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Summary The review aimed to identify the different high-throughput phenotyping (HTP) techniques that used for

quality evaluation in cassava and yam breeding programmes, and this has provided insights towards the

development of metrics and their application in cassava and yam improvements. A systematic review of

the published research articles involved the use of NIRS in analysing the quality traits of cassava and

yam was carried out, and Scopus, Science Direct, Web of Sciences and Google Scholar were searched.

The results of the review established that NIRS could be used in understanding the chemical constituents

(carbohydrate, protein, vitamins, minerals, carotenoids, moisture, starch, etc.) for high-throughput pheno-

typing. This study provides preliminary evidence of the application of NIRS as an efficient and affordable

procedure for HTP. However, the feasibility of using mid-infrared spectroscopy (MIRS) and hyperspectral

imaging (HSI) in combination with the NIRS could be further studied for quality traits phenotyping.

Keywords Cassava, yam, quality traits, NIRS, high throughput, hyperspectral imaging.

Introduction

Breeding programmes need to screen large numbers of
genotypes for agronomic, nutritional quality and end-
product quality traits to select the best ones for the
next breeding and selection cycles. However, to consis-
tently assess end-product quality, it is crucial to
increase the understanding of crop reactions to differ-
ent environments and management practices and geno-
type by environment by management interactions.
High-throughput phenotyping (HTP) methods that
efficiently predict end-product quality traits would
facilitate economic and timely inclusion of end-user
traits in the selection process of large breeding popula-
tions. Cassava and yam are essential roots and tuber
crops that are commonly grown in the tropic and sub-
tropical parts of the world. Roots and tuber crops

serve as a significant source of dietary carbohydrates.
For instance, cassava plays a vital role as stable for
over 500 million world population due to its high car-
bohydrate content (Blagbrough et al., 2010). Yam, on
the other hand, is also a starch-rich tuber crop which
plays pivotal nutritional and cultural roles in the West
African region (Ferede et al., 2010; Alamu et al.,
2014). Yam tubers have specific bioactive components
such as polyphenols, diosgenin, vitamins,carotenoids
and tocopherols (Bhandari et al., 2003; Ferede et al.,
2010; Alamu et al., 2016).
These HTP procedures can be merged with evalua-

tion methods already in use for value chain traits such
as yield, pest resistance, processing ability and market
acceptability. Among the HTP procedures available
for cassava and yam improvement breeding pro-
grammes, near infrared spectroscopy (NIRS) has excel-
lent potential for simultaneous prediction of various
quality traits (Lebot & Malapa, 2013; S�anchez et al.,*Correspondent: Fax: 44-208-711-3786; e-mail: oalamu@cgiar.org
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2014; Belalcazar et al., 2016; Ikeogu et al., 2017; Abin-
cha et al., 2020). It has proven effective for the predic-
tion of dry matter, carotenoids and cyanogenic
potential in raw cassava roots (Belalcazar et al., 2016),
and dry matter and carotenoids in fresh sweet potato.
For other traits, such as individual sugars, NIRS had
better accuracy in dried and milled potato and sweet
potato samples compared to raw materials. NIRS
application is associated with little or no sample
preparation, cost-effectiveness and time-effectiveness
and high sample throughput in comparison with con-
ventional methods. Also, its correlation to high end
and highly reproducible procedures such as chromato-
graphic techniques has been established, making it an
easy tool to apply in settings where alternative sample
handling options are time-consuming and expensive
(Jaramillo et al., 2018; Abincha et al., 2020).

In addition to the use of NIRS, spectral imaging was
suggested as a tool for HTP for cassava and yam. This
type of imaging uses multiple bands across the electro-
magnetic spectrum. The spectral imaging technique is a
combination of NIRS and imaging where spectral
information is collected on an array of pixels in a sam-
ple, resulting in the simultaneous acquisition of spatial
images and spectral information (Sun, 2009). Spectral
imaging can be divided into two main subcategories:
multispectral imaging (MSI) which captures a small
number of spectral bands, typically three to fifteen,
using different filters and illuminations and hyperspec-
tral imaging (HSI) which combines spectroscopy and
digital photography. A hyperspectral camera captures
hundreds of wavelength bands which can be interpreted
as a complete spectrum, for each pixel. This nearly con-
tinuous spectrum, made of narrow and contiguous
spectral bands, is vital to optimising the use of the
information, making possible the simultaneous quanti-
tative prediction of chemical and physical properties
and their spatial distribution (Sun, 2009).

In this review, we identified the different high-
throughput procedures that have been used in the char-
acterisation of cassava and yam germplasms. Such
knowledge is critical to provide insights towards the
development of metrics and their application in cassava
and yam improvement. Importantly, we wanted to ver-
ify the application of these procedures in breeding pro-
grammes, forming a basis for their wide adoption.

NIRS and HSI techniques for high-throughput
phenotyping for cassava

Spectroscopic techniques

One of the most common spectroscopic techniques
used in cassava-based studies was NIRS. The tech-
nique measures the interactions between electromag-
netic radiation and vibrational properties of chemical

bonds (Cozzolino, 2015). The visible (VIS) spectra
cover the range from 380 nm to 780 nm, which returns
mainly information on colour due to pigments present
in the sample. NIR refers to the 780–2500 nm part of
the electromagnetic spectrum and is more useful for
quantitative analysis of complex mixtures (Sun, 2009).
The mid-infrared (MIR), approximately 2500 nm–
25 000 nm (4000–400 cm�1), was also suggested in
some studies as relevant in the understanding of the
fundamental vibrations and associated rotational–vi-
brational structure of food-based products. MIRS is
thus explicitly used to determine the chemical func-
tional groups of a sample in both qualitative and
quantitative ways (Sun, 2009).
The utilisation of NIRS in cassava breeding is

advancing the research, farming and industrial agendas
of cassava improvement and can be harnessed in a sig-
nificant range of applications. These include breeding
selection for high-quality cassava products, but also
improving the safety of cassava products, detection of
adulterants, detection of altered metabolism in cassava
plant or tissue and detection of changes in already
developed products (Table 1).
Furthermore, in a bid to support the genetic

improvement of crops such as cassava, large databases
of biophysical and NIRS data are developed, to estab-
lish robust calibrations based on diverse sample sets
(Lebot et al., 2013). Specific references such as Dav-
rieux et al. (2016) and Shen et al. (2019) provide pro-
cedures on how large databases can be handled using
several methods for the development of accurate pre-
dictions for various traits.

Target constituents and physical properties in cassava

The reviewed studies on cassava were summarised
according to the analytical techniques used, the sample
preparation procedure and the chemometric methods
applied (Table 1). Regarding fresh or processed cas-
sava, most of the NIRS investigations reported quan-
tification of chemicals constituents, including total
carotenoids content (TCC), total beta-carotene (TBC),
dry matter (DM), hydrogen cyanide (HCN), starch
and sugars. Some of the papers reported safety and
adulteration concerns observed or expected in the cas-
sava value chain such as adulteration of cassava flour.
The primary scanning mode is diffuse reflectance and
the principal chemometric methods selected and
applied are partial least square (PLS) and principal
component analysis (PCA). The technique is used
mainly in understanding the chemical constituents
(carbohydrate, protein, vitamins, minerals, carote-
noids, moisture, starch and fat) for quality control or
HTP. Also, physical attributes such as specific gravity,
skin colour and texture and quality aspects related to
the processing of the tubers have been determined
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using NIRS. The universal application of this tool and
its ability to provide relevant information that defines
different product profiles explains much about its
attractiveness.

NIRS studies for high-throughput phenotyping for
cassava root quality

NIRS is mainly used in understanding changes in
nutritional parameters of cassava roots. Indeed, sev-
eral breeding programmes and several crops are
already applying NIRS in the breeding of nutritious
varieties (Lebot & Malapa, 2013; Lebot et al., 2013;
Alamu et al., 2019). In most cases, NIRS is being used
to evaluate a range of traits in a breeding population
with comparisons among these traits supporting the
selection of superior varieties (Lebot et al., 2009; Tum-
wegamire et al., 2011; Lebot et al., 2013). Besides, the
use of NIRS in the evaluation of location-based differ-
ences arising in populations concerning traits such as
dry matter, starch, sucrose, b-carotene content and
minerals has been demonstrated in sweet potato (Tum-
wegamire et al., 2011) and is highly relevant in cassava
too. With such a broad range of applications, NIRS
for phenotyping is also finding new applications in the
assessment of genetic correlations, such as genome-
wide association studies (GWAS) and genomic predic-
tions (Ikeogu et al., 2019).
Phambu et al. (2007) investigated various techniques

(fluorescence, infrared spectroscopy, scanning electron
microscopy, UV-visible spectroscopy and X-ray diffrac-
tion) to monitor the effect of post-harvest processing on
the residual cyanogens in cassava roots. Two types of
infrared methods were tested, using a Spectrum One
spectrometer (Perkin-Elmer): (i) For transmission spec-
tra, samples were prepared as KBr discs with 10% w/w
of each sample; (ii) for ATR-IR spectra, an ATR Dura-
Vision accessory was used to record the spectra of pure
samples, without any preparation. The authors demon-
strated that soaking and sun-drying reduced cyanogens
while boiling did not significantly affect the chemical
composition of cassava. The infrared technique (4000–
6000 cm-1) was able to detect residual cyanide at rela-
tively low concentrations. Freitas et al. (2020) applied
NIRS techniques to monitor the effects of frogskin dis-
ease in cassava. They demonstrated early detection of the
disease, with the advantages of more accurate detection
and lower cost compared to conventional methods. In
such cases, NIRS techniques are based on understanding
the changes in biochemical parameters in the affected
parts of the cassava plant or the response of the plant to
an environmental factor (Thumanu et al., 2015).
Other applications of NIRS on cassava were on the

biochemical components’ quantification (Total carote-
noids – TCC, Total beta-carotene – TBC and Drymatter
– DM). Ikeogu et al. (2017) developed models for DM,T
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TBC, TCC quantification, with an accuracy expressed
as standard error cross validation (SECV) = 0.9%,
1.6% and 2.1%, respectively. These models based on
PLS (partial least square) regression were developed on
crushed fresh cassava by using a portable visible–near-
infrared (VIS-NIR) spectrometer (QualitySpec Trek: S-
10016, ASD; Longmont, USA) and were more accurate
than those based on spectra of intact fresh cassava sam-
ples. This study was complementary to studies related to
the quantification of TCC and TBC in fresh cassava
samples by S�anchez et al. (2014); Belalcazar et al.
(2016); Davrieux et al. (2016) and Moresco et al. (2015).
The accuracy of the models developed by Davrieux
et al. (2016) enables the use of NIRS as HTP of cassava
genotypes for high TBC and TCC contents. The models
are based on an extensive database (6026 samples)
together with a local PLS regression approach. Notably,
the standard error of prediction (SEP) values were
1.38% and 1.03%, respectively, for TBC and TCC, sug-
gesting a wide range of applications in different popula-
tions. For the first time, Fu et al. (2017) quantified
maleic acid content (RMSEP (root-mean-squared error
of prediction) = 0.026%) to detect adulteration in fraud
labelling of cassava starch by manufacturers or traders.
The study, therefore, showed the application of NIRS in
product quality assessments. Such rapid assessments are
critical in the marketing and use of cassava for various
purposes.

Only one article was published on HSI applied to
cassava. Su & Sun (2017) aimed to detect cassava flour
adulterants in Irish organic wheat flour (OWF).
Hyperspectral images (900–1700 nm) of OWF samples
with a series of adulteration percentages were col-
lected. Partial least squares regression (PLSR) and
principal component regression (PCR) were employed
for quantitative analysis. The best prediction model of
adulteration was developed using a first-derivative and
mean centring iteration algorithm (FMCIA).

Table 1 provided the information on the NIRS
applications, the sample presentation, the chemometric
methods and software used, and the type or brand of
the instrument used. Different NIRS instruments are
available in the market and are used for different
applications and traits. The most commonly used
instrument, across traits and cassava improvement
programmes, was FOSS instruments, followed by ASD
quality Spec and ASD LabSpec Pro. The types of sam-
ple and the place of analysis (e.g. laboratory or field)
also need to be considered: A benchtop instrument
offers better performance when the laboratory is
located near the experimental fields. On the other
hand, portable NIRS instruments offer flexibility if
phenotyping must be conducted away from the labora-
tory, or at multiple locations within a country or
region. Among all the reviewed studies, these consider-
ations, the ease of use of the instrument and

operational costs were not discussed. However, com-
patibility challenges remain in the establishment of the
crosstalk between different instruments. It is an issue
mainly when assessments between different laborato-
ries or breeding programmes must be performed.
Lebot et al. (2013) suggested the possibility of using

NIRS across crops and different traits as a cost-cutting
measure for field evaluation of genotypes. Such
improvement in the efficiencies is essential, especially
in African breeding programmes. However, this should
be backed up by data management options that allow
each improvement programme to utilise their data in
the best way possible.
Most of the studies reported two main traits (DM

and TBC), but the assessment of other traits needs to
be considered to utilise the potential of NIRS tech-
nologies fully. Some of these traits include those that
affect the cooking properties of the cassava root,
industrial-based traits that allow for easy processabil-
ity and how cassava-based products interact with other
materials especially in areas where cassava is not con-
sumed alone. The changes in traits after processing
could also be considered (Table 2).
The use of NIRS in predicting root and tuber pro-

duct quality in cassava and yams is a feasible option
that requires the development of relevant procedures
that apply to quality control parameters demanded.
Lebot et al. (2009), provided an extensive overview of
the use of NIRS in the prediction of quality control
parameters in a range of root and tuber crops. The
main quality control parameters considered included
starch, total sugars, cellulose, total nitrogen and ash
(total minerals) contents. Predictive accuracy ranging
for starch, sugar and nitrogen ranged from 86% to
93% much as the prediction for cellulose was not pos-
sible. From this study, it was observed that NIRS as a
low-cost technique could be adapted to quality control
schemes for screening many samples with high accu-
racy. Relatively similar studies have been undertaken
for taro (Lebot et al., 2011a, 2011b), potatoes (Huang
et al., 2018), sweet potato (Lu et al., 2006) and even
for root and tuber crop-based flour blended with cer-
eal flour (Huang et al., 2018) or consumptive products
such as bread (Wang et al., 2019). Su & Sun (2017)
explored Spectral imaging for quantitative detection of
Irish organic wheat flour adulterated with cassava
flour and cornflour. Furthermore, they reported that
spectral imaging integrated with multivariate analysis
has the potential to authenticate the admixtures in
specific wheat flour in the range of 3–75% (w/w).

NIRS studies for high-throughput phenotyping for
yam tuber quality

Few studies have used NIRS to characterise yam
(Dioscorea spp.) tubers (Table 3). Overall, despite the
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large number of species investigated, only a few acces-
sions were scanned (i.e. 320 D. alata, 223 D. opposite,
182 D. zingiberensis, 153 D. rotundata, 39 D. dumeto-
rum, 24 D. bulbifera, 15 D. cayenensis, 14 D. esculenta,
9 D. transversa, 7 D. nummularia, 6 D. prahensilis and
3 D. mangenotiana). Increasing the number of scanned
accessions should improve future model performances
to predict the chemical composition and quality traits
(Table 4), both in terms of accuracy and robustness.
However, to tackle more accessions, sample prepara-
tion has to be simplified and sped up. So far, all the
studies but Kwon et al. (2015) recorded NIRS spectra
on the dried product (flour), which is tedious and
time-consuming due to the steps of drying and milling
the tubers. Kwon et al. (2015) worked on freeze-dried
samples, which is also time-consuming.

In contrast, working on fresh, intact tubers, in the
laboratory or straight in the field with a portable spec-
trometer, has the potential to speed up spectra acquisi-
tion, hence taking full advantage of NIRS as an HTP
tool for rapid screening and selection in breeding

programmes. Working on fresh tubers also avoids
chemical or structural modifications linked to drying
or milling. Of course, special attention must be paid to
sampling in order to consider the heterogeneity of the
product.
Although most of the reviewed studies worked with

the same product (i.e. yam flour), each of them used a
different spectrometer, with variable spectral range and
sampling interval. Given the scarcity of available stud-
ies, the impossibility of transferring a predictive model
from one spectrometer to another emphasises the need
to develop spectrum normalisation and interoperabil-
ity. Moreover, most studies resort to partial least
square regression and commercial software to carry
out the multivariate analysis. Only Kwon et al. (2015)
tested support vector machine regression using open-
source R statistical software. Because relationships
between spectral values and the analyte may not be
linear, the investigation in non-linear techniques, such
as deep learning algorithms, may improve the perfor-
mance of the prediction significantly. Many open-

Table 2 Proposals for future high-throughput phenotyping of cassava

Trait Current methods Recommended HTP References

Determination of Amylose,

Amylopectin, Starch and

Granule Structure

Iodine – colorimetric method

Enzymatic and acid-based

hydrolyses

Polarised light microscopy, X-

ray diffraction (XRD) and

FTMIR spectroscopy

NIRS (FOSS or Brucker) Hong et al. (1996), Katayama

et al. (1996) and Campbell

et al. (1999)

Gelatinisation, Pasting

Properties and Retrogradation

of Starch

RVA pasting profile

DSC

FT-NIR-spectrophotometer (Thermo

Fisher Scientific Inc)

NIR Spectroscopy (FOSS or Brucker)

Lu et al. (2006), Zardetto and

Rosa (2006), Lu and Sheng

(1990)

Monitoring of Starch

Gelatinisation and Processing

Process analytical technologies

(PAT), scanning electron

microscope (SEM), FTIR, XRD

and DSC methods

NIR spectroscopy (FOSS or Brucker),

FT-Raman spectroscopy (Dual-laser

LabRaman Infinity-Jobin -Yvon)

Cogdill et al. (2004), Jorgensen

et al. (2004), Robert et al.

(1999)

Fresh or Boiled cassava surface

properties

No methods stated Light back-scattering imaging (Hyper

spectral imaging-HIS; Xenics Infrared

Solutions)

Adebayo et al. (2016)

Table 3 Summary of near-infrared spectroscopic studies for the quality evaluation of yams (Dioscorea spp.)

Study Product Model Software used Nc Nv Instrument Range

Sampling

interval

Alamu et al. (2019b) Flour MPLS ISI scan software 126 37 FOSS (XDS) 400–2500 nm 0.5 nm

Lebot et al. (2009);

Lebot et al. (2013);

Lebot & Malapa (2013)

Flour PLS GRAMS/AI &

PLSPlus/IQ

210 50 ASD (LabSpecPro) 350–2500 nm 2 nm

Bai et al. (2013) Powder PLS TQ software 77 17 Nicolet (6700 FTIR) 12 000–4000 cm�1 8 cm�1

Xie et al. (2013) Powder PLS not specified 71 17 Nicolet (6700 FTIR) 12 000–4000 cm�1 8 cm�1

Zhuang et al. (2015) Powder PLS & SVM not specified 73 35 Hitachi (U–4100) 12 500–4000 cm�1 10 cm�1

Kwon et al. (2015) Freeze-dried PLS OPUS program & R 122 61 Bruker (not specified) 4000–400 cm�1 4 cm�1

Nc, number of samples used for the calibration step. Nv, number of samples used for the validation step.
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source programming languages (e.g. Python, R,
octave) offer powerful libraries (e.g. Keras, caret) and
platform (e.g. TensorFlow) dedicated to regression
tools and deep learning algorithms.

Table 4 summarises the analytes targeted by NIRS
studies on yam tuber quality: carbohydrates (i.e.
total sugar, polysaccharide, starch, amylose, soluble
sugar and cellulose), protein, fat, minerals, crude
fibre and secondary compounds (i.e. tannin, flavo-
noid and phytate). Except for amylose, the values of
the studied constituents cover the range well and are
consistent with the reference values in the literature
(Polycarp et al., 2012). Amylose content found in
2013 by Lebot & Malapa (37.3% to 68.9%) are far
over the reference values (24.3% to 38.1%) and
should be taken with caution. Published studies offer
accurate prediction (R2 > 0.8) for moisture, total
sugar, starch, polysaccharides, soluble sugar, protein,
total nitrogen, dioscin, diosgenin and flavonoids. On
the other hand, the prediction of amylose, cellulose,
crude fibre, tannin, fat, ash and phytate contents
proved less reliable. As already stated, alternatives to
PLS may allow improving performances thanks to
their ability to manage nonlinearity and to identify
spatial relationships between spectrum features (peak
patterns) and wavelengths (e.g. Convolutional Neural
Network, Bidirectional Long Short-Term Memory

Neural Network). However, some traits may not be
effectively predicted with NIRS. Near-infrared Four-
ier transform and Raman spectroscopy (NIR FT-
Raman) allow studying the molecular structure. Liao
et al. (2004) used NIR FT-Raman to analyse the
compositional and conformational properties of yam
(D. alata and D. japonica) proteins. Mid-infrared
spectroscopy (MIRS) can also gather information on
the molecular content of products. Zhuang et al.
(2015) demonstrated that MIRS provides a better
prediction of flavonoid and polysaccharide content,
while NIRS offers a better prediction for total sugar
content.
Computer vision systems (CVS) are used to improve

the characterisation of the colour of fruit and vegeta-
bles (Mendoza et al., 2004). Because the colour of yam
tubers is heterogeneous in time (oxidation) and space
(radial and longitudinal gradient), the use of image
analysis may improve actual qualitative (visual obser-
vation) or quantitative (colourimeter and chromame-
ter) practices, by offering the ability to assess the
variability of colour and oxidation and to quantify
colour precisely. Moreover, this technique has the
potential to bring more information (e.g. tuber shape
and skin thickness) linked to useful quality traits (e.g.
peeling yield, easiness of harvest). Some preliminary
studies are ongoing within the framework of the

Table 4 Targeted tuber composition and prediction accuracy in yam near-infrared spectrometry studies

Analyte Study Unit Mean Min Max N SD R2 RPD

Moisture Alamu et al. (2019b) % 6.94 3.79 9.75 163 1.67 0.80 2.24

Total sugar Zhuang et al. (2015) % 75.9 74.0 78.7 108 0.79 0.99 4.17

Starch Alamu et al. (2019b) % 50.7 25.1 66.1 163 10.32 0.42 1.29

Lebot & Malapa (2013) % 77.6 58.8 90.4 260 5.11 0.84 2.86

Polysaccharide Zhuang et al. (2015) % 23.2 15.2 35 108 1.20 0.96 2.74

Soluble sugar Alamu et al. (2019b) % 5.0 2.1 9.0 163 1.15 0.31 2.76

Lebot & Malapa (2013) % 2.4 0.1 18.3 260 3.16 0.86 4.05

Amylose Alamu et al. (2019) % 32.5 18.8 44.4 163 4.82 0.27 1.14

Lebot & Malapa (2013) % 54.5 37.3 68.9 125 5.19 0.18 1.40

Cellulose Lebot & Malapa (2013) % 4.53 0.1 11.98 260 2.45 0.10 1.94

Crude fibre Alamu et al. (2019b) % 2.16 1.22 3.52 163 0.44 0.68 0.62

Protein/nitrogen Alamu et al. (2019b) % 6.8 3.3 9.7 163 1.57 0.69 1.87

Lebot & Malapa (2013) % 9.9 4.4 21.0 260 2.64 0.88 3.64

Fat Alamu et al. (2019b) % 0.31 0.05 1.73 163 0.19 0.14 0.70

Minerals/ash Alamu et al. (2019b) % 3.58 1.96 6.26 163 0.74 0.68 3.47

Lebot & Malapa (2013) % 4.63 1.58 8.14 260 1.16 0.22 1.69

Phytate Alamu et al. (2019b) mg 100 g�1 1.17 0.33 2.44 163 0.42 0.29 1.15

Tanin Alamu et al. (2019b) mg 100 g�1 2.04 0.05 9.91 163 1.93 0.50 1.58

Dioscin Xie et al. (2013) % 0.23 0.09 0.40 88 n.p. 0.92 n.p.

Kwon et al. (2015) ppm 0.16 0.00 1.10 183 0.29 0.72 n.p.

Diosgenin Bai et al. (2013) % 1.36 0.62 2.56 94 0.36 0.96 2.84

Flavonoid Zhuang et al. (2015) % 0.21 0.13 0.28 108 0.011 0.97 2.79

Mean, measured average value. Min, analyte minimum measured value. Max, maximum measured value. N, number of observations. SD, standard

deviation of reference values. R2, coefficient of determination of the regression between predicted and measured values during the validation step.

RPD, the ratio of performance to deviation. (n.p.: not provided).
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RTBfoods project (https://www.cirad.fr/en/news/all-ne
ws-items/press-releases/2018/rtbfoods).

The texture of cooked root and tuber crops is recog-
nised as a primary determinant of consumer accept-
ability of new varieties (Goddard et al., 2015).
However, all reviewed yam studies focused on the
quantification of biochemical constituents. Only a few
included texture and functional traits such as friability
and mouldability (i.e. the capacity to form a dough
while pounded). These traits are nevertheless essential
for evaluating the phenotype suitability for specific
product applications (e.g. pounded or boiled yam),
calling for more studies on the subject.

Limitations of NIRS in phenotyping cassava- and
yam-based quality traits

Despite the usefulness of NIRS as a phenotyping tool,
there are several limitations related to its reproducibil-
ity and the availability of data analysis software com-
patible with all data manipulation requirements.
Successful utilisation of NIRS relies heavily on the
development of standard data analysis procedures and
statistical software which may be lacking or unafford-
able in some breeding programmes. Open-source pro-
gramming languages offer the possibility to develop
customised analyses packages, including management
of outliers, pretreatments of data and calibration steps
altogether (Belagiannis et al., ; Cui & Fearn, 2018).
While the optimum combination of these three steps
may depend on the analyte or quality trait under
study, the procedure to identify it may be standard-
ised. Usual methods (e.g. multi-scatter correction, local
PLS) may be combined with recent deep learning tech-
niques through model ensembling. The development of
such a customised package is still ongoing. Meanwhile,
many tools are already available to manage NIRS
data workflow (e.g. ChemFlow, TensorFlow).

At the scale of a multi-partner network focused on
applying NIRS to under-researched crops such as
roots and tubers, the ability to share data and calibra-
tion models is crucial. This question requires mastering
the production of data (sample preparation and spec-
tra acquisition), the sharing of data (common ontology
and database management) and the transferability of
prediction models (standardisation of spectra between
spectrometers). Under the RTBfoods project, Standard
Operating Protocols (SOP) ensure the standardisation
of sample preparation and data production. Once gen-
erated, data and their associated metadata are shared
using standard ontology terms (e.g. https://www.crop
ontology.org/ontology/CO_343/Yam) and database
management tools such as Yam Base (https://yambase.
org/) and Cassava Base (https://www.cassavabase.org/
). Managing interoperability is still an open question.
However, recent studies offer promising results based

on deep learning algorithms (Chatzidakis & Botton,
2019).
Before embarking on the use of NIRS for quality

traits phenotyping, a breeding programme needs to be
sure that adequate resources will be available to effec-
tively exploit the technology (Li et al., 2014). Another
limitation in applying NIRs and other spectroscopic
techniques for screening applications is managing the
large volume of data that can be generated from spec-
tral signature (Li et al., 2014). HTP techniques such as
multispectral or hyperspectral imaging cameras are rel-
atively expensive, hence limiting their adoption (Li
et al., 2014). Nevertheless, they are essential if breed-
ing programmes are to answer to the expectations of
consumers and other stakeholders in the cassava mar-
ket chain. HTP also requires reporting not only large
data sets, but also the associated meta-information
concerning experimental protocols, data management
system and integration with modelling (Fiorani, &
Schurr, 2013).

Conclusions

The review confirmed that NIRS could rapidly predict
moisture, total sugar, starch, polysaccharides, soluble
sugar, protein, total nitrogen, dioscin, diosgenin and
flavonoids. Moreover, total nitrogen, starch and sugar
concentrations could be predicted with a single calibra-
tion applied to five different root crop species (cassava,
yam, sweet potatoes, taro and cocoyam) and across a
wide range of varieties. On the other hand, the predic-
tion of amylose, cellulose, crude fibre, tannin, fat, ash
and phytate contents proved to be less reliable. NIRS
complements, and in some cases can replace, complex
laboratory procedures for quality evaluation, generally
with the advantages of minimal sample preparation
and rapid analysis. The publications reviewed under-
lined the potential of NIRS for high-throughput
screening and quality control of cassava and yam
genotypes and samples. However, robust models based
on large data sets are still needed to precisely predict
quality attributes for new samples, especially for
breeding purpose. The data sets should be obtained
from different locations, growing conditions and post-
harvest conditions in order to cover the variability of
the trait to be quantified/characterised.
Spectra imaging devices such as multispectral spec-

tra (MSI) and hyperspectral imaging (HIS) are emerg-
ing HTP devices which combine spatial imaging and
spectral information. Their advantage is to provide a
simultaneously quantitative prediction of chemical and
physical properties and information on the spatial dis-
tribution of these traits across the roots cross sections.
Computer vision systems (CVS) could also be used as
HTP method to improve the characterisation of colour
for yam tubers and cassava roots. CVS can measure

© 2020 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd

on behalf of Institute of Food, Science and Technology (IFSTTF)

International Journal of Food Science and Technology 2020

Review of NIRS applications in cassava and yam E.O. Alamu et al.8

https://www.cirad.fr/en/news/all-news-items/press-releases/2018/rtbfoods
https://www.cirad.fr/en/news/all-news-items/press-releases/2018/rtbfoods
https://www.cropontology.org/ontology/CO_343/Yam
https://www.cropontology.org/ontology/CO_343/Yam
https://yambase.org/
https://yambase.org/
https://www.cassavabase.org/


the variability of colour and oxidation across a sam-
ple, and quantify colour precisely, and provide infor-
mation such as tuber shape and skin thickness, linked
to useful quality traits (e.g. peeling yield, ease of har-
vest).

Future Challenge

However, despite some successful applications, speci-
fic challenges remain related to reproducibility.
Affordability of the instruments and availability of
suitable data analysis software is also of concern.
These challenges call for concerted efforts by breed-
ing programmes to increase adoption of HTP tech-
niques for quality traits evaluation. Manufacturers
and software developers of high-throughput devices
should provide extensive support on the purchase
and during operations. RTB research programmes
then need to translate the quality traits of interest, as
identified by the user and consumer preferences stud-
ies, into measurable variables or indirectly correlated
variables, and finally to develop a strategy for cali-
bration with HTP techniques. This strategy includes
the choice of non-destructive HTP technique, the
sampling method, sample preparation and presenta-
tion, measurement protocol and the choice of chemo-
metrics methods.

For quality traits that cannot be assessed by NIRS
prediction, a medium-throughput product profiling
(MTPP) approach can be developed, for example,
amylose content classification, rapid texture evalua-
tion, etc. First, NIRS can be used to pre-screen geno-
types into different classes of the trait to evaluate
(instead of quantitative evaluation). Then, MTPP is
applied only on the genotypes belonging to the most
promising class.

Most HTP methods published so far on cassava and
yam phenotyping analysed biochemical composition.
Future studies may focus on also predicting quality
traits of end-products, that are relevant for varietal
adoption by end-users and consumers. This is poten-
tially more complex since the quality of end-products
derives not only from the initial composition of the
roots but also from the chemical reactions during pro-
cessing, the latter of which NIRS and other HTP tech-
niques may not be able to capture. Several studies in
the framework of the RTBfoods project (https://
www.cirad.fr/en/news/all-news-items/press-releases/
2018/rtbfoods) are ongoing towards this end. If suc-
cessful, these approaches would markedly increase the
usefulness and field of application of HTP techniques
in RTB breeding programmes. Initial results indicate
that textural softness and water absorption during
boiling of cassava (Tran et al., 2021) can be predicted
from the NIRS spectra of the fresh roots, from which

cooking time can also be estimated. In a separate
study, mid-infrared spectroscopy (MIRS) of cell wall
extracts enabled classifying cassava genotypes into two
groups according to their cooking time: short
(<30 min) or long (>30 min), with prediction accuracy
of 80.3% and 69.6%, respectively. This link between
cooking time and cell walls suggest that cell wall com-
ponents, possibly pectins (Eggleston & Asiedu, 1994),
play an important role in determining the texture of
cassava products.
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