleptic features to be added in 

commercial desserts. In another paper, Alcalase was immobilized on alginate beads, and 

used to analyze the effect of ultrasounds in the hydrolysis of rapeseed protein [137]. The 

hydrolysis degree increased by almost 75% with ultrasound irradiation under optimal 

conditions. The same research group used that biocatalyst to hydrolyze casein [138]. This 

group later used triple-frequency ultrasound treatment to study its effects on the 

performance of immobilized Alcalase in the hydrolysis of corn gluten meal [139]. This 

improved the peptide concentration by 34.4 %, the degree of hydrolysis by 20.6 %, the 

relative enzyme activity by 25.8 %, and the ACE inhibitory activity by 24.1 % [139]. 

In another paper, Alcalase was immobilized by physical adsorption, enzyme 

crosslinking with glutaraldehyde or covalent enzyme binding to activated chitosan 

microbeads and used to hydrolyze soy protein and egg white [140]. A hydrolysis degree of 

almost 30% in 180 min was obtained by the enzyme immobilized on activated chitosan. In 

another research, mesoporous silica nanoparticles were coated with acrylic acid or chitosan, 

and employed to immobilize Alcalase [141]. The coated nano-particles gave better results 

in terms of Alcalase activity, stability and reusability. In another research, sol-gel 

immobilized Alcalase was used to hydrolyze proteins from seeds from Gnetum gnemon 
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[142]. After 2 hours at 50°C, around 23% of hydrolysis degree was obtained, with a profile 

showing low molecular weight peptides. These peptides presented a very good antioxidant 

activity [142]. In another example, Alcalase was immobilized on carboxyl-functionalized 

magnetic beads using the carbodiimide route and used to reduce the allergenicity of egg 

white protein [143]. The immobilization improved Alcalase thermal and storage stabilities 

and the obtained hydrolysates reduce IgE and IgG binding [143]. Other research reports 

used Alcalase and Flavourzyme immobilized on sodium alginate to hydrolyze seed proteins 

from Linum usitatissimum [144]. Among the produced peptides, those with a molecular 

weight over 1,000 Da improved the stability and mouthfulness of umami soup; while 

smaller peptides presented a significant effect on umami taste and bitterness [144]. Later 

on, amino silane modified yttria stabilized zirconia capillaries was used to immobilize 

Alcalase [145]. The degree of hydrolysis of lupin sunflower and casein protein isolates was 

controlled by adjusting the residence time and that way altering the enzyme specific peptide 

fingerprint [145].  

Alcalase was also immobilized using a nanoflower strategy [146, 147], using 

calcium hydrogen phosphate to trap the enzyme [148]. The biocatalyst increased by 57% 

the activity of the free enzyme in the hydrolysis of soybean protein isolates. The 

hydrolysates presented  a good calcium-binding and radical-scavenging capacities [148].  

In another paper the effect of the immobilization on glyoxyl agarose of Alcalase on 

the activity versus a small substrate (Boc-L-alanine 4-nitrophenyl ester) and versus casein 

were compared [149]. While with the small substrate the recovered activity was 50%, the 

recovered activity versus casein was under 20% at 50ºC. However, at 60 °C, the activities 

of free and immobilized enzyme became similar. Using the advantages of the solid phase 
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chemical modification [150, 151] the immobilized enzyme was treated with glutaraldehyde 

or was chemically aminated, these treatments only doubled the enzyme stability with high 

losses of enzyme activity. However, the modification with glutaraldehyde of the previously 

aminated enzyme greatly stabilized the immobilized enzyme and permitted to use the 

biocatalyst in the hydrolysis of casein at pH 9 and at 67 °C.  The enzyme could be reused 

under these drastic conditions for 5 hydrolytic cycles maintaining 50% of the activity, while 

the non-chemically modified immobilized preparation was almost inactive after 3 cycles. 

At 45 °C and pH 9, the modified enzyme could be used for six cycles of  6 h without a 

detectable decrease in enzyme activity [149]. The same group showed the synergy of 

different immobilization causes in the Alcalase immobilization on amino-glutaraldehyde: 

the enzyme was readily immobilized on amino-glutaraldehyde at low ionic strength while it 

was not immobilized on the amino support, and neither on amino glutaraldehyde at high 

ionic strength [152]. The immobilization pH value determined the activity versus casein. 

While when immobilizing the enzyme at pH 5 the activity versus casein decreased by 50%, 

after immobilization at pH 9 the activity increased to 140% and at pH 7 the immobilized 

enzyme doubled the activity of the free enzyme [149]. 

That way, Alcalase immobilization has been a topic of great interest in this time-

period, showing how it can greatly improve enzyme performance in diverse reactions. 

2.3. Coimmobilization of Alcalase with other proteases 

When two or more enzymes are used in a cascade reaction, the use of 

coimmobilized biocatalysts may give some kinetic improvements, mainly in the first stages 

of the reaction [61, 153, 154]. These advantages may be a key point in some instances, 

mainly if the intermediate product is unstable. However, enzyme coimmobilization has 
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some problems, which have been recently reviewed [155]. This makes that 

coimmobilization may only be recommended if the advantages outweigh the problems. 

Unfortunately, these drawbacks are hardly considered.  

The hydrolysis of proteins catalyzed by several proteases may be considered a 

cascade reaction [156, 157]. Thus, Alcalase and trypsin were coimmobilized in calcium 

alginate-chitosan [158]. The new coimmobilized biocatalyst gave a hydrolysis degree of 

65.8% while each single immobilized enzyme gave as maximum 45.5% or the free enzyme 

yielded 49.3% [158].  

In another research, Alcalase and trypsin were coimmobilized using magnetic 

nanoparticles that were first coated with chitosan, then with sodium tripolyphosphate, and 

finally treated with glutaraldehyde [159]. Enzyme stabilities were improved after 

coimmobilization. When used in various proteins hydrolyses, the catalysts yielded suitable 

degrees of hydrolysis, yields and antioxidant activities of the hydrolysates [159]. However, 

a comparison with the individually immobilized enzymes is lacking. 

 The coimmobilization of several proteases may have a great interest, but the studies 

that we have found in this time-period are limited. 

3. Production of bioactive peptides by Alcalase hydrolysis of proteins from different 

sources 

 Next, we will review the use of Alcalase in the production of bioactive peptides 

from 2010, as the amount of available papers is huge to make a full review of the uses of 

this enzyme even in this specific topic. We will revise the hydrolysis of proteins from 

different sources, using Alcalase, comparing Alcalase with other proteases, using Alcalase 
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and other proteases sequentially or using simultaneously Alcalase and other proteases 

(Figure 10). 

3.1. Production of multifunctional peptides 

Through the previous topics it was possible to observe that Alcalase has a high 

potential for the release of peptides with different bioactivities from different protein 

sources. 

In many instances, only one bioactivity of the protein hydrolysates is analyzed. 

However, it is very likely that these hydrolysates, containing many different peptides, can 

contain multiple bioactivities. Thus, a large number of studies find two or more potential 

bioactivities for the same hydrolysate produced by Alcalase hydrolysis. For example, 

Sutthiwanjampa and Kim produced a Venus clam hydrolysate using Alcalase , and this 

presented antioxidant, anti-tyrosinase and immunomodulatory activities [160]. Xie et al.  

showed that the mung bean hydrolysate, produced via Alcalase hydrolysis, exhibited the 

highest degree of hydrolysis and excellent antioxidant and ACE inhibitory activities, 

compared to the products obtained using other tested proteases [161]. Santos Aguilar et al. 

demonstrated the efficiency of using Alcalase in conjunction with Flavourzyme in the 

hydrolysis of chicken viscera producing an interesting hydrolysate with antioxidant and 

also antihypertensive properties [162]. 

 Using hydrolysates, this multiple function can be expected due to the wide variety 

of peptides that are released, especially in the case of enzymes such as Alcalase, whose 

broad specificity allows it to break many peptide bonds and generate a large number of 

different peptides. This number of fragments is even greater if an unpurified protein source 

is utilized as substrate, where countless chains of different proteins may be present. 
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In the case of hydrolysates, the tests reveal the potential of the mixture of peptides 

as a whole, and among the various peptides it may be those with different specific functions 

that give a multifunctional characteristic to the hydrolysis product. In the case of a peptide 

identified as multifunctional, it is the peptide itself that exhibited two or more activities. As 

described by Lammi et al., multifunctional peptides are those peptides ―which have the 

capacity to impart more than one physiological outcome by affecting different targets‖ and 

―may be considered an improvement in respect to monofunctional peptides‖[163]. 

 As an example, Kula et al. observed that the myofibrillar hydrolysate of Trachinus 

draco proteins after trypsin and Alcalase treatment were inhibitors of ACE and DPP4, 

beside they presented antioxidant and metal chelating activities. After isolating some of the 

peptides present in this hydrolysate, they observed that there were peptides with a single 

bio-function, such as Ala-Ala-Gly-Asn-Ser-Gly-Ser-Ser-Gly-Asn-Thr-Asn-Thr-Leu-Gly- 

Tyr-Pro-Ala-Tyr-Lys, that was a peptide with ACE inhibition, and also peptides with 

multifunctions such as Asn-Ala-Ser-Gly-Ser-Thr-Ala-Met-Lys-Gln-Ala-Val-Asp-Asn- Ala-

Tyr-Ala-Arg, presenting ACE inhibition, metal chelating and antioxidant activities, or Phe-

Pro-Gly-Asp-His-Asp-Arg presenting DPP4 inhibition, metal chelating, and antioxidant 

activities [21]. 

Other studies demonstrate Alcalase efficiency in releasing multifunctional peptides 

from different protein sources. Karamia et al. observed that peptides released from wheat 

germ protein by the action of Alcalase had different functions, such as 

GNPIPREPGQVPAY, an efficient radical scavengers and anti-hypertensive peptide. In the 

same hydrolysate, the authors identified the peptides TVGGAPAGRIVME and 

VGGIDEVIAK presenting both anti-hypertensive and anticancer activities [164]. Montone 

et al. characterized peptides released by Alcalase from cauliflower by-products with both 
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ACE inhibition and antioxidant functions, such as SKGFTSPLF peptide. Alcalase has also 

been used in combination with other enzymes to release these multifunctional peptides 

[165]. Zheng, Li, and Li , for example, identified three peptides with multifunctional 

function of coconut cake albumin after sequential digestion with Alcalase, Favourzyme, 

pepsin and trypsin presenting ACE-inhibitory and antioxidant activities [166].  

Due to their multifunctionality, these hydrolysates, and even more especially these 

specific peptides, could be more efficiently applied to control certain complex diseases. For 

example, in the treatment of cardiovascular diseases, which is a multifactor disease in itself 

[163], peptides that combine actions such as anti-inflammatory, hypotensive, 

hypocholesterolemic, anti-diabetic and / or antioxidant can act more broadly and effectively 

[163]. 

It is important to highlight that these multiple functions must be assumed to be even 

more present among hydrolysates and even among isolated peptides, than the literature 

presents, bearing in mind that the works often present tests with clearly complex 

hydrolysates in peptide composition but where unique bioactivities are tested. In other 

words, care must be taken not to admit that a single tested bioactivity represents the only 

monofunctionality covered by a given material. 

3.2. Production of peptides with antioxidant activity 

Free radicals affect both human health and food quality; in the body these unstable 

radicals react easily with biological macromolecules such as unsaturated lipids, nucleic 

acids (DNA and RNA) and carbohydrate polymers, which can cause oxidative stress, 

generating many health disorders such as neurodegenerative diseases, arteriosclerosis, 

cancer, diabetes mellitus and inflammatory diseases associated with tissue injuries [167-
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169]. In foods, the presence of free radicals causes their oxidation which directly affects 

food quality by alterations of flavor, color, texture and loss of nutritive value [168, 170]. 

For this reason, in order to preserve food quality, many synthetic antioxidants such as 

butylated hydroxyanisole, propyl gallate and butylated hydroxytoluene have been used in 

the food industry [171]. Nevertheless, it has been reported that, the use of large quantities 

of synthetic antioxidants causes stability problems in foods and can be a potential health 

hazard [172-174]. This has led to a strong demand and search for natural antioxidants that 

can replace synthetic compounds [175]. It is currently known that many natural products 

such as flavonoids, carotenoids, phenolic acids, vitamin E, ascorbic acid, proteins and their 

respective hydrolysates and peptides, possess antioxidant activity. Furthermore, they can be 

used as food additives and pharmaceutical excipients [176]. In this context, hydrolysates 

and peptides with high antioxidant activity have been prepared from many sources of 

proteins [177], and they represent an excellent option to be used as nutritional supplements 

and natural antioxidants in oxidative stress management [178]. 

As previously mentioned, enzymatic hydrolysis of proteins is an effective method to 

prepare antioxidant peptides, and in general, it is widely applied to improve and upgrade 

the nutritional and functional properties of proteins [179]. Next, examples of Alcalase 

utilization to produce antioxidant peptides from different protein sources are presented. 

3.2.1. Hydrolysis of vegetable proteins 

3.2.1.1. Use of stand-alone Alcalase  

There are many reports in which the enzyme Alcalase is used to hydrolyze proteins 

of vegetal origin to get antioxidant peptides. In this regard, one of the most reported 
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proteins for its conversion into peptides with antioxidant activity by hydrolysis with 

Alcalase is soybean protein [180]. It has been reported that 72 h of germination in 

combination with 1 h of Alcalase hydrolysis of Brazilian soybean cultivar BRS 133 

generated peptides with potent antioxidant activity and which are effective in the reduction 

of some inflammation markers [181]. Furthermore, optimized operational conditions of 

Alcalase hydrolysis (50 °C, pH 10.32, and enzyme/substrate ratio of 12%) of soybean 

protein produced hydrolysates with strongest antioxidant capacity [182]. Besides, the 

scavenging activity (43.6% on 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) 

(ABTS) radical in vitro) of Alcalase hydrolysate of soybean protein isolate can be 

improved by its modification with the plastein reaction catalyzed by Alcalase [183].  

A potent antioxidant peptide has been purified from soy protein hydrolysates 

obtained by Alcalase hydrolysis [184], and it has been observed that the Alcalase soybean 

protein hydrolysate which displayed 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical 

scavenging (IC50 = 4.22 mg/mL), ABTS radical scavenging (IC50 = 2.93 mg/mL), 

reducing power and metal ion-chelating activities (IC50 = 0.67 mg/mL), significantly 

inhibited the generation of intracellular reactive oxygen species in Caco-2 cells [185]. In 

another paper, soybean protein hydrolysate prepared with Alcalase was subsequently 

ultrafiltered and separated into four peptide fractions [186]. Results showed that fraction 

SPH-I (< 3 kDa) exhibited the strongest DPPH radical scavenging activity and reducing 

capacity. It also showed dose-dependent suppressed intracellular reactive oxygen species 

accumulation induced by H2O2 in Caco-2 cells. It also protected Caco-2 cells from H2O2-

induced oxidative stress via inhibiting lipid peroxidation and stimulating antioxidant 

enzyme activities [186]. In addition, the antioxidant peptides from the low molecular 
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weight fraction of Alcalase soybean hydrolysate presented cyto-protective effects against 

oxidative stress in human intestinal Caco-2 cells [187].  

Corn and its zein protein Alcalase hydrolysates have also been investigated for their 

antioxidant activity [188]. In this respect, Tang et al. evaluated the antioxidant properties of 

the purified fraction of Alcalase-treated zein hydrolysate and the results showed that free 

radical scavenging activity of zein depended on the radical species and was strongly related 

to the molecular weight and hydrophobicity of the constituting peptides [189]. In addition, 

corn protein hydrolysates prepared using Alcalase, exhibited excellent antioxidant activity 

after simulated gastrointestinal digestion, which was higher than the undigested hydrolysate 

activity [190].  

Alcalase has also been employed to hydrolyze Amaranthus protein isolates which 

led to the improved scavenging activity of the samples [191]. Among the different 

processes to treat this isolates, such as defatting, protein concentration, thermal treatment, 

hydrolysis with Alcalase and in vitro digestion [192], it was found that the combination of 

protein concentration and hydrolysis with Alcalase produced hydrolysates from amaranth 

seeds with higher antioxidant activity [192]. Furthermore, the application of Alcalase 

hydrolysate of amaranth proteins showed antioxidant properties in restructured fish 

products [193]. 

Chickpea protein hydrolysate obtained by Alcalase hydrolysis has also been studied 

as a potential source of natural antioxidants. In one report, the hydrolysis efficiency and 

antioxidant activity of Alcalase hydrolysate from chickpea protein was improved by 

ultrasonic pretreatment [194], while another study reports the modification by plastein 

reaction of the chickpea protein hydrolysates prepared by Alcalase with a hydrolysis degree 
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of 20.03%, which enhanced their reducing power and hydroxyl radical scavenging activity 

[195]. Moreover, a novel peptide was isolated by chromatographic fractionation of the 

Alcalase chickpea protein hydrolysate which displayed a DPPH radical-scavenging activity 

of 67% at 200 μg/ml and did not show hemolytic activity towards bovine erythrocytes 

[196].  

Literature reports dealing with the Alcalase hydrolysis of rice proteins are also 

frequent. In this context, rice bran protein extract hydrolysate prepared with Alcalase 

showed DPPH free radicals scavenging activity and a FRAP (Ferric Reducing Antioxidant 

Power) value of 32.1-35.5% and 951-1,018 µmol FeSO4/mL of hydrolysate, respectively 

[197]. In addition, the Alcalase hydrolysis of glutinous rice bran, a byproduct of milling 

rice, under optimal conditions (enzyme/substrate ratio of 2.84% and 480 min) produced a 

protein hydrolysate with an IC50 value of 0.87 ± 0.02 mg/ml in the DPPH assay [198]. It 

has also been reported that when rice protein was pretreated at high pressures, peptides with 

improved antioxidant properties were obtained [199].  

Alcalase has also been used to produce antioxidant peptides from pea protein [200]. 

The obtained hydrolysate showed a DPPH radical scavenging activity of 37.94 ± 1.24% 

and a hydroxyl (OH) radical scavenging activity of 28.43 ± 1.54% [200]. Besides, in order 

to improve the oxygen radical absorption capacity, 2,2-Diphenyl-1-picrylhydrazyl, 

superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates, 

isolated pea protein dispersions were pretreated at high pressure (400 and 600 MPa) before 

being subjected to Alcalase hydrolysis [201]. 

It is important to highlight that within the vegetable proteins, the proteins from 

different seeds have a central role as raw material for hydrolysis with Alcalase to obtain 
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antioxidant hydrolysates, proof of which are the numerous articles that have been published 

in this regard. For example, Alcalase rapeseed protein hydrolysates with a degree of 

hydrolysis of 25% exhibited notable reducing power (0.51 at 2.00 mg/mL) and showed 

scavenging activity against free radicals such as DPPH, superoxide, and hydroxyl radicals 

with EC 50 values of 0.71, 1.05, and 4.92 mg/mL, respectively [202]. In addition, when 

Alcalase rapeseed protein hydrolysates were fractioned by membrane ultrafiltration [203], 

they showed an oxygen radical absorbance capacity value of 1610 ± 113 µmol TE/(g 

sample), a peroxyl radical-scavenging capacity value of 622 ± 30 mg VC/(100 g sample), 

and a cellular antioxidant activity value of 25 ± 2 µmol QE/(g sample) and a corresponding 

EC50 value of 58 ± 3 µg/mL [203]. The hydrolysis of a flaxseed protein isolate with 

Alcalase was also performed as a strategy to generate antioxidant peptides [204]. The 

peptide GFPGRLDHWCASE showed a notable ORAC activity of 3.20 μmol Trolox 

equivalents/μmol of peptide [204]. Additionally, after in vitro simulated gastrointestinal 

digestion, the antioxidant capacities of flaxseed protein isolate and their Alcalase 

hydrolysate were compared [205]. It was found that the hydrolysate had the highest 

antioxidant capacity, measured by FRAP [205]. The Alcalase hydrolysis of African yam 

bean seed protein and further fractionation using membrane ultrafiltration showed that the 

<1 kDa peptides exhibited significantly better ferric reducing power, diphenyl-1-

picryhydradzyl (DPPH) and hydroxyl radical scavenging activities when compared to 

peptide fractions of higher molecular weights [206]. In another paper, tea seed (Camellia 

oleifera Abel.) protein was hydrolyzed using Alcalase at different degrees of hydrolysis 

[207]. It was found that as the degree of hydrolysis value increased, the hydrolysate 

antioxidant activities increased, so that hydrolysates obtained at 20 and 30% of degree of 

hydrolysis exhibited higher superoxide radical scavenging and stronger iron chelating 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

36 
 

activities respectively, than other hydrolysates [207]. Lead tree (Leucaena leucocephala) 

seed protein was also subjected to Alcalase hydrolysis at pH 9, using an enzyme to 

substrate ratio of 2%, for 90 min at 55°C [208], which allowed to obtain a hydrolysate with 

a ferrous ion chelating activity of 92.79%, high DPPH radical scavenging activity of 

76.21% and hydroxyl radical scavenging activity of 66.72% [208]. In another paper the 

optimization of the Alcalase hydrolysis conditions of fenugreek seed protein by response 

surface methodology was carried out [209]. The optimal conditions were an enzyme to 

substrate ratio of 2.32%, a temperature of 47.04 °C and a reaction time of 198.21 min, 

producing a hydrolysate with a hydroxyl radical scavenging activity of 69.49 % and a 

maximum DPPH radical scavenging activity of 50.99 % at the concentration of 40 mg/mL 

and 50 mg/mL, respectively [209]. On the other hand, it was demonstrated that Sorghum 

kafirin Alcalase hydrolysates had a good balance of antioxidant activity, yield, and 

economic efficiency [210]. Another studies report the isolation of a peptide with potent 

antioxidant activity from walnut protein hydrolysate [211], a novel antioxidant peptide with 

an amino acid sequence of SMRKPPG from peony (Paeonia suffruticosa Andr.) seed 

protein isolate [212], four antioxidant peptides identified as PMPVR, FETLPF, KMRDNL, 

and LDESKRF from Semen cassia (seeds of Cassia obtusifolia) hydrolysate [213], and an 

antioxidant peptide from oats globulin hydrolysate with the strongest hydroxyl and DPPH 

radical scavenging ability value of 58.38 ± 0.87% and 24.53 ± 0.53%, respectively [214], 

all of them produced by Alcalase hydrolysis. 

One interesting work reports that the Alcalase hydrolysis of melinjo seeds (Gnetum 

gnemon) at different stages of maturity (green, yellow and red) generated hydrolysates with 

different antioxidant activities [215]. Another study shows that the Alcalase hydrolysis of 
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defatted garden cress (Lepidium sativum) seed meal protein improved their antioxidant 

activity [216]. Hempseed protein isolate was hydrolyzed by Alcalase , and the hydrolysate 

obtained was subjected to DA201-C macroporous absorption resin, with simultaneous 

desalting and concentrating of hydrophobic fragments with improved free radical-

scavenging activities [217]. The active fraction was further separated to obtain two purified 

peptides which at a concentration of 10 μg/ml, which possessed protective effects against 

cell death and oxidative apoptosis [217].   

There are many other examples where vegetal proteins were hydrolyzed using 

Alcalase. For instance, glutelin from cocoa almond was hydrolyzed with Alcalase for the 

production of hydrolysates and peptide fractions with antioxidant activity [218]. Also, 

Alcalase hydrolysates from Bambara groundnut protein concentrate provided functional 

peptides with antioxidant properties which showed DPPH radical scavenging and metal 

chelating activities that increased with the degree of hydrolysis [219]. Otherwise, an 

antioxidant hydrolysate was obtained from Douchi protein hydrolyzed by Alcalase under 

optimal conditions (63℃, 1.4% of enzyme / substrate, and 1.7 h) [220]. In another paper, 

peptides with OH scavenging activity of 74.52% at a concentration of 1.0 mg/mL were 

isolated from sweet potato protein hydrolysates prepared by Alcalase [221], and it has been 

reported that if the Alcalase hydrolysis was performed after high hydrostatic pressure [222] 

or temperature (at 70, 80 and 90 °C) pretreatment [223], the degree of hydrolysis and the 

antioxidant activity of peptides from sweet potato protein were improved.  

Lupinus mutabilis (Tarwi) protein concentrate was also subjected to the action of 

Alcalase [224]. The highest radical scavenging activity (TEAC (Trolox Equivalent 

Antioxidant Capacity) value of 2.7 ± 0.1 μmol Trolox equivalents/mg protein and ORAC 
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(Oxygen Radical Absorbance Capacity) value of 3.8 ± 0.1 μmol Trolox equivalents/mg 

protein) was found in hydrolysates produced with an enzyme/substrate ratio of 1.87% after 

138 min of hydrolysis [224]. On the other hand, Alcalase hydrolysis of Chinese chestnut 

(Castanea mollissima Blume) protein produced five novel antioxidant peptides which had 

good antioxidant activity after synthesis and simulated digestion [225], and a novel 

antioxidative peptide (LAYLQYTDFETR) were successfully purified from pecan meal 

protein isolate hydrolysate prepared using Alcalase, and it exhibited appreciable scavenging 

activities on ABTS radical (67.67%), DPPH radical (56.25%) and hydroxyl radical 

(47.42%) at 0.1 mg/mL [178].  

Three antioxidant small peptides, identified as Thr-Pro-Ala (286 kDa), Ile/Leu-Pro-

Ser (315 kDa) and Ser-Pro (202 kDa), were purified from peanut protein isolate hydrolyzed 

with Alcalase [170], and it was demonstrated that high pressure treatment affected the 

Alcalase hydrolysis of peanut protein leaving hydrolysates with higher antioxidant activity 

(reducing power and DPPH radical scavenging) than the non-high pressure treated 

hydrolysates [226]. In another paper, Erythrina edulis (pajuro) protein concentrate 

hydrolyzed by Alcalase for 120 min showed potent ABTS+ and peroxyl radical scavenging 

activities [227]. Similarly, wheat bran protein isolate digested with Alcalase produced 

wheat bran protein hydrolysate and submitted to fractioning using membrane ultrafiltration 

[228]. The <1 kDa fraction showed significantly higher oxygen radical antioxidant activity 

with 2044.73 ± 37.45 (μM TE/g protein) when compared to other membrane fractions and 

wheat bran protein hydrolysates [228].  

An important application of hydrolysis with Alcalase is in the recovery of residual 

proteins generated in the processing or use of some vegetables. For instance, antioxidant 
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peptides from asparagus wastes [229], and antioxidant hydrolysate from Highland barley 

brewer spent grain protein [230] were prepared using Alcalase hydrolysis. In addition, 

proteins of tomato seeds, the main by-product of tomato processing, were extracted and 

subjected to incubation for 138.62 min with 3% (w/w) Alcalase to produce a tomato seed 

protein hydrolysate with high antioxidant properties [231]. In the same way, seven potential 

antioxidant peptides were isolated from Alcalase hydrolysate of plum stones processing 

byproduct [232]. Additionally, the bioactive peptide production by Alcalase hydrolysis of 

defatted Jatropha curcas flour obtained as by-product of oil extraction for biodiesel 

production was implemented as a way for the revalorization of this by-product [233]. After 

50 min of hydrolysis a protein hydrolysate with a degree of hydrolysis of 31.7% was 

obtained, and it showed high antioxidant and chelating activities  [233].  

3.2.1.2. Comparison of Alcalase with other proteases  

In addition to studies where Alcalase is used exclusively in the hydrolysis of a 

particular protein, there are many reports in the literature in which Alcalase is compared 

with other proteases as biocatalysts to produce hydrolysates or peptides with antioxidant 

activity. These reports are especially interesting as they show the advantages and 

drawbacks of each of the used proteases and permit a better selection of the protease 

depending on the target.   

For example, oat flour protein was hydrolyzed with Alcalase and trypsin, and both 

obtained hydrolysates significantly reduced the generation of lipid hydroperoxides resulting 

from autoxidation of linoleic acid after 5 days incubation [234].  
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Using soybean proteins, there are some interesting reports. For instance, 

ghungkukjang (fermented soybean paste) and soybean powder were hydrolyzed with 

Alcalase, Protamex and Neutrase [235]. Results showed that Alcalase and Protamex 

generated greater increases of antioxidant activities of both ghungkukjang and soybean 

powder hydrolysates than those prepared with Neutrase [235]. Sbroggio et al. demonstrated 

the influence of the degree of hydrolysis and the type of enzyme on the antioxidant activity 

of okara (by-product of soy milk production) protein hydrolysates using Alcalase and 

Flavourzyme [236]. It was found that the hydrolysis with Alcalase increased the antioxidant 

capacity from 36.0 to 202.1, 7.3 to 20.3, and 1.2–5.9 μmol Trolox/g of solids according to 

the ABTS, FRAP, and DPPH assays, respectively [237].  

Comparison of free radical-scavenging activities of sweet potato protein and its 

hydrolysates prepared by proteolysis catalyzed by Alcalase, Neutrase or Protamex, or in 

combination with Flavourzyme [238], showed that free radical-scavenging activities of the 

resulting hydrolysates were all significantly higher than that of the initial sweet potato 

protein, and Alcalase hydrolysates exhibited the highest superoxide (18.71%), hydroxyl 

(27.13%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities 

(90.10%) [238]. Similarly, among six enzymes (Alcalase, Proleather FG-F, AS1.398, 

Neutrase, papain and pepsin), sweet potato protein Alcalase hydrolysates exhibited the 

highest hydroxyl radical-scavenging activity and Fe
2+

-chelating ability [239]. In addition, 

different pretreatments significantly increased the degree of hydrolysis and antioxidant 

activities of sweet potato protein hydrolysates by Alcalase, Protease and Alcalase + 

Protease [240]. The most effective pretreatment was autoclaving, followed by steaming, 

microwaving, boiling and the least effective was ultra-sonication [240].  
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In another paper, cucurbitin extracted from pumpkin (Cucurbita pepo) oil cake was 

enzymatically hydrolyzed by Alcalase, Flavourzyme and pepsin, and the highest 

antioxidant activity was found in the hydrolysate obtained by Alcalase at hydrolysis degree 

25.6 % [241], and in comparison with trypsin hydrolysate, Alcalase hydrolysate showed 

higher DPPH radical scavenging, total anti-oxidative and ferrous ion chelating activities 

[242].  

Proteins from some bean varieties have been hydrolyzed with several proteases. In 

one study, concentrates from three cultivars of Azufrado (sulphur yellow) beans were 

obtained and digested with Alcalase, Thermolysin and pancreatin [243]. Regarding the 

antioxidant activity, Alcalase hydrolysates of Azufrado Higuera and Azufrado Regional '87 

showed the highest DPPH scavenging activity (40%) or ABTS scavenging activity 

(99.89%), respectively [243]. In another work, black bean (Phaseolus vulgaris L.) proteins 

were hydrolyzed for 120 min using pepsin or Alcalase [244]. Results revealed that Alcalase 

hydrolysate showed higher antioxidant activity for inhibition of the radical ABTS+, while 

pepsin hydrolysate had higher antioxidant activity for inhibition of the radical DPPH [244]. 

That is, depending of the main objective, one or the other enzyme should be employed. 

Corn gluten meal was hydrolyzed using Alcalase or Protamex [245]. It was found 

that Alcalase hydrolysis was more efficient, and after ultrafiltration a hexapeptide with 

potent antioxidant activity was isolated [245]. In another example, Alcalase, Protamex and 

Flavourzyme at a ratio enzyme/substrate concentration of 13.5% [246] were used to 

hydrolyze corn gluten meal pretreated by Na2CO3, starch removal and cooking, and the 

hydrolysates obtained in all cases exhibited high antioxidant activity both in vitro and in 

vivo [246].  
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Peanut meal hydrolysates were prepared by digestion using five different peptidases 

[247]. Among them, Alcalase produced the highest degree of hydrolysis and the 

hydrolysates with the highest DPPH radical-scavenging activity [247]. In another work, a 

study was performed on the in vitro antioxidant activity of defatted peanut meal 

hydrolysates produced by hydrolysis with Neutrase (pH 5.0), papain (pH 6.0), Flavourzyme 

(pH 7.0), and Alcalase (pH 9.0) in a ratio of 1: 500 (enzyme/substrate) at 55°C for 2, 4, 6, 

8, and 24 hours, respectively [248]. Results showed that, the Alcalase-treated hydrolysates 

had the best total anti-oxidative capacity [248].    

In another research, Alcalase, Flavourzyme and Neutrase were employed to 

hydrolyze rice bran protein for 2, 4 or 6 h [249]. The protease had significant effects on the 

properties of hydrolysates and protein hydrolysis degree, whereas the hydrolysis time was 

less influent [249]. No major differences were found in terms of ABTS radical scavenging 

activity between non-hydrolyzed and protease-hydrolyzed rice bran protein, but Alcalase 

hydrolysis was the most effective providing hydrolysate with the highest protein content 

and protein yield, concluding that rice bran protein hydrolysate obtained by Alcalase 

hydrolysis could be a protein source and antioxidant in functional foods and beverages  

[249].   

In another study, Alcalase hydrolysates of barley glutelin showed higher radical 

scavenging capacity (DPPH/O
2-

/OH), Fe
2+

-chelating effect and reducing power than those 

produced by Flavourzyme [250]. In another research, various proteases were used to 

hydrolyze rapeseed protein isolate for obtaining hydrolysates that were fractioned by 

membrane ultrafiltration [251]. It was found that, in general, Alcalase and Proteinase K 
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were more efficient proteases to release antioxidant peptides than pepsin + pancreatin, 

Flavourzyme and Thermolysin [251].  

Alcalase and Neutrase were used to prepare Chinese cherry (Prunus pseudocerasus 

Lindl.) seed protein hydrolysate [252], which were fractionated by ultrafiltration and 

chromatographic techniques allowing to obtain two antioxidant peptides identified as Phe-

Pro-Glu-Leu-Leu-Ile (731.92 Da) and Val-Phe-Ala-Ala-Leu (520.61 Da) [252]. Other 

authors reported the hydrolysis of coconut protein using four proteases (Alcalase, Neutrase, 

Bromelin, papain), among which the Alcalase hydrolysate showed to be the best in terms of 

degree of hydrolysis and DPPH scavenging activity [253].  

These comparisons are also performed using proteins from residues. In this context, 

the enzymatic hydrolysis of this kind of proteins for obtaining bioactive peptides can 

contribute to environmental sustainability of processing of fruits, which is characterized by 

generating a lot of waste material such as fruit stones, skins, etc. For example, Alcalase, 

Thermolysin, Flavourzyme, and Protease P were used to hydrolyze a protein extract from 

plum stone (Prunus Domestica L.), a by-product of the processing of that fruit [254]. In this 

study, Alcalase produced the hydrolysates with the highest ABTS radical scavenging and 

lipid peroxidation inhibition capacities [254]. Cherry stones which contain seeds with a 

significant amount of proteins were used to obtain bioactive peptides by their digestion 

with Flavourzyme, Alcalase or Thermolysin, where the last two yielded peptide extracts 

with the highest antioxidant and antihypertensive capacities [255].  

On the other hand, protein hydrolysates were prepared by treatment of olive seed 

protein isolate with Alcalase, Thermolysin, Neutrase, Flavourzyme and PTN [84]. All 

hydrolysates presented antioxidant properties, but Alcalase was the enzyme that yielded the 
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hydrolysate with the highest antioxidant capacity. In this study it was suggested that 

enzymatic extraction of bioactive peptides from residual materials from table-olive and 

olive oil production can be a new strategy for the revalorization of these residues [84]. 

Similarly, hydrolysate of seed cake protein from Camellia oleifera produced by Alcalase 

had the highest hydrolysis degree and antioxidant activity [256], and displayed excellent 

protein solubility over a wide range of pH, when compared to the hydrolysates obtained 

using Flavourzyme, trypsin, Neutrase or papain [256]. Alcalase and pancreatin were used in 

the production of bioactive peptides derived from defatted Bunium persicum Bioss. (black 

cumin) press cake [257]. It was found that DPPH radical scavenging activity was higher 

using the Alcalase hydrolysates, while the products obtained by using pancreatin had a 

higher inhibitory effect on the ABTS+ cationic radical scavenging [257]. Papain, trypsin, 

pancreatin, Alcalase and Flavourzyme were evaluated in the hydrolysis of protein from 

flaxseed cake and it was found that the hydrolysates obtained using Alcalase and pancreatin 

had the highest antioxidant activity [258]. 

In another study, pepsin, trypsin, chymotrypsin, Alcalase and Flavourzyme were 

used to hydrolyze a protein extract from wild almond (Amygdalus scoparia) [259]. Based 

on radical scavenging activities obtained by 2, 2′-azino-bis (3-ethylbenzothiazoline-6-

sulphonic acid) and ferric-reducing abilities of the hydrolysates, it was found that the 

hydrolysate from Alcalase had significantly greater antioxidant activity [259]. In addition, 

protein concentrate obtained from the seed of Erythrina edulis (pajuro) was hydrolyzed by 

Neutrase, Flavourzyme and Alcalase, finding that Alcalase provided hydrolysates with 

higher radical scavenging activity [260].  
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In another research, it was shown that the treatment of brown teff with proteases 

(Protamax, Flavourzyme or Alcalase) affords hydrolysates with significantly increased 

antioxidant activities [261]; among them, the highest DPPH scavenging activity and FRAP 

values were observed for the hydrolysates produced by Alcalase and Flavourzyme 

treatments, respectively [261]. Also, Alcalase was selected among other proteases to 

hydrolyze fennels seeds (an edible spice) protein [262]. The hydrolysate was fractionated, 

and it was found that compared to the crude hydrolysate, the fractionated hydrolysate 

presented a 4.5-fold enhancement in its radical scavenging potential [262]. Besides, the 

protein fraction of Brewers’ spent grain was hydrolyzed by three different proteases to 

obtain hydrolysates with antioxidant activity [263]. Alcalase hydrolysate presented 

significantly higher total phenolic content and ferric ion reducing antioxidant power (0.083 

mg GAE/mg dw; 0.101 mg TE/mg dw, respectively) than the other hydrolysates [263].  

In the hydrolysis of quinoa seeds proteins with Alcalase or pancreatin [264], it could 

be seen that the antioxidant capacity of the hydrolyzed proteins was significantly higher 

than that of the non-hydrolyzed proteins [264]. In addition, Alcalase hydrolysate of carrot 

seed (Daucus carota L.) [265] exhibited the strongest DPPH radical-scavenging activity 

(among that produced using other proteases) and under optimized condition (3.50 h, 

substrate concentration of 52.8 g/L, and protease dosage of 419.36 U/g),  its DPPH radical-

scavenging activity was 82.46% at 2 mg/mL [265].  

3.2.2. Hydrolysis of fish proteins 

3.2.2.1. Use of stand-alone Alcalase 
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Fish processing by-products represents more than 50% of the starting material in the 

fish industry, and their disposal can generate additional costs and can cause serious 

environmental problems [266]. In this sense, Alcalase has played an important role in the 

recovery of marine fish processing byproducts, as a method for converting fish wastes into 

valuable products such as bioactive peptides, which can be used for the pharmaceutical and 

health food industries, such as a way to assist in the efficient management of fishing 

industry waste. In this regard, antioxidant peptides production from tuna by-products by 

enzymatic hydrolysis with Alcalase (enzyme to substrate ratio 1: 200 w/w; 60 °C; pH 6.5, 

120 min), has been explored with good results [267]. Tuna (Thunnus obesus) head protein 

hydrolysate prepared with Alcalase [268] showed a reducing power of 0.948 at 12.5 

mg·mL
-1

 and radical scavenging activity in a dose-dependent manner against 1,1-diphenyl-

2-pycrylhydrazyl, superoxide and hydroxyl radicals with EC50 values of 1.34, 1.20 and 

2.84 mg·mL
-1

, respectively [268]. Additionally, it was reported that nanofiltration 

fractioning of the product of Alcalase catalyzed hydrolysis of tuna dark muscle by-product 

showed the very high 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radical scavenging 

activities of 75% and 65%, respectively [269]. 

Fish skin is one of the most used fish wastes to obtain antioxidant hydrolysates with 

Alcalase. For example, Alcalase hydrolysis improved the antioxidant properties of collagen 

and gelatin extracted of yellowfin tuna (Thunnus albacares) skin waste by their conversion 

to peptides, which showed antioxidant activities higher than the non-treated material [270].  

In another study, Alcalase was used to produce three peptides with potent antioxidant 

activities from grass carp skin (Ctenopharyngodon idella) [271], and to produce gelatin 

hydrolysates from skin and scale of sole fish (Cynoglossus arel) [272]. In addition, 
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antioxidant peptides production by Alcalase hydrolysis of skin from different fish such as 

seabass (Lates calcarifer) [273], Alaska pollock [274], and tilapia [275], also has been 

reported.  

Little hairtail (Trichiurus haumela) proteins have also been hydrolyzed with 

Alcalase [276]. It was reported that under optimum conditions (3 h, enzyme to substrate 

ratio of 0.6%, 55°C and pH 7.5), the resulting little hairtail protein hydrolysate showed an 

ABTS radical scavenging activity of 76.5% [276], while in another study the little hairtail 

protein Alcalase hydrolysate had a value of reducing power and radical scavenging 

activities of 1.89, 46.15% (DPPH radical), 75.65% (hydroxyl radical) and 82.5% 

(superoxide anion radical), respectively [277].  

On the other hand, antioxidant peptides from Pseudosciaena crocea protein viscera 

with scavenging activity of DPPH and OH of 85.97% and 75.79%, respectively [278], were 

prepared by Alcalase hydrolysis under optimal hydrolysis conditions (62℃, pH 9, enzyme 

concentration of 4.26%, substrate concentration of 8 g/100 mL and 3.7 h) [278]. Also, an 

antioxidant peptide (Ala-Thr-Ser-His-His) was purified from Alcalase hydrolysate of 

Arctoscopus japonicus sandfish protein extract [168]. The DPPH radical scavenging 

activity of the peptide was above 90% at a concentration 1.0 mg/mL, which remained at 

around >66% and >79% after treatment at various temperatures with intestinal proteases 

and different pH conditions [168]. Similarly, Arctoscopus japonicus meat was used as 

natural material for the preparation of antioxidant peptides using Alcalase hydrolysis [279]. 

Under optimal conditions (pH 6.0, 70 °C, enzyme concentration of 5% (w/w), and 3 h) the 

obtained  hydrolysate presented a  DPPH radical scavenging activities of 60.04% [279].  
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In another paper, squid protein hydrolysates with a degree of hydrolysis of 13.7% 

were prepared from Uroteuthis (Photololigo) duvaucelii, using Alcalase [280]. 

Hydrolysates had 89% 2, 2-diphenyl-1- picrylhydrazyl inhibition, 94% 2, 2-azino-bis-(3-

ethylbenzothiazoline-6-sulphonicacid) (ABTS) inhibition and 96% hydroxyl inhibition at 

10 mg/ml concentration [280]. In another report, 8 h of Alcalase hydrolysis produced a 

Stone fish (Actinopyga lecanora) flesh hydrolysate with potent antioxidant activity in terms 

of DPPH radical scavenging activity (77.43%, IC50 of 0.5 mg/mL), ABTS radical 

scavenging activity (92.73%, IC50 of 0.33 mg/ mL) and FRAP value (39.2 mmol/100 mL 

FeSO4) [281]. Hydrolysate of shortfin scad (Decapterus macrosoma) myofibrillar protein 

with DPPH antioxidant activity of 56.10%, were prepared under optimized Alcalase 

hydrolysis conditions (180 min, 59.49°C, pH of 9.93 and 1% enzyme concentration) [282]. 

Similarly, Alcalase hydrolysis under optimal conditions (pH 8.5, 55 °C, enzyme 

concentration of 1.5% w/w and 3 h) was performed to recover the fish protein from Caspian 

kutum (Rutilus frisii kutum) by-product, which resulted in an antioxidant hydrolysate with a 

degree of hydrolysis of 19.08% [283].  

Whitemouth croaker (Micropogonias furnieri) protein hydrolysates were prepared 

by Alcalase hydrolysis varying the reaction time, finding that the hydrolysate from the 

longest studied hydrolysis time (8 h) showed the highest degree of hydrolysis (32.1%) and 

oxidation inhibition using the ABTS and DPPH methods (98.35% and 54.11%, 

respectively) [284].  

Two peptides (WAFAPA and MYPGLA), with stronger antioxidant activity than 

glutathione, were isolated from the Alcalase hydrolysate of the blue-spotted stingray [285]. 

In another interesting study, common carp (Cyprinus carpio) protein by-products were 
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hydrolyzed by Alcalase [286]. The hydrolysate showed antioxidant properties which led to 

a reduction in muscle lipid peroxidation and a decrease in brain lipid peroxidation in 

different organs of zebrafish (Danio rerio) [286]. Also, it was demonstrated that Alcalase 

hippocampus abdominalis protein hydrolysate contains antioxidant peptides that exhibit a 

strong antioxidant activity which reduced dose-dependently both intracellular reactive 

oxygen species levels in 2,2-azobis hydrochloride -induced cells and cell death in 2,2-

azobis hydrochloride -induced zebrafish embryos [287]. Besides, the feeding of 

Caenorhabditis elegans with antioxidant peptides isolated from Alcalase hydrolysates of 

residue rich in protein obtained from round scad (Decapterus maruadsi) after oil extraction, 

led to longer lifespan, higher survival rate, and high superoxide dismutase and catalase 

activities [288].  

3.2.2.2. Comparison of Alcalase with other proteases 

There are many reports comparing various proteases to obtain antioxidant peptides 

from fish proteins. Nile tilapia (Oreochromis niloticus) scale gelatin was hydrolyzed using 

Alcalase, Pronase E, trypsin or pepsin [289]. Among the obtained hydrolysates, Alcalase-

derived hydrolysate exhibited the highest antioxidant activity [289]. In another paper, 

gelatin extracted from Nile tilapia skin was independently hydrolyzed by several proteases 

[290]. Among the obtained products, Flavourzyme hydrolysate had potent activity on 

ABTS radical scavenging and also inhibits the oxidation of linoleic acid at a high level, 

while Alcalase hydrolysate showed the greatest reducing power, and bromelain hydrolysate 

had the highest ferrous ion chelating activity [290]. In addition, red tilapia (Oreochromis 

niloticus) protein hydrolysates were prepared by the enzymatic hydrolysis with Alcalase, 
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Flavourzyme and Protamex for 5h, finding that Alcalase hydrolysate had the highest 2, 2-

Diphenyl-1-picryhydrazyl radical-scavenging activity [291]. 

The antioxidant activities of grass carp (Ctenopharyngodon idellus) protein 

hydrolysates prepared with Alcalase or papain were investigated [292]. In this case, it was 

observed that at the same degree of hydrolysis, papain hydrolysate possessed higher DPPH 

scavenging activity and reducing power than Alcalase hydrolysate [292]. In another study, 

peptide fractions of protein hydrolysates from underutilized silver carp 

(Hypophthalmichthys molitrix) prepared using Flavourzyme and Alcalase for 30 and 60 

min, respectively, showed higher cell-based antioxidant activity under stress and non-stress 

conditions among other hydrolysates [293].  

Common carp (Cyprinus carpio) roe (egg) protein hydrolysates were prepared by 

treatment with pepsin, trypsin or Alcalase [294]. The hydrolysates showed excellent 

antioxidant activity in a dose dependent manner in various in vitro models such as DPPH 

radical scavenging activity, ABTS+ radical scavenging activity, ferric reducing antioxidant 

power and ferrous ion chelating ability [294]. Also, common carp by-product was 

hydrolyzed using Alcalase and Protamex [266], and the results revealed that the Alcalase 

hydrolysate exhibited significantly higher antioxidant activity against the DPPH radical and 

the highest in vitro antioxidant competence against peroxyl radicals, whereas Protamex 

hydrolysate showed the lowest activity against peroxyl radicals [266]. Also, hydrolysates of 

fin from silver carp (Hypophthalmichthys molitrix) produced by trypsin or Alcalase 

exhibited stronger in vitro scavenging activity against 2, 2′-azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and chelating activity to ferrous ions 

[295], and inhibited the freeze-thaw-induced protein oxidation (the formation of carbonyls 
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and disulfide bonds) and degradation (the loss of Ca
2+

-ATPase activity) in freeze-thawed 

bighead carp (Hypophthalmichthys nobilis) fillets, than papain and Neutrase  [295].  

Fish protein hydrolysates were prepared from anchovy sprat (Clupeonella 

engrauliformis) using endogenous enzymes and diverse commercial proteases [296]. 

Alcalase and papain gave the highest degree of hydrolysis; Alcalase and bromelain had the 

highest protein recovery, and the highest ABTS activity was observed in Alcalase 

hydrolysate, followed by Promod and Protamex hydrolysates [296]. In another work, 

hydrolysates of Argentine anchovy were produced with Alcalase, Flavourzyme and 

Protamex, being Alcalase the one which led to the hydrolysate with a maximum value of 

the degree of hydrolysis (78.26 ± 1.66%) that also showed the greatest inhibition of lipid 

peroxidation (23.38%) and reducing power [297]. 

Salmon processing byproducts were hydrolyzed using Alcalase, Flavourzyme, 

Neutrase, pepsin, Protamex, or trypsin obtaining hydrolysates with different antioxidant 

activities where pepsin hydrolysate possessed the highest DPPH scavenging [298]. 

Similarly, two forms of salmon frames named ―chunk‖ and ―mince‖ were hydrolyzed using 

Alcalase and papain at 1%–3% (w/w protein) for 0–240 min [299]. It was showed that 

different hydrolysates exhibited different antioxidant capacities, and the authors suggested 

that to produce the hydrolysate with less time consumption, the use of frame chunk instead 

of minced frame and Alcalase instead papain, can be the best choices [299]. Hydrolysates 

from chum salmon (Oncorhynchus keta) skin gelatin were prepared by Alcalase or papain 

hydrolysis [300]. It was found that hydrolysates generated by the two proteases had quite 

strong scavenging activity toward superoxide radicals and weak activity toward DPPH and 

hydroxyl radical [300].   
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In another research, Alcalase and Flavourzyme were evaluated in the production of 

antioxidant hydrolysates dark muscle and skin from Skipjack tuna (Katsuwonus pelamis) 

[301]. Also, dark muscles from skipjack tuna were hydrolyzed using pepsin, trypsin, 

Neutrase, papain or Alcalase [302]. The hydrolysates prepared using Alcalase and 

Neutrase, showed the strongest antioxidant capacities which were attributed to the presence 

of peptides with smaller molecular size, bearing hydrophobic and aromatic amino acid 

residues, and the specific amino acid sequences [302]. Additionally, among pepsin, papain, 

trypsin, Neutrase and Alcalase, the last one produced peptides with the highest antioxidant 

activity from scale gelatin of skipjack tuna (Katsuwonus pelamis) [303].  

Stone fish (Actinopyga lecanora) ethanolic and methanolic tissue extracts were 

hydrolyzed using papain, Alcalase, trypsin, pepsin, bromelain, and Flavourzyme, which 

considerably enhanced its antioxidant activity, especially when papain and Alcalase were 

used [304]. Also, heads and/or viscera of sardine (Sardinella aurita) were treated with 

different proteases [305]. All obtained hydrolysates had different degrees of hydrolysis and 

varying degrees of antioxidant activity, but the hydrolysates obtained with crude enzyme 

from Mustelus mustelus intestines showed the highest radical‐ scavenging activity, while 

Alcalase hydrolysates exhibited the greater reducing power activities. [305]. 

Patin (Pangasius sutchi) sarcoplasmic protein was hydrolyzed with Alcalase and 

papain. Alcalase hydrolysate showed the highest DPPH radical-scavenging activity [306]. 

In another research, two novel antioxidant peptides were isolated from round scad 

(Decapterus maruadsi) hydrolysate prepared with Alcalase which showed higher 

antioxidant activity than the hydrolysates obtained by neutral protease, papain, pepsin or 

trypsin [307]. Conversely, hydrolysate from croceine croaker (Pseudosciaena crocea) 
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muscle protein prepared using pepsin exhibited higher antioxidant activities that the ones 

prepared with Alcalase [177].  

It was showed that Alcalase, compared to papain and trypsin, is the best protease for 

producing hydrolysates with metal chelating and antioxidant activities from blue-spotted 

stingray proteins [308]. Byproducts from Spanish mackerel (Scomberomorus) processing 

were hydrolyzed by some commercial proteases [309], and it was found that the Alcalase 

hydrolysate had the highest degree of hydrolysis and DPPH radical scavenging activity, 

with values of 31.3 and 18.5%, respectively [309]. In addition, Amur sturgeon skin gelatin 

hydrolysates prepared using either Alcalase or Flavourzyme were effective in preventing 

lipid oxidation and were able to retard protein oxidation. They also showed cryoprotective 

effects in unwashed fish mince [310]. 

Among five proteases, Alcalase was selected to hydrolyze swim bladder of miiuy 

croaker (Miichthys miiuy) proteins [311], and under optimal hydrolysis conditions (3.5 h, 

55 °C, pH 9.5, solid-liquid ratio of 1:5 and enzyme dose of 2.5%) it was possible to isolate 

two peptides with strong scavenging activities on hydroxyl radical, DPPH radical and 

superoxide anion radical [311]. Alcalase, bromelain or papain were used for obtaining eel 

protein hydrolysates from whole eel (Anguilla marmorata) [312], and the Alcalase 

hydrolysates had the highest antioxidant activity against 1,1-diphenyl-2-pyridinohydrazinyl 

(DPPH) and ABTS radicals, and it also presented a higher reducing power than the other 

hydrolysates [312]. In another paper, both Alcalase and chymotrypsin enzymes were 

utilized to produce antioxidant hydrolysates from European seabass (Dicentrarchus labrax, 

Linnaeus, 1758) and gilthead seabream (Sparus aurata, Linnaeus, 1758) muscles protein 

[313].  
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3.2.3. Hydrolysis of seafood proteins  

3.2.3.1. Use of stand-alone Alcalase 

Seafood proteins resources, mainly byproducts or residues, have been extensively 

investigated as feedstocks for the production of bioactive peptides such as antioxidant 

peptides. Alcalase is one of the most widely used proteases in this context. 

Alcalase hydrolysis of krill processing byproducts was optimized by response 

surface methodology in order to improve the degree of hydrolysis and the antioxidant 

activity of the produced enzymatic hydrolysate [314]. Optimum hydrolysis conditions were 

pH 9.5 and 62°C and pH 9.1 and 64°C for degree of hydrolysis of 14.1±0.5% and DPPH-

scavenging activity of 10.5±0.2% [314]. In another paper, Alcalase was employed to obtain 

antioxidant hydrolysates from defatted echinoderm byproducts, including viscera of 

Atlantic sea cucumber (Cucumaria frondosa) and digestive tract and non-commercial grade 

gonads of green sea urchin (Strongylocentrotus droebachiensis) [315].  

A hydrolysate with antioxidant activity has also been produced by Alcalase 

hydrolysis of shrimp waste [316]. It was found that the ultra-filtrated fraction with 

molecular weight below 1 kDa exhibited the highest antioxidant activity among the five 

fractions obtained, and this activity was stable when the hydrolysate was heated up to 

100°C and maintained its activity near 70% at pH 2.0 [317]. In another paper, the carotene-

proteins from shrimp (Parapenaeus longirostris) processing by-products were submitted to 

treatment with Alcalase, and their antioxidant activities of the hydrolysate suggested that it 

is a good source of natural antioxidants  [318]. Similarly, a hydrolysate retaining more than 

80% of its activity over wide pH ranges (2-11) and temperature (up to 100ºC for 150 min) 
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was prepared by 90 min of Alcalase hydrolysis of  shrimp waste (Penaeus monodon and 

Penaeus indicus) [319]. Other authors used response surface methodology to optimize the 

production of Alcalase hydrolysates from shrimp (Metapenaeus dobsoni) head waste [320]. 

Under optimal conditions, the obtained protein hydrolysates presented a high  degree of 

hydrolysis, 2, 2-diphenyl-1-picrylhydrozyl radical scavenging activity, and ferric reducing 

antioxidant power of 40.31, 38.93, and 8.21 μM Fe (II)/g of sample, depending on the 

hydrolysis degree [320].  

Alcalase has also been employed to hydrolyze the proteins in the mantle of 

cuttlefish (Sepia pharaonis) [321]. Hydrolysates with a degree of hydrolysis of 20, 30 and 

40%, were obtained and showed 2, 2-diphenyl-1-picrylhydrozyl radical scavenging activity, 

reducing power and total antioxidant capacity that were 2.5, 6.5 and 13.8 times higher, 

respectively, than that of the initial cuttlefish mantle protein isolate [321]. Under optimal 

hydrolysis conditions after optimization using response surface methodology (pH 7.88, 

50.2°C, 150 min, and enzyme to substrate ratio of 1.5%) [322], it was showed that the 

reducing power and ability of peptides to quench ABTS radicals in a gastro-intestinal track 

model system increased during the intestinal stage, while the scavenging ability against 2, 

2-diphenyl-1-picrylhydrozyl radicals decreased [322].  

In another study, a comparison between the antioxidant properties of oyster meat 

(Crassostrea rivularis) and its Alcalase hydrolysates showed that the hydrolysates 

displayed a higher antioxidant activity than oyster meat with or without gastrointestinal 

digestion [323].  

This way, the residues of seafood processing seem to be a good material to produce 

antioxidant peptides using Alcalase. This has not only the value of the product, but also 
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reduces the environmental impact of the seafood processing, as the materials do not need to 

be discarded. 

3.2.3.2. Comparison of Alcalase with other proteases  

Alcalase has been compared to other proteases in the production of antioxidant 

hydrolysates. For example, oyster (Crassostrea talienwhannensis) meat was digested with 

papain, Neutrase and Alcalase and the obtained hydrolysates were fractionated using a 

series of ultrafiltration membranes [324]. With all enzymes tested, results indicated that 

oyster meat hydrolysates possessed DPPH radical scavenging capacity and reducing power 

in a dose-dependent manner, and the hydrolysate fractions below 1 kDa showed the 

strongest overall antioxidant activity [324]. In another paper, protein from rushan bay 

oyster (Crassostrea gigas) was hydrolyzed using three proteases, Alcalase hydrolysate 

presented the highest scavenging activity against 1,1-diphenyl-2-picrylhydrazyl [325].   

Shrimp processing byproducts were hydrolyzed using trypsin, pepsin, Neutrase, 

Protamex, Flavourzyme or Alcalase [326]. The degree of hydrolysis and DPPH radical 

scavenging activity of the Alcalase hydrolysate were the highest ones [326]. In another 

paper, Alcalase and Protamex were used to obtain antioxidant protein hydrolysates from 

white shrimp (Litopenaeus vannamei). It was found that all hydrolysates showed dose-

dependent antioxidant activities [327]. Alcalase, trypsin, and Flavourzyme produced sea 

cucumber (Cucumaria frondosa) viscera hydrolysates with a higher degree of hydrolysis 

(19.08, 32.38, and 15.94%, respectively) and better antioxidant activities than those 

obtained using other proteases [328]. Alcalase and trypsin were compared in the production 

of antioxidative peptides from Atlantic sea cucumber protein, finding that Alcalase 

hydrolysates showed 5–35% higher in vitro antioxidant activity than the trypsin-produced 
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ones [329]. In another paper, sea cucumber gut proteins were hydrolyzed using Neutrase, 

papain, Alcalase or Flavourzyme, and the hydrolysates showed scavenging abilities on 

hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radical [330]. Similarly, using either Alcalase 

and Flavourzyme enzymes, it was possible to obtain antioxidant hydrolysates from sea 

cucumber (Holothuria leucospilota) protein with antioxidant activity [331].  

Crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis 

A21, Bacillus subtilis A26, and commercial Alcalase were used to hydrolyze cuttlefish skin 

gelatin [332]. Among them, the hydrolysates obtained by Alcalase presented the highest 

antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid 

peroxidation inhibition and reducing power activity [332]. In another paper, the evaluation 

of Alcalase, Flavourzyme, Neutrase, and Protamex for hydrolysis of Abalone viscera 

showed that the hydrolysate produced by Alcalase exerted strong hydrogen peroxide 

scavenging activity, Fe
2+

 chelating activity, and reducing power [333].   

Um et al. used six different enzymes to produce hydrolysates from Octopus 

ocellatus meat, which were evaluated for its antioxidant effects using a human liver cell 

line and zebrafish embryo models [334]. Alcalase hydrolysate showed the highest 

antioxidant activities, and effectively reduced the hydroxyl radical-induced DNA damage 

and the production of reactive oxygen species in H2O2 treated hepatocytes without showing 

cytotoxicity. Moreover, it improved the survival rate and reduced the intracellular reactive 

oxygen species levels in H2O2-treated zebrafish embryos [334]. In another research, 

Alcalase, Neutrase, pancreatin and bromelain were compared in the hydrolysis of protein 

isolate from crayfish (Procambarus clarkii) processing by-products [335]. It was found that 
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Alcalase had higher digesting efficiency than that of the other enzymes, and some of the 

ultra-filtrated fractions showed considerable in vitro antioxidant activity [335].  

3.2.4. Hydrolysis of whey and casein proteins  

3.2.4.1. Use of stand-alone Alcalase 

Whey, a by-product of the dairy industry, has been studied as a feedstock to obtain 

antioxidant peptides by Alcalase hydrolysis. For instance, the effect of the time and 

Alcalase concentrations on the antioxidant activities of whey protein isolate hydrolysates 

were evaluated, finding that antioxidant activity, measured by peroxide value and 

thiobarbituric acid-reactive substance values in a liposome-oxidizing system [336]. The 

results indicated that the antioxidant activity increased when the hydrolysis time increased 

up to 5 h, and that an increase in Alcalase concentration significantly enhanced antioxidant 

activities [336]. In another paper, antioxidative peptides (in the size fraction 0.1-2.8 kDa) 

obtained from gel filtration of Alcalase-hydrolysate whey protein had a significant 

protection of MRC-5 cells against the toxicity caused by H2O2 [337]. Another research 

showed that the cheese whey mozzarella hydrolyzed with Alcalase and ultra-filtrated under 

optimal hydrolysis conditions (8 h, pH 9 and 55 °C) produced a whey protein hydrolysate 

with a maximum antioxidant activity of 1.18 ± 0.015 μmol Trolox mg
-1

 protein [338].  

Casein, a milk protein, has also been hydrolyzed with Alcalase. For example, 

gastrointestinal digested casein and Alcalase hydrolysate were produced and compared 

[339]. The last one showed higher in vitro antioxidant efficacy, especially the low-

molecular-weight fraction. This fraction had excellent antioxidant activity as well as 

hepatic cyto-protection against hydrogen peroxide [339]. In another study, low-molecular-
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weight peptides of casein prepared by hydrolysis with Alcalase and fractioned with 

Sephadex G-25 gel filtration were subjected to simulated gastrointestinal digestion and 

Caco-2 cell absorption for evaluating gastrointestinal stability [340]. Results suggested that 

Alcalase produce gastrointestinal resistant peptides [340]. In another research, three 

hydrophobic chromatography fractions (HC-F1, HC-F2 and HC-F3) were purified from 

Alcalase-treated casein, and among them HC-F3 had excellent bioavailability and 

antioxidant activity [341].  

3.2.4.2. Comparison of Alcalase with other proteases  

The use of Alcalase was compared to the one obtained using other proteases also in 

these dairy products to produce antioxidant peptides. For example, the antioxidant activity 

of whey protein concentrate hydrolysates obtained by its hydrolysis using pepsin, Alcalase, 

Flavourzyme or trypsin was evaluated [342]. The whey protein was submitted to a 

pretreatment that consisted in a thermal incubation (95°C for 5 or 10 min). The 

pretreatment for 5 min increased the degree of hydrolysis of whey protein concentrate in all 

cases, and Alcalase hydrolysates showed the highest antioxidant activity [342]. In another 

study, whey protein isolate was hydrolyzed by trypsin, Pepsin, Alcalase, Promatex, 

Flavourzyme or Protease N [343].  The hydrolysate generated by Alcalase had the highest 

antioxidant activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide 

radicals and in a linoleic acid peroxidation system induced by Fe
2+

 [343]. Also, peptides 

from whey protein concentrate were generated by the enzymatic hydrolysis using Neutrase, 

Corolase PP, Alcalase or Flavourzyme [344]. The hydrolysates showed a high antioxidant 

capacity and they may have a positive effect in the regulation of endothelial cell function 

[344]. Whey protein hydrolysates were also obtained using Flavourzyme, Alcalase, or their 
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blend (1:1) [345]. It was found that a maximum degree of hydrolysis of 63% was obtained 

with Alcalase, and their respective hydrolysates presented the highest antioxidant activities 

[345].  

Oh et al. studied the effects on the biological characteristics and antioxidant activity 

of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis with 

commercial proteases Neutrase, Protamex, Alcalase and Flavorzyme [346]. It was found 

that the hydrolyzed Maillard reaction products generated by Alcalase showed significantly 

higher antioxidant activity when compared with the other protease products [346]. In 

another paper, yak milk casein was hydrolyzed using trypsin, pepsin or Alcalase [347]. The 

yak milk casein hydrolysate prepared with Alcalase or trypsin, had significantly higher 

DPPH-scavenging capacity than its pepsin counterpart, and compared with intact yak 

casein, hydrolysate prepared with Alcalase had a more significant effect on attenuating free 

radicals of DPPH, superoxide and hydrogen peroxide [347].  

β-lactoglobulin (other milk protein) was enzymatically hydrolyzed by different 

proteases under high hydrostatic pressure (100 MPa) and compared with hydrolysates 

obtained under atmospheric pressure (0.1 MPa) [348]. Results showed that the hydrolysate 

obtained under high hydrostatic pressure and Alcalase hydrolysis had significantly higher 

antioxidant properties among the six enzymes examined in this study [348]. In another 

research, buffalo casein hydrolysate produced by Alcalase showed higher antioxidant 

activity than that obtained by employing trypsin [349]. In another paper, hydrolysates were 

obtained using buffalo and bovine casein treated with pepsin, trypsin, Alcalase or papain 

[350]; Alcalase buffalo casein hydrolysate and trypsin bovine casein hydrolysate showed 

the best hydrolysates antioxidant properties, with a hydroxyl radical scavenging capacity, 
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superoxide scavenging activity, oxygen radical absorbance capacity and Fe
3+

 reducing 

power of 81.16% and 84.55%, 66.84% and 70.30%, 2.45 and 2.23 mM BHA, and 140.73 

and 136.59 μM Fe
2+

/mg protein, respectively [350]. That is, Alcalase is among the most 

suitable proteases to produce antioxidant peptides using dairy products. 

3.2.5. Hydrolysis of blood plasma proteins  

Blood is another source of proteins that may be exploited to produce bioactive 

peptides. Thus, Alcalase has been evaluated in the hydrolysis of porcine blood plasma. For 

instance, it was reported that porcine blood plasma protein hydrolysates prepared with 

Alcalase at different degrees of hydrolysis had stronger radical-scavenging ability, Cu
2+

-

chelation ability and a reducing power than the non-hydrolyzed protein [351], and that 

antioxidant activity of plasma protein hydrolysates, measured by thiobarbituric acid-

reactive substance values in a liposome-oxidizing system, increased with increasing of 

degree of hydrolysis [351]. In another work, porcine plasma protein hydrolysate was 

prepared by 5 h of Alcalase hydrolysis and fractioned by ultrafiltration [352]. The fraction 

with the highest antioxidant activity was used to pretreat male rats which later were treated 

intraperitoneally with a single dose of CCl4 (2mL/kg of body weight). Oral feeding of the 

rats with this hydrolysate fraction could significantly lower the serum levels of hepatic 

enzyme markers (aspartate transaminase and alanine transaminase) [352]. Similarly, 

another research work showed that porcine plasma protein hydrolysates prepared by 

Alcalase hydrolysis for 5 h at pH 8.0 and 55°C, produced an antioxidant product able to 

increase the radical-mediated oxidation system [353].  

Blood plasmas from other animals have also been explored for obtaining 

antioxidative hydrolysates. In this context, the hydrolysis of bovine plasma by Alcalase 
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hydrolysis increased its scavenging ability on 2,2-azino bis-(3-ethylbenzothiazoline)-6-

sulfonic acid free radicals and reduction power, and these activities remained after in vitro 

digestion [354]. In another paper, blood plasma protein and blood cell protein hydrolysates 

were produced from silkie fowl (Gallus gallus) blood by hydrolysis using Alcalase [355]. 

The hydrolysates showed strong 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity 

[355]. In another paper, a sheep plasma hydrolysate was produced by Alcalase-hydrolysis 

[356]. Peptides with high antioxidant properties measured through both the ferric-reducing 

antioxidant power and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability were 

isolated from this hydrolysate [356].  

3.2.6. Hydrolysis of egg proteins 

3.2.6.1. Use of stand-alone Alcalase  

Egg proteins have also been used as substrate for Alcalase hydrolysis to produce 

antioxidant peptides. For example, it was reported that hydrolysates of egg white protein 

powder prepared using Alcalase and fractionated by ultrafiltration membranes possessed 

strong reducing power ability, particularly the fraction within <1 kDa [357]. Wang et al. 

reported that the fractionation with ultrafiltration membranes and further treatment by 

pulsed electric field of the peptides from egg white protein powder obtained by Alcalase 

hydrolysis, improved the antioxidant activity of these peptides (mainly the fraction 1-10. 

kDa) [358]. On another paper, peptides with strong antioxidant capacity were purified from 

duck egg white protein hydrolysate prepared with Alcalase with a degree of hydrolysis 

value of 21% [359].  
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In another study, it has been shown that some protein pretreatments significantly 

affected the peptide profiles and antioxidant activity of the hydrolysates obtained by 

Alcalase hydrolysis [360]. Thus, egg white proteins were submitted to thermal and 

ultrasound treatments, being the ultrasound pretreatment at 40 kHz - 15 min the one that 

permitted to get the most effective hydrolysate in scavenging both DPPH and ABTS 

radicals (28.10±1.38 and 79.44±2.31%, respectively) [360]. Tanasković et al. reported an 

interesting study focused on the influence of operating conditions on the Alcalase 

hydrolysis of egg white protein performed in a continuously stirred tank reactor equipped 

with an ultrafiltration module [361], which appears to be a right approach to improve and 

intensify the enzymatic process, enabling the production of peptides with desired 

antioxidant activity [361].  

3.2.6.2. Comparison of Alcalase with other proteases  

Five proteases were employed for the preparation of antioxidant peptides from 

soluble eggshell membrane protein [362]. Alcalase hydrolysate had the highest free radical 

scavenging activity and its fraction with an average molecular weight of 618.86 Da, 

possessed the strongest scavenging activity with IC50 values of the superoxide radicals, 

hydroxyl scavenging activities, and protective effect on DNA damage caused by hydroxyl 

radicals generated of 0.10, 0.18, and 0.95 mg/mL, respectively [362].  

Other studies deal with the Alcalase hydrolysis of egg white protein powder [363]. 

For instance, egg white protein powder hydrolysates were prepared using trypsin, Alcalase 

and pepsin. Alcalase hydrolysate was the one that possessed the strongest reducing power 

[363]. In another study, Alcalase hydrolysates (compared to trypsin and pepsin 

hydrolysates) showed the strongest antioxidant activity [364]. Moreover, after high-
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intensity pulsed electric field treatment, its reducing power activity was improved [364]. 

Later, an efficient continuously operated membrane reactor with a polyethersulfone 

ultrafiltration module was designed for egg white protein hydrolysis [365]. Among the 

assayed enzymes, Alcalase gave the highest degree of hydrolysis, as well as the best 

antioxidant properties of the obtained hydrolysates [365].  

In another paper, it was found that in the production of hydrolysate with different 

proteases, Alcalase hydrolysate egg white liquid had the highest radical-scavenging activity 

compared to the product obtained with other proteases [366].  

3.2.7. Hydrolysis of proteins from other sources  

3.2.7.1. Use of stand-alone Alcalase 

Alcalase has also been used to hydrolyze proteins from many other sources with the 

goal to produce antioxidant peptides. For example, Alcalase was used to hydrolyze the 

fresh velvet antler of sika deer (Cervus Nippon Temminck) [367]. After reaction 

optimization (amount of enzyme of 1:150, substrate concentration of 1:13 and 60 min), a 

hydrolysate with potent antioxidant activity was produced [367]. In another study, golden 

apple snail (Pomacea canaliculata) protein was hydrolyzed using Alcalase [368]. The 

optimal conditions were established by response surface methodology (45°C, pH 10, 

enzyme concentration of 2%, and 159 min). These conditions produced a protein 

hydrolysate with a yield of 9.72% and antioxidant activity of 73.54% [368]. In another 

paper, Alcalase hydrolysis conditions of Polyrhachis vicina Roger protein were optimized 

by response surface methodology to optimize the antioxidant activity of the hydrolysate 

[369]. 
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Hydrolysates obtained from the red seaweed Mastocarpus stellatus using Alcalase 

at 50 °C were supplemented with glycerol and directly used as film-forming solution [370]. 

The obtained films had a high reducing power and radical scavenging capacity, which 

remained after a heat treatment at 90 °C [370]. Pinctada fucata muscles were hydrolyzed 

by Alcalase and then fractioned using ultrafiltration membranes to obtain peptides with 

molecular weights smaller than 5 kDa, which exhibits good scavenging capacity against 

free radicals [371].  

Nannochloropsis gaditana (a microalgae) protein hydrolysate produced extracted 

via hydrolysis using Alcalase under optimum conditions (pH 8.14, 51.4°C, substrate 

concentration of 5.48 g/L and an enzyme concentration of 0.26 g/L) [372]. The hydrolysate 

presented a degree of hydrolysis of 55.76%, and an antioxidant activity measured by  1,1-

Diphenyl-2-picrylhydrazyl and 2, 2’-azino-bis (ethylbenzthiazoline-6-sulfonic acid assays 

of 52.19% and 14.13%, respectively [372].  

In another paper, two antioxidant peptides were obtained from the Alcalase 

hydrolysate of Arca subcrenata [373]. In another study, two antioxidant peptides 

(DFTPVCTTELGR and ARFEELCSDLFR) were purified from the Alcalase hydrolysate of 

housefly (Musca domestica L.) pupae [374]. They exhibited strong ABTS and cation 

radical scavenging activity with EC50 values of 0.39 and 0.35 mM, respectively [374].  

Moreover, some animal viscera proteins have been used as substrates for Alcalase 

hydrolysis, such as sheep visceral protein which produced a hydrolysate with an antioxidant 

activity of 68.21% [375]. Han et al. studied the in vivo and in vitro antioxidant capacity of 

porcine splenic hydrolysate prepared using Alcalase [376], suggesting that porcine splenic 

peptides improve the antioxidant status in rats by enhancing hepatic catalase and 
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glutathione peroxidase activities [376]. In addition, hydrolysates production from chicken 

viscera protein were prepared by hydrolysis using Alcalase in an ionic liquid medium 

(tetramethylammonium bromide) [377]. The hydrolysate presented values of antioxidant 

activities 40% higher than the hydrolysates obtained produced in the absence of ionic liquid 

[377].  

3.2.7.2. Comparison of Alcalase with other proteases 

Silk sericin hydrolysates were obtained by hydrolysis of silk sericin with Neutrase, 

bromelin, trypsin, papain, Alcalase and Flavourzyme [378]. Alcalase hydrolysate exhibited 

the highest scavenging activity and exerted the highest peroxidation inhibition [378]. 

Similarly, silkworm (Bombyx mori L.) pupal protein, one of the main by-products of the 

silk reeling industry was hydrolyzed by several proteases [379]. The Alcalase hydrolysates 

presented the highest degree of hydrolysis and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) 

radical-scavenging capacity [379].  

The comparison of Alcalase with other proteases has been extended to the 

hydrolysis of larvae protein from different insects. For instance, Alcalase and Neutral 

proteinase was employed to obtain housefly larvae protein hydrolysates [380]. The results 

showed that the Alcalase hydrolysate had higher scavenging activities against hydroxyl 

radical and superoxide anion radical at low concentrations than the Neutral proteinase 

hydrolysate [380]. In another study, among five different proteases, Alcalase was selected 

to obtain Tenebrio molitor larvae (mealworm) hydrolysates due to its highest production 

yield (42.05%) of low molecular weight peptides [381]. These were effective as inhibitors 

on peroxidation of linoleic acid [381]. In addition, Protaetia brevitarsis larvae powder was 

used to obtain protein hydrolysates by enzymatic hydrolysis using Flavourzyme, papain, 
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Alcalase, bromelain or Neutrase [382]. The Alcalase hydrolysates showed the highest 

antioxidant activity [382]. In another paper, protein hydrolysates with antioxidant 

properties were obtained by hydrolysis of Allomyrina dichotoma larvae protein using 

Neutrase, Alcalase, Flavourzyme, bromelain and papain [383]. Alcalase hydrolysate 

significantly inhibited linoleic acid peroxidation after five days of incubation [383]. Also, 

antioxidant hydrolysates were produced by Neutrase, trypsin, Alcalase and papain 

hydrolysis of black soldier fly (Hermetia illucens L.) larvae protein [384].  

Protein hydrolysates were prepared from Nitzschia laevis, Spirulina platensis and 

Chlorella vulgaris using trypsin, Flavourzyme and Alcalase [385], and in general, the 

hydrolysis process enhanced the antioxidant activities, especially those hydrolysates 

obtained using Alcalase [385]. In another work, antioxidant peptides were produced from 

Schizochytrium limacinum residue obtained by its hydrolysis with Alcalase, Flavourzyme, 

papain, trypsin and Protamex [386]. It was showed that the Protamex and Alcalase 

hydrolysates had the highest antioxidant activity, measured as  hydroxyl radical scavenging 

ability (IC50 = 1.66 mg/mL), 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability 

(IC50 = 1.28 mg/mL) and reducing power (1.42 at 5.0 mg/mL)  [386].  

In another paper, velvet antler was hydrolyzed using pepsin, trypsin, Alcalase, 

Neutrase or α-chymotrypsin [387]. Alcalase hydrolysate exhibited the highest peroxyl 

radical scavenging activity. A peptide was purified and identified (Trp-Asp-Val-Lys), it 

exhibited strong scavenging activity against peroxyl radical (IC50 value, 0.028 mg/mL), 

and showed significant protection ability against AAPH-induced oxidative stress by 

inhibiting the production of reactive oxygen species in Chang liver cells in vitro and in a 

zebrafish model in vivo [387].  
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Solitary tunicate (Styela clava) hydrolysates were produced with Thermoase PC10F, 

Alcalase or pepsin [388]. The hydrolysate produced by Alcalase had the highest antioxidant 

and anticancer activities [388]. In another study, using either Protamex or Alcalase in the 

hydrolysis of Ganoderma lucidum protein, the antioxidant properties of the protein were 

increased (from 28.70% to 33.30% and 39.10%  respectively) [389]. Skin protein from a 

bluefin leatherjacket (Navodon septentrionalis) processing by-product was hydrolyzed by 

Flavourzyme, Neutrase, papain, trypsin, Alcalase and pepsin [390]. The Alcalase 

hydrolysate showed the highest DPPH, HO
-
, and O

2-
 scavenging activities, and three 

peptides were isolated from it. The peptides showed strong antioxidant properties which 

might be attributed to their small molecular sizes and the hydrophobic and/or aromatic 

amino acid residues in their amino acid sequences [390].  

Chicken thigh and breast skin proteins were hydrolyzed using Alcalase or a 

combination of pepsin and pancreatin and the hydrolysates were fractionated by membrane 

ultrafiltration [391]. The chicken breast skin hydrolysates had significantly higher DPPH 

scavenging activity than the chicken thigh skin hydrolysates, but both had a significantly 

lower scavenging activity against DPPH radicals than reduced glutathione [391]. In another 

paper, chicken skin gelatin was hydrolyzed by Pronase E, Alcalase or collagenase and the 

hydrolysates submitted to ultrafiltration [392]. The hydroxyl radical activity, superoxide 

anion radical activity and Fe
2+

 chelating activity were higher than those of the commercial 

antioxidants BHT, trolox or ascorbic acid [392]. 

In order to improve the processing of porcine waste, porcine skin was hydrolyzed 

using Protamex, Bromeline, Neutrase, Alcalase, Flavorzym or papain [393]. It was found 

that hydrolysates obtained by Alcalase exhibited the highest degree of hydrolysis and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

69 
 

showed the highest antioxidant and collagenase inhibition activities [393]. Another research 

effort showed that the hydrolysates obtained from porcine blood by hydrolysis catalyzed by  

papain, trypsin or Alcalase, showed potent antioxidant and antimicrobial activities (one 

example of mixed bioactivities)  [394].  

3.2.8. Combined use of Alcalase with other proteases 

The use of Alcalase in combination with other proteases may produce some 

synergistic effect [155]. In fact, it has been recently discussed that the use of several 

enzymes may have advantages in most reactions, even more so in reactions where multi-

functional substrates are utilized, the so-called combi-enzymes [395]. In other cases, 

protein hydrolysis is carried out in several hydrolysis stages involving different enzymes. 

Examples of such researches are presented below.  

First some examples of using the combi-protease concepts will be presented. For 

example, hydrolysate from yak bone obtained by hydrolysis with Alcalase plus 

Flavourzyme at 50°C for 4 h showed the strongest antioxidant activity in a H2O2 system 

and chelating activity to Cu
2+

 [396]. Other research reports showed that Alcalase + pepsin 

and Alcalase + trypsin were employed to prepare antioxidant peptides from oat protein, 

giving better results than the use of the individual enzymes [397]. In another paper, possible 

synergistic effects of combined action of proteases in antioxidant peptides production from 

soy protein isolate were evaluated [398]. In terms of DPPH (2,2-diphenyl-1-picrylhydrazyl) 

radical scavenging, the hydrolysates obtained with Flavourzyme combined with Alcalase 

showed the highest antioxidant activity, while the hydrolysates obtained using the ternary 

mixtures of Flavourzyme, Alcalase and YeastMax A showed the highest inhibition of 

linoleic acid autoxidation [398]. Hydrolysates from white bean protein concentrate were 
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obtained using a mixture of Alcalase and Flavourzyme [399]. The antioxidant activities of 

the hydrolysates increased from 45% to 70% after enzymatic hydrolysis and that the use of 

the binary enzyme mixture had a significant synergistic effect and resulted in maximum 

antioxidant activity of the protein hydrolysates in terms of DPPH-radical scavenging and 

reducing power assay [399]. Similar results were obtained in the hydrolysis of black bean 

protein where a mixture of Alcalase and Flavourzyme produced protein hydrolysate with 

the highest antioxidant activity [400]. Three novel antioxidant peptides were purified from 

corn gluten meal hydrolysate produced by Alcalase + Flavourzyme hydrolysis [401], and 

among the three peptides, Cys-Ser-Gln-Ala-Pro-Leu-Ala exhibited excellent scavenging 

capacities for DPPH radical and superoxide anion radical, with IC50 values of 0.116 and 

0.39 mg/ml, respectively [401]. Wheat gluten was hydrolyzed through two treatments, 

single enzyme (Alcalase) and double enzyme (Alcalase-Flavor) [402]. The results showed 

that the hydrolysates produced by both enzymes had better solubility, reducing power, 

DPPH, superoxide anion and hydroxyl radical scavenging activity than single enzymatic 

hydrolysates [402]. In another research effort, antioxidant hydrolysates were produced from 

protein concentrate obtained from defatted flour of Salvia hispanica seeds hydrolyzed with 

Alcalase–Flavourzyme for up to 240 min [403]. In another paper, seven novel antioxidant 

peptides were obtained from sesame (Sesamum indicum L.) protein hydrolysate prepared by 

the hydrolysis with Alcalase and trypsin [404]. Among them, SYPTECRMR with DPPH 

and ABTS IC50 Values of 0.105 mg/mL and 0.004 mg/mL respectively, exhibited the 

highest antioxidant activity among the seven sesame peptides [404]. Later, anchovy 

(Engraulis japonicus) protein hydrolysates with a 1, 1-diphenyl-2-picryhydrazyl 

scavenging activity of 84.7% were obtained by hydrolysis using 

Protamex:Flavourzyme:Alcalase in a ratio of 1.1:1.0:0.9 under optimal conditions (total 
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protease concentration of 3.27%, pH 7.5, 55.4°C and 2.7 h) [405]. Eight antioxidant 

peptides were purified from hairtail (Trichiurus japonicas) muscle protein hydrolysate 

prepared by hydrolysis catalyzed by Papain + Alcalase [406]. In another  research, a 

mixture of Alcalase, Brauzyn and Protamex was utilized to produce spent brewer yeast 

protein hydrolysates yeast with improved physicochemical and antioxidant properties 

[407]. In a further study, spent brewer yeast cell wall was ruptured with enzymatic 

hydrolysis catalyzed by Protamex, Brauzyn, Alcalase and Flavourzyme, and this was 

compared to the results obtained using conventional methods (autolysis and mechanical 

rupture) [408]. It was found that yeast compounds were more efficiently released after 

sequential enzymatic hydrolysis using Brauzyn and Alcalase, resulting in maximum solid 

recovery and an increase of 63% in antioxidant properties [408]. Shu et al. employed 

Plackett-Burman design to determine the significant factors that affect the preparation of 

antioxidant peptides by hydrolysis of goat milk casein with mixtures of protease, which 

were temperature, enzyme/substrate ratio and the ratio of compound protease [409]. It was 

found that the hydrolysis conditions that led the highest antioxidative activity of the 

produced peptides were 55°C, pH 7.5, substrate concentration of 3.0%, an 

enzyme/substrate of 4.0%, a ratio of Alcalase/papain of 1/3 and a reaction time of 180 min 

[409]. Later, the optimization of hydrolysis condition of goat milk casein using mixtures of 

Alcalase/papain was optimized via response surface methodology [410]. The optimal 

reaction conditions were 61°C, enzyme/substrate ratio of 5.6%, and a combi-protease 

papain: Alcalase of 1.8. This led a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical 

scavenging activity increased 1.17 folds compared to un-optimized conditions [410].  
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In other cases, the studies were performed using a sequential strategy. As they did 

not compare both, it is hard to see the advantages of these two-step protocols compared to 

the use of combiproteases. For example, eggshell membrane hydrolysate was prepared by 

sequential treatment with Alcalase and Protease S and the product was fractioned by 

ultrafiltration [411]. The obtained fractions showed scavenging activity against DPPH and 

hydroxyl radicals as well as Fe
2+

 chelating activity [411].  In the hydrolysis of chickpea 

(Cicer arietinum L.) protein it was showed that the hydrolysis treatment of 60 min with 

Alcalase followed by 30 min with Flavourzyme produced hydrolysates with the highest 

antioxidant activity and cholesterol micellar solubility inhibition (50%) [412]. In addition, a 

peptide (RQSHFANAQP) with high antioxidant activity was isolated from Chickpea (Cicer 

arietinum L.) albumin hydrolysate obtained by sequential hydrolysis with Alcalase and 

Flavorzyme, and fractionation using size exclusion chromatography [413]. Heat stable rice 

bran protein was hydrolyzed using Alcalase (1.8 h) followed by hydrolysis with Protamex 

(2 h)  producing hydrolysates with high antioxidant activity [414]. In another research, 

protein enzymatic hydrolysates from a byproduct of chia (Salvia hispanica L.) oil 

extraction were obtained using Alcalase and Flavourzyme separately or in a sequential 

system [415]. Results revealed that the increase in the degree of hydrolysis (37.16 %) 

during the digestion with the sequential system Alcalase-Flavourzyme in 90 min showed 

higher ABTS antioxidant activity (12.56 mmol L-1 mg-1 protein) and higher DPPH radical 

sweep (77.47 %), compared to the individual enzymatic treatments [415]. Nile tilapia 

(Oreochromis niloticus) protein hydrolysates were prepared by one- and two-step 

hydrolysis using different commercial proteases [416], finding that the use of Alcalase in 

combination with papain rendered the hydrolysate with the best antioxidant properties and 

the  most reduced bitterness, which could be used as the functional food supplement [416]. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

73 
 

Collagen from the skin of yellowfin tuna obtained using papain was further hydrolyzed 

with Alcalase, and the hydrolysates obtained showed high antioxidant and antiglycation 

activities [417]. In addition, six antioxidant peptides were isolated (by ultrafiltration and 

chromatography methods) from protein hydrolysate obtained from blood cockle (Tegillarca 

granosa) treated with Alcalase for 1.5 h followed by a Neutrase treatment for 1.5 h [418]. 

Also, hydrolysates with high radical scavenging activity, reducing power, and lipid 

peroxidation inhibition capability from Antarctic krill (Euphausia superba) were prepared 

by sequential enzyme hydrolysis process using Alcalase and Flavourzyme under optimal 

conditions (pH 6.0, 2.5 h, 25°C, and solid–liquid ratio of 1:20) [419].  

3.3. Production of peptides with angiotensin I–converting enzyme inhibitory activity  

High blood pressure, better known as hypertension, is a major risk factor for 

cardiovascular diseases. It is related with stroke, myocardial infarction, heart failure and 

renal disease, which causes the premature death of about 9.4 million people every year 

[420, 421]. In this context, the dipeptidyl carboxypeptidase angiotensin I–converting 

enzyme (EC  3.4.15.1) plays an important physiological role in the regulation of blood 

pressure and in the cardiovascular function [422], because it converts, by removing 

dipeptide from the C-terminus, the inactive decapeptide angiotensin I into the  potent 

vasoconstricting octapeptide angiotensin II, which has a tendency to increase blood 

pressure [423]. For this reason, many drugs intended to treat hypertension and related 

diseases rely on angiotensin I–converting enzyme inhibition; among them, the two most 

popular classes of pharmacological treatments are angiotensin receptor blockers, which 

block the type 1 receptor of angiotensin II, and angiotensin-converting enzyme inhibitors 

[424], which inhibit angiotensin-converting enzyme activity reducing the conversion of 
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angiotensin I to angiotensin II and the vasoconstricting activity of angiotensin II [420]. 

Synthetic angiotensin-converting enzyme inhibitors like captopril, enalapril, and lisinopril, 

have been shown to be relatively safe in the short term; however, their use has been 

associated with serious side effects [171] like the accumulation of substance P, which is 

expressed in lung cancer tissue and has been related with angiogenesis and tumor 

proliferation, and with a bradykinin accumulation in the lung, which has been reported to 

promote growth of lung cancer [425]. 

Therefore, there is a growing interest in finding natural angiotensin I-converting 

enzyme inhibitors to overcome the disadvantages of synthetic drugs. In this regard, peptides 

with angiotensin I-converting enzyme inhibitory activity have gained great popularity 

[426]. These bioactive peptides have been obtained by enzymatic hydrolysis mainly from 

seafood proteins such as bigeye tuna dark muscle, yellowfin sole, freshwater fish, seaweed 

pipefish, oyster, algae, sea cucumber, etc. [426], but also from other protein sources like 

coconut cake [427], sesame meal [428], Phaseolus lunatus [429] and walnut (Juglans regia 

L.) [430]. Among the most widely used enzymes to obtain peptides with angiotensin I-

converting enzyme inhibitory activity is Alcalase.  

3.3.1. Hydrolysis of vegetable proteins  

3.3.1.1. Use of stand-alone Alcalase 

Alcalase was used both to hydrolyze soybean proteins, and to catalyze the plastein 

reaction to modify the obtained soybean protein hydrolysates [431]. They showed an 

angiotensin I-converting enzyme inhibitory activity with an IC50 value that ranged from 

0.64 to 1.11 mg/mL [431]. On the other hand, Li et al., showed that the hydrolysis of 
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soybean protein isolate catalyzed by Alcalase released antihypertensive peptides [432]. 

However, the simulated in vitro digestion of these peptides reduced the angiotensin I-

converting enzyme inhibitory activities [432]. Zhang et al. obtained a potent 

antihypertensive tetrapeptide (Phe-Gly-Ser-Phe) from vinegar-soaked black soybean using 

Alcalase, which exhibited high in vitro angiotensin I-converting enzyme inhibitory activity 

(IC50 = 117.11 μM) and in vivo hypotensive effect in spontaneously hypertensive rats 

[433]. Rapeseed protein has also been hydrolyzed by Alcalase [434]. The obtained 

hydrolysate presented a degree of hydrolysis of ∼11% after 4h digestion with Alcalase. 

This hydrolysate was fractioned and three peptides were purified. Among them, LY 

(IC50=0.11mM) was the most potent against angiotensin I-converting enzyme activity, and 

showed to be an effective hypotensive agent [434]. In another paper, the effect of Alcalase 

rapeseed hydrolysate on blood pressure was measured in vivo in Goldblatt rat model of 

hypertension finding a maximum difference in mean arterial pressure of approximately  

−50 mmHg by RP in comparison to vehicle treated rats [435], while in another study, 

Alcalase rapeseed protein hydrolysate inhibited angiotensin I-converting enzyme and renal 

activities in a dose-dependent manner [436].   

Dadzie et al. optimized the Alcalase hydrolysis of vital wheat gluten by response 

surface methodology [436]. The optimized conditions were a substrate concentration of 

5.04%, an enzyme-substrate ratio of 5.94%, and 30.79 min of reaction time. This 

hydrolysate presented a 78.93% ± 1.07 of angiotensin I-converting enzyme inhibitory 

activity [437]. On the other hand, He et al. used Alcalase for the establishment of an 

efficient enzymatic membrane reactor for the preparation of angiotensin I-converting 

enzyme inhibitory peptides from wheat germ protein isolates [438]. It was found that, in 
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comparison with the traditional enzymatic hydrolysis method, the conversion rate of protein 

increased by 36.17% and the IC50 of the produced hydrolysate was reduced by 30.6% 

[438]. Ramírez-Torres et al. reported the Alcalase hydrolysis optimization of the amaranth 

protein (optimal conditions were pH 7.01, enzyme concentration of 0.04 mU/mg, 52 °C and 

6.16 h) [439]. The optimized hydrolysate showed a 93.5% of angiotensin I-converting 

enzyme inhibition, at a hydrolysis degree of 74.77%, and was bioavailable in mice from 5 

to 60 min. Its hypotensive effect started after 4 h in spontaneously hypertensive rats [439]. 

Valdez-Meza et al. evaluated the antihypertensive properties of pasta enriched with an 

amaranth protein hydrolysate produced by Alcalase hydrolysis [440]. They found that the 

amaranth hydrolysates affected negatively the overall acceptability and, to a lesser extent, 

the pasta taste. However, under physiological conditions, it was possible to appreciate the 

antihypertensive properties of the supplemented pasta [440]. In another work, cookies 

prepared with Alcalase-generated amaranth hydrolysate reduced the blood pressure in 

spontaneously hypertensive rats [441]. 

Alcalase was also used to hydrolyze sweet sorghum grain protein [442]. The 

hydrolysate obtained with a degree of hydrolysis of 19% exhibited the strongest 

angiotensin-converting enzyme inhibitory activity [442].  The hydrolysis at 56 °C and pH 

8.0 using an Alcalase dosage of 5200 U/g [443], produced an optimized sweet sorghum 

grain protein hydrolysate, that contained 24.3% 1–5 kDa (IC50=0.305 mg/ml) and 15.2% 

<1 kDa (IC50=0.116 mg/ml) peptide fractions having potent in vitro angiotensin I-

converting enzyme inhibitory activities [443].  

African yam bean seed proteins hydrolysates with angiotensin I-converting enzyme 

inhibitory activity were produced by the hydrolysis with Alcalase [444]. In another paper, 
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Alcalase hydrolysates of common bean protein showed remarkable antihypertensive effect 

over spontaneously hypertensive rats, similar to Captopril treatment [445]. In another very 

interesting work, beans damaged by anthracnose disease were hydrolyzed with Alcalase 

[446], and the obtained hydrolysates had angiotensin I-converting enzyme inhibitory 

activity (IC50 0.019 mg protein/mL) very similar to those from control beans, suggesting 

that preparation of hydrolysates from this protein source, a wasted material, would allow 

their revalorization [446]. Segura-Campos et al. produced Alcalase hydrolysates from 

defatted Jatropha curcas kernel meal and the protein hydrolysate with a 21.35% degree of 

hydrolysis produced 34.87% angiotensin I-converting enzyme inhibition, and the purified 

fraction with the highest angiotensin I-converting enzyme inhibitory activity had an IC50 

value of 4.78 g/mL [447]. In another attempt, Xu et al. hydrolyzed soluble leaf protein from 

cauliflower processing by-products, using Alcalase, and the hydrolysate showed a potent 

angiotensin I-converting enzyme inhibitory activity in vitro, with an IC50 value of 138.545 

μg/mL [448]. Lim et al. optimized by responsive surface methodology the Alcalase 

hydrolysis conditions of Camellia japonica protein [449]. The optimal conditions were 

50.98°C, enzyme/substrate ratio of 2.85%, and pH of 7.12 to obtain hydrolysates with the 

highest angiotensin I-converting enzyme inhibitory activity. In an animal feeding study 

with spontaneously hypertensive rats, the authors found that even though systolic blood 

pressure was not statistically different, the high dose of C. japonica hydrolysate lowered 

diastolic blood pressure at the 5th week [449]. In another study, two peptides were obtained 

from horse gram flour by hydrolysis with Alcalase [450]. These peptides, TVGMTAKF 

and QLLLQQ, exhibited high angiotensin I-converting enzyme inhibitory activity with 

IC50 values of 30.3 μM and 75.0 μM, respectively [450]. 
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Alcalase hydrolysis of pea protein produced angiotensin I-converting enzyme 

inhibitory dipeptides with IC50 values <25 mM [451], while the peptides obtained from 

chickpea accession BDN-9-3 by 1 h of Alcalase hydrolysis had an angiotensin I-converting 

enzyme activity with a IC50 value of 22.43 mg/ml [452]. On the other hand, lightly roasted 

cowpea flour was hydrolyzed with Alcalase for 6 h [453]. The resulting hydrolysate, with 

an angiotensin I-converting enzyme inhibitory IC50 value of 123.6 μg/ml, was subjected to 

different purification steps, and a peptide with an IC50 value of 22 μg/mL was obtained 

[453].  

3.3.1.2. Comparison of Alcalase with other proteases  

Several proteases have been explored in the angiotensin I-converting enzyme 

inhibitory peptide production from vegetable proteins. For example, Neutrase, Alcalase, 

Flavourzyme, Proleather, Protamex and papain were employed to hydrolyze apricot 

(Prunus armeniaca L.) kernel proteins [454]. Alcalase was selected for further study on the 

enzymatic preparation of angiotensin I-converting enzyme inhibitory peptides, finding that 

after 60 min of hydrolysis, the highest angiotensin I-converting enzyme inhibition was 82 ± 

0.14% [454].  Soybean protein isolate was hydrolyzed by papain, Multifect Neutral, 

Neutrase, GC 106, Alcalase, Flavourzyme, and Protamex, at different enzyme and protein 

suspension concentrations, and at different reaction time [455]. Alcalase produced the best 

results under optimum hydrolysis conditions (1% enzyme concentration, 5% suspension 

concentration for 4 h) generating a hydrolysate with a IC50 value for angiotensin I-

converting enzyme inhibitory activity of 79.94 μg/mL [455]. In another study, bromelain, 

Flavourzyme, papain, and Alcalase were utilized to hydrolyze this product, and Alcalase 
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generated the hydrolysate with the highest angiotensin I-converting enzyme inhibitory 

activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) [456].   

Phaseolus lunatus protein concentrates of flour from germinated and non-

germinated seeds were hydrolyzed with Alcalase or pepsin-pancreatin and their 

hydrolysates were fractioned [429]. All obtained peptide fractions had angiotensin I-

converting enzyme inhibitory activity in a range of 0.9 to 3.8 µg/mL [429]. It has also been 

reported that with a controlled protein hydrolysis using Alcalase, Flavourzyme or pepsin-

pancreatin, it is possible to obtain angiotensin I-converting enzyme inhibitory and 

antioxidant peptides from Vigna unguiculata proteins [457]. In another paper, hydrolysates 

with angiotensin I-converting enzyme inhibitory activity were prepared from blue lupin 

(Lupinus angustifolius) protein isolate using Alcalase or Flavourzyme [458]. Alcalase 

hydrolysate showed the highest angiotensin I-converting enzyme inhibitory activities with 

IC50 values ranging from 0.10 to 0.21 mg/ml [458].  

Angiotensin I-converting enzyme inhibitory activity of hydrolysates produced by 

Alcalase or Flavourzyme hydrolysis of protein isolate from pumpkin oil cake has also been 

investigated [459]. The highest activity was determined in the Alcalase hydrolysate after 60 

min of reaction [459]. In another study, angiotensin I-converting enzyme inhibitory 

peptides with IC50 values ranging from 0.101 to 37.33 μg mL
-1

 were prepared from 

chickpea protein hydrolysates (fresh and hard-to-cook grains) using papain, pancreatin or 

Alcalase [460]. In another research, rapeseed protein hydrolysates were obtained by 

digestion with Alcalase and other proteases [461]. Alcalase, Proteinase K and thermolysin 

hydrolysates generated the highest in vitro inhibition of angiotensin I-converting enzyme. 

However, oral administration (100 mg/kg body weight) of Alcalase hydrolysate to 
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spontaneously hypertensive rats was the most effective treatment in blood pressure 

reduction [461]. On the other hand, angiotensin I-converting enzyme inhibitory activity of 

protein hydrolysates prepared by Alcalase hydrolysis of industrial defatted rapeseed [462], 

displayed the highest angiotensin I-converting enzyme inhibitory activity (IC50  value of 

0.02 mg/ml) and exhibited good stability in an in vitro digestion model using human gastric 

and duodenal fluids, when compared to the results obtained using other proteases [462]. 

Another research showed the hydrolysis of canola protein isolate catalyzed by trypsin, 

chymotrypsin, pancreatin, pepsin and Alcalase [463]. Alcalase hydrolysate presented the 

highest in vitro inhibition of angiotensin I-converting enzyme activity, and showed 

antihypertensive effects, giving the fastest and the highest decrease in systolic blood 

pressure in spontaneously hypertensive rats among the produced hydrolysates [463]. 

Marrufo et al. used Alcalase or a sequential pepsin-pancreatin enzymatic system to 

hydrolyze defatted protein isolate of seeds from Jatropha curcas L [464]. Alcalase 

hydrolysate showed an angiotensin I-converting enzyme inhibitory effect with IC50 value 

of 2.8 μg/mL, while the IC50 value for the hydrolysate obtained by the pepsin-pancreatin 

system was 7.0 μg/mL [464]. In another research attempt, Jatropha curcas L. protein 

hydrolysates were produced by treatment of a non-toxic genotype with Alcalase as well as 

pepsin and pancreatin [465]. It was found that more efficient peptides in angiotensin I-

converting enzyme inhibitory activity were produced in the Alcalase hydrolysates [465]. 

Another research used sesame meal, that was treated with pepsin, papain, Neutrase and 

Alcalase [428]. Alcalase generated the protein hydrolysate with the highest angiotensin I-

converting enzyme inhibitory activity corresponding to an IC50 value of 0.6 mg/mL [428]. 

In another study, hydrolysates of wild almond proteins were prepared using chymotrypsin, 

trypsin, pepsin, Flavourzyme and Alcalase [466]. Alcalase, again, generated the 
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hydrolysates with the highest angiotensin I-converting enzyme inhibiting activity (IC50 = 

0.8 mg/mL), and three peptides showing the highest angiotensin I-converting enzyme 

inhibitory activities were identified [466]. Malomo et al. produced antihypertensive 

hydrolysates of hemp seed proteins by hydrolysis with 2% or 4% pepsin, 1% or 2% 

Alcalase, 2% papain, or 2% pepsin + pancreatin [467]. The hydrolysates of hemp seed 

proteins obtained with 1% Alcalase were the most effective systolic blood pressure-

reducing agents (32.5 ± 0.7 mm Hg after 4 h of ingestion) [467]. In another study, 

mungbean vicilin protein was enzymatically hydrolyzed by Alcalase and trypsin under 

optimal conditions [468]. The Alcalase hydrolysate exhibited the highest angiotensin I-

converting enzyme inhibitory activity with IC50 value of 0.32 mg protein/mL [468]. Later, 

sweet potato protein was hydrolyzed by pepsin, papain and Alcalase under high hydrostatic 

pressure (100–300 MPa) [469]. It was found that molecular weight peptide fractions <3 

kDa from sweet potato protein prepared with Alcalase under 100 MPa, showed the highest 

angiotensin I-converting enzyme inhibitory activity with a IC50 value 32.24 µg mL
−1

 

[469]. Xu et al. evaluated pancreatin, pepsin and Alcalase for the hydrolysis of cauliflower 

processing by-products protein [470], and later Arise et al. compared trypsin, Alcalase, and 

pepsin in the hydrolysis of bambara protein [471]. In both cases, the peptides produced by 

Alcalase showed the highest inhibitory activity against angiotensin I-converting enzyme 

[470, 471]. In another paper, Dispase, trypsin, Alcalase, and Flavourzyme were used to 

hydrolyze a protein isolate extracted from Ginkgo biloba seeds, obtaining peptides with 

angiotensin I-converting enzyme inhibitory activity [472].  

3.3.2. Hydrolysis of fish and seafood proteins  

3.3.2.1. Use of stand-alone Alcalase 
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There are many examples of using Alcalase to hydrolyze fish and seafood proteins 

to get hydrolysates and peptides with angiotensin I-converting enzyme inhibitory activity. 

For example, the peptides al-Trp-Asp-Pro-Pro-Lys-Phe-Asp, Phe-Glu-Asp-Tyr-Val-Pro-

Leu-Ser-Cys-Phe and Phe-Asn-Val-Pro-Leu-Tyr-Glu [473], with IC50 values against 

angiotensin I-converting enzyme activity of 9.10 μM, 10.77 μM and 7.72 μM, respectively, 

were isolated from Alcalase hydrolysate from salmon byproduct proteins [473]. Similarly, 

seven peptides were isolated from protein hydrolysate (5% degree of hydrolysis) of defatted 

skipjack roe (Katsuwonus pelamis) produced by Alcalase digestion [474]. The peptide 

MLVFAV peptide exhibited the highest angiotensin I-converting enzyme inhibitory 

activity with an IC50 value of 3.07μM [474]. In another study, collagen extracted from 

jellyfish (Rhopilema esculentum) was hydrolyzed with Alcalase at optimal hydrolyzing 

conditions (52. 7 °C, pH of 8.6 and enzyme-to-substrate ratio of 3. 46%) [475], producing a 

hydrolysate with an angiotensin I-converting enzyme inhibitory activity of 81.7% [475]. 

Amado et al. reported the purification and identification of angiotensin I-converting 

enzyme inhibitory peptides with IC50 values ranging from 1.92 to 8.83 μg mL
-1

, obtained 

by 8 h of Alcalase hydrolysis of a protein concentrate recovered from a cuttlefish industrial 

manufacturing effluent [476]. Similarly, two potential angiotensin I-converting enzyme 

inhibitory peptides with molecular weight of 959.46 and 1,141.29 Da, were obtained from 

tuna cooking juice by Alcalase hydrolysis in a continuous enzymatic membrane reactor 

coupling with 1 kDa MWCO membrane [477]. In another paper, barbel (Barbus callensis) 

muscle protein was hydrolyzed with Alcalase producing a hydrolysate with an angiotensin 

I-converting enzyme inhibitory activity with an IC50 of 0.92 mg/mL [478]. Mahmoodani et 

al. used Alcalase hydrolysis to obtain angiotensin I-converting enzyme inhibitory peptides 
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from skin and bone gelatins of pangasius catfish (Pangasius sutchi), which showed an IC50 

value of 3.2 μg/ml and 1.3 μg/ml, respectively [479].  

Two angiotensin I-converting enzyme inhibitory peptides, identified as VKP and 

VKCFR, with IC50 values of 1.3 μM and 34.5 μM, respectively, from Jellyfish (Rhopilema 

esculentum) protein [480], and three peptides, EVSQGRP, CRQNTLGHNTQTSIAQ and 

VSRHFASYAN, with IC50 values of 0.05, 0.08 and 0.21 mM, respectively, from sea 

cucumber (Stichopus horrens) protein were obtained by Alcalase hydrolysis [481]. The sea 

cucumber hydrolysate was found to in vivo stabilize the blood pressure in normotensive rats 

[481]. Rasli and Sarbon optimized the Alcalase hydrolysis conditions for protein 

hydrolysate production from shortfin scad (Decapterus Macrosoma) skin gelatin [482]. The 

optimum hydrolysis conditions were 60°C , pH 9, 2.92% of enzyme/substrate concentration 

and 114.56 min, with an experimental yield of shortfin scad skin gelatin hydrolysis of 

90.05%, degree of hydrolysis of 90.48%, This hydrolysate exhibited an experimental 

angiotensin I-converting enzyme inhibitory activity of 79.61% [482]. In another research, 1 

h of Alcalase hydrolysis of tilapia (Oreochromis niloticus) processing by-product and 

tilapia muscle, produced a low molecular weight peptide fraction with a very high 

angiotensin I-converting enzyme inhibitory activity [483].  

3.3.2.2. Comparison of Alcalase with other proteases  

As performed in other cases, Alcalase has been seen compared to other proteases in 

the hydrolysis of fish and seafood proteins to produce hydrolysates or peptides with 

angiotensin I-converting enzyme inhibitory activity. Such is the case of the hydrolysis of 

seaweed pipefish muscle proteins [484], where Alcalase hydrolysate exhibited the highest 

angiotensin I-converting enzyme inhibitory activity, compared to the hydrolysates produced  
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with Pronase, pepsin, Neutrase, papain or trypsin [484]. Similar results have been obtained 

in the hydrolysis of gelatin from giant squid (Dosidicus gigas) [485], where the Alcalase 

hydrolysate was the most potent angiotensin I-converting enzyme inhibitor 

(IC50=0.34mg/mL) compared to the hydrolysates produced with NS37005, Savinase, 

Protamex, Neutrase, trypsin, and Esperase [485]. Also, in the hydrolysis of mussel (Mytilus 

edulis) protein, Alcalase catalyzed the hydrolysis most efficiently [486], with the highest 

protein recovery and the strongest angiotensin I-converting enzyme inhibitory activity, 

among six different proteases [486], and in the hydrolysis of Stichopus horrens flesh [487], 

Alcalase hydrolysate showed the highest degree of hydrolysis value (39.8%) and the 

highest angiotensin I-converting enzyme inhibitory activity, with an IC50 value of 0.41 

mg/mL, compared with trypsin, papain, bromelain, Flavourzyme, or Protamex hydrolysates 

[487]. In another study, Nile tilapia (Oreochromis niloticus) gelatin was hydrolyzed using 

Pronase E, pepsin, Alcalase and trypsin [488]. The Alcalase hydrolysate exhibited the 

highest angiotensin I-converting enzyme inhibitory activity, and the peptide 

DPALATEPDPMPF exhibits a potent angiotensin I-converting enzyme inhibitory activity 

[488]. Flavourzyme, Neutrase, Alcalase and Protamex were used to hydrolyze skin gelatin 

of skate (Okamejei kenojei) [489], and it was found that Alcalase hydrolysate exhibited the 

highest angiotensin I-converting enzyme inhibitory activity [489]. Among various 

commercial enzymes, Alcalase was selected to hydrolyze snakehead fish sarcoplasmic 

protein due to its better performance [426]. Two angiotensin I-converting enzyme 

inhibitory peptides, with IC50 values of 1.3 and 2.8μM, respectively, were isolated from 

the Alcalase hydrolysate, these peptides showed no cytotoxicity effects on human 

embryonic fibroblast cell line and human hepatocarcinoma cell line [426]. In addition, 

among many other different proteases, Alcalase produced peptides with higher angiotensin 
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I-converting enzyme inhibitory activity from the shrimp shell waste [490]. The optimal 

Alcalase hydrolysis conditions were pH 9.5, 60 °C, 25 g L
−1

 substrate and 4000 U g
−1

 of 

enzyme [490]. 

Thornback ray gelatin hydrolysates were prepared by hydrolysis with Alcalase and 

Neutrase, and the proteases from Bacillus subtilis A26 or from Raja clavate [491]. In this 

study, gelatin hydrolysate treated with Alcalase and A26 exhibited the highest angiotensin 

I-converting enzyme activity with 82 ± 0.49% and 85 ± 0.65, respectively, at 5 mg/ml 

[491]. In another work, Alcalase, papain, bromelain, Flavourzyme, pepsin, and trypsin were 

used to produce angiotensin I-converting enzyme inhibitory hydrolysates from sea 

cucumber (Actinopyga lecanora) [492]. Alcalase hydrolysate presented the highest 

angiotensin I-converting enzyme inhibitory activity (69.8%) after 8 h of hydrolysis [492].  

Collagenase, Proteinase K, Alcalase, and/or trypsin at their optimum conditions 

were used for the hydrolysis of grass carp (Ctenopharyngodon idella) skin pieces [493]. 

Alcalase and collagenase released peptides with angiotensin I-converting enzyme inhibitory 

activity [493]. In another work, angiotensin I-converting enzyme inhibitory and 

anticoagulant peptides from tuna cooking juice were prepared by enzymatic hydrolysis with 

Flavourzyme, pancreatin, Alcalase and pepsin [494]. The Alcalase hydrolysate after a 

hydrolysis time of 240 or 120 min showed the highest angiotensin I-converting enzyme 

inhibitory activity (96.9 ± 0.54%) [494].  

Flavourzyme and Alcalase were employed in the hydrolysis of protein-rich flour 

from mojarra of Nile tilapia (Oreochromis niloticus) skeleton for the preparation of protein 

hydrolysates with angiotensin I-converting enzyme inhibitory activity [495]. Both obtained 
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hydrolysates showed greater angiotensin I-converting enzyme inhibitory activity with IC50 

values of 0.344 and 0.238 mg/mL, respectively [495]. 

Dewi et al. reported the hydrolysis of three species of under-utilized sea cucumbers 

from Lampung and Gorontalo provinces, using Alcalase, bromelain, or the combination of 

both enzymes, at hydrolysis conditions of pH 7, 45 °C, 24 h and enzyme/substrate ratio of 

1% [496]. Results revealed that the Alcalase hydrolysates of H. atra contained the most 

active angiotensin I-converting enzyme inhibition activity with an IC50 value of 0.32 

mg/mL [496].   

In addition, angiotensin I-converting enzyme inhibitory peptides from coastal 

trashes of squilla muscle (Harpiosquilla raphidea) were prepared by enzymatic hydrolysis 

using thermolysin, trypsin and Alcalase [497]. The hydrolysates produced after 5 h of 

hydrolysis with Alcalase and 6 h with thermolysin had the highest angiotensin I-converting 

enzyme inhibition activity (64.8 ± 0.3% and 68.4 ± 1.0%, respectively) [497].  

3.3.3. Hydrolysis of whey and casein proteins  

3.3.3.1. Use of stand-alone Alcalase 

Alcalase has been frequently used for the hydrolysis of casein protein in order to 

obtain peptides with angiotensin I-converting enzyme inhibitory activity. For instance, it 

was reported that a casein hydrolysate prepared by hydrolysis of casein with Alcalase 

during 6 h had an in vitro angiotensin I-converting enzyme inhibitory activity with an IC50 

value of 47.1 μg mL
-1

 [498], while in another paper, the hydrolysate showed an IC50 of 

760 μg mL
-1

 [499].  
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Several studies report the modification of the Alcalase hydrolysates of casein, 

through the plastein reaction in order to improve angiotensin I-converting enzyme 

inhibition activity. About that, Alcalase casein hydrolysate with a degree of hydrolysis of 

13.5% showed an IC50 value of 45.2 μg mL-1 for in vitro angiotensin I-converting enzyme 

inhibition activity [500], which was improved by Neutrase-catalyzed plastein reaction 

obtaining IC50 values ranging from 15.6 to 20.0 μg/mL [500]. Similarly, a casein 

hydrolysate with a degree of hydrolysis of 10.9% prepared with Alcalase [501], had in vitro 

angiotensin I-converting enzyme inhibition with an IC50 value of 52.6 μg/mL, which after 

modification by Alcalase-catalyzed plastein reaction, resulted in an IC50 value of 13.0 

μg/mL [501].  

Zhang and Zhao studied the hydrolysis of casein with Alcalase obtaining 

hydrolysates with in vitro angiotensin I-converting enzyme inhibitory activity of 44.4% 

[502]. The hydrolysates were later modified by Alcalase-catalyzed plastein reaction in an 

ethanol-water medium finding that most of the treated hydrolysates enhanced their 

angiotensin I-converting enzyme inhibition activities compared to the initial casein 

hydrolysate, mainly at 4 h of reaction time [502]. The same authors reported the 

optimization of the Alcalase-catalyzed plastein reaction in ethanol-water medium to 

improve the in vitro angiotensin I-converting enzyme inhibitory activity (44.4%) of the 

Alcalase casein hydrolysate [503]. The optimized conditions were Alcalase addition of 8.36 

kU/g peptides, ethanol of 56.8% (v/v), substrate concentration of 56.8% (w/v), and 37.5°C, 

which led a casein hydrolysate with an angiotensin I-converting enzyme inhibitory activity 

of 62.5% [503]. In another study, casein was digested with Alcalase, and the obtained 

hydrolysate presented an in vitro angiotensin I-converting enzyme inhibitory activity of 
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48.2% [504]. When this product was modified by plastein reaction in propanol-water 

medium with addition of tyrosine or phenylalanine, after 1 h of reaction, produced modified 

hydrolysates with an inhibitory activity of 61.6-68.5% [504].  

3.3.3.2. Comparison of Alcalase with other proteases  

Hydrolysates from whey protein concentrate were generated using Flavourzyme, 

Alcalase or Neutrase, and they presented inhibition angiotensin I-converting enzyme 

activities of 51.52 %, 73.22 % and 71.14 %, respectively [505]. Alcalase and Neutrase 

hydrolysates were used to incubate human umbilical vein endothelial cells for 48 h, and this 

resulted in a beneficial differential expression of genes relevant to blood pressure control 

[505]. In another study, the angiotensin I-converting enzyme inhibitory effect of yoghurt 

beverage fortified with different whey protein hydrolysates was investigated [506]. To this 

goal, whey protein was hydrolyzed using Protamex, Alcalase and trypsin and the obtained 

hydrolysates were added to yoghurt beverage at concentrations of 1.25, 2.5, and 5 mg/mL. 

It was found that yoghurt beverage fortified with 2.5 mg/mL and 5 mg/ mL of hydrolysates 

had 61-69% and 74% of angiotensin I-converting enzyme inhibitory activity, respectively, 

with no significant differences between the Alcalase or Protamex hydrolysates [506]. In 

addition, bromelain, Alcalase and papain were used to hydrolyze camel milk protein [507]. 

Papain and Alcalase hydrolysates presented the highest angiotensin I-converting enzyme 

inhibitory activity [507]. 

3.3.4. Hydrolysis of proteins from other sources  

3.3.4.1. Use of stand-alone Alcalase 
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There are many other sources of proteins that have been explored to produce 

peptides with angiotensin I-converting enzyme inhibitory activities by hydrolysis with 

Alcalase. 

For example, Alcalase was used to hydrolyze silk fibroin [508], and the results 

showed that the obtained hydrolysate with a hydrolysis degree of 17% exhibited the highest 

angiotensin I-converting enzyme inhibitory activity, and significantly lowered blood 

pressure of spontaneously hypertensive rats after chronic oral administration [508]. Lu et 

al. reported an angiotensin I-converting enzyme inhibitory peptide (Ile-Gln-Pro) with an 

IC50 value of 5.77 ± 0.09 μM, which was produced by Alcalase digestion of Spirulina 

platensis [509]. This peptide was resistant to in vitro digestion by gastrointestinal proteases 

and significant decreased the systolic and diastolic blood pressure in spontaneously 

hypertensive rats after 4, 6, and 8 h of its oral administration [509]. 

Alcalase hydrolysis of chicken blood meal has also been explored [510]. In this 

study, the results showed that peptides with the highest angiotensin I-converting enzyme 

inhibition activities were produced after five hours of hydrolysis, using 10% Alcalase 

enzyme [510]. In another research, hydrolysates from bovine plasma were obtained by 

Alcalase at different degrees of hydrolysis [511]. The highest angiotensin I-converting 

enzyme inhibition activity was obtained with a hydrolysis degree of 6.7%. After fractioning 

the hydrolysate, the most active fraction presented an IC50 value of 0.18 mg/mL, which 

remained constant after submitting it to in vitro digestion conditions [511]. In another work, 

a natural seasoning with antihypertensive effect was developed using beef hydrolysate 

produced by the hydrolysis with Alcalase for 4 h [512].   
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Insects are also used as feedstock. Tenebrio molitor (L.) larva was subjected to 

hydrolysis with Alcalase [513]. The hydrolysate with a degree of hydrolysis of 20% 

presented the highest angiotensin I-converting enzyme inhibition activity with an IC50 

value of 0. 39 mg/mL, and after fractionation, the smallest peptides were the most active 

ones, increasing this value up to 0.23 mg/mL. Its multiple dose oral administration to 

spontaneously hypertensive rats led to a significant decrease in blood pressure. A novel 

peptide (Tyr-Ala-Asn) was purified and presented an IC50 value of 0.017 mg/mL [513]. In 

another example, ultrasound treated silkworm pupa (Bombyx mori) protein was hydrolyzed 

using Alcalase, and the hydrolysate with the highest angiotensin I-converting enzyme 

inhibitory activity was subjected to several purification steps which led to the identification 

of a novel peptide (Lys-His-Val) with IC50 value of 12.82 μM [514]. This peptide was 

stable against the gastrointestinal proteases [514]. In another paper, Alcalase was also used 

for the preparation of peptides with angiotensin I-converting enzyme inhibitory activity 

from Enteromorpha clathrata protein [515]. 

Alcalase has also been used to obtain potential angiotensin I-converting enzyme 

inhibitory peptide from egg white protein. For example, a peptide with a sequence of Arg-

Val-Pro-Ser-Leu and remarkable angiotensin I-converting enzyme inhibitory activity (IC50 

value of 20 μM) [516], and another one, identified as QIGLF which exhibited an 

angiotensin I-converting enzyme inhibitory activity with an IC50 value of 75 μM and 

resistance to digestion by proteases of the gastrointestinal tract [517], were produced by 

Alcalase hydrolysis of egg white protein. 

3.3.4.2. Comparison of Alcalase with other proteases  
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Alcalase was selected among seven commercial enzymes due to its most effective 

activity in the hydrolysis of Porphyra yezoensis proteins [518]. Under optimum Alcalase 

hydrolysis conditions (1.5% substrate, 5% enzyme, pH 9.0, 50 °C and 60 min), an 

antihypertensive peptide with a high angiotensin I-converting enzyme inhibition activity of 

55.0% and a low IC50 value of 1.6 g/l was produced [518].  

Protein by-products produced from the oil extraction in the biodiesel production 

from Nannochloropsis oculata were hydrolyzed using PTN, Flavourzyme, Neutrase, 

Alcalase or Protamex [519]. The hydrolysate produced by Alcalase showed the highest 

angiotensin I-converting enzyme inhibitory activity with and IC50 value of 0.126 mg ml
-1

 

[519]. Similarly, trypsin, chymotrypsin, pepsin, Protamex, Kojizyme, Neutrase, 

Flavourzyme, Alcalase and papain were evaluated in the hydrolysis of Chlorella ellipsoidea 

proteins [520]. Among the tested enzymes, a potent angiotensin I-converting enzyme 

inhibitory peptide with IC50 value of 128.4 μM, was isolated from a hydrolysate produced 

by the hydrolysis with Alcalase [520].  

Other studies report the hydrolysis of chicken skin protein from the thigh and breast 

muscles using Alcalase or a combination of pepsin/pancreatin [521]. The produced protein 

hydrolysates were fractionated by ultrafiltration membranes, and then were administrated to 

spontaneously hypertensive rats which reduced their systolic blood pressure [522]. Also, 

the production of chicken skin gelatin hydrolysates and peptides with angiotensin I-

converting enzyme inhibitory activity using Pronase E, Alcalase and collagenase was 

reported [523]. They showed antihypertensive effect of some purified peptides by oral 

administration to spontaneously hypertensive rats [523]. 
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Mudgil et al. studied the effect of different proteolytic enzymes (Alcalase and 

Protease), hydrolysis time and enzyme: substrate ratio on the bioactive properties of novel 

camel skin gelatin hydrolysates [524]. In general, no significant effect of the enzyme: 

substrate ratio and time of hydrolysis on the production of bioactive peptides was observed, 

while both enzymes, Alcalase and Protease, individually or in combination produced camel 

skin gelatin hydrolysates with highly potent antihypertensive activity [524].  

Alcalase and papain were used to hydrolyze bovine collagen from connective tissue, 

a by‐ product in the meat processing industry [525]. The two most potent angiotensin I-

converting enzyme inhibitory collagen hydrolysates with IC50 values of 0.17 and 0.35 mg 

mL
-1

 were obtained using Alcalase-catalyzed and papain-catalyzed hydrolysates, 

respectively. After fractionation, these values  increased up to IC50 values of 3.95 and 7.29 

μg mL
-1

, respectively [525]. In another paper, edible bird nest protein was hydrolyzed by 

Alcalase or papain [526]. The results showed that 60 min of hydrolysis using Alcalase 

produced a protein hydrolysate with the highest angiotensin I-converting enzyme inhibitory 

activity with an IC50 value of 0.02 mg protein/ml [526]. Another contribution shows that 

Achatina fulica snail foot muscle protein was hydrolyzed with trypsin, papain or Alcalase 

[527]. It was found that Alcalase produced the hydrolysate with the highest degree of 

hydrolysis and a strong angiotensin I-converting enzyme inhibitory activity in vitro (IC50 

value of 0.024 mg/mL) [527].  

In another study, hydrolysates of egg protein were produced with pancreatin, 

pepsin, thermolysin or Alcalase [528]. After their fractionation by ultrafiltration and cation 

exchange chromatography, it was found that the hydrolysates produced with thermolysin or 

Alcalase showed the highest angiotensin I-converting enzyme inhibitory activity [528].  
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3.3.5. Combined use of Alcalase with other proteases 

The production of angiotensin I-converting enzyme inhibitory peptides from whey 

protein isolate by hydrolysis using different proteases or combi-proteases [395] has been 

investigated.  

There are some examples on the use of combi-proteases. For example, Chen et al., 

reported the optimization by response surface methodology and application of an Alcalase-

trypsin enzymatic blend in the hydrolysis of goat milk casein [529]. Under optimal 

conditions (pH 8.4, enzymes ratio 1:1 and enzyme to substrate ratio 8.5%), the angiotensin 

I-converting enzyme inhibitory activity of the obtained hydrolysates was 91.99% [529]. In 

another paper, a blend of Alcalase and Protease was used for the hydrolysis of bovine milk 

to produce novel angiotensin I-converting enzyme inhibitory peptides [530]. In this study, 

the optimized hydrolysis conditions were determined to be pH 9.01, 61.81 °C and 6.5% 

ratio of enzyme to substrate. This led to hydrolysates with the highest angiotensin I-

converting enzyme inhibitory activity (85.02%). Further fractioning gave a fraction with an 

angiotensin I-converting enzyme inhibitory activity as high as 92.7% [530]. In another 

work, Alcalase, Flavourzyme and thermolysin were used to produce protein hydrolysates 

from date seed flour [531]. Results showed that among all treatments, hydrolysates 

prepared using a combination of Alcalase and thermolysin exhibited the highest angiotensin 

I-converting enzyme inhibitory activity with an IC50 value of 0.53 mg/mL [531]. 

However, in this instance, we have been able to find more examples of the 

sequential use of several proteases. Such is the case of the study carried out by Wang et al., 

who studied the hydrolysis of whey protein isolate using Neutrase, Alcalase or trypsin and 

also their use in a sequential way [532]. The authors used two different hydrolysis 
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conditions, pH-controlled and not-controlled pH, where the pH will decrease during the 

reactions. After 3 h of incubation of the proteins with Alcalase plus 2 h with Neutrase 

without pH control, they produced a hydrolysate with the highest angiotensin I-converting 

enzyme inhibitory activity (54.30%) [532].  

Rui et al. investigated angiotensin I-converting enzyme inhibitory activity of protein 

hydrolysates derived from protein isolates of three Phaseolus vulgaris varieties (navy, 

black and small red bean) produced by hydrolysis using sequential digestion of 

Alcalase/Flavourzyme or Alcalase/papain [533]. Results showed that Alcalase/papain 

hydrolysates for all investigated Phaseolus vulgaris varieties presented higher angiotensin 

I-converting enzyme inhibitory activity with IC50 values in a range of  68 ± 5 μg 

protein/mL to 83 ± 13 μg protein/mL than the other hydrolysates [533]. An angiotensin I-

converting enzyme inhibitory octapeptide (PVNNPQIH) with an IC50 value of 206.7 ± 3.9 

μM, was purified from small red bean (Phaseolus vulgaris) protein hydrolysate produced 

by sequential digestion catalyzed by Alcalase and papain followed by in vitro 

gastrointestinal simulation [534]. In another research, Alcalase was used in a sequential 

digestion of palm kernel expeller glutelin-2 with Flavourzyme, pepsin and trypsin [535]. 

The proteins were pretreated under high pressure. The obtained protein hydrolysates 

presented high angiotensin I-converting enzyme inhibitory activity (80.24 %) [535].  

Alcalase-Flavourzyme sequential system was employed to hydrolyze a protein-rich 

fraction from chia (Salvia hispanica L.) seed, and the hydrolysate obtained had 58.46% 

angiotensin I-converting enzyme inhibitory activity [536]. In another research, the 

sequential hydrolysis of high pressure pretreated coconut cake globulin by Alcalase, 

Flavourzyme, pepsin and trypsin [427], produced a hydrolysate with an angiotensin I-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

95 
 

converting enzyme inhibitory activity of 52.16%, which markedly reduced the systolic 

blood pressure of spontaneously hypertensive rats after single and chronic oral 

administration [427]. 

In the same way, Alcalase-Protamex sequential process was used to hydrolyze 

almond protein, and the hydrolysates were purified in order to identify the most active 

peptides [537]. Two angiotensin I-converting enzyme inhibitory peptides with the IC50 

values of 67.52 ± 0.05 and 43.18 ± 0.07 μg mL
-1

 were purified and the results showed that 

these peptides significantly regulated the release of nitric oxide and endothelin in human 

umbilical vein endothelial cells [537]. Zheng et al. employed Alcalase-trypsin sequential 

system to hydrolyze quinoa bran albumin [538]. The hydrolysates obtained had angiotensin 

I-converting enzyme inhibitory activity with IC50 of 38.16 µM and significant 

antihypertensive effect in spontaneously hypertensive rats [538].  

Enzymatic sequential system has also been employed in the hydrolysis of seafood 

and fish proteins. For instance, Gu et al. reported the use of Alcalase-papain sequential 

system in the production of peptides with angiotensin I-converting enzyme inhibitory 

activity from collagen of Atlantic salmon (Salmo salar L.) skin [539]. Among the peptides 

produced, two dipeptides identified as Ala-Pro and Val-Arg presented the highest 

angiotensin I-converting enzyme inhibitory activities with an IC50 of 0.060 mg/ml for Ala-

Pro and IC50 of 0.332 mg/ml for Val-Arg [539]. Similarly, proteins from abalone (Haliotis 

discus hannai) gonads were hydrolyzed by Alcalase followed by papain treatment [540]. 

The hydrolysate was fractionated and a peptide was isolated which showed a angiotensin I-

converting enzyme inhibitory activity of 0.44 mg/mL [540]. Later, the Alcalase-papain 

sequential digestion of abalone gonads led to the production of a tripeptide which had an 
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angiotensin I-converting enzyme inhibitory activity with IC50 value of 106.24 μg/mL 

[541]. This activity remained after gastrointestinal digestion [541]. 

In another study, Alcalase/Protease produced peptides with angiotensin I-converting 

enzyme inhibitory activity from skate (Okamejei kenojei) skin gelatin, which were able to 

reduce the systolic blood pressure in spontaneously hypertensive rats [542]. Also, pepsin-

pancreatin and Alcalase-Flavorzyme sequential systems were used to prepare hydrolysates 

with angiotensin I-converting enzyme inhibitory capacity from sea cucumber (Isostichopus 

badionotus) [543]. It was found that the Alcalase-Flavourzyme system produced 

hydrolysates with the highest degree of hydrolyses and angiotensin I-converting enzyme 

inhibitory action (86%) [543].  

3.4. Production of metal binding peptides  

It is extensively known that nutritional disorders often come from a deficit in the 

intestinal absorption of metals which are essential for the organism [544, 545]. To prevent 

it, many researchers have been trying to improve the chelating activity of functional foods 

increasing the bioavailability of these metals [546]. In this context, Alcalase presents itself 

as an excellent alternative, and it has proven its efficacy in several studies.  

Among the essential trace elements that humans need, iron is the most important 

one, and its deficiency causes many diseases [547, 548]. Typically, foods derived from 

animals are a better source of iron since it is more easily absorbed than from foods derived 

from vegetables [549]. There are plant factors such as polyphenols, phytate and soy protein 

that inhibit the non-heme iron absorption, while ascorbic acid and some components of 
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animal tissues enhance it. It has been suggested that some peptides, released during the 

protein digestion, may help iron absorption [550].  

Zinc is also a trace element of great importance for the organism as it has a key role 

in the activation of hundreds of enzymes and gene expression [551-553]. Zinc also 

participates in the innate immunity helping the normal function of neutrophil and natural 

killer cells [554, 555]. It is used in the treatment against several diseases like 

atherosclerosis or immunologic disorders [556]. Calcium is another essential mineral 

nutrient, involved in many basic biological processes such as nerve conduction, mitosis, 

muscle contraction, blood coagulation and, of course, it is indispensable as the structural 

support of the skeleton [557]. Its deficit can provoke serious systemic illnesses like 

osteoporosis [558]. Looking for alternatives to improve the calcium intake, several 

experiments have been carried out in order to obtain functional foods rich in this element. 

Proteolysis is again, a good choice to obtain hydrolysates with high calcium-binding 

ability. Next, we will present some papers showing the preparation of peptides with 

capability to bind zinc, iron or calcium and that way, facilitate their absorption and 

bioavailability.  

3.4.1. Hydrolysis of vegetable proteins  

 

The use of Alcalase employed in the hydrolysis of vegetable proteins will be 

presented in the next paragraphs, in some instances comparing its performance with that of 

other proteases.  

In one of them, Alcalase or Flavourzyme were used to hydrolyze proteins from 

sunflower (Helianthus annuus L.) seeds and obtain iron-binding peptides [559]. The most 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

98 
 

interesting peptide fraction to produce iron supplements was the one having a molecular 

weight below 3 kDa [559]. Some other studies have used Alcalase in order to obtain 

hydrolysates with increased zinc-binding ability. In one of these studies, four peptides were 

isolated from rapeseed Alcalase hydrolysate, and among them, Asn-Ser-Met showed an 

especially high zinc-chelating activity (better than the one of reduced glutathione) [556]. 

Other examples are the use of Alcalase to produce zinc-chelating peptides from mung bean 

[560] and rapeseed meal [561]. In other instance, wheat germ protein hydrolysates obtained 

through Alcalase hydrolysis were found to present the capability to bind calcium [558]. 

This capacity was dependent on various factors like the degree of hydrolysis, amino acid 

composition and molecular mass distribution of different hydrolysates. The calcium-

binding peptides was mainly composed by Glu, Arg, Asp and Gly, and the level of Ca
2+

 

bound was related to the hydrophobic amino acid content in the wheat germ protein 

hydrolysates [558].   

In some studies, the results are not focused on one individual metal, but on a general 

capacity of the hydrolysate to chelate metals. In one of these studies, Alcalase was used to 

hydrolyze wheat germ protein [562], and the hydrolysates prepared under optimal 

conditions (200 min) had the highest degree of hydrolysis (15.61 ± 0.09%) and metal 

chelating ability (69.62 ± 0.96%), being this result better than using other proteases like 

Flavourzyme or papain [562]. Similarly, wheat germ protein was also hydrolyzed by 

papain, Flavourzyme and Alcalase [563]. The hydrolysate with the highest metal-binding 

ability (69.62 ± 0.96%) was obtained when Alcalase was used [563]. 

It has been reported that, when Alcalase is used to hydrolyze soy protein, the 

hydrolysate is rich in calcium-chelating activity, but if the reaction conditions are optimized 
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using different media (water, ethanol-water, methanol-water), the calcium-chelating 

activities could be improved [564]. In another paper, casein and soybean proteins were 

hydrolyzed with Alcalase and trypsin [565]. Proteolytic hydrolysis enhanced the 

bioaccessibility of iron and zinc in proportion to the degree of hydrolysis. Alcalase 

hydrolysis showed a comparatively higher metal chelating activity with both proteins [565]. 

3.4.2. Hydrolysis of animal proteins 

Some studies where Alcalase was employed in the hydrolysis of animal proteins 

will be presented. In one of these studies, it was reported that sea cucumber (Stichopus 

japonicus) ovum hydrolysates obtained with Alcalase at a hydrolysis degree of 25.9% 

possessed a very high iron binding capacity (92.1%) [566]. In another work, Alcalase was 

utilized to obtain zinc-chelating peptides from sea cucumber with a zinc-chelating ability of 

a 33.31%, and the zinc mainly bonded to carboxylic and amide groups [567]. Alcalase can 

also be used to generate good iron-binding peptides from heated colostral whey [568]. And 

as another instance, whey protein was hydrolyzed by Alcalase, and the hydrolysate 

exhibited a high calcium rich chelate capability [569]. A different work showed that β-

lactoglobulin hydrolysates obtained with Alcalase after 6 h of hydrolysis possessed the 

highest iron-binding capacity among the hydrolysates produced in the several assayed 

conditions [570].  

There are many studies where not only Alcalase, but other proteases were also used 

to obtain the hydrolysate with iron-chelating properties. However, in most of them, 

Alcalase was reported to produce the peptides with the highest iron-chelating ability, as it 

can be seen in some experiments made with scad (Decapterus maruadsi) processing by-

products [549, 571], buffalo αS-casein [572] and marine mackerel processing byproducts 
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[573]. In another instance, among the hydrolysates obtained using several proteases 

(trypsin, pepsin, Flavourzyme, Alcalase, and papain), the yak casein hydrolysate obtained 

with Alcalase presented the highest Zn
2+

-binding capacity [574]. It is remarkable that 

although compared with native yak casein, the Zn
2+

-binding activity of yak casein 

hydrolysate was significantly lower, its solubility was markedly higher under intestinal 

basic pH ranges, which indicates a better bioavailability [574]. In another paper, four 

different proteases including Alcalase were used to obtain calcium-binding peptides from 

tilapia (Oreochromis niloticus) protein [575]. Alcalase produced the hydrolysate with the 

highest calcium-binding capacity (65 mg/g protein) at 27. 7 % degree of hydrolysis [575]. 

Another example is a study where calcium binding peptides were isolated from bovine 

serum proteins hydrolysates using Flavourzyme, Protamex and Alcalase [576]. From the 

peptide fraction below 3 kDa of the Alcalase hydrolysate, a peptide (Asp-Asn-Leu-Pro-

Asn-Pro-Glu-Asp-Arg-Lys-Asn-Tyr-Glu) with the highest calcium binding capacity was 

obtained [576].  

There are also reports of works looking for the improvement of the chelating ability 

of the proteins of other elements. In this way, Alcalase was used to hydrolyze chicken 

sternal cartilage to obtain several peptides with protective effect in a cadmium-induced 

osteoporosis model [577]. Another example is the study where Alcalase and other proteases 

were used to obtain an Mg
2+

-binding hydrolysate from casein [578]. The hydrolysate that 

showed the highest Mg
2+

-chelation efficiency (96.1%) was obtained using Alcalase at an 

enzyme substrate ratio of 30%. After the hydrolysate  was fractioned, the smallest fraction 

exhibited 100% Mg
2+

 solubilization and 39.5% of bioavailability [578]. In a slightly 

different turn a study proved that Alcalase could be employed to hydrolyze casein in order 
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to obtain casein phosphopeptides which can be used for enhancing the bioaccessibility of 

iron and zinc in pure iron solutions or even in high phytate foods [579].  

Some studies where the protein source is neither animal nor vegetal are also 

presented. For instance, in one study, Spirulina, a cyanobacteria, was hydrolyzed using 

Alcalase and Flavourzyme to finally obtain iron-chelating peptides in the peptide faction 

below 3 kDa [580]. In another paper, Alcalase was used to hydrolyze a fungus (Grifola 

frondosa) protein [581]. The hydrolysate was filtered through 5 and 1 kDa nominal cut-off 

ultrafiltration membranes, two fractions with chelating activity were obtained, and named 

GFP-1 and GFP-2 respectively. GFP-2 had the highest Fe (II) chelating activity and both 

fractions kept this activity even after in vitro gastrointestinal digestion [581].  

 

3.4.3. Combined use of Alcalase with other proteases 

There are some examples of use of combi-proteases [395] to produce chelating 

peptides. In one study, ovomucoid was hydrolyzed by different proteases (pepsin, α-

chymotrypsin, papain, and Alcalase) alone or in combinations [582]. Among the different 

treatments, the hydrolysate after hydrolysis of Alcalase plus papain showed the highest 

iron-chelating and antioxidant activities [582]. In another paper, Alcalase and Neutrase 

were used in combination for the hydrolysis of pig bone collagen to obtain peptides with a 

high calcium binding ability [583]. Defatted rice bran protein was treated with Alcalase, 

Flavourzyme or a combination of both, in order to obtain a hydrolysate rich in iron binding 

peptides [584]. The iron bioavailability was also studied using an in vitro digestion and 

absorption model (Caco-2 cells). The best results were obtained with a combined 

hydrolysis catalyzed by Alcalase and Flavourzyme [584]. 
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3.5. Production of peptides with antidiabetic potential activity  

Diabetes mellitus is a chronic metabolic disease which represents a worldwide 

health problem with strong socioeconomic and health impacts [585]. Among the three 

existing types of diabetes (type 1 and type 2 diabetes mellitus, and gestational diabetes), 

type 2 diabetes mellitus is the most common type, comprising 90% of the world diabetic 

population, and the number of people suff ering from type 2 diabetes is expected to reach 

439 million by 2030 [586, 587]. Diabetes can cause many complications, which include 

diabetic ketoacidosis, nonketotic hyperosmolar coma and hyperglycemia. Hyperglycemia, 

which is caused by the disability or lack of insulin production by pancreatic β-cells, 

reduced sensitivity of the tissue to insulin, or both [588], is an early abnormality that 

signals the presence of type 2 diabetes mellitus and it is an important risk factor for the 

development of diabetes mellitus-derived complications such as microangiopathy, retinal 

damage, neuropathy, chronic renal failure and cardiovascular disease. For these reasons, a 

good management of hyperglycemia is critical to prevent or delay the manifestation and 

complications of type 2 diabetes mellitus [589]. One therapeutic approach to control type 2 

diabetes is the use of synthetic medicines like acarbose and voglibose, which suppress the 

absorption of glucose by the inhibition of carbohydrate-hydrolyzing enzymes [590] such as 

α-glucosidase [591], which catalyzes the cleavage of glucose from disaccharides, or α-

amylase, which acts on long-chain carbohydrates [592, 593]. However, the cost of these 

drugs is high, and they are associated with gastrointestinal side effects like diarrhea (14% 

of patients) and flatulence (78% of patients) [594]. The inhibition of dipeptidyl peptidase-

IV activity is another mechanism for type 2 diabetes mellitus control. Dipeptidyl peptidase-

IV is responsible for the rapid degradation of both glucagon-like peptide 1 and glucose-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

103 
 

dependent insulinotropic polypeptide [595], two insulinotropic incretin hormones that 

enhance glucose-dependent insulin secretion from pancreatic cells and regulate 

postprandial blood glucose levels [596-599]. Many synthetic dipeptidyl peptidase-IV 

inhibitors are used, including vildagliptin, linagliptin, saxagliptin, and sitagliptin [600]; 

however, these drugs, which are collectively known as gliptins, provide inadequate 

glycemic control and are associated with frequent side-effects such as hypoglycemia, 

weight gain, cardiovascular problems, headaches and urinary and upper respiratory tract 

infections [601].  

Due to the previously mentioned synthetic drugs disadvantages, there is currently a 

growing global demand for the search of natural therapeutic agents with reduced or no side-

effects to control, prevent and treat this disease. In this sense, recent approaches for the 

management of type 2 diabetes mellitus have focused on nutritional interventions using 

food-derived components like phenols, flavonoids, protein and peptides, which exhibit 

antidiabetic activity [602]. In fact, it has been established that some proteins, protein 

hydrolysates, peptides and amino acids can beneficially regulate blood glucose levels [601]. 

In this context, the antidiabetic activity of food protein hydrolysates and their peptides from 

milk proteins and hemp, pea, rice, soy and macroalgae proteins, has been demonstrated 

[598]. These peptides can be successfully obtained by enzymatic hydrolysis of diff erent 

source proteins, using proteases. Among them, Alcalase has been used to produce these 

hydrolysates. Next, we will comment some examples. 

3.5.1. Use of stand-alone Alcalase 

Several proteins from vegetable sources have been evaluated as feedstocks to 

produce peptides with antidiabetic activity by Alcalase hydrolysis, such is the case of the 
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study carried out by De Souza et al., who studied the impact of germination of cowpea 

(Vigna unguiculata) combined with Alcalase hydrolysis of the protein extract from this 

source, on the generation of bioactive peptides with dipeptidyl peptidase IV inhibition 

activity [603]. These authors found that the hydrolysates produced from non-germinated 

seeds after 1h of Alcalase hydrolysis exerted the highest dipeptidyl peptidase IV inhibition 

after in vitro simulated gastrointestinal digestion [603]. Later, De Souza et al. evaluated the 

effect of germination time and Alcalase hydrolysis of common bean proteins in the 

generation of bioactive peptides with potential to reduce parameters related to the risk of 

developing type 2 diabetes mellitus in vitro [604]. Computational modeling showed that the 

peptide RGPLVNPDPKPFL obtained after 48h seed germination and 1h Alcalase 

hydrolysis was able to strongly inhibit dipeptidyl peptidase-IV by interacting with the S1, 

S2, and S3 pockets of its active site [604]. Later, Connolly et al. reported the in vitro 

dipeptidyl peptidase-IV inhibitory activity of a hydrolysate obtained by hydrolysis of 

brewers spent grain protein-enriched isolate catalyzed by Alcalase [598], which after 240-

min digestion generated a hydroysate presenting a dipeptidyl peptidase-IV inhibitory 

concentration (IC50) value of 3.57 ± 0.19 mg mL
−1

 (half of the values of the initial protein) 

[598]. It has also been reported that Alcalase-generated potato protein hydrolysate is a 

potential bioactive peptide against diabetes mellitus in animal models [605]. Asokan et al. 

investigated the efficiency of the peptide DIKTNKPVIF purified from the previous 

hydrolysate against diabetes mellitus [606]. This peptide effectively regulated blood 

glucose level and also controlled plasma total glycerol, total cholesterol, insulin, and 

hemoglobin A1c levels in animals with diabetes mellitus. Furthermore, treatment with this 

peptide also ameliorated diabetes mellitus-associated damages in the pancreatic islets and 

in the liver, heart, and kidney tissues [606].  
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Another source of protein that has been studied to produce antidiabetic peptides is 

white egg protein. Yu et al. identified potential antidiabetic peptides obtained from egg 

white protein hydrolyzed by Alcalase [594]. Among the eight peptides evaluated, the 

peptide RVPSLM produced α-glucosidase inhibition with an IC50 value of 23.07 μmol L
-1

. 

However, it did not exhibit a detectable inhibitory efficiency on the α-amylase activity 

[594].  

3.5.2. Comparison of Alcalase with other proteases  

Alcalase has also been compared in its ability to produce antidiabetic peptides with 

other proteases, mainly using proteins from plant sources. Proteins from de-hulled hard-to-

cook beans (Pinto Durango and Negro 8025 beans) have been hydrolyzed with either 

Alcalase or bromelain [607]. After 120 min of reaction, the hydrolysates were separated 

into five peptide fractions by ultrafiltration. It was found that the < 1. kDa pinto Durango-

bromelain fraction was the best inhibitor of α-amylase (49.9. ± 1.4%); however, the < 1. 

kDa pinto Durango-Alcalase fraction inhibited both, α-glucosidase (76.4. ± 0.5%), and 

dipeptidyl peptidase-IV (55.3. ± 1.6%). In general, hydrolysates from de-hulled hard-to-

cook beans inhibited enzymes related to diabetes management, being the smallest peptides 

(< 1 kDa) the most powerful [607]. Peptides released from oat, buckwheat, and highland 

barley proteins by Alcalase hydrolysis or gastrointestinal and tryptic digestion, were studied 

in terms of their in vitro inhibitory effects on dipeptidyl peptidase IV [608]. All obtained 

hydrolysates exhibited dipeptidyl peptidase IV inhibitory activities, with IC50 values 

ranging from 0.13 mg/mL (oat glutelin after Alcalase digestion) to 8.15 mg/mL (highland 

barley albumin after tryptic digestion). In this study, Alcalase was more efficient than 

trypsin in the production of peptides that were good inhibitors of dipeptidyl peptidase IV 
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[608]. In another paper, Mojica and De Mejia optimized the antidiabetic peptides 

production from black bean (Phaseolus vulgaris L.) protein isolate, using eight commercial 

proteases [609]. It was found that the highest antidiabetic effect of the hydrolysate was 

obtained using Alcalase, with a hydrolysis time of 2 h and an enzyme/substrate ratio of 

1/20. The detected inhibition values for dipeptidyl peptidase IV, α-amylase and α-

glucosidase were 96.7%, 53.4% and 66.1% , respectively [609].  

In another interesting study, Alcalase, Neutrase, Flavourzyme and Protamax were 

used to obtain rice bran protein hydrolysates [610]. Alcalase and Protamax produced 

hydrolysates that generally had the highest antidiabetic activities. The α-amylase and α-

glucosidase inhibitory activities these hydrolysates were similar to those of the commercial 

antidiabetic drug acarbose [610]. Another work reports the hydrolysis of pea protein 

concentrate with chymotrypsin, pepsin, Alcalase or trypsin [611]. Alcalase was the enzyme 

that produced hydrolysate with the highest production of di- and tripeptides and the higher 

inhibition activity versus  α-amylase than versus α-glucosidase [611].  

3.5.3 Combined use of Alcalase with other proteases 

Regarding the production of peptides with antidiabetic activity using Alcalase, there 

are several studies where this enzyme is used in combination with other proteases, either 

through co-hydrolysis or in sequential systems.  

The use of combi-proteases [395] has many different examples. In this context, 

some vegetable proteins have been evaluated. For instance, Alcalase and bromelain were 

used to produce peptides from pinto Durango and black 8025 beans proteins [612]. The 

hydrolysates effect on insulin secretion from pancreatic β-cells and glucose uptake from 
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insulin-resistant adipocytes was studied [612]. Hydrolysates and peptide fractions increased 

glucose-stimulated insulin secretion from rat insulinoma INS-1E cells, reduced the 

expression of proteins like dipeptidyl peptidase IV and receptor for advanced glycation end 

products, and significantly reduced oxygen species (up to 70%). Besides, peptides inhibited 

lipid accumulation in mature adipocytes 3T3-L1 and increased glucose uptake (67%) 

enhancing insulin signaling and reducing the phosphatase and tensin homologue activation 

[612]. In vitro hypoglycemic activity of four kinds of dark tea (Camellia sinensis L.) 

proteins and their hydrolysates were investigated by Su et al. Alcalase and trypsin were 

used to hydrolyze four water-extracted dark tea proteins [613]. Their results showed that 

most of the dark tea proteins and hydrolysates significantly inhibited α-glucosidase and 

dipeptidyl peptidase, with a half maximal inhibitory concentration values in the range of 

0.0103 -1.3114 mg/mL and 0.1000 -1.3364 mg/mL, respectively [613].  

On the other hand, Nuñez-Aragón et al. evaluated the antihyperglycemic activity and 

inhibition of α-glucosidase, and intestinal glucose absorption, and acute toxicity of total 

hydrolysates and <1 kDa fractions from Phaseolus lunatus L., Phaseolus vulgaris L., and 

Mucuna pruriens (L.) DC., obtained by hydrolysis with Alcalase-Flavourzyme or pepsin-

pancreatin enzymatic systems [614]. In vitro, total hydrolysates and fractions, particularly 

from M. pruriens, inhibited carbohydrate intestinal absorption and α-glucosidase activity, 

and in vivo, three out of six total hydrolysates and four of six <1 kDa fractions suppressed 

starch-induced postprandial hyperglycemia. In addition, none of the hydrolysates and 

fractions tested showed any signs of toxicity (median lethal dose >5000 mg kg−1) [614].  

Napin extracted from rapeseed was hydrolyzed by several commercial enzymes to 

produce hydrolysates with dipeptidyl peptidase-IV inhibitory activity [615]. Among the 
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evaluated enzymes, a two-enzyme-combination approach with Alcalase and trypsin was 

selected due to the favorable dipeptidyl peptidase-IV inhibitory activity (IC 50 = 0.68 

mg/mL) of the napin hydrolysate [615]. 

Also, examples of sequential hydrolysis by several proteases may be found. 

Castañeda-Pérez et al. investigated the antidiabetic potential of cowpea (Vigna unguiculata 

L.) protein hydrolysates and ultra-filtered peptide fractions produced by sequential 

hydrolysis with Alcalase-Flavourzyme [616]. The peptide fraction greater than 10 kDa 

showed the highest α-amylase inhibitory activity with an IC 50 value of 31.58 mg 

protein/ml, and the highest inhibitory activity of α-glucosidase with an IC 50 value of 40.17 

mg protein/mL. However, protein hydrolysates showed the highest inhibitory activity of 

dipeptidyl peptidase-IV with an IC 50 value of 189.04 mg protein/mL. Moreover, protein 

hydrolysates and ultra-filtered peptide fractions with higher inhibitory activity of α-

amylase, α-glucosidase, and dipeptidyl peptidase-IV did not show in vitro cytotoxicity in 

Vero cells [616]. 

In addition to vegetable proteins, some proteins from fish have also been studied 

using combi-proteases. Harnedy et al. demonstrated that the blue whiting protein 

hydrolysate generated using Alcalase and Flavourzyme had significant metabolic effects 

relevant to glucose control in vivo, by inhibition of dipeptidyl peptidase-IV and mediation 

of insulin and glucagon-like peptide-1 release from BRIN-BD11 and GLUTag cells, 

respectively [617]. In another attempt, these authors reported the production of salmon co-

product hydrolysates with promising in vitro antidiabetic activity [618]. They found that 

gelatin and trimmings hydrolysates generated by hydrolysis with Alcalase and Flavourzyme 

exhibited high insulin and glucagon-like peptide-1 secretory activity stimulation from 
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pancreatic BRIN-BD11 and enteroendocrine GLUTag cells, respectively, and potent 

dipeptidyl peptidase-IV inhibitory activity [618]. Also, Alcalase and Flavourzyme were 

used to obtain boarfish (Capros aper) protein hydrolysate, in order to investigate their 

antidiabetic actions in cultured cells and mice [619]. They found that boarfish protein 

hydrolysate caused a dose-dependent increase in insulin secretion from BRIN-BD11 cells. 

Moreover, it mediated an increase in plasma insulin levels and a consequent reduction in 

blood glucose concentration after oral glucose tolerant test in mice. This way, boarfish 

protein hydrolysate showed potent antidiabetic actions in cells and improved glucose 

tolerance in mice [619]. 

In a more recent investigation, twenty-two novel dipeptidyl peptidase-IV inhibitor 

peptides and fifteen novel insulinotropic peptides were identified in a boarfish protein 

hydrolysate generated at semi-pilot scale using Alcalase and Flavourzyme [601]. Among 

them, the most potent dipeptidyl peptidase-IV inhibitory peptide had a dipeptidyl 

peptidase-IV IC50 value of 21.72 ± 1.08 µM in a conventional in vitro assay and 44.26 ± 

0.65 µM in an in situ cell-based (CaCo-2) dipeptidyl peptidase-IV inhibition assay. This 

peptide stimulated insulin secretory activity from pancreatic BRIN-BD11 cells grown in 

culture [601].  

According to the reviewed literature, antidiabetic hydrolysates and peptides 

obtained by protein hydrolysis with Alcalase of protein from egg, fish by-products, 

legumes, etc. have emerged as a new alternative to treat hyperglycemia and have the 

potential to be developed into a dietary or nutraceutical supplement for the management of 

type 2 diabetes mellitus and its complications. 

3.6. Production of peptides with anti-inflammatory activity  
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Inflammation is an essential, complex and highly regulated physiological adaptive 

response of the body to cell damage and tissue vascularization, that enables patient survival 

during infection or injury and maintains tissue homeostasis under different noxious 

conditions [620]. This response is part of the host defense mechanism against inflammatory 

inducers like chemical and noxious mechanical agents, microbial infections, and conditions 

such as infection and tissue injury [621, 622]. During the early phases of inflammatory 

response, tissue-resident cells (inflammatory sensors) detect the inflammatory stimulus and 

release soluble inflammatory mediators, including cytokines, vasoactive amines, free 

radicals, chemokines and eicosanoids [620, 621]. It is important to mention that, although a 

typical inflammatory response consists of four components (inflammatory inducers, the 

sensors that detect them, the inflammatory mediators induced by the sensors, and the target 

tissues that are affected by the inflammatory mediators), each component comes in multiple 

forms and their combinations function in distinct inflammatory pathways which depend on 

the nature of the inflammatory trigger. Thus, for example, bacterial pathogens are detected 

by receptors of the innate immune system, such as Toll-like receptors, which are expressed 

on tissue-resident macrophages and induce the production of inflammatory cytokines (e.g., 

tumor necrosis factor-α, interleukins-1, interleukins -6, interleukin-1β) and chemokines 

(e.g., chemokine C-C ligand 2 and C-X-C chemokine 8), nitric oxide as well as 

prostaglandin-E2 [620, 623]. Excessive and uncontrolled inflammation is harmful to all 

tissues, since it may cause many acute and chronic human diseases including obesity, 

atherosclerosis, type 2 diabetes, cancer and neurodegenerative diseases [620, 624]. For 

example, dysregulated activation of some inflammatory enzymes such as cyclooxygenase-

2, generating prostaglandin-E2 from arachidonic acid, and inducible nitric oxide synthase, 

which catalyzes the reaction that oxidizes L-arginine to nitric oxide and citruline, play 
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important roles in the progression of oncogenesis [625]. Therefore, suppressing the 

overproduction of inflammatory mediators and the control of the abnormal up-regulations 

of the inflammatory enzymes (that promote excessive inflammation) is important for the 

treatment and prevention of inflammation and to reduce the risk of inflammation-derived 

diseases [626]. For this reason, some synthetic drugs have been employed to regulate the 

response of the immune system. Unfortunately, the prolonged use of these chemical anti-

inflammatory drugs may result in cardiovascular, renal or gastrointestinal damage. 

Therefore, there is a growing interest on the use of non-toxic natural compounds to reach 

this goal [627, 628]. In this regard, the anti-inflammatory activity of many plant and animal 

derived food proteins and protein hydrolysates has been demonstrated [629, 630].  

In order to improve the bioactivity of food proteins, enzymatic hydrolysis has been applied 

to many food proteins to release bioactive peptides with desired functional properties [626]. 

Alcalase is one of the protesase used to produce protein hydrolysates with anti-

inflammatory activity [631].  

3.6.1. Use of stand-alone Alcalase 

Focusing on the use of Alcalase, Oseguera-Toledo et al. demonstrated that Alcalase 

hydrolysates of pinto Durango and Negro beans inhibit cyclooxygenase-2 expression, 

prostaglandin E2 production, inducible nitric oxide synthase expression and nitric oxide 

production [632]. For this reason, these hydrolysates from common beans can be used to 

treat inflammatory associated diseases [632]. In another paper, an anti-inflammatory 

peptide was identified in lupine protein hydrolysates obtained by Alcalase hydrolysis [633]. 

This peptide, with a sequence of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, was synthesized and 

its anti-inflammatory activity was tested. It was found that the peptide may help prevent 
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chronic inflammation due to a significant reduction of the expression of tumor necrosis 

factors, interleukin-1β, and C-C motif chemokine ligand 2, and the induction of the anti-

inflammatory cytokine interleukin-10 expression, together with a decrease of nitric oxide 

production [633]. Lee et al. obtained velvet antler Alcalase hydrolysate and assessed their 

anti-inflammatory effects in zebrafish as well as in vitro, using different cell lines [634]. 

They found that the Alcalase hydrolysate inhibited the production of nitric oxide by 

lipopolysaccharide-induced cells in a dose-dependent manner and also reduced the 

expression of inflammatory mediators such as nitric oxide synthase and cyclooxygenase-2. 

In addition, the analysis of anti-inflammatory effects of velvet antler Alcalase hydrolysate 

using lipopolysaccharide-stimulated zebrafish showed that this hydrolysate significantly 

inhibited the extent of lipopolysaccharide-stimulated cell death and generation of nitric 

oxide and reactive oxygen species in zebrafish [634]. These authors emphasize that velvet 

antler Alcalase hydrolysate could be used as a natural and strong anti-inflammatory, and 

that enzymatic hydrolysis of velvet antler may be an effective process to produce antler 

derivatives that can be used in the preparation of health foods and nutraceutical products 

[634]. In another study, it was demonstrated that the low-molecular weight fractions 

prepared from ovomucin Alcalase hydrolysate may have potential applications for the 

maintenance of dermal health and treatment of skin diseases [635], due to the their anti-

inflammatory activity regulated through the inhibition of tumor necrosis factor-mediated 

nuclear factor κ-light-chain-enhancer of activated B cells activity [635] .  

Alcalase has also been used in the hydrolysis of whey protein to produce, isolate 

and characterize anti-inflammatory peptides. In one study, eight peptides, including 2 new 

peptides (DYKKY and DQWL) were identified [636]. DQWL showed the strongest 
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inhibitory ability on cyclooxygenase-2, interleukin-1β, and tumor necrosis factor-α mRNA 

expression and production of interleukin-1β and tumor necrosis factor-α proteins [636]. 

3.6.2. Comparison of Alcalase with other proteases 

Ruditapes philippinarum protein extract was hydrolyzed using eight proteases, 

being Alcalase among them [637]. It was found that the Alcalase-produced hydrolysate 

exhibited the highest nitric oxide production inhibitory activity, and one of the produced 

peptides displayed potent anti-inflammatory activity through inhibition of the 

lipopolysaccharides-induced nitric oxide production in RAW264.7 cells [637]. In another 

research, tuna cooking juice was hydrolyzed by three commercial enzymes (Flavourzyme, 

Orientase and Alcalase) [629]. Among the evaluated enzymes, Alcalase hydrolysate 

exhibited the most potent anti-inflammatory capability, and its peptide fraction with 

molecular weight ranging from 204 to 1672.9 Da possessed the greatest activity [629]. 

O'Sullivan et al. reported the production of hydrolysates from bovine lung tissue using 

pepsin, papain or Alcalase, and they assessed the anti-inflammatory activity of these 

hydrolysates in RAW264.7 macrophages and Jurkat T cells [638]. They found that the cell 

treatment with the Alcalase hydrolysate significantly decreased the production of the pro-

inflammatory cytokines interleukin-6 and interleukin-1β in a dose dependent manner in 

RAW264.7 cells, and the nitric oxide production; therefore, the authors concluded that the 

Alcalase hydrolysis of bovine lung may have potential as an anti-inflammatory agent [638]. 

Finally, Meram and Wu, evaluated the anti-inflammatory effects of egg yolk livetins (α, β, 

and γ-livetin) fraction and its hydrolysate, prepared by hydrolysis with Alcalase or pepsin, 

on lipopolysaccharide-induced RAW 264.7 macrophages as an in vitro model [626]. They 

found that the treatment with livetins and peptides from its hydrolysate significantly 
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reduced the inflammatory response by the inhibition of production of nitric oxide, pro-

inflammatory cytokines such as tumor necrosis factor-α, interleukin-6 and interleukin-1β, 

and the expression of inducible nitric oxide synthase. In addition, Alcalase hydrolysate 

showed more effects in inhibiting prostaglandin-E2 production as well as expression of 

cyclooxygenase-2 [626]. 

3.6.3. Combined use of Alcalase with other proteases 

Regarding the use of Alcalase in combination with other proteases, there is just one 

example in the analyzed time frame. Alcalase and Izyme AL were used to hydrolyze lupine 

protein isolate to obtain protein hydrolysates with potential anti-inflammatory capacities 

through their in vitro inhibition capabilities of phospholipase A2, cyclooxygenase 2, 

thrombin, and transglutaminase, which are all enzymes that are involved in the 

inflammatory process [639]. The protein hydrolysates prepared after 15 min of hydrolysis 

with Alcalase and lupine protein hydrolysates obtained after 60 min of hydrolysis with 

Izyme followed by 15 min of hydrolysis with Alcalase, exhibited the best inhibitory 

activities [639].  

Evidently, Alcalase hydrolysis of different proteins is an excellent tool for 

producing anti-inflammatory peptides which have potential to be used in the preparation of 

health foods and nutraceutical and pharmaceutical products that promote and protect global 

health, against acute or chronic diseases derived from the inflammatory response.  

3.7. Production of peptides with antimicrobial activity  

One of the main concerns of the food industry is ensuring the safety and shelf life of 

foods which are threatened by the incidence of pathogenic and spoilage bacteria that can 
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contaminate food [640-642]. In order to avoid the growth of such bacteria, natural and 

synthetic antibacterial agents have been used; however, due to the possible negative impact 

of such chemicals on human health and the environment, the use of synthetic agents is 

restricted [643, 644]. Such problems have led to the search and identification of safe and 

potential natural biomolecules that avoid toxic effects. In this sense, bioactive peptides have 

gained attention as an alternative to conventional antibiotics [645], being of great relevance 

in the pharmaceutical and food industries due to their high specificity and low toxicity 

[646]. For this reason, there is a growing interest in the utilization of these bioactive 

peptides as food grade bio-preservatives or as health-promoting food supplements in the 

food industry [647]. Food proteins are an important source of such bioactive peptides, but 

they can be obtained from different protein sources, including milk, eggs, fish, wheat, 

bacteria, insects, plants, vertebrates, etc. [648, 649]. Among the strategies used to improve 

the antimicrobial activity of proteins, enzymatic hydrolysis using microbial, plant or 

digestive proteolytic enzyme has been widely reported, and Alcalase has been used 

extensively to prepare soluble protein hydrolysates and peptides with antibacterial activities 

from different protein sources [643].  

3.7.1. Use of stand-alone Alcalase 

Vegetable proteins have been frequently used for this aforementioned goal. Tan et 

al. used Alcalase to obtain peptides from palm kernel expeller with antimicrobial activity 

against spore-forming and non-spore-forming bacteria [650]. These authors found that, 

according to the minimum inhibitory concentration, a degree of hydrolysis of 70% of palm 

kernel expeller peptide effectively inhibited the growth of spore-forming and non-spore-

forming Gram-positive bacteria (B. cereus, B. coagulans, B. megaterium, B. pumilus, B. 
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stearothermophillus, B. subtilis, B. thuringiensis, Cl. perfringens, Lisinibacillus sphaericus 

and L. monocytogenes). Because of that, these peptides obtained from palm kernel expeller 

could be used as additives in food preservation and developed as antibacterial agents in the 

pharmaceutical industry [650]. Later, Alcalase was used to obtain an antimicrobial 

hydrolysate from palm kernel cake-derived protein [651]. The hydrolysate was purified by 

gel filtration chromatography, and one purified fraction bearing 14.63 ± 0.70% (w/w) 

protein, a molecular mass of 2.4 kDa, low hemolytic activity (<50% hemolysis of human 

erythrocytes at concentration of 1000 μg/ml) and a major component of lauric acid 

derivative was found. The purified compound was suitable for its use as an antimicrobial 

agent with potent antibacterial activity, particularly against Bacillus species [651]. Song et 

al. reported the fractionation and identification of antibacterial peptides from cottonseed 

protein hydrolysates obtained using Alcalase [649]. In this study, nine novel peptides 

encoded in cottonseed proteins were identified and three peptides (KDFPGRR, 

LGLRSGIILCNV, and DENFRKF) with antibacterial activities of 77.7%, 69.3%, and 

45.0% at 1.0 mg/mL, respectively, were chemically synthesized [649]. This result suggest 

that hydrolysate of cottonseed protein could be used as a potential source of antibacterial 

peptides that could be applied to food systems and the feed industry. 

Other proteins have also been employed for this goal. For example, peptides with 

antibacterial activity against Gram-positive (Listeria monocytogenes, Staphylococcus 

aureus, Enterococcus faecalis, Micrococcus luteus and Bacillus cereus) and Gram-negative 

(Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Klebsiella pneumoniae 

and Enterobacter sp.) bacteria, were obtained from barbel (Barbus callensis) muscle 

protein hydrolysates obtained by treatment with Alcalase (degree of hydrolysis=6.6%) 
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[652]. Peptides were fractionated by size exclusion chromatography and purified by 

reverse-phase high performance liquid chromatography. The most active peptide fraction 

contained three peptides (Ala-Ala-Ala-Leu, Ala-Ala-Gly-Gly-Val and Ala-Ala-Val-Lys-

Met). According to the authors, the antibacterial peptides derived from barbel protein 

hydrolysates could be useful as preservatives for the storage and distribution of meat-based 

products [652]. Alcalase has also been used in the hydrolysis of goat whey to release 

peptides possessing potent antimicrobial activity [643]. The produced peptides exhibited 

bactericidal activity against S. typhimurium, E. coli and B. cereus and bacteriostatic activity 

against S. aureus, significantly higher than the antibacterial activity of the non-hydrolyzed 

goat whey, which shows that the hydrolysis of goat whey by Alcalase is an easy tool to 

enhance its antibacterial activity [643]. 

3.7.2. Comparison of Alcalase with other proteases 

In the field of the production of peptides with antimicrobial activity by enzymatic 

hydrolysis, there are studies where the comparison of various proteases is reported. For 

instance, Kumar et al. used Alcalase and other enzymes to produce camel milk casein 

hydrolysates [647]. These authors observed that Alcalase and α-chymotrypsin produced the 

peptides with the highest antimicrobial activity [647]. In other papers, the utilization of 

blood from the meat industry was the raw material to produce antimicrobial peptides. This 

permitted to prevent the loss of valuable by-products and reducing environmental pollution. 

For example, Verma et al. investigated the production of protein hydrolysates from porcine 

blood by enzymatic hydrolysis using trypsin, Alcalase or papain [648]. The results showed 

that the hydrolysate antimicrobial efficacy was higher for whole porcine blood hydrolysate 

than for their respective fractions, and that among the tested enzymes trypsin and Alcalase 
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could produce peptides with comparatively higher antimicrobial activity than papain for all 

tested microbes [648]. That way, these porcine blood hydrolysates can be a potential source 

of natural preservatives for shelf-life extension of meat and meat products and can further 

be exploited by nutraceutical and pharmaceutical industries for their antioxidant and 

antimicrobial properties [648]. 

 In another study, Protamex or Alcalase were used to produce protein hydrolysates of 

byproducts of industrial processing of stripped weakfish (Cynoscion guatucupa) [653]. It 

was found that the highest antimicrobial activity against Escherichia coli O157:H7 (5.50 ± 

0.17 mm) was exhibited for Alcalase hydrolysates with a degree of hydrolysis of 5% [653].  

3.7.3. Combined use of Alcalase with other proteases 

In the production of antimicrobial peptides, Alcalase has also been utilized together 

with other proteases, looking for a synergistic effect that allows obtaining peptides with 

superior antimicrobial activity. In the combi-protease concept [395], the use of a mixture of 

Flavourzyme and Alcalase to hydrolyze sunflower protein has been reported [654]. The 

results revealed that the obtained hydrolysates inhibited five microbial strains (E. coli, 

Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella 

typhimurium) [654].  

Other authors use a protein sequential hydrolysis using different proteases. For 

example Coelho et al. reported the use of Flavourzyme, Alcalase and sequential Alcalase-

Flavourzyme to produce hydrolysates from chia protein, protein-rich fraction and chia 

protein concentrates, to generate chia protein-based antibacterial hydrolysates/peptides 

[655]. For Alcalase, the hydrolysates obtained showed antibacterial activity in the majority 
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of the samples, but the antibacterial effects of the hydrolysates produced by Flavourzyme 

and mainly by sequential Alcalase-Flavourzyme system were better than those [655]. 

In conclusion, hydrolysates and peptides obtained from different protein sources by 

enzymatic hydrolysis using Alcalase, have a great potential to be used as a natural 

antimicrobial agent in food systems to avoid the food deterioration and improve their 

safety, with no negative impacts for human health or the environment.  

3.8. Production of peptides with functional, sensory and nutritional properties in food 

products  

It is very common to employ proteases in industry to convert by-products and 

different kinds of residues from food industry into valuable products. Since Alcalase is a 

very efficient tool to hydrolyze proteins and produce small peptides, it is very 

straightforward to find studies where it is used to obtain hydrolysates with functional, 

sensory and nutritional properties. 

3.8.1 Hydrolysis of vegetable proteins  

3.8.1.1 Use of stand-alone Alcalase 

In the literature there are many examples showing the use of Alcalase to hydrolyze 

proteins from a vegetal origin for this objective. For example, Alcalase was used to 

hydrolyze soy β-conglycinin-rich (7S-rich) fractions [656]. Functional properties such as 

solubility, droplet size distribution of emulsion and heat-induced gelling properties of the 

protein and its hydrolysate were studied [656]. Later, different Alcalase concentrations and 

pH values were employed to hydrolyze soy protein isolate [657]. Solubility, functional 
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properties, Angiotensin I-converting enzyme inhibitory and DPPH scavenging activities of 

the resulting hydrolysates were investigated [657]. 

Concerning rice residues, the functional properties of defatted rice bran protein 

hydrolyzed by Alcalase were studied, showing that the treatment improved the quality of 

the protein [658]. It was also studied how the aroma characteristics of rice bran protein 

concentrate hydrolysates obtained by Alcalase hydrolysis were improved by spray drying 

and sugar addition. [659]. In another research, it was observed that the hydrolysate obtained 

after rice protein hydrolysis by Alcalase Peptides had the maximum emulsibility (48.80 

mL/g) and emulsion stability (43.01 min) at pH 3.0 and pH 5.0. [660].  

There are also studies where potato proteins were subjected to Alcalase hydrolysis. 

In one of them, it was shown how profitable preparations of well-balanced amino acid 

composition and positive functional properties could be obtained by a 2 h hydrolysis of 

fodder potato protein concentrates by Alcalase [661]. The resulting product was proposed 

as suitable for preparations characterized by high nutritive value and functional properties 

[661]. Years later, potato protein hydrolysates prepared by Alcalase hydrolysis were 

determined to be suitable as a functional food component in the food industry [662].  

Alcalase has also been employed to hydrolyze sunflower proteins. In one of the 

studies, sunflower 11S globulin was hydrolyzed by this protease showing that the 

hydrolysate functional (solubility, emulsifying properties, foaming properties, oil binding 

capacity, and surface hydrophobicity) properties of the hydrolysates could be altered by 

varying the hydrolysis time. [663]. In another paper, sunflower protein isolates, extracted 

from defatted sunflower flour, were hydrolyzed by Alcalase at different degrees of 
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hydrolysis, showing changes on the structural and interfacial properties of the hydrolysates 

[664].  

Wheat gluten, due to its difficult solubilization and bitter taste, has a limited 

application [665]. One of the strategies to solve this problem is its deamidation followed by 

enzymatic hydrolysis. The best functional properties were found when Alcalase was 

employed after the treatment with citric acid, showing a great potential as a modified wheat 

gluten product [665]. In a different study, the synergistic effect of wheat gluten proteins 

hydrolysis catalyzed by Alcalase together with a heat treatment was investigated, 

improving the quality of the protein sensorial properties [666].  

There are many other examples where Alcalase has been used to hydrolyze vegetal 

proteins. For instance, the hydrolysate obtained hydrolyzing mentarang (Pholas orientalis) 

protein [667], possessed a high amount of essential amino acids and their foaming 

properties decreased significantly with increasing foaming time, making mentarang 

hydrolysate suitable for application as a natural additive in food [667]. In a parallel study, 

the effects of the degree of hydrolysis were studied on the pine nut protein isolates and its 

enzymatic hydrolysates after digestion with Alcalase [668]. The control of the degree of 

hydrolysis could be an effective strategy to modify specific functional and bioactive 

properties of the protein hydrolysate [668]. The use of Alcalase to hydrolyze sesame cake 

protein at 50 ºC and pH 8.5 produced hydrolysates where water-holding capacity, oil-

holding capacity, foam capacity and stability, emulsifying activity and stability were 

improved with respect to the non-hydrolyzed protein [669]. These results make sesame 

cake protein hydrolysate a useful additive in several foods [669]. In another paper, Alcalase 

was used to hydrolyze chickpea protein hydrolysate, improving the physicochemical, 
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interfacial tension and surface characteristics of the protein isolate [670]. In another paper, 

palm kernel expeller protein was subjected to limited hydrolysis using Alcalase and this 

improved its nutritional value, physicochemical and functional properties [671]. In another 

research, a limited proteolytic hydrolysis was performed on coconut (Cocos nucifera L.) 

protein using Alcalase [672]. The resulting hydrolysates improved the stability and 

rheological properties of oil-in-water emulsions, [672]. In another work, protein from 

Corylus mandshurica kernel meal was extracted using Alcalase as a protein hydrolysate 

solution [673]. The hydrolysate presented suitable values of amino acid nutritional 

composition [673]. Another study shows that fava bean protein isolate hydrolyzed by 

Alcalase presented show positive effects as emulsion stabilizing agent, depending on the 

hydrolysis [674]. In a last paper, horse gram flour proteins were hydrolyzed by Alcalase, 

improving its functional properties [675]. 

3.8.1.2. Comparison of Alcalase with other proteases 

Studies where the hydrolysis of Alcalase is compared to the use of proteases to 

produce peptides with functional, sensory and nutritional properties are very common. For 

example, pumpkin (Cucurbita moschata) oil processing by-products were hydrolyzed by 

Alcalase, Protamex, Flavourzyme or Neutrase [676]. The physicochemical characteristics 

of the obtained hydrolysates were studied, but each enzyme was the most suitable for a 

determined characteristic, improving its role as protein fortification and a potential food 

ingredient [676]. In another study, using the same enzymes and proteins, Alcalase was the 

protease giving the pumpkin protein hydrolysates with the best improved nutritional quality 

[677]. Later, a different species of pumpkin (Cucurbita pepo) seed protein isolate was 

hydrolyzed by pepsin or Alcalase [678]. The solubility of both hydrolysates was higher 
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than the solubility of the initial protein, mainly at pH near the isoelectric point. Both 

hydrolysates, successfully stabilized oil emulsions at all the pH and ionic strengths analyze, 

while the original protein failed at pH 5.0 [678]. In one instance various proteases 

(Protamex, Alcalase or Flavourzyme) were tested on the production of wheat gluten 

hydrolysates [679]. Alcalase hydrolysate presented taste-enhancing properties in a 

concentration-dependent manner [679]. In another research, Flavorzyme, Pepsase or 

Alcalase were employed to hydrolyze wheat gluten [680]. The 36 h Alcalase hydrolysate 

presented the best effect for promoting yoghurt fermentation [680]. In another work, four 

enzymes (papain, bromelain, Alcalase or Neutrase,) were able to hydrolyze proteins from 

rice residue [681]. The induction time was longer when using Alcalase, and its hydrolysate 

had the best emulsifying activity as well [681]. In another study, defatted peanut flour 

protein was hydrolyzed by papain, Protamex and Alcalase [682]. The protease pretreatment 

was a highly effective way to extract peanut protein concentrate with good functional 

properties from defatted peanut flour. An increase of nitrogen solubility index was reported 

after hydrolysis. The yield was also significantly increased together with some other 

sensorial features [682]. The Alcalase or pepsin treatment hydrolysis of black bean 

(Phaseolus vulgaris L.) protein by 120 min were prepared [683]. Pepsin permitted to reach 

higher degrees of hydrolysis. However, the Alcalase-treated bean protein hydrolysates 

presented higher surface hydrophobicity, higher emulsion stability during 30-days than 

those obtained from pepsin digestion. The Alcalase protein hydrolysates were adequate 

protein additives in the diet as bioactive and nutritional foods [683].   

3.8.2. Hydrolysis of fish proteins 

3.8.2.1. Use of stand-alone Alcalase 
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Regarding the hydrolysis of proteins from animal sources to produce this kind of 

peptides, fish by-products hydrolysis is the most employed source, with an intense research 

done in the last years. Protein hydrolysates with different degrees of hydrolysis were 

obtained by Alcalase hydrolysis of blue whiting (Micromesistius poutassou) proteins [684]. 

Solubility, emulsion capacity, chemical composition and oil-binding capacity were altered 

with different degrees of hydrolysis, while water-holding capacity, color and emulsion 

stability did not significantly change. Protein solubility increased from 10% to 70% when 

the degree of hydrolysis increased [684]. In another research, defatted roe protein 

concentrates of Catla catla were hydrolyzed using 1% Alcalase  at pH 8.5-9.0 and 50-55 °C 

[685]. The solubility of the hydrolysates was 70.5-99% over pH values from 2 to 12). Oil 

absorption capacity, emulsifying capacity and foaming capacity were found to be protein 

content dependent. This could be linked to simple peptides by SDS-PAGE [685]. Cobia 

(Rachycentron canadum) was also hydrolyzed by Alcalase at different degrees of 

hydrolysis. The highest hydrolysis degree (96%) presented showed desired essential amino 

acid profile for human requirement, except for methionine and isoleucine [686]. The color, 

emulsifying capacity and foaming properties were adequate for utilization. However, 

peptide solubility, oil-holding capacity, water-holding capacity remaining almost unaltered. 

The authors suggested that this protein hydrolysate is a potential foaming agent and 

additive for food industry [686]. Later, protein hydrolysates from skipjack (Katsuwonous 

pelamis) roe using Alcalase were obtained with different degrees of hydrolysis [687]. The 

hydrolysis increased the protein solubility [687]. Some years later, a protein hydrolysate 

from the same source was obtained through Alcalase hydrolysis [688]. The high amount of 

essential amino acids found in this hydrolysate made it a good candidate to be used as diet 

nutrients, food additives and even pharmaceutical agents [688].  
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Rainbow trout (Onchorhynchus mykiss) seems to be a recurring substrate for 

hydrolysis which is frequently utilized for this goal using Alcalase. For example, functional 

properties of hydrolysates obtained by the hydrolysis of rainbow trout viscera using 

Alcalase were compared to those obtained from poultry by-products protein [689]. Foaming 

properties, emulsifying stability, emulsifying activity, water holding capacity and color of 

the trout viscera protein hydrolysate was higher than those obtained using poultry by-

products protein hydrolysate while oil absorption capacity was not significantly altered 

[689]. Methionine and histidine in both protein hydrolysates were the limiting amino acids 

and trout viscera protein hydrolysate had more hydrophobic residue. The amino acid 

composition also different, and could be related to the different pH solubility of both 

hydrolysates [689]. In a later study, the use of enzymatic hydrolysis using Alcalase coupled 

to microwave heating to hydrolyze rainbow trout by-products was used to improve the 

functional and antioxidant properties of the produced hydrolysates [690]. The use of 

Alcalase after chemical pretreatment of rainbow trout processing by-products produced 

hydrolysates that were successfully employed as an additive in frozen fish mince [691]. 

Alcalase hydrolysis and subsequent treatment by centrifugation and spray drying were 

employed to obtain silver catfish (Pangasius sp.) frame hydrolysate powder that possesses 

good solubility, good foaming properties and light color profile [692]. The hydrolysates 

were also rich in glutamate and lysine which grants it with a high potential as food additive 

[692]. The hydrolysis conditions to obtain eel (Monopterus sp.) protein hydrolysate using 

Alcalase were optimized using response surface methodology, and an experimental protein 

hydrolysis degree of 15.01% (that was lower than the predicted values) was obtained [693]. 

The nitrogen solubility index was 85% and the emulsion stability index decreased with the 

increase in the hydrolysate concentration while the foam expansion increased. High 
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solubility and the ability of hydrolysate to emulsify and form foam show its potential for 

use as a natural binding and emulsifying agent [693]. Recently, Asian swamp eel protein 

hydrolysates were prepared using Alcalase [694]. The hydrolysate showed the presence of 

aromatic groups, hydrophobic and hydrophilic amino acids. There were no significant 

differences of the hydrolysate solubilities at different pH values. The emulsifying and 

foaming properties of the hydrolysate depended on the pH, while water holding capacity 

depended on the protein concentrations. There were no significant differences in the oil 

binding capacities of the hydrolysate at different concentrations [694]. Alcalase hydrolysis 

of fish protein from seabass (Dicentrarchus labrax) by-products gave a hydrolysate that 

was added to whiting (Merlangius merlangus) mince ex texture softening effect [695]. In a 

different study, Alcalase was employed in the pretreatment of the scales of a different 

species of seabass (Lates calcarifer) and grey mullet (Mugil cephalus) for the production 

with yields of gelatin 14.1–15.2% that presented high protein content (88.6–90.0%) with 

ash (1.43–1.55%) and no fat [696]. The gelatin was identified as type A due to its pH value. 

The viscosities of gelatin were found to be 6.97 cP for seabass and 8.73 cP for grey mullet 

hydrolysates. Both gelatins contained α-chain and β-chain as the major components. 

Gelatin from seabass and grey mullet scales could be used as a potential replacement for 

mammalian gelatin [696]. Another work studied the flavor properties of the Maillard 

reaction products obtained from the hydrolysis by Alcalase of Collichthys niveatus protein 

[697]. A total of 80 volatile compounds were separated and identified [697]. Shortfin scad 

(Decapterus macrosoma) protein hydrolysates were prepared using Alcalase [698]. They 

have high protein content and concentration, lower molecular weight, high solubility, and 

high percentage of essential amino acids which fulfil adult human requirements [698]. The 

next year the hydrolysate from skin of shortfin scad was produced using Alcalase in order 
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to prepare gelatin hydrolysate [699]. The yield of hydrolysate was 51.01%, the moisture 

(13.82%), protein (90.05%), fat (1.95%), and ash 12.48%, contents were adequate for its 

use [699].  

In one additional example, the physical and oxidative stabilities of cod liver oil-in-

water emulsions were fortified by the protein hydrolysate of discarded common carp 

(Cyprinus carpio) roe [700]. Fish skin gelatin rich in α-chain was obtained through 

Alcalase digestion and this product can be used in food, pharmaceutical and biological 

industries [701]. Yellowstripe scad fish (Selaroides leptolepis) protein hydrolysate was 

produced by hydrolysis with Alcalase and processed by spray or freeze drying [702]. The 

water holding capacity of freeze-dried protein hydrolysates was higher than spray-dried 

hydrolysates in [702]. Shark (spiny dogfish) skin gelatin obtained by Alcalase hydrolysis 

was rich in high molecular weight polypeptide chains [703]. Optimized gelatin presented 

7.9% of hydroxyproline, 10% of proline and 31.6% of glycine. This gelatin had a strong 

ability to form films from solutions with even only 0.5% gelatin concentrations. 

Microstructure of 3% gelatin displayed a smooth and compact film network [703]. Alcalase 

was employed to hydrolyze Chinese sturgeon (Acipenser sinensis) [704]. The protein 

hydrolysates could be useful in many applications of the food industry because of its 

functional and antioxidant properties [704].  

3.8.2.2. Comparison of Alcalase with other proteases 

Again, there are many studies that compare the performance of various proteases in 

the hydrolysis of fish by-products and the quality of the obtained products. For instance, the 

functional properties and the amino acid profile of bluewing sea robin (Prionotus 

punctatus) hydrolysates obtained by digestion with Flavourzyme and Alcalase were 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

128 
 

evaluated [705]. Both showed a good essential amino acid composition [705]. Functional 

properties of Nile tilapia (Oreochromis niloticus) hydrolysates obtained with Alcalase, 

Neutrase and Flavourzyme were analyzed [706]. Essential amino acids were over the 

recommended amounts by the Food and Agricultural Organization/World Health 

Organization for humans. Low molecular weight peptides were abundant in hot water dip 

hydrolysates (328- 1876 Da). The hot water dip concentrates were mainly composed of 

high molecular weight peptides (214-19,576 Da). The solubilities were higher than 80% at 

pH 12.0 [706]. Emulsifying capacity of 21.40 and 20.40 mL, hydrophobicities of 168.01 

and 200.28, bulk density of 0.53 and 0.36 mL g
1
, oil absorption capacity ranged between 

2.23 and 3.36 g mL
-1

, and water-binding capacity was in the range of 1.77 and 2.43 mL g
-

1
 respectively for hot water dip hydrolysates and hot water dip concentrates. Foam capacity 

and foam stability ranged from 124.53 to 37.25 mL g
-1

 for hot water dip hydrolysates and 

from 80.3 to 45.57 mL g
-1

 for hot water dip concentrates. The hydrolysate was more easily 

digestible than the concentrate  [706]. Another study shows the differences in functional 

properties of hydrolysates from Cirrhinus mrigala egg, obtained by hydrolysis using papain 

and Alcalase [707]. The degree of hydrolysis was 62% for Alcalase and 17.1% for papain, 

after 90 min digestion. The hydrolysate produced by Alcalase presented higher protein 

content (85% versus 70%). The hydrolysates showed an increased solubility from pH 2 to 

pH 12. The hydrolysates exhibited high fat absorption capacity (0.9 and 1.0 g/g sample), 

foam capacity (70% and 25%) and emulsifying capacity (4.25 and 5.98 ml/g hydrolysate), 

respectively for Alcalase and papain protein hydrolysates [707]. Fish protein hydrolysates 

were prepared from fish by-product using Flavourzyme or Alcalase [708]. The Alcalase 

hydrolysate showed an overall better performance [708]. In another paper, cuttlefish (Sepia 

officinalis) muscle proteins were hydrolyzed by Alcalase and Bacillus licheniformis NH1 
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proteases [709]. A nitrogen recovery of 63% was obtained after a hydrolysis degree of 

12.5%, using Alcalase. This hydrolysate presented a water holding capacity and a fat 

absorption capacity lower than the hydrolysate produced using NH1 proteases. The 

interfacial (emulsion stability index, emulsion activity index) and the surface (foaming 

stability and capacity) properties decreased when the degree of hydrolysis increased [709]. 

Rainbow trout roe protein hydrolysates were obtained via pepsin or Alcalase hydrolysis 

presented essential amino acids in a very interesting proportion [710]. In another paper, 

hydrolysates from the livers of Oncorhynchus keta and Oncorhynchus gorbuscha were 

produced using different proteases and Alcalase was the most efficient one [711]. The 

adequate amounts of essential amino acids, the balanced amino acid composition and the 

presence of some possible bio-active peptides, make the Alcalase liver protein hydrolysate 

a good alternative in functional food applications and as a source of novel products [711]. 

Atlantic salmon (Salmo salar) protein hydrolysates were obtained employing the 

endopeptidases Protex, Promod or Alcalase at three degrees of hydrolysis [712]. Alcalase 

was the enzyme producing more bitter peptides [712]. Marugoto E, Alcalase, Flavourzyme 

and Protamex were used to hydrolyze anchovy fine powder at 300 MPa and ambient 

pressure [713]. The high pressure gave hydrolysates with higher contents of total soluble 

solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen [713]. Brewer's 

spent yeast proteases, Neutrase and Alcalase [714] were used to hydrolyze muscle and 

viscera proteins from canned sardine by-products in order to obtain products with 

biological and functional properties. All the treatments produced improved biological and 

functional properties [714].  

3.8.3. Hydrolysis of proteins from different sources 
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3.8.3.1. Use of stand-alone Alcalase 

Apart from fish, there are many other animal sources that have been utilized to 

produce hydrolysates with different food functional properties using Alcalase. For example, 

Alcalase was employed to hydrolyze green mussel (Perna viridis) at pH 7 or 9 (where the 

hydrolysis degree was higher) [715]. The bitterness of both hydrolysates did not exceed that 

of the standard caffeine solutions. The authors concluded that further work must be 

performed to produce a green mussel hydrolysate with sensorial properties suitable for use 

in food products [715]. In another work, tropical banded cricket (Gryllodes sigillatus) was 

hydrolyzed by Alcalase at different concentrations, improving the protein solubility, 

foaming properties and emulsion capabilities [716]. Later, Alcalase was employed to 

hydrolyze buffalo whey. The hydrolysate was applied to apple, and it prevented apple 

browning [717]. Sheep plasma has also been hydrolyzed by Alcalase, the hydrolysate 

improved the color stability in mutton patties [718]. Fish and bovine gelatins and caseinate 

were hydrolyzed using Alcalase, and the hydrolysates were added to skimmed bovine milk 

that was then fermented to produce yoghurt [719]. Both gelatin hydrolysates lowered the 

titratable acidity but increased the pH values, delaying yoghurt fermentation, while the 

caseinate hydrolysate showed the opposite effect. The two gelatin hydrolysates worsened 

the quality features of the yoghurt: lower viscous moduli apparent viscosity, elastic, 

hardness, and adhesiveness, smaller hysteresis loop areas and higher syneresis extent, while 

the caseinate hydrolysate improved these quality attributes. Bovine gelatin hydrolysate 

always presented a higher negative effect than fish gelatin hydrolysate on yogurt texture 

and acidification [719]. Recently, Alcalase was employed to obtain hydrolysates from non-

penaeid shrimp (Acetes indicus) that presented 56% essential amino acids [720]. The spray-
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dried protein hydrolysates solubility was 90.20% at pH 2 and 96.92% at pH 12. The 

emulsifying features of the hydrolysate depended on the protein concentration and the 

highest emulsifying capacity (26.67%) and emulsion stability (23.33%) were obtained at a 

concentration of 20 mg mL
−1

. At a concentration of 20 mg mL
−1, 

the lowest and the highest 

foaming capacity were appreciated at pH 10 and pH 6. The water holding capacity of 

protein hydrolysate increased with its concentration [720]. 

3.8.3.2. Comparison of Alcalase with other proteases 

There are many examples where Alcalase was compared to proteases in this goal. 

Some of them use whey proteins as the protein source to be hydrolyzed. For example, whey 

proteins were hydrolyzed by Flavourzyme, Neutrase, Protamax and Alcalase and spray-

dried [721]. Samples treated with Alcalase for 3 hours produced various bioactive peptides 

identified by offline-electrospray-ionization mass spectrometry measurements and offline-

matrix-assisted laser desorption/ionization mass spectrometry [721]. In a later study, 

pepsin, Protease M, trypsin, Protease S and Alcalase were employed to obtain whey protein 

hydrolysates [722]. Although depending on the used protease, the features of the final 

product varied greatly, in all cases, an increase in the hydrolysis time increased the degree 

of hydrolysis, bulk density, foaming capacity and solubility. It was shown that the 

hydrolysates improved the characteristics of several food products [722]. Beta-

lactoglobulin (β-Lg) is the major whey protein of cow milk and determines the 

technofunctional properties of products like whey protein concentrates and isolates, which 

are available in large quantities in an industrial scale. β-lactoglobulin obtained from whey 

protein isolate was hydrolyzed by the hydrolysis with Alcalase, pepsin or trypsin [723]. A 

limited pepsin hydrolysis led to both, superior foam stability and increased overrun, while 
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foam drainage decreased by more than 50% compared to foams produced by trypsin and 

Alcalase treated hydrolysates. The authors suggested that only denatured molecules are 

hydrolyzed, and this permits synergistic effects of the produced peptides and the strong 

surface activity of the protein [723]. Trypsin, Protamex and Alcalase were used to 

hydrolyze collagen from the jellyfish Chrysaora sp. [724]. Although Alcalase produced the 

highest degree of hydrolysis, a high water holding capacity, oil absorption capacity, water 

binding, and water absorption was obtained by all hydrolysates together with a good 

emulsifying and moderate foaming properties [724]. Flavourzyme and Alcalase were 

employed to hydrolyze mud clam (Polymesoda erosa) protein [725]. Alcalase hydrolysate 

contains smaller peptides than Flavourzyme hydrolysate. Eighteen, six and seven volatile 

compounds were identified in the flesh, Flavourzyme hydrolysate and Alcalase hydrolysate, 

respectively. Bitterness was higher in Alcalase hydrolysate than in Flavourzyme 

hydrolysate. Quantitative descriptive analysis revealed that Flavourzyme hydrolysate was 

the least bitter but caused more umami taste compared to Alcalase hydrolysate [725]. Goat 

viscera protein hydrolysates obtained by hydrolysis using Brauzyn and Alcalase showed 

maximum solubility values for the samples with a higher degree of hydrolysis while oil 

retention capacity showed higher values for the hydrolysates with lower degree of 

hydrolysis [726]. Emulsifying properties and emulsion stabilities of the different 

hydrolysates did not change. The authors conclude that the protein hydrolysates of goat 

viscera are outstanding sources of nutrients and may be useful in the food industry [726]. 

Egg yolk proteins were hydrolyzed with Neutrase, Flavourzyme and Alcalase; Alcalase was 

the protease with the highest hydrolysis efficiency and its hydrolysates could be an 

excellent emulsifying agent [727]. In another study, among five enzymes used proteases, 

Alcalase resulted to be the optimal enzyme to hydrolyze the offal of octopus and abalone 
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[728], although even better results could be obtained if used together with Flavourzyme, 

producing a very interesting food condiment [728]. Flavourzyme, Neutrase, trypsin, 

Protamex and Alcalase were used in the recovery of fat and protein hydrolysates from 

chicken skin [729]. The highest (49.19%) degree of protein hydrolysis was achieved using 

Alcalase, but Flavourzyme hydrolysates presented the highest emulsifying activity index, 

oil-holding capacity and water-holding capacity. The highest foaming capacity was 

observed in the trypsin, Protamex or Alcalase hydrolysates. Hydrolysis using Protamex or 

trypsin provided in the highest fat yield [729]. Papain and Alcalase were employed to 

hydrolyze golden apple snail (Pomacea canaliculata) protein [730]. The Alcalase 

hydrolysate showed higher yields (12.61%) and hydrolysis degree (88.18%) than that 

obtained with papain. Alcalase hydrolysate presented higher foaming stability, solubility, 

emulsifying activity and stability index, while differences in fat binding, foaming, water 

holding capacities or protein concentration were scarce. This was correlated to structural 

differences between both produced hydrolysates [730]. Later, these enzymes were 

compared in the hydrolysis of squid (Loligo formosana) ovary [731]. One of the Alcalase 

hydrolysates presented the highest foaming capacity showing high solubility and surface 

hydrophobicity. If a pre-heating at 60 °C was performed, the hydrolysate showed the 

highest  foaming capacity and had the lowest liquid drainage, also microstructure and 

viscoelastic features of foam were much improved [731]. In another paper, Neutrase, 

trypsin and Alcalase were employed to hydrolyze egg white protein, giving an hydrolysate 

that could be used as stabilizer for emulsions [732].  

3.8.4. Combined use of Alcalase with other proteases 
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Alcalase and Flavourzyme were simultaneously used to hydrolyze the protein of 

little hairtail (Trichiurus haumela) [733]. The reaction conditions were optimized attending 

to hydrolysis time, temperature, pH, enzymes/substrate ratio, and Alcalase/Flavourzyme 

ratio. The optimal hydrolysate possesses high nutritional value and could be used as a 

nutritious supplement in various food products [733]. Alcalase and Flavourzyme have been 

employed both separately and simultaneously to hydrolyze chickpea protein isolate [734]. 

The degree of hydrolysis was higher when both enzymes were used together. The results of 

this study revealed that the hydrolysis enhanced the functional properties and antioxidant 

activity of chickpea protein [734].  

Later a sequential enzymatic hydrolysis using Alcalase and Flavourzyme was 

proposed to hydrolyze hard-to-cook bean (Phaseolus vulgaris L.) protein [735]. Once the 

hydrolysate was prepared, it was added to durum wheat semolina pasta at different 

concentrations. The 10% hydrolysate was the best concentration in terms of nutritional 

parameters and sensory scores [735], later this product was remarked as a functional food 

[736]. Corolase, papain, Alcalase and Neutrase were individually used or in a two-step 

process to hydrolyze lupin (Lupinus angustifolius cultivar Boregine) protein isolates [737]. 

Combinations of Alcalase and papain were most effective in the degradation of 

polypeptides in L. angustifolius, although all hydrolysates increased the foam activity, 

emulsifying capacity and protein solubility. The combination of Alcalase and papain 

increased the bitterness while the fragrance characteristics of the hydrolysates were very 

similar to untreated protein. The protein hydrolysis greatly reduced the major IgE-reactive 

polypeptides [737].  

3.9. Production of peptides with other bioactivities 
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 This section attempts to summarize, with some examples published since 2010, the 

huge range of possible bioactivities that the peptides produced by Alcalase (individually or 

in combination with other proteases) via the hydrolysis of different proteins in order to 

obtain products with a higher value, mainly in the health industry.  

 In many instances, Alcalase was individually used, in some instances comparing its 

performance with that of other proteases. For example, Alcalase hydrolysates of peanut 

proteins were found to have the best in vitro antithrombotic activities among the 

hydrolysates produced by various proteases [738]. Under optimal conditions (pH 8.5, 50 

°C, 50 mg/ml of peanut protein and an enzyme concentration of 5000 IU/g of peanut 

protein), the antithrombotic activities were increased to 86% after 2 h of reaction [738]. In 

another instance, the peptide WA3-1 was obtained from Whitmania pigra protein by 

hydrolysis with Alcalase [739]. It had a high anticoagulant activity and significantly 

prolonged the plasma clotting time on activated partial thromboplastin time, prothrombin 

time and thrombin time [739]. Alcalase was also proposed to be the best catalyst to 

hydrolyze egg white powder derived anticoagulant peptides [740]. After purification, the 

anticoagulant activity of the selected fraction determined by micro plate reader was 84.74% 

[740]. The optimization of this work showed that the anticoagulant activity was optimum 

with a substrate concentration of 1% and pH 7, and that low temperatures produce 

hydrolysates with higher anticoagulant activity [741]. Protein from the scorpion Buthus 

martensii Karsch was enzymatically hydrolyzed to obtain a bioactive hydrolysate [742]. 

Alcalase was considered the best enzyme for this hydrolysis and the highest anticoagulant 

activity was achieved at a degree of hydrolysis of 18 % [742].  
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 To get peptides with this kind of bioactivities, also some examples of combined use 

of different proteins may be found. For example, a sequential hydrolysis of amaranth 

protein using Alcalase at pH 10 and 37 °C, followed by a trypsin hydrolysis at pH 8 and 37 

°C, were carried out to obtain a hydrolysate with antithrombotic activity [743]. In this case, 

the glutelin fraction exhibited an antithrombotic activity significantly superior to the other 

fractions [743].  

Alcalase hydrolysates have also been used in cell proliferation. In one of these 

studies Alcalase was employed to obtain a Thunnus orientalis bone-based collagen 

hydrolysate [744]. A stimulated proliferation and enhanced osteogenic differentiation of 

MC3T3-E1 cell were observed even at extremely low hydrolysate concentrations 

(2μg/mL). It also upregulated mRNA levels of osteogenic markers, like runt-related 

transcription factor 2, osteopontin, alkaline phosphatase and osteocalcin [744]. In another 

instance, Neutrase, Protamex, Kojizyme, Flavourzyme or Alcalase were used to hydrolyze 

Hippocampus abdominalis and the effects of the hydrolysates on skeletal muscle growth in 

C2C12 myoblasts and zebrafish were investigated [745]. The highest proliferation was 

observed when the Alcalase hydrolysate was used and it significantly increased creatine 

kinase activity and glycogen levels in the cells. It also down-regulated the myostatin–Smad 

pathway and up-regulated the IGF-1-Akt pathway. When this hydrolysate was applied to 

the zebrafish model, the endurance against water flow and slope without training 

performance were enhanced [745].  

Collagen is related to proliferation and differentiation of the skin fibroblasts and it is 

the main component of extracellular matrix [746]. To reinforce this, red deer (Cervus 

elaphus) antler collagen peptides with the capacity of promoting proliferation of human 
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skin fibroblasts were obtained via hydrolysis using Alcalase and, after, trypsin in the same 

reaction under optimal conditions [746].  

Some of the Alcalase hydrolysates presented immunomodulatory properties. For 

example, two selenium-enriched rice protein hydrolysates were obtained through Alcalase 

hydrolysis [747]. Two peptides (SeMDPGQQ and TSeMMM) were characterized as novel 

selenium-containing peptide sequences. TSeMMM, presented a stronger 

immunomodulatory activity, and exhibited potential in the field of functional food additives 

to improve human health [747]. Ultrafiltered fractions of simulated gastrointestinal 

digestion of milk products supplemented with brewery spent grain protein hydrolysates 

obtained by Alcalase hydrolysis, confers anti-inflammatory effects in Concanavalin-A 

(ConA)-stimulated Jurcat T cells [748]. The hydrolysates caused a reduction in interleukin-

6 (IL-6) production in Jurkat T cells and the IL-2 and interferon-γ was not affected. The 

production of IL-6, IL-1β and tumor necrosis factor-α production in lipopolysaccharide-

stimulated RAW 264.7 cells was not significantly altered [748]. Mung bean protein 

hydrolysate was obtained by hydrolysis with different proteases (Flavourzyme, Neutrase, 

trypsin and Alcalase) and it was employed to study the immunomodulatory activity in 

lipopolysaccharide-induced RAW 264.7 cells [749]. The 3-h Alcalase hydrolysate had a 

suppressing activity of pro-inflammatory mediators, depending on the dose [749]. Another 

instance shows how trypsin, pepsin, papain, Neutrase or Alcalase were used to hydrolyze 

defatted wheat germ globulin [750]. When the Alcalase hydrolysate was employed, the 

highest immunomodulatory activity with respect to lymphocyte proliferation, secretion of 

pro-inflammatory cytokines and phagocytosis of neutral red was obtained [750]. In another 

paper, an immunomodulatory peptide was obtained using Alcalase to hydrolyze silkworm 
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(Bombyx mori) pupa protein [751]. Splenocyte proliferation could be upgraded from 

87.35% to 248.4% after induction by Concanavalin A, in the presence of 100 μg/ml of 

purified peptide [751]. In another research, a novel 441.06 Da immunomodulatory peptide 

was produced and isolated from ultrasound-pretreated silkworm (Bombyx mori) pupa 

protein after hydrolysis using Alcalase [752]. Splenic lymphocyte proliferation assay was 

used to test its pro-proliferative activity, and it was found that with 100 µg/mL of the 

purified peptide the splenocyte proliferation rate was 91.1% [752]. In another work, the 

hydrolysates of ovalbumin, lysozyme and whole egg white produced by Alcalase 

hydrolysis were used to test the effects of the peptides produced on antibody production, 

cytokine secretion, oxidative stress and proliferation of murine spleen and mesenteric 

lymph node cells [753]. All of them were stimulated with T-(concanavalin A-ConA) or B-

cell mitogens (lipopolysaccharide-LPS). It was shown that ConA-stimulated lymphocyte 

proliferation was reduced and secretion of the Th1 cytokine TNF-α decreased [753]. In a 

different study, the anti-allergic capacity of hydrolysates of ovalbumin lysozyme and 

ovomucoid from egg white obtained by Alcalase treatment was evaluated [754]. The 

peptides present in the hydrolysates were identified and they produced the downregulation 

of the production of Th2-biased cytokines. Secretion of IgE to the culture media of Th2-

skewed peripheral blood mononuclear cells was also reported. In peripheral blood 

leukocytes, the oxidative stress was significantly neutralized [754].  

Another bioactivity that the peptides presented in protein hydrolysates may exhibit 

may be in the control of hyperuricemia. The imbalance between uric acid/urate production 

and excretion results in hyperuricemia, with an excess of xanthine oxidase activity causing 

gout, kidney stones, and sometimes even renal and cardiovascular diseases. The inhibition 
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of xanthine oxidase could reduce both vascular oxidative stress and circulating uric acid, 

since xanthine oxidase inhibitors can block the biosynthesis of uric acid from purines [755]. 

The tuna flesh hydrolysate obtained by Alcalase hydrolysis was analyzed for this goal, 

finding that peptides having Phe-His in the sequence possess the highest xanthine oxidase 

inhibitory activity in potassium oxonate-induced hyper-uricemic rats [755]. In another 

work, the water extract of shark cartilage was hydrolyzed by Alcalase [756]. Using an 

animal model, anti-hyperuricemic activity of the Alcalase hydrolysate was detected. Two 

peptides (Tyr-Leu-Asp-Asn-Tyr and Ser-Pro-Pro-Tyr-Trp-Pro-Tyr) lowered the serum uric 

acid level when used at 5 mg/kg of body weight via intravenous injection, and another 

peptide (Tyr-Leu-Asp-Asn-Tyr) showed anti-hyperuricemic activity when orally 

administrated [756]. 

Bioactive peptides derived from food and many other sources offer an interesting 

alternative to fight against alcoholic liver disease, with the aim of controlling alcohol 

concentration and also certain alcohol degradation metabolites such as acetaldehyde and 

reactive oxygen species. Among the peptides bioactivities that could be of interest in this 

issue, some of them may be remarkable, for example antioxidant, antihypertensive, anti-

diabetic, anti-inflammatory, antimicrobial, mineral binding, hepato-protective effect, etc. 

[757]. Corn hydrolysates, mainly the fractions with low molecular mass, have been 

reported to possess many of these bioactive functions. In this context, papain, neutral 

protease and Alcalase were employed to obtain the hydrolysate of corn gluten meal and 

study its effect on anti-inebriation treatment [758]. Two bioactive peptides were obtained 

and the mixture of them helped prevent acute alcohol intoxication in the liver by 

accelerating the alcohol metabolism and reducing the oxidative damage as well [758]. In 
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another study, the objective was to obtain low molecular mass peptides from corn 

hydrolyzed with Alcalase to facilitate alcohol metabolism by activating hepatic alcohol 

dehydrogenase [759]. The highest activity to activate alcohol dehydrogenase in vitro was 

exhibited by the fraction below 1000 Da [759]. Chicken hydrolysates obtained using 

Alcalase have been described to possess peptides that stabilize alcohol dehydrogenase 

[757]. In this study, 21 peptides were potentially active and three could stabilize alcohol 

dehydrogenase in a dose-dependent manner (DPQYPPGPPAF, KPC, and APGH) [757]. In 

another study, peptides from seahorse (Hippocampus abdominalis) hydrolysate produced 

by Alcalase hydrolysis [760], was found to protect Huh7 cells from ethanol toxicity and 

increase the viability of Chang cells, suggesting that the hydrolysate from seahorse could 

have a hepatoprotective effect [760]. It has also been reported how the Alcalase-treated silk 

protein hydrolysate has a beneficial effect in rats [761]. No cytotoxicity on hepatic tissues 

and blood biochemistry was observed by Alcalase-treated silk protein hydrolysate and 

some indicator values of liver function like aspartate aminotransferase and alanine 

aminotransferase were alleviated in a dose dependent manner [761]. Alcalase and Neutral 

were sequentially used to hydrolyze wheat germ proteins [762], and the hydrolysates 

obtained showed that they can facilitate alcohol metabolism by activation of the alcohol 

dehydrogenase enzyme with an activation rate of 68.37% [762]. Alcalase and Flavourzyme 

were also used sequentially to hydrolyze Schizochytrium sp. [763], and the hydrolysate 

produced could effectively modulate alcohol metabolism related enzymes levels and 

activities in mice using the model of alcohol-induced liver injury [763].  

It is possible to find other studies where Alcalase-hydrolysates have been used as 

hepatoprotective agents but not related to alcohol metabolism. For instance, high-fat diets 
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can induce nonalcoholic fatty liver disease, especially hard to treat in elderly subjects. 

Alcalase was employed to obtain a peptide (DIKTNKPVIF) from potato protein [764]. The 

potato hydrolysate was orally administered and the purified peptide was intraperitoneally 

injected, finding that these treatments alleviate pro-inflammatory reaction associated with 

hepatosteatosis development in elderly subjects through activation of AMPK [764]. 

Another study shows the production of potato protein hydrolysate through Alcalase 

hydrolysis [765]. This was used to treat high-fat diets fed aging rats, which presented an 

increased body weight. This treatment attenuated the high-fat diets induced hepatic fat 

accumulation. Hepatic apoptosis- and fibrosis-related proteins induced by high-fat diets 

were also suppressed [765]. Alcalase and Termamyl SC were used to obtain the soluble rice 

protein from rice-derived by-products, specifically from rice syrup meal [766]. The effect 

of peptides obtained was studied in vitro (rat primary hepatocytes) and in vivo (mice). 

Results showed that the viability of rat primary hepatocytes was not affected, and tert-butyl 

hydroperoxide induced cytotoxicity was ameliorated. The peptides also reduced the 

activities of hepatocyte alanine aminotransferase, aspartate aminotransferase and lactate 

dehydrogenase in a dose-dependent manner. The reduction of these parameters was also 

observed in vivo [766]. In another study, Alcalase was used to produce low molecular 

weight corn peptides [767]. This study concluded that the hydrolysate obtained with 

Alcalase, applied at the dose of 200 mg/kgbw showed a significant protective effect to 

alleviate carbon tetrachloride-induced hepatocellular injury [767].  

In addition, it has been described that the peptide IF obtained from the hydrolysis of 

potato protein using Alcalase has promising therapeutic effects on renal damage related to 

the hypertension [768]. Kidney sections of hypertensive rats treated with the IF peptide 
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showed restoration of the glomerulus and Bowman´s capsule. Also the expression levels 

Nrf2-mediated antioxidants were increased in these rats and the amount of apoptotic cells 

in the groups treated with the peptide IF was reduced [768]. 

In another study enzymatic hydrolysates obtained from seahorse (Hippocampus 

abdominalis) by hydrolysis with Alcalase have been studied [769]. This is relevant since 

oxidative stress-mediated endothelial dysfunction and LDL oxidation play an important 

role in the pathogenesis of atherosclerosis. These hydrolysates showed high antioxidant 

activities in DPPH, ABTS+ and ORAC assays. They also ameliorated H2O2-mediated 

injury through the restoration of antioxidant enzyme activities and glutathione in human 

umbilical vein endothelial cell [769]. 

There are many unexplored protein sources of bioactive peptides encrypted in their 

protein sequence that could be released by enzymatic hydrolysis, an some of them may 

present anti-cancer activities  [770]. To reach this goal, Alcalase hydrolysates from soybean 

meal were investigated [771]. For this study, two high oleic acid soybean lines and one 

high protein soybean line were used. The hydrolysates bioactivity was tested against colon, 

liver and lung cancer cell lines, obtaining growth inhibition rates of 73% against colon 

cancer, 70% against liver cancer cells and 68% against lung cancer cells using peptides 

from the two high oleic acid soybean lines [771]. In another work, two maize lines 

(Asgrow-773 and CML-502) were used to produce hydrolysates by Alcalase treatment 

[770]. The derived peptides were used in vitro model of human liver cancer with HepG2 

cells. Anti-proliferative effects from both maize lines on the HepG2 cells were found, 

related to the induction of apoptosis due to a decrease of the expression of anti-apoptotic 

factors [770]. Sweet potato proteins were hydrolyzed using six different proteases, and 
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among them, Alcalase hydrolysate was the one with the best results in terms of anti-

proliferative effects [772]. The peptides were tested in HT-colon cancer cells after being 

previously separated into four fractions. The highest anti-proliferative effect (43.87% at 

100 μg/mL) was found in the fraction < 3 kDa [772]. Other less common protein sources 

have been used to this goal. For example, Dendrobium catenatum Lindley protein was 

subjected to hydrolysis using trypsin or Alcalase [773]. The hydrolysates were separated 

into nine fractions by gel filtration chromatography. The fraction called A3 had the best 

anti-proliferative activity in vitro against HepG-2 (73.38%), SGC-7901 (78.91%) and 

MCF-7 (86.8%) cancer cells and O2 normal liver cells (5.52%) at a dose of 500 μg/mL 

[773]. Silkworm pupae (Bombyx mori) protein was subjected to Alcalase hydrolysis, and 

the hydrolysates were tested in human gastric cancer cells (SGC-7901) showing a specific 

inhibition of the cell proliferation and reducing some abnormal morphologic features in a 

dose and time dependent manner [774]. Thus, the authors concluded that silkworm pupae 

protein hydrolysates can, through an intrinsic apoptosis pathway, ROS (Reactive Oxygen 

Species) accumulation and cell cycle arrest, specifically suppress growth of SGC-7901 cells 

[774]. In another research, a sequential hydrolysis catalyzed using Alcalase and papain was 

employed to produce hydrolysates form Arthrospira platensis protein [775]. The 

hydrolysates were separated by gel filtration chromatography. From the fraction with the 

strongest antitumor effects on MCF-7 and HepG-2 cells, three peptides were isolated and 

identified (AGGASLLLLR, LAGHVGVR, and KFLVLCLR). Together they possess a 

strong antitumor activity but low cytotoxicity on normal cells [775].  

Oxidative stress is another point where bioactive peptides may have some positive 

incidence [776]. It may be described as an imbalance between the generation of oxidants 
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and their elimination systems. Damages caused by non-physiological high oxidative stress 

may lead to a wide range of phenotypic changes, including altered gene expression, 

arrested cell proliferation and cell growth, and cellular senescence. To suppress this 

negative action in the organism, the antioxidants act as scavengers of oxidants to maintain 

the biological redox steady states [776]. Casein hydrolysates were produced by enzymatic 

hydrolysis using Alcalase, finding that they elevated catalase activity, increased cell 

viability, and decreased superoxide dismutase activity in HepG-2 cells [777]. On another 

approach, ultrasound-pretreated porcine cerebral hydrolysate was produced using Alcalase 

[778]. This produced a hydrolysate where 11 peptides were identified. These peptides were 

administered to developing mice. Pb
2+

-induced spontaneous locomotor activity, latencies to 

reach the platform and the time in target quadrant were decreased by the hydrolysate. 

Accumulation of lead in the blood and brain of Pb
2+-

exposed developing mice was also 

reduced by this treatment [778]. In a sequential reaction, Alcalase followed by 

Flavourzyme hydrolysis were carried out using bovine colostrum whey protein as substrate 

[779].  The produced hydrolysate was later fractioned by ultrafiltration (10 kDa cutoff 

membrane). The hydrolysate showed high inhibitory activities of oxidative damage of 

deoxyribose and it also presented an inhibitory effect on the breakdown of supercoiled 

DNA into open circular DNA and linear DNA [779].  

On a global scale, obesity has reached epidemic proportions and is a major problem 

to human health and an economic burden of chronic disease and disability [780]. There are 

some chemical drugs that are typically used to treat these kinds of diseases. Nonetheless, 

hey produce some adverse side effects, including increased blood pressure, dry mouth, 

constipation, headache and insomnia. That way, it is necessary to find new sources of 
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compounds that can have potential positive effects. The use of natural products with anti-

obesity properties may be an excellent alternative to prevent the negative effects mentioned 

previously, and in this area bioactive peptides may have also some relevance [780]. For 

example, hypocholesterolemic peptides were obtained from isolated chickpea protein after 

Alcalase hydrolysis [781]. Under optimal hydrolysis conditions, the inhibiting rate of 

cholesterol production of chickpea peptides is 71.55% in vitro. In vivo assays using Wistar 

rats, the concentration of cholesterol could be decreased by 22.39% with chickpea peptides 

at 100 mg/kg bw [781]. In another study, Alcalase was employed to hydrolyze potato 

protein [782]. After fractioning, the fraction of 10 kDa enhanced lipolysis-stimulating 

activity in 3T3-L1 adipocytes these cells since the relative triglyceride residue significantly 

decreased from 88.4 to 83.8% at the 800 ppm level [782]. In another research, aging rats 

with a high fat diet induced hyperlipidemia were treated with Alcalase potato protein 

hydrolysates and probucol in order to evaluate serum lipid profiles and heart protective 

effects [783]. Serum triacylglycerol, total cholesterol, and LDL levels were reduced after 

hydrolysate treatments and they could also reduce serum lipids without affecting HDL 

expression. This reduction in serum lipids together with the enhancement of the activation 

of the compensatory IGF1R-PI3K-Akt survival pathway could explain the heart protective 

effect of the hydrolysate in aging rats with hyperlipidemia [783]. Following this research 

line, hamsters who were fed with a high fat diet, which caused them significant 

deterioration in their heart function, where treated with hydrolysates from the Alcalase 

potato protein hydrolysates for fifty days at different concentrations (15, 45 and 75 

mg/kg/day) [605]. After the treatment, in all cases, after the initial increase of apoptosis 

positive cells and the expression of protein markers of apoptosis in the hamster fed with 

high fat diet, their cardiac ejection fraction percentage and fraction shortening percentage 
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became similar to those of the control group. It is suggested that these effects might be 

mediated by SIRT1 pathway indicating a restoration from the metabolic disorders induced 

by high fat diet [605]. Four proteases including trypsin, papain, Neutrase and Alcalase were 

used to obtain rice bran protein hydrolysates [784]. Later, they were fractionated by 

hydrophobicity using styrene/divinylbeneze resins. The highest micellar cholesterol 

inhibition ability was observed using the Alcalase hydrolysate, which suggests that it may 

have hypo-cholesterolaemic properties [784]. In another paper, canola protein isolate and 

its enzymatic hydrolysates were used to study the ability to inhibit adipogenic 

differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro [780]. While cell 

viability was not affected by the treatment, the protein and its hydrolysate contain bioactive 

components which modulated in vitro adipocyte differentiation. However, the Alcalase 

hydrolysate was found to produce a higher reduction in anti-adipogenic differentiation 

[780]. One example of a sequential hydrolysis is the use of a first sunflower protein 

hydrolysis catalyzed by Alcalase (1 h) followed by 2 h of hydrolysis with Flavourzyme 

[785]. Rats were injected with a high dose of this hydrolysate and no signs of lethality or 

acute toxicity were showed. However, the administration of sunflower protein hydrolysate 

produced a significant decrease in both serum total cholesterol (18.55%) and triglyceride 

(29.70%) levels in induced hyper-lipidemic rats [785].  

Alcalase treatment may be used to transform industrial protein residues into 

bioactive peptide, in some instances with a high value, solving the contamination produced 

by the disposal of these residues in Nature. For example, rice residues were subjected to 

Alcalase hydrolysis to obtain a hydrolysate with high protein content [786]. The <1000 kDa 

fraction was able to prolong significantly swimming fatigue time and blood sugar levels in 
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mice compared to saline and hydrolysate fractions of higher molecular weight. The blood 

lactate content was also significantly reduced. The HPLC separation permitted to obtain the 

peptide that was the main responsible for these activities, and its sequence was Gln-Ser-

Pro-Glu-Ile [786]. Defatted rice bran was hydrolyzed with Alcalase to produce rice bran 

protein concentrate [787]. The degree of hydrolysis increased with time and it was at 50 

min when the highest inhibitory efficiency on soybean lipoxygenase activity was found 

(66%). It behaves as a competitive inhibitor [787]. Another interesting study presents the 

Alcalase hydrolysis of soybean β-conglycinin [788]. The hydrolysate exhibited the effect of 

the in vitro inhibition of pathogen adhesion or translocation to intestinal cells. Mice treated 

with dextran sulfate sodium-induced intestinal mucosa injury were used to study the 

protective and reparative effects of β-conglycinin hydrolysate on intestinal mucosa injury. 

The results show how the histological injury in both, the protective and reparative 

experiments, was significantly reduced. The myeloperoxidase activity also decreased 

compared to the control group [788]. Sericin hydrolysate, extracted from silk cocoon shells 

by heat treatment and later hydrolyzed using Alcalase, presented inhibitory effects over 

polyphenol oxidase, avoiding the browning of fresh-cut products [789]. This hydrolysate 

was able to reduce polyphenol oxidase activity from apple extract by 95%, from eggplant 

extract by 79% and from bean sprouts and banana flower extracts by 70% [789]. 

Alcalase was found to be the best protease to produce a hydrolysate rich in 5-

hydroxytryptophan from liquid egg white in a liquid egg white-water ratio of 1:1 [790]. 

When liquid egg white was administered at an equivalent dose to 6 mg/kg of 5-

hydroxytryptophan to mice, the sleep duration significantly increased, while sleep latency 

time decreased in a similar way to the 5-hydroxytryptophan treatment. These results 
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suggest that liquid egg white could be employed as an alternative sleep-potentiating agent 

[790]. In another paper, Alcalase was used to prepare a gelatin hydrolysate from blue shark 

skin and bovine skin gelatin [791]. The hydrolysis times were 15 and 90 min for blue shark 

skin and 30 and 120 min for bovine skin gelatin, and the latter possessed higher amounts of 

low molecular weight peptides. Then, surimi was frozen at -25 °C for 135 days, adding or 

not adding the hydrolysates. The amino acid content and the suppression in freezing-

induced denaturation of surimi samples treated with both hydrolysates was similar and they 

were more effective than the samples of shorter times of hydrolysis [791].  

In another paper, the Alcalase hydrolysates of fresh and boiled Venus clams 

exhibited the strongest hyaluronidase inhibitory activity among the hydrolysates produced 

by five different proteases [792]. After fractioning, one of the fractions presented the 

highest hyaluronidase and elastase specific activities of 141.15 and 81.36% mL/mg, 

respectively. Thus, Alcalase hydrolysate of boiled Venus clams was suggested to be used as 

a cosmetics agent [792].  

Sunflower defatted seed meal is an abundant by-product of biodiesel chain oil 

extraction [793]. In a two-step hydrolysis approach using Alcalase and Flavourzyme in a 

sequential manner, a high-quality hydrolysate was obtained [793]. This hydrolysate was 

interesting in terms of nutrient, amino acid, and peptide content as a potential biostimulant 

in agriculture. The sunflower hydrolysate presented auxin-like and interesting effects on 

plant root elongation, but no gibberellin-like activity, therefore this product may be 

considered as an effective biostimulant [793]. In another paper, hemp (Cannabis sativa L.) 

seeds were hydrolyzed using Alcalase and Flavourzyme in a sequential way to obtain a 

potentially bioactive hemp protein hydrolysate [794]. In vitro experiments permitted to 
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identify two bioactive hemp protein hydrolysates that down-regulated TNF-α, IL-1β, and 

IL-6 mRNA transcriptional levels. On the other hand, the gene expression of anti-

inflammatory cytokine IL-10 was up-regulated. Therefore, hemp protein hydrolysates may 

improve the neuro-inflammatory and inflammatory states [794].  

4. Conclusions 

This review has outlined the impressive potential of Alcalase in the production of 

peptides with very different bioactivities. The enzyme, due to the high number of positions 

where it may hydrolyze a protein, has come out on top in most of the comparisons with 

other popular proteases as the best enzyme in the production of bioactive peptides (as it 

produces more peptides, and of a smaller size because its wider selectivity). However, not 

always Alcalase is the enzyme that produces the best results, because these smaller peptides 

are not always the most active ones. Although bioactive peptides may be obtained from any 

protein source, the use of high-end proteins for this goal seems inadequate. In this context, 

a special interest may be addressed towards its utilization as feedstocks of residues from 

different industries, such as vegetable oil, fish or poultry processing. As shown in this 

review, it is possible to obtain hydrolysates with good bioactivities from these residues. 

This way, a greener economy and the reduction of waste may be achieved, producing 

highly added valued products without a competition with the usage of the proteins as food. 

The immobilization of this enzyme permits to increase its stability, mainly if 

applying appropriate immobilization protocols: suitable supports, adequate groups in the 

support, and appropriate immobilization protocols that can permit an intense multipoint 

covalent attachment. As a result, the range of conditions where it can be utilized may be 

expanded. In this context, it should be remarked that a problem in the use of immobilized 
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Alcalase is the requirement for a proper enzyme orientation. Only properly oriented 

enzyme molecules will be able to attach to substrates as large as proteins and the 

diffusional problems that a concentrate enzyme solutions may have to go inside the solid 

porous particle. 

Even being Alcalase a very suitable enzyme to hydrolyze proteins from different 

sources, with a wide selectivity that permits it to produce very small peptides, in general the 

combined use of Alcalase with other proteases, to further decrease the size of the peptides, 

further improves the properties of the obtained hydrolysates, as the number of peptides 

increase and their average size decrease. These better results are due to the combination of 

the different proteases regioselectivity, which permits to increases the number of broken 

bonds on the polypeptide chain of the substrate protein. These advantages of the coupled 

use of enzymes with the same bioactivity has been recently reviewed for the case of the full 

modification of oils and fats by lipases [395], and in this instance the advantages follow 

very similar pathways: this combination of enzymes not only combines the specificity and 

selectivity of several enzymes, but also the change of the medium conditions (e.g., a 

decrease in the pH) or some inhibitions by the products may differently affect the different 

enzymes. That way, the authors of this review foresee a greater development in the use of 

combination of several proteases (or combi-proteases) in this kind of processes in the 

future. 

Regarding the use of immobilized proteases, the use of a combi-protease can 

increase the number of papers where proteases are co-immobilized to take full advantages 

of the kinetic improvements in the processes raised by the coimmobilization and the 

combination of different enzyme selectivities. In this regard, it must be remarked that 
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proteases (and enzymes in general) co-immobilization may have serious problems (e.g., 

immobilization using the same support surface and immobilization protocol, the lifetime of 

the co-immobilized protease biocatalysts will be marked by that of the least stable enzyme, 

if one enzyme is less stable it becomes difficult to keep the relation between the activities 

of all involved enzymes throughout the life of the biocatalysts) [155]. In the case of 

proteases to be used in proteins hydrolysis, an additional problem to consider in co-

immobilization is the requirement of having a correct orientation of all involved enzymes. 

That is, co-immobilization must be employed only if the presence of both enzymes 

outweighs the advantages of the combined use of the different proteases, for example if 

there are some synergic effects. Only after careful evaluations of the pros and cons co-

immobilization may be recommended. Nevertheless, there are many efforts in the area of 

enzyme immobilization to solve some of the problems of enzyme co-immobilization, and 

perhaps they can open a massive use of co-immobilized enzymes in the future. 

That way, in our opinion, the future use of Alcalase for the production of active bio-

peptides should evolve toward the use of Alcalase co-immobilized with other proteases, 

and be extended mainly to the use of waste products. This will valorize these materials 

improving the economy of the global processes, and will avoid the waste dumping that may 

become a serious environmental problem. 
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Figure legends 

Figure 1.  Effect of the enzyme rigidification on the activity under drastic conditions of 

immobilized enzymes. The immobilized/stabilized by multipoint covalent immobilization 

enzyme structure is not altered by the experimental conditions and retains full activity, 

while the free enzyme becomes inactive. 

Figure 2. Possibility of protease autolysis under different circumstances. A: Free enzyme 

B: Protease immobilized on non-porous nanoparticle C: Immobilization of proteases inside 

porous supports. 

Figure 3. Effect of the orientation on the activity of the immobilized proteases versus small 

and large substrates. A. Small substrate, active center oriented towards the support surface. 

B Large substrate, active center orientated out of the support surface. C. Large substrate, 

active center oriented towards the support surface. 

Figure 4. Effect of protease support loading on the expressed activity versus large substrate 

when the active center orientation is not perfectly out of the support surface. A:  A lowly 

loaded biocatalyst with the enzyme not fully properly oriented remains active because the 

substrate may reach the active center. B: A highly loaded biocatalyst, with the enzyme 

molecules near each other, will be not accessible for large subsrates. 

Figure 5. Effect of the support pore diameter in the activity of immobilized proteases 

versus substrates larger than the immobilized enzymes. A: Large pore diameter supports: 

large substrates may reach the enzyme. B: Small pore diameter supports: large substrates 

cannot reach the enzyme in the core of the support, just in the external support particle 

surface. 
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Figure 6. Hydrolysis of solid substrates using enzymes immobilized inside porous 

supports: only the enzyme molecules immobilized on the support surface (a minimal 

percentage) will be active. 

Figure 7. Hydrolysis of solid substrates by enzymes immobilized on non-porous 

nanomaterials: the correct enzyme orientation remains critical. A: Fully correctly oriented 

immobilized enzymes exhibiting activity versus solid substrates. B: Incorrectly oriented 

immobilized enzymes will not be active versus solid substrates even using a nanoparticle 

for its immobilization. 

Figure 8. Schematic representation of the progressive reduction of the size of the substrate 

during hydrolysis of large substrates: when the reaction progresses and the substrate size 

decreases, more immobilized enzyme molecules can exert their catalytic function. 

Figure 9. Analyzing the effects of the multipoint covalent attachment on enzyme stability 

using free or one-point immobilized proteases: artifacts versus a fairer comparison. A direct 

comparision between free and immobilized enzyme will include effects of autolysis in the 

free enzyme. Moreover, if the enzyme extract has some stabilizing agents (e.g., protease 

inhibitors), this can increase the stability of the free enzyme. That way, a fairer comparison 

will be a comparion between one point covalenatly immobilized enzyme (without the risks 

described but with identical rigidity to the free enzyme) and the biocatalysts where a 

multipoint covalent attachment has been intended. 

Figure 10. Representation of the use and comparison of Alcalase and other different 

individual proteases a hydrolysis of a protein (A), sequential hydrolysis of a protein by 
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Alcalase and other proteases (B) and simultaneous hydrolysis of a protein by Alcalase and 

other proteases. 
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