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Abstract 1 

Turning national restoration commitments into action involves systematic spatial planning and prioritization of 2 

areas for investment. To achieve restoration at the landscape level, efforts must focus on recovering productivity 3 

and ecosystem services on degraded agricultural lands to meet not only environmental objectives, but 4 

socioeconomic objectives as well, which can be accomplished through the establishment of sustainable land use 5 

systems (SLUS). As financial resources for restoration are limited, identifying areas where resources can be used 6 

efficiently to achieve particular restoration objectives is critical. This study presents a rapid approach to identifying 7 

and prioritizing degraded agricultural lands for low-cost ecological recovery. Using publicly available remote 8 

sensing datasets at the national level, we apply the proposed methodology to Colombia, where we identify 9 

opportunities for cost effective interventions on productive lands with moderate to light degradation, based on 10 

biophysical indicators of soil degradation. In tandem, we identify areas experiencing underutilization, where SLUS 11 

can be used to sustainably intensify production, and overutilization, where SLUS can be used to mitigate soil 12 

degradation. We identify and map over 10.3 million ha of land with potential for ecological recovery. We find that 13 

the Caribbean region proportionally has a high prevalence of moderately degraded agricultural and agroforestry 14 

soils, while the Andean region has a high proportion of moderately degraded production forestry soils. Our results 15 

aid in the identification and prioritization of areas where multifunctional SLUS, such as agroforestry, agroecology 16 

or climate-smart agriculture, can be developed to restore productivity and ecosystem services to degraded 17 

agricultural lands. 18 

Key words: Sustainable land management; sustainable land use systems (SLUS); agroecological restoration; land 19 

degradation; GIS, low-cost ecological recovery 20 

Highlights: 21 

● We can identify priority areas for restoration using publicly available data  22 

● We mapped 10.3 M ha to prioritize interventions for restoration 23 

● Soil erosion is widespread in agricultural land of the Orinoquia and Caribbean regions 24 

● Soil erosion is widespread in forestry lands of the Andes region 25 
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● Many lands are overutilized, so degradation is worsening  26 

Introduction  27 

The restoration of degraded land is critical for meeting global aspirations of achieving Sustainable Development 28 

Goals (SDG) including no poverty, zero hunger, climate action, and life on land (Houghton, Byers, & Nassikas, 2015; 29 

Wheeler et al., 2016). To address concerns over biodiversity conservation, food security and sustainable rural 30 

livelihoods, attention must be given to the restoration of degraded agricultural lands, as unsustainable agricultural 31 

practices that result in soil degradation and loss of productivity, continue to drive agricultural expansion — and 32 

consequently deforestation — in the tropics (Epple, García Rangel, Jenkins, & Guth, 2016; Gliessman & Tittonell, 33 

2015; Hosonuma et al., 2012). Successful restoration initiatives at the regional and national scales require an 34 

integrated landscape approach that incorporates a mixture of interventions used to achieve a variety of diverse 35 

objectives such as recovering ecosystem services, improving agricultural productivity, safeguarding rural 36 

livelihoods, and establishing social and ecological resilience (Maginnis & Jackson, 2003; Mansourian & Parotta, 37 

2018; Reed, Van Vianen, Deakin, Barlow, & Sunderland, 2016; Sabogal, Besacier, & McGuire, 2015; Sayer et al., 38 

2013; Van Dexter & Visseren-Hamakers, 2018). In Colombia, the government has committed to restoring 1 million 39 

ha of degraded land by 2020 under the Initiative 20x20 (WRI, 2018). Yet, given the limited available resources and 40 

time remaining to meet this target, achieving national restoration goals will require the prioritization of areas 41 

where cost-effective restoration interventions can be implemented rapidly (Murcia et al., 2016; Van Dexter & 42 

Visseren-Hamakers, 2018).  43 

 44 

An estimated 25 percent of agricultural land worldwide is moderately to severely degraded (Tittonell, 2014; Bai et 45 

al., 2011). According to the assessment of the Intergovernmental Science-Policy Platform on Biodiversity and 46 

Ecosystem Services (IPBES), land degradation impacts the well-being of over 3.2 billion people and costs more than 47 

10% of annual global gross product from the loss of ecosystem services and biodiversity (IPBES, 2018). In Colombia, 48 

land degradation is widespread and over 40% of the land is degraded (Etter et al., 2008, 2010), which has been 49 
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caused by a diversity of drivers including inappropriate land use for agricultural activities (MADS, 2019). 50 

Ecosystems experiencing the greatest impacts have traditionally been Andean forests and dry tropical forests, but 51 

recently deforestation rates have increased in the lowland forests of the Amazon and the Pacific regions (Clerici et 52 

al., 2019; Sánchez-Cuervo, et al., 2012).  53 

 54 

Among the drivers of land degradation are what the Colombian government calls conflicts in land use, which are 55 

related to inappropriate use of agricultural lands, including the overuse and underuse of productive lands. Conflicts 56 

in land use arise when there is a discrepancy between the current use of the natural environment and the 57 

recommended use that is in accordance with the environmental potentials and restrictions of the land based on 58 

evaluation of ecological, cultural, social, and economic factors (IGAC, 2012). The underuse of productive lands may 59 

indirectly cause degradation through overexploitation of other lands to meet societal food, feed and fiber needs. 60 

Approximately 28 percent of land in Colombia experiences either overutilization or underutilization, mainly in the 61 

Andean and Caribbean regions (DNP, 2015). The extent of over- or underutilization of land, in Colombia, has been 62 

evaluated and mapped by the Geographic Institute Agustín Codazzi. The authors of IGAC (2012) determined that 63 

overutilization of agricultural land occurs when the intensity of current use exceeds the recommended usage 64 

intensity of the land resulting in degradation of soil resources, which is most commonly evident as water erosion. 65 

Underutilization occurs in agricultural lands when the current land use corresponds to a lower level of utilization 66 

intensity compared to the optimal usability or usage capacity of the soil, which leads to problems in the food 67 

supply, social dissatisfaction, over-use of fragile ecosystems and ultimately expansion of the agricultural frontier.   68 

 69 

Colombia has over 60 years of experience with restoration of a broad range of ecosystems (Murcia et al., 2016). In 70 

2015, the government published a National Restoration Plan (NRP) that outlines a 20-year framework designed to 71 

mitigate land degradation through the ecological restoration, rehabilitation and recovery of degraded areas 72 

(MADS, 2015). The framework consists of three levels of action: (1) Ecological restoration with the aim of restoring 73 
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an ecosystem as nearly as possible to pre-disturbance conditions with respect to species composition, ecosystem 74 

structure and ecological processes. The restored ecosystem should be self-sustaining. (2) Ecological rehabilitation 75 

with the aim of restoring degraded areas to functional ecosystems that are self-sustaining, preserve some species, 76 

and provide some ecosystem services. The restored ecosystems may be considerably different from the pre-77 

disturbance ecosystems. (3) Ecological recovery where focus is on recovering some ecosystem services of social 78 

interest in systems that are actively managed and that are not self-sustaining (MADS, 2015). Approaches to 79 

ecological recovery place emphasis on improving degraded agricultural lands through the adoption of sustainable 80 

land-use systems (SLUS) such as agroforestry and silvopastoral systems and through adaptive management 81 

techniques such as utilization of saline-tolerant plants and reduced-tillage cropping systems (Liniger, Mekdaschi 82 

Studer, Moll, & Zander, 2017). SLUS should enhance ecosystem functions (e.g. soil conservation, soil stabilization 83 

and pest control), recover biodiversity and ecosystem services, improve efficiency of land use, sustain agricultural 84 

productivity and support smallholder livelihoods (Van Dexter & Visseren-Hamakers, 2018).  85 

 86 

Colombia’s national restoration plan requires socioeconomic and political planning that can be aided by identifying 87 

and prioritizing land for cost-efficient restoration. Past restoration projects in Colombia have been driven mainly 88 

by external resources as limited government resources have been inadequate to address the extensive 89 

degradation challenge (Coppus et al., 2019; Murcia et al., 2016). Therefore, there is a need to develop a 90 

standardized land degradation assessment framework that can be used in the spatial planning and implementation 91 

of restoration efforts to ensure financial and human resources are allocated efficiently. The severity of land 92 

degradation is directly related to restoration costs; and the more degraded a landscape becomes, the higher the 93 

cost will be to achieve particular restoration outcomes (Chazdon, 2008; FAO & Global Mechanism of the UNCCD, 94 

2015; Sabogal et al., 2015). Thus, given the growing demand for agricultural products, land degradation 95 

assessment tools should be used to prioritize degrading agricultural lands for ecological recovery so that land 96 

degradation is halted and abated before progressing to a state of severe degradation, which will be associated 97 

with high restoration costs.  98 
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 99 

The objective of this study is to develop a methodology that uses publicly available geospatial data on soil and land 100 

use variables to rapidly identify and prioritize degraded agricultural areas for low-cost ecological recovery — 101 

following the terminology established in Colombia’s NRP. This methodology is based on assessing lands and 102 

prioritizing areas for intervention using three criteria: i.) soil degradation from erosion; ii.) soil degradation from 103 

salinization; and iii.) inappropriate use of lands. Assessing inappropriate use of lands was based on identifying 104 

areas suitable for agriculture that are currently underutilized or overutilized according to remote sensing data 105 

acquired from government sources. Using Colombia as a case study, we apply this methodology to identify 106 

degrading agricultural and production forestry lands that can be prioritized at the national level for ecological 107 

recovery through agroecological approaches and establishment of SLUS. We identified areas of light to moderate 108 

degradation experiencing under- or overutilization with the assumption that achieving ecological recovery 109 

objectives in these areas could require less intensive and less costly interventions compared to areas of more 110 

severe degradation and would halt the negative trajectory toward more severe degradation. By establishing SLUS 111 

in these areas, land degradation can be mitigated, agricultural productivity can be sustainably intensified in areas 112 

of underuse, and soils can be safeguarded against more severe degradation. Finally, we frame our results in the 113 

context of the government’s NRP to demonstrate how this methodology can be used as a tool to help inform 114 

national restoration planning.  115 

 116 

Materials and Methods  117 

Data selection 118 

This analysis focused on agricultural lands. An exhaustive search of national web platforms was conducted to 119 

identify geospatial datasets that could be used in GIS analyses for the identification of degrading agricultural areas 120 

where low-cost ecological recovery interventions could be implemented. Data collection was limited to publicly 121 

available datasets at the national scale produced by Colombian government agencies.  122 
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 123 

Geospatial datasets (1:100,000) were obtained for land suitability, conflicts in land usage and variables of soil 124 

degradation (see Table 1 for detailed descriptions of each selected dataset). The land suitability map was used to 125 

select areas considered most suited for either agriculture, agroforestry or production forestry. We used the 126 

conflicts in land use dataset from Colombia’s Geographic Institute Agustín Codazzi to identify areas experiencing 127 

underutilization or overutilization. This dataset identifies areas of under- or over-utilization by determining and 128 

comparing the i) potential use of soils in areas suitable for agricultural and forestry production, and ii) the existing 129 

land cover and land use in the area (IGAC, 2012). We evaluated soil degradation using maps on soil erosion and soil 130 

salinization. Areas with slight to moderate soil degradation were identified as areas where low-cost ecological 131 

recovery interventions could be implemented. As all soils exhibit at least a very light degree of salinization, the 132 

levels of “very light”, “light” and “moderate” soil salinization were selected. We selected corresponding levels of 133 

soil erosion, which consist of “no evidence of erosion”, “light erosion” and “moderate erosion.” We retained areas 134 

with “no evidence of erosion” in our analyses because, when intersecting the selected variables, areas without 135 

evident erosion can still be identified as degraded due to degrees of soil salinization and under- or overutilization.  136 

 137 

Analysis 138 

Selected geospatial datasets were analyzed in ArcGIS Pro 2.4.0. (ESRI, 2013). For each dataset, the selected 139 

attribute subcategories (listed in Table 1) were extracted to generate maps containing only the desired variables 140 

(e.g. map of very light, light and moderate soil salinization). These maps were then intersected using high-141 

performance tools (Pairwise Intersect and Pairwise Dissolve), which have internal parallel processing algorithms 142 

useful for executing geospatial analyses with cartography of large file sizes (e.g. for the entire Colombian territory) 143 

and complex geometry. The results were subsequently disaggregated based on biogeographic regions, 144 

departments (states) and their corresponding municipalities. 145 

 146 
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When planning restoration on a national level, it is critical to consider restoration agendas set by the government. 147 

Therefore, we cross-referenced the preliminary areas identified using the aforementioned methodology with the 148 

areas identified in Colombia’s NRP for ecological restoration, rehabilitation or recovery in order to select zones 149 

that were generated by both approaches. This final step enabled us to focus efforts and develop further analysis 150 

on areas of high national importance. 151 

 152 

Results  153 

We identified over 10.3 million ha as having potential for ecological recovery in Colombia, which we define as 154 

areas with a combination of moderate or less soil erosion and salinization, sub-optimal agricultural land-use 155 

suitability, and overutilization/underutilization. Of the identified degraded lands, land suitable for production 156 

forestry presented the largest area, followed by agriculture and agroforestry, respectively (Table 2; Figure 3). The 157 

Andean region had the largest resulting degraded area of land (6.6 million ha), followed by the Caribbean (1.6 158 

million ha), Amazon (1.2 million ha), Orinoquia (557,485 ha) and Pacific (298,722 ha) regions. 159 

 160 

Table 2 shows that of the resulting areas the greatest percentage of land with moderate to light erosion was found 161 

in the Andean region in areas most suited for production forestry. The greatest percentage of land suitable for 162 

agriculture with moderate to light erosion was found in the Caribbean region, followed by the Andean and 163 

Orinoquia regions.  Overall, very light salinization was more widespread than light and moderate salinization levels 164 

(Figure 1). The highest proportion of land with moderate salinization was found in the Caribbean region on 165 

agricultural soils (Table 3). Furthermore, lands suited for production forestry in the Andean region presented the 166 

highest proportion of very light salinity.  167 

 168 
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Using results in Table 4, we classified areas by priority for intervention from a biophysical perspective, and we gave 169 

high priority to soils with low levels of degradation classified as NE-VLS (orange), intermediate priority to soils with 170 

intermediate degradation in the categories NE-LS, LE-LS and LE-VLS (yellow) and lower priority to moderately 171 

degraded soils with NE-MS, LE-MS, ME-MS, ME-LS and ME-VLS (purple). The basis for this classification is the level 172 

of effort required to restore soils, which follows the order NE<LE<ME for erosion and VLS<LS<MS for salinity. 173 

Following this approach, we find that 724,634 ha are high priority for recovery (Table 4, orange), 3,396,494 ha are 174 

moderate priority (Table 4, yellow) and 6,137895 ha are low priority for investment in ecological recovery and 175 

establishment of SLUS (Table 4, purple). Figure 2 displays the spatial distribution of degradation levels in the 176 

potential ecological recovery areas according to the combinations of soil erosion and salinization levels shown in 177 

Table 4 with colors corresponding to those used in Table 4. 178 

 179 

 180 

The distribution of degrading and degraded lands in Figure 2 shows that areas of moderate to light degradation 181 

were largely found in clusters throughout the Andean and Caribbean regions. This raises the prospects that the 182 

logistical efforts and costs associated with recovering these large, clustered areas may be expected to be lower 183 

than costs in more isolated or remote areas with degradation. Lands suitable for production forestry were 184 

concentrated in the Andes, particularly on sloping lands. Lands suitable for agriculture were concentrated in the 185 

Caribbean and Orinoquia regions, and the valleys of the Andean region (Figure 3). Overutilization was widespread 186 

on both production forestry and agricultural lands, and underutilization was limited to the western portions of 187 

Orinoquia (Figure 3). 188 

 189 

Results in Table 5 and Figure 4 suggest that large areas in the Andean and Caribbean regions could be prioritized 190 

for interventions that sustainably intensify agricultural production in underutilized areas and mitigate degradation 191 

in areas of overutilization. The Orinoquia region also presents a relatively high proportion of land that is suitable 192 
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for agriculture but is presently underutilized. Overutilization appears to be more widespread in areas suitable for 193 

production forestry, particularly in the Andean region. Overall, of the lands identified for potential ecological 194 

recovery, 8.7 million ha are overutilized and 1.5 million ha are underutilized (Figure 3). 195 

 196 

Discussion  197 

Achieving restoration objectives at national and regional levels requires systematic spatial planning and prioritization 198 

of areas for investment, which in turn requires approaches for rapid and effective land evaluation. Estimates of land 199 

degradation vary widely and are complicated by the fact that most estimates are not derived from direct 200 

measurement (Gibbs & Salmon, 2015). To support restoration planning, we developed a novel methodological 201 

framework that focuses on soil indicators and land suitability for rapidly identifying, mapping and quantifying 202 

degrading lands with potential for cost-efficient ecological recovery based on remote sensing data available at the 203 

national level. We note that in the Colombian context, the ecological recovery concept is typically applied to lands 204 

that are actively managed for forestry, agriculture and agroforestry.  As nations proceed with turning international 205 

restoration commitments into action, an integral piece of the puzzle will be recovering productive capacity of 206 

agricultural and forestry lands in order to reduce deforestation pressures and achieve multiple environmental and 207 

socioeconomic objectives.  208 

 209 

While ecological restoration to pre-disturbed conditions can be accomplished by taking land out of agricultural 210 

production, this is potentially in conflict with meeting food security goals and can increase deforestation pressures 211 

by displacing pre-existing land uses (Latawiec, Strassburg, Brancalion, Rodrigues, & Gardner, 2015; Melo et al., 2013; 212 

Meyfroidt & Lambin 2009). Conversely, ecological recovery can be achieved while simultaneously sustaining and 213 

improving agricultural production through the establishment of SLUS that restore and safeguard soil health by using 214 

ecologically-based agricultural practices that align with sustainable livelihoods and conservation of ecosystem 215 

services (Van Dexter & Visseren-Hamakers, 2018). Moreover, recovering productivity of degraded lands can reduce 216 
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the sensitivity of agroecological systems to climate change impacts (Webb et al., 2017). By mapping and evaluating 217 

soil degradation variables, conflicts in land use, and land suitability, the present study was able to identify over 10.3 218 

million ha of productive land in Colombia that, from a biophysical perspective, has potential for low-cost ecological 219 

recovery. Further investigation in these areas will present opportunities for sustainable agricultural intensification, 220 

soil degradation mitigation and biodiversity and forest cover recovery.  221 

 222 

We found that moderate and light erosion is widespread in our targeted areas, and it is coupled with prevalent 223 

overutilization, indicating that degradation is likely worsening in these areas. Through the NRP framework, Colombia 224 

aims to address the nation’s land degradation and achieve its international and national restoration commitments. 225 

Concurrently, the government is developing and implementing policies and initiatives to address peacebuilding and 226 

sustainable rural development as the country emerges from a period of armed conflict (Morales, 2017). Initiatives 227 

such as the Cocoa, Forests and Peace Initiative (Cocoa & Forests Initiative, 2018) aim to simultaneously restore forest 228 

biodiversity and ecosystem functions, promote the sustainable intensification of cacao production and provide 229 

sustainable livelihoods while combating deforestation. As public and private sector resources are finite, and 230 

Colombia strives to tackle many complex issues, the efficiency of use of available resources will be a top priority. 231 

Therefore, the proposed planning tool can be used to assess a combination of national-level, geospatial datasets to 232 

determine and prioritize regions where resources can be used to efficiently achieve particular restoration objectives. 233 

 234 

Our results, as well as Colombia’s NRP, emphasize targeting the Andean region for ecological recovery, which is 235 

home to approximately 70% of Colombia’s population (MADS, 2019). Many past ecological restoration projects in 236 

Colombia have targeted the Andean region – most of which were small scale and focused on recovering watershed 237 

services (Murcia et al., 2016). Nevertheless, the Andean region continues to boast large areas of degraded land 238 

suitable for productive uses, which present opportunities for investments in ecological recovery initiatives and SLUS. 239 

For example, among the biogeographic regions, the highest proportion of overutilized lands identified by our 240 
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methodology was in the Andean region on lands suitable for production forestry. Targeting these lands for ecological 241 

recovery presents an opportunity to establish sustainably productive forestry systems that restore forest 242 

functionality, improve habitat connectivity and recover ecosystem services all while providing economic benefits 243 

(Maginnis & Jackson, 2003). Priority should also be given to the Caribbean region, where large, clustered areas of 244 

moderate degradation are found – most of which are on under- or overutilized land suitable for agriculture.  245 

 246 

In the Andean, Caribbean and Orinoquia regions alone, we identified over 1.2 million ha of suitable agricultural land 247 

that is being underutilized. According to the National Planning Department, a key strategy for agricultural and rural 248 

development in Colombia is to promote the efficient use of land and natural resources (DNP, 2019). Recovering land 249 

through SLUS can increase productivity by replenishing soil fertility and improving efficiency in water use 250 

(Metternicht & von Maltitz, 2019). For instance, agroforestry systems where trees are established and managed on 251 

active agricultural land can be used to improve or maintain crop productivity, increase soil fertility and enhance 252 

water retention, all while providing alternative, sustainable livelihoods for farmers (Reed et al., 2016; Sabogal et al., 253 

2015; Van Dexter & Visseren-Hamakers, 2018). In developing countries, sustainable land-use practices have 254 

increased average crop yields by 79 percent on 3 percent of agricultural lands (IPBES, 2018). Therefore, 255 

agroecological restoration techniques that restore soil quality and stabilize erosion can be implemented to “produce 256 

more from less” and mitigate future land degradation (Lal, 2015). On the other hand, we identified over 8.7 million 257 

ha of land that is overutilized, which if left unabated will likely progress to more severe levels of degradation that 258 

would require more intensive and costly restoration interventions.   259 

 260 

Land degradation is a multi-dimensional phenomenon; and while this study focused on soil indicators for salinization 261 

and erosion to identify land degradation, we expect that the open access principles for public data that was recently 262 

adopted by the Government of Colombia (MinTIC, 2019) will increase access to data on other indicators of natural 263 

and anthropogenic land degradation and thus make it possible to include other geospatial layers in this rapid 264 
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approach. For instance, previous studies have proposed the use of several indicators of land degradation that are 265 

directly affected by land management including land productivity, land cover, normalized difference vegetation 266 

index and above- and below-ground carbon stocks (Nkonya et al., 2016; Yengohet al., 2015). Yet, the challenge is 267 

accessing data on key degradation indicators at the appropriate resolution and of satisfactory quality. The results of 268 

the present study will require field validation, which is becoming feasible as the country emerges from conflict and 269 

as rural areas become more accessible. It may also be useful to expand the definition of soil degradation to include 270 

nutrient depletion, but national datasets were not currently available for this. Furthermore, due to the nature of the 271 

dataset on conflicts in land use, we could not determine whether the occurrence of under- or overutilization was 272 

due to the type of land use currently being employed (e.g. presence of agriculture in an area suitable for 273 

agroforestry) or to the management of the current land use (e.g. subpar agricultural production in an area 274 

appropriate for agriculture). Future applications of the proposed methodology must carefully consider what datasets 275 

are available and what limitations they might present and move forward with planning accordingly.  276 

Conclusions  277 

Restoration of degraded lands is essential for meeting national development objectives and for meeting several 278 

SDGs. Because financial resources for restoration are limited, careful planning and prioritization of lands for 279 

restoration is required, so that these are spent wisely. Our study presents a simple approach for prioritizing 280 

interventions. We targeted agricultural lands and used easily available national datasets for this assessment. Because 281 

this rapid approach was able to capture the spatial heterogeneity of different land degradation attributes, it will 282 

facilitate more cost-effective restoration actions. The approach focused on soil indicators, in contrast to many land 283 

degradation assessment approaches that focus on vegetation. For planning ecological recovery in agricultural 284 

landscapes, focusing on soil degradation makes sense; the approach could be adapted easily using other indicators 285 

for other types or dimensions of land degradation. This approach could be replicated at department levels using 286 

higher resolution data for sub-national prioritization to provide even greater specificity. The GIS analysis should be 287 

used in conjunction with socioeconomic factors, as restoration planning must consider a combination of social, 288 
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economic and environmental factors and the interests of local, regional and national stakeholders to ensure 289 

interventions are designed to meet local needs. 290 

For our case study in Colombia, we showed that large areas of agricultural lands are slightly degraded and a much 291 

smaller area is moderately degraded. This suggests that prophylactic measures on slightly degraded lands in the near 292 

term will avoid high restoration costs in the future. We also show that the Caribbean proportionally has a much 293 

higher prevalence of moderately degraded agricultural and agroforestry soils, and addressing these requires 294 

remedial measures. A large percentage of production forestry soils in the Andes region are also degraded to varying 295 

degrees. Our results aid in the identification and prioritization of areas where multifunctional SLUS can be developed, 296 

such as agroforestry, agroecology or climate-smart agriculture. These systems can aid in restoring biodiversity and 297 

habitat connectivity, while safeguarding soils and avoiding further degradation that is often brought about by 298 

overuse and unsustainable land practices.   299 

 300 

  301 
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Table 1. Map layers and attribute classes selected for soil degradation, land suitability and conflicts in land use 423 

variables in Colombia. Map layer selections were limited to publicly available, national level (1:100,000) datasets 424 

from government sources. Agroforestry and agrosilvopastoral classes include permanent and temporary crops, 425 

agriculture classes include permanent and temporary crops under all climatic conditions, and production forestry 426 

includes tree production under all climatic conditions. 427 

 428 

Variable  Category  Attribute Description  Source  

Soil 

degradation 

Soil erosion  

No evidence of erosion  Physical-mechanical loss of the soil. 

Selected classes correspond to a 25% or 

50% loss of soil from horizon A.  

IDEAM, 

20121 Light erosion  

Moderate erosion  

Soil salinization  

Very light  Increase, gain, or accumulation of salts in 

the soil. Selected classes correspond to 

soils with electrical conductivity of < 2 

dS/m; ≥ 2 and < 4 dS/m; ≥ 4 and < 8 

dS/m, respectively.  

 IDEAM, 

20172 Light  

Moderate  

Land 

suitability 

Agriculture  
Intensive cropping 

Most appropriate land use for each soil 

type that results in sustainable production 

without the deterioration of natural 

resources based on biophysical 

characteristics. 

IGAC, 

20123 

Semi-intensive cropping  

Agroforestry  

Agroforestry  

Agrosilvopastoral  

Silvopastoral  

Forestry  
Production forestry  

Protection-production  

Conflicts in 

land use 

Overutilization  
Light, moderate and severe  Corresponds to discrepancies between 

current land use and the most suitable land 

use that is in accordance with 

environmental, ecological, cultural, social 

and economic factors of the land.  

IGAC, 

20124 
Improper use in burned areas  

Underutilization  Light, moderate and severe 

1 Zonificación de la degradación de suelos por erosión. Línea base 2010 - 2011; Institute of Hydrology, Meteorology and 429 

Environmental Studies (IDEAM) (https://bit.ly/31xopkt) 430 

2 Zonificación de la degradación de suelos por salinización para el área continental e insular de Colombia a escala 1:100.000 y 431 

1:10.000 respectivamente. Año 2016 - 2017; IDEAM (https://bit.ly/31tSQYG) 432 

3 Mapas de Clasificación de las Tierras por su Vocación de Uso a escala 1:100.000; Geographic Institute Agustín Codazzi 433 

(IGAC) (https://bit.ly/32wnbHa) 434 

4 Mapa de Conflictos de Uso del Territorio Colombiano a escala 1:100.000; IGAC (https://bit.ly/2Pafcfp) 435 

https://bit.ly/31xopkt
https://bit.ly/31tSQYG
https://bit.ly/32wnbHa
https://bit.ly/2Pafcfp
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Table 2. Percentage of potential ecological recovery areas with moderate (M), light (L) and no evidence (NE) of soil 436 

erosion in the different biogeographic regions of Colombia. Values are given as percentages of the respective 437 

biogeographic region.  438 

 439 

Land Suitability 
Amazon (%)  Andean (%)  Caribbean (%)  Orinoquia (%)  Pacific (%) 

NE L M 
 

NE L M 
 

NE L M 
 

NE L M 
 

NE L M 

Agriculture 

(2,612,113 ha) 0.04 0.12 0.14 

 

0.28 1.46 2.20 

 

0.38 3.20 3.40 

 

0.26 0.64 1.12 

 

0.09 0.20 0.36 

Agroforestry 

(1,283,651 ha) 0.05 0.24 0.42 

 

0.09 0.60 0.93 

 

0.05 1.20 1.60 

 

0.02 0.17 0.29 

 

0.06 0.17 0.07 

Production forestry 

(6,363,259 ha) 0.13 0.37 1.12 

 

1.22 6.80 7.03 

 

0.40 1.91 1.55 

 

0.07 0.24 0.38 

 

0.89 1.41 0.71 

 440 

  441 
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Table 3. Percentage of identified areas with moderate (M), light (L) and very light (VL) soil salinization in the 442 

different biogeographic regions of Colombia. Values are given as proportions of the respective biogeographic 443 

region.  444 

 445 

Land Suitability 
Amazon (%)  Andean (%)  Caribbean (%)  Orinoquia (%)  Pacific (%) 

VL L M 
 

VL L M 
 

VL L M 
 

VL L M 
 

VL L M 

Agriculture 

(2,612,113 ha) 0.30 0 0 

 

3.35 0.14 0.46 

 

2.76 0.74 3.48 

 

2.01 0 0.01 

 

0.35 0 0.31 

Agroforestry 

(1,283,651 ha) 0.71 0 0 

 

1.40 0.04 0.18 

 

0.85 0.79 1.22 

 

0.47 0.01 0 

 

0.17 0 0.13 

Production forestry 

(6,363,259 ha) 1.62 0 0 

 

12.50 0.28 2.26 

 

1.17 0.41 2.28 

 

0.69 0 0 

 

2.54 0 0.46 

 446 

  447 
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Table 4. Area of land in hectares with a combination of no to moderate erosion and very light to moderate salinity 448 

in Colombia. Colors correspond to the degradation levels presented in Figure 2, which are as follows: very light 449 

(orange), light (yellow) and moderate (purple) degradation. In addition to these levels of degradation, these soils 450 

also experience some degree of either overutilization or underutilization. 451 

  Very light salinity (VLS) Light salinity (LS) Moderate salinity (MS) 

No erosion (NE) 724,634 28,059 90,455 

Light erosion (LE) 3,201,927 166,508 863,967 

Moderate erosion (ME) 4,150,036 181,026 852,411 

 452 

  453 
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Table 5: Proportion of land under agriculture, agroforestry and production forestry in each biogeographic region 454 

that is overutilized or underutilized. 455 

Land Suitability 

Amazon (%) Andean (%) Caribbean (%) Orinoquia (%) Pacific (%) 

Under-

utilized 

Over-

utilized 

Under-

utilized 

Over-

utilized 

Under-

utilized 

Over-

utilized 

Under-

utilized 

Over-

utilized 

Under-

utilized 

Over-

utilized 

Agriculture 

(2,612,113 ha) 0.17 0.13 1.62 2.32 3.17 3.82 1.92 0.10 0.32 0.33 

Agroforestry 

(1,283,651 ha) 0.02 0.69 0.13 1.49 0.22 2.64 0.16 0.32 0.09 0.21 

Production forestry 

(6,363,259 ha) 0.04 1.58 0.08 14.96 0.04 3.82 0.34 0.36 0.00 3.01 

  456 
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 457 

 458 

Figure 1. Spatial distribution of soil erosion (left) and soil salinization (right) in areas identified for potential low-459 

cost ecological recovery in Colombia using the methodology proposed in the current study. 460 
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 462 

Figure 2. Spatial distribution of moderate to very light soil degradation based on soil erosion and soil salinization 463 

variables in areas identified for potential ecological recovery in Colombia. Degradation levels correspond to the 464 

following combinations of soil erosion and salinization levels displayed in Table 4: Very light (NE-VLS); Light (NE-LS, 465 

LE-LS and LE-VLS); and Moderate (NE-MS, LE-MS, ME-MS, ME-LS and ME-VLS). 466 
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  468 

Figure 3. Spatial distribution of land that is suitable for agriculture and forestry production (left) and conflicts in 469 

land usage due to overutilization and underutilization (right) in areas identified for potential low-cost ecological 470 

recovery in Colombia. 471 
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 473 

Figure 4. Areas with potential for ecological recovery in Colombia with issues related to land suitability and conflicts 474 

in land use (LU Conflict) due to either overutilization or underutilization.  475 

 476 


