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h i g h l i g h t s

• The Gaussian ensembles distributions are deduced from the mixing quantum systems.
• The mixing quantum formalism allows an analogue of the Born rule for the Gaussian ensembles.
• The quantum factorization property implies the randomness condition.
• The redundant information is suppressed by the quantum mixing correlations.
• Imitation of statistical properties is a consequence of the quantum factorization property.

a r t i c l e i n f o

Article history:
Received 16 September 2016
Received in revised form 13 January 2017
Available online 14 March 2017

Keywords:
Gaussian ensembles
Mixing
Quantum mixing
Weak limit

a b s t r a c t

In the context of dynamical systems we present a derivation of the Gaussian ensembles
distributions from quantum systems having a classical analogue that is mixing. We find
that factorization property is satisfied for the mixing quantum systems expressed as a
factorization of quantum mean values. For the case of the kicked rotator and in its fully
chaotic regime, the factorization property links decoherence by dephasing with Gaussian
ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a
discussion about the connection between random matrix theory and quantum chaotic
systems, based on some attempts made in previous works and from the viewpoint of the
mixing quantum systems, is presented.

© 2017 Published by Elsevier B.V.

1. Introduction

Gaussian ensemble theory emerged from the study of complex nuclei and long lived resonance states in the 1950s by
Wigner [1], and later by Dyson [2]. Wigner’s central idea was that for quantum systems with many degrees of freedom like
a heavy nucleus, one can assume that the Hamiltonian matrix elements in a typical basis can be treated as independent
Gaussian random numbers. The main prediction of this approach is that the statistical distribution of spacings between
adjacent energy levels obeys universal distributions which define the Gaussian Orthogonal Ensemble, the Gaussian Unitary
Ensemble and the Gaussian Symplectic Ensemble, if the Hamiltonian is invariant under an orthogonal, unitary or symplectic
transformation, respectively. In 1984 Bohigas, Giannoni and Schmit [3] formulated their celebrated statement (briefly
named as BGS conjecture) concerning quantum chaotic systems: Spectra of time-reversal invariant systems whose classical
analogue are K-systems show the same statistical properties as predicted by Gaussian Orthogonal Ensembles. Moreover, Gaussian
ensembles proved to be a powerful tool to study statistical properties in many applications [4–7].
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Ergodic hierarchy (EH) classifies the chaos of dynamical systems according to the decay of correlations between subsets of
the phase space for large times. K -systems correspond to the Kolmogorov level of the EH. Related to this, in [8,9] a quantum
extension of the EH was proposed, called the quantum ergodic hierarchy (QEH), which expresses the decay of correlations
between states and observables in the asymptotic limit. In [9,10] the chaotic behaviors of the Casati–Prosen model [11] and
the kicked rotator [12,13] were interpreted in terms of the quantum mixing level.

Using the idea of ranking chaos looking at the decay of correlations as in [8,9], we perform two previous steps to study
the Gaussian ensembles from the quantummixing level. First, we deduce themixing factorization propertywhich expresses
the classical mean value of a product of observables as a product of mean values. Second, we obtain the quantum analogue
of this property in the classical limit and apply it to deduce the Gaussian ensembles. In this way, the contribution of the
present paper is to show that Gaussian ensembles are a natural consequence of quantummixing correlations in the classical
limit.

2. Gaussian ensembles

Gaussian ensembles describe how the Hamiltonian matrix elements are distributed in a chaotic quantum system when
the details of interactions can be neglected. The surprising prediction capability of the Gaussian ensembles lies in the
simplicity of the assumptions. If we have a quantum system having a N × N-dimensional Hamiltonian, in addition to
normalization, the two conditions for the probability density function P(H11,H12, . . . ,HNN) of the Hamiltonian matrix
elements Hij which define the Gaussian ensembles are (see, for instance, [12, pp. 73, 74] and [13, p. 62])

P(H11,H12, . . . ,HNN) = P(H11)P(H12) · · · P(HNN) (1)

and

P(H ′

11,H
′

12, . . . ,H
′

NN) = P(H11,H12, . . . ,HNN) (2)

where the transformed Hamiltonian Ĥ ′ is obtained from the original one Ĥ by an orthogonal, unitary or symplectic
transformation according to the corresponding Gaussian ensemble. Eq. (2) simply represents the invariance of the density
probability P(H11,H12, . . . ,HNN) under an orthogonal, unitary or symplectic transformation. Eq. (1) expresses that in
the fully chaotic regime of a classically chaotic quantum system, the details of the interactions are not relevant so the
Hamiltonian can be replaced by a matrix whose elements are uncorrelated.

3. Mixing correlations

In ergodic theory, the decay of correlations is the most important feature for the validity of the statistical description
because different regions of phase space become statistically independent when they are enough separated in time. More
precisely, if one has a dynamical system (Γ , µ,Σ, {Tt}) where Γ is the phase space, µ : Σ → [0, 1] is a normalized
measure onΣ , and {Tt}t∈J is a semigroup of preserving-measure transformations (J is typically the real numbers), then the
EH correlation between two subsets A, B ⊆ Γ separated a time t is mathematically expressed as

C(TtA, B) = µ(TtA ∩ B)− µ(A)µ(B). (3)

The mixing level of the EH corresponds to the situation when

lim
t→∞

C(TtA, B) = 0 (4)

for all A, B ⊆ Γ . Several examples like Sinai billiards, Brownian motion, chaotic maps, belong to the mixing level satisfying
the Eq. (4). The Frobenius–Perron operator Pt associated to the transformation Tt gives the evolution of any distribution f
(i.e. f : Γ → [0,∞] with ∥f ∥ = 1) by means of

A
Pt f (q, p)dqdp =


T−tA

f (q, p)dqdp ∀A ⊆ Γ , ∀t ∈ J (5)

where (q, p) ∈ Γ . When Pt has a fixed point f∗, i.e. Pt f∗ = f∗, the following relevant property of mixing systems can be
deduced.

Lemma 3.1 (Factorization Property). Let f∗ be a normalized distribution which is a fixed point of the Frobenius–Perron operator
Pt . If 1A1 , 1A2 , . . . , 1An : Γ → R are the n characteristic functions of n subsets A1, . . . , An ⊆ Γ then

Γ

f∗(q, p)1A1(q, p) · · · 1An(q, p)dqdp =


Γ

f∗(q, p)1A1(q, p)dqdp


· · ·


Γ

f∗(q, p)1An(q, p)dqdp

. (6)

Lemma 3.1 implies that the average of a product weighted by a distribution f∗(q, p) (that is a fixed point of Pt ) can
be factorized in the corresponding product of the averages weighted by the same f∗(q, p). The ‘‘factorization property’’ of
Eq. (6) is essential in order to obtain the Gaussian ensembles, we explore its consequences in the context of quantummixing
correlations.
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4. Quantummixing correlations

A quantum counterpart of mixing correlation of Eq. (4) was derived in [8]. More precisely, in the quantum version of
Eq. (4) we have a decay of correlations between states and observables rather than between subsets of phase space given by

C(ρ̂(t), Ô) = ⟨Ô⟩ρ̂(t) − ⟨Ô⟩ρ̂∗
(7)

where the role played in (3) by the subsets A, B is now played by the state ρ̂(t) and the observable Ô, with ρ̂(t) being any
quantum state ρ̂ at time t . The state ρ̂∗ is the weak limit of ρ̂ given by the quantum mixing level of the quantum version of
the ergodic hierarchy, i.e. the quantum ergodic hierarchy

lim
t→∞

C(ρ̂(t), Ô) = 0 for all observable Ô. (8)

We can see the similarity between the mixing correlation and its quantum version (Eqs. (4) and (8), respectively), that is,
one can obtain one correlation from the other simply exchanging C(TtA, B) by C(ρ̂(t), Ô) and vice versa. Eq. (8) describes
the relaxation of any quantum state ρ̂ with a weak limit ρ̂∗ where the relaxation is understood in the sense of the quantum
mean values, i.e. the decoherence of observables [14,15]. We show that the weak limit ρ̂∗ is the quantum analogue of the
distribution f∗ of Lemma 3.1. This is the content of the following result.

Lemma 4.1. The state ρ̂∗ is a fixed point of the evolution operator Ût = e−it Ĥh̄ where Ĥ is the Hamiltonian of the quantum system,
i.e. Ût ρ̂∗Û

Ď
t = ρ̂∗.

In order to establish a quantum version of Lemma 3.1 we recall some properties of the Weyl symbol and the Wigner
function. If Â is an operator then its Weyl symbol WÂ is a distribution function over phase space defined by [16,17]

WÂ(q, p) =


R


q +

∆

2

 Â  q −
∆

2


e−i p∆h̄ d∆. (9)

In particular, if 1E(q, p) is the characteristic function of a subset E of Γ we will use the Weyl symbol of π̂E , withWπ̂E (q, p) = 1E(q, p) ∀ (q, p) ∈ R2. (10)

The Wigner functionWÂ is defined by means of the Weyl symbol as

WÂ(q, p) =
1
h
WÂ(q, p). (11)

A relevant property of the Wigner function is that it allows to express any quantum mean value as an integral in phase
space [16], in the form

⟨Ô⟩ρ̂ =


R2

dqdp Wρ̂(q, p)WÔ(q, p). (12)

For the Weyl symbol of a product of operators, it can be shown that the following expansion is fulfilledWÂB̂(q, p) = WÂ(q, p)WB̂(q, p)+ O(h̄). (13)

An important property that we will use can be deduced by the definition of Weyl symbol in the classical limit h̄ → 0.

Lemma 4.2. Let WÂ(q, p) be the Weyl symbol of an operator Â. Then in the classical limit h̄ → 0 the Weyl symbol of
Â(−t) = ÛĎ

t ÂÛt is WÂ(q(t), p(t)), where (q(t), p(t)) = (Ttq, Ttp) and Tt is the classical evolution given by Hamilton equations.
That is,WÛĎ

t ÂÛt
(q, p) = WÂ(q(t), p(t)) ∀ (q, p) ∈ R2, ∀ t ∈ R. (14)

For quantum mixing correlations the following property in phase space is a consequence of Lemmas 4.1 and 4.2.

Lemma 4.3. The Wigner distribution Wρ̂∗
(q, p) is a fixed point of the Frobenius–Perron operator Pt associated with the classical

evolution Tt given by Hamiltonian equations.

Now joining the previous Lemmas 3.1, 4.1–4.3 we show a quantum analogue of the factorization property Eq. (6). This is
one of the main results of the present contribution.
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Theorem 4.4 (Quantum Factorization Property). Assume one has a mixing quantum system, i.e., the correlation C(ρ̂(t), Ô) of
ρ̂(t) with any observable Ô vanishes for t → ∞. Then, for a set of observables Ô1, . . . , Ôn when h̄ → 0 one has

⟨Ô1 · · · Ôn⟩ρ̂∗
= ⟨Ô1⟩ρ̂∗

· · · ⟨Ôn⟩ρ̂∗
. (15)

Proof. The Wigner property of Eq. (12) applied to the product Ô1 · · · Ôn and ρ̂∗ gives

⟨Ô1 · · · Ôn⟩ρ̂∗
=


R2

Wρ̂∗
(q, p)WÔ1···Ôn

(q, p) dqdp. (16)

Applying several times Eq. (13) on Ô1 · · · Ôn we haveWÔ1···Ôn
(q, p) = WÔ1

(q, p) · · · WÔn
(q, p)+ O(h̄). (17)

From Eqs. (16), (17) and since


R2 Wρ̂∗
(q, p)dqdp = 1 it follows that

⟨Ô1 · · · Ôn⟩ρ̂∗
=


R2

Wρ̂∗
(q, p)WÔ1

(q, p) · · · WÔn
(q, p) dqdp + O(h̄). (18)

Then, in the classical limit h̄ → 0 we can neglect terms of order O(h̄) so (18) becomes

⟨Ô1 · · · Ôn⟩ρ̂∗
=


R2

Wρ̂∗
(q, p)WÔ1

(q, p) · · · WÔn
(q, p) dqdp when h̄ → 0. (19)

We can expand WÔ1
, . . . , WÔn

as linear combinations of characteristic functions.
That is, WÔ1

(q, p) =


j α1j1C1j(q, p), . . . , WÔn
(q, p) =


l αnl1Cnl(q, p). Then we have

⟨Ô1 · · · Ôn⟩ρ̂∗
=


R2

Wρ̂∗
(q, p)


j

α1j1C1j(q, p) · · ·


l

αnl1Cnl(q, p)


dqdp

=


j

α1j · · ·


l

αnl


R2

Wρ̂∗
(q, p)1Cj1(q, p) · · · 1Cnl(q, p)dqdp.

Now sinceWρ̂∗
(q, p) is a fixed point of Pt , as shown in Lemma 4.1, thenwe can apply the factorization property of Lemma 3.1

to the integral in the right hand side of the previous equation:
R2

Wρ̂∗
1C1j(q, p) · · · 1Cnl(q, p)dqdp =


R2

Wρ̂∗
1C1j(q, p)dqdp · · ·


R2

Wρ̂∗
1Cnl(q, p)dqdp. (20)

This implies that
j

α1j · · ·


l

αnl


R2

Wρ̂∗
(q, p)1C1j(q, p) · · · 1Cnl(q, p)dqdp

=


R2

Wρ̂∗
(q, p)


j

α1j1C1j(q, p)dqdp · · ·


R2

Wρ̂∗
(q, p)


l

αnl1Cnl(q, p)dqdp

=


R2

Wρ̂∗
(q, p)WÔ1

(q, p)dqdp · · ·


R2

Wρ̂∗
(q, p)WÔn

(q, p)dqdp

= ⟨Ô1⟩ρ̂∗
· · · ⟨Ôn⟩ρ̂∗

(21)

which ends the proof. �

Theorem 4.4 expresses the quantum version of mixing correlations in the classical limit h̄ → 0.

5. Gaussian ensembles by means of mixing quantum systems

The manifestation of chaotic aspects in quantum systems is possible within characteristic timescales t . τ (with
τ ∝ h̄−α in the regular case being α proportional to the phase space dimension, and τ ∝ − log h̄ in the chaotic case).
In these timescales, the semiclassical and quantum descriptions overlap with the particularity that in the logarithmic
timescale − log h̄ the statistical predictions of the Gaussian ensembles are displayed [12,13,18,19]. Moreover, within the
logarithmic timescale it is expected that the states contain statistical properties as the randomness and invariance conditions



I.S. Gomez, M. Portesi / Physica A 479 (2017) 437–448 441

[Eqs. (1) and (2)], and expressed in terms of quantum correlations. This motivates the following connection between
Gaussian ensembles and mixing quantum systems.

As we have shown in Section 4, the quantum correlations of mixing quantum systems are contained in the weak limit ρ̂∗

which is representative of the quantum system in the asymptotic limit t → ∞. And since the logarithmic timescale imposes
that t ≤ − log h̄ then the asymptotic limit can be guaranteed in the classical limit for h̄ vanishingly small.

The following lemma constitutes a useful tool in order to deduce the Gaussian ensembles within the mixing quantum
formalism.

Lemma 5.1. Assume one has a quantum system S subject to a Hamiltonian Ĥ with Hamiltonian matrix elements having a
density probability function P(H11,H12, . . . ,HNN). Let P11(H11), P12(H12), . . . , PNN(HNN) be the marginals of P(H11,H12, . . . ,
HNN)with respect to the variables H11,H12, . . . ,HNN . Then for each set of values P(H11,H12, . . . ,HNN), P11(H11), P12(H12), . . . ,
PNN(HNN) and for dH11, dH12, . . . , dHNN sufficiently small, there exist projectors π̂(H11,H12, . . . ,HNN), π̂11(H11,H12, . . . ,HNN),
π̂12(H11,H12, . . . ,HNN), . . ., π̂NN(H11,H12, . . . ,HNN), and a weak limit ρ̂∗(H11,H12, . . . ,HNN) such that

⟨π̂ij(H11,H12, . . . ,HNN)⟩ρ̂∗(H11,H12,...,HNN ) = Pij(Hij)dHij ∀ i, j = 1, . . . ,N (22)

and

⟨π̂(H11,H12, . . . ,HNN)⟩ρ̂∗(H11,H12,...,HNN ) = P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN . (23)

Moreover, in the classical limit h̄ → 0, the projector π̂(H11,H12, . . . ,HNN) can be expressed in terms of π̂11(H11,H12, . . . ,HNN),
π̂12(H11,H12, . . . ,HNN), . . . , π̂NN(H11,H12, . . . ,HNN) as

π̂ = π̂11π̂12 · · · π̂NN . (24)

Two remarks can be made regarding this lemma. First, the product Pij(Hij)dHij gives the probability that the ijth
Hamiltonian matrix element belongs to the interval (Hij,Hij + dHij), and a similar statement follows for the product
P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN which is the joint probability of the former. Besides, due to previous remark and
since π̂ , π̂11π̂12, . . . , π̂NN are projectors, then Eqs. (22) and (23) express a sort of Born rule [20] performed bymeans of weak
limit states. Lemma 5.1 allows one to obtain the randomness and invariance conditions that define Gaussian ensembles.
This is the content of the following theorem.

Theorem 5.2 (Gaussian Ensembles Distributions from Mixing Quantum Systems).

(i) Assuming that S is a mixing quantum system, then in the classical limit h̄ → 0 one obtains the randomness condition

P(H11,H12, . . . ,HNN) = P11(H11)P12(H12) · · · PNN(HNN)

(ii) Let us consider the transformed variables H ′

11,H
′

12, . . . ,H
′

NN corresponding to H11,H12, . . . ,HNN through the change of
variables Ĥ ′

= ÛĤÛĎ where Û stands for the transpose, complex transpose, or dual of Û if Û is orthogonal, unitary, or
symplectic, respectively. Let P(H ′

11,H
′

12, . . . ,H
′

NN) be the transformed probability density function of P(H11,H12, . . . ,HNN).
One obtains the invariance condition

P(H ′

11,H
′

12, . . . ,H
′

NN) = P(H11,H12, . . . ,HNN).

Proof. (i) If one applies the quantum factorization property (Theorem 4.4) and the Lemma 3.1 to the projectors
π̂ij(H11,H12, . . . ,HNN), in the classical limit h̄ → 0 one obtains

⟨π̂11π̂12 · · · π̂NN⟩ρ̂∗
= ⟨π̂11⟩ρ̂∗

⟨π̂12⟩ρ̂∗
· · · ⟨π̂NN⟩ρ̂∗

(25)

where for the sake of simplicity we have omitted the explicit dependence on H11,H12, . . . ,HNN in all the expressions.
Now using the Eqs. (22)–(24) one can recast (25) as

P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN = P11(H11)dH11P11(H12)dH12 · · · PNN(HNN)dHNN .

Then, since dH11dH12 . . . dHNN are arbitrary small then it follows the desired result.
(ii) By the Lemma 3.1 there exist projectors π̂(H11,H12, . . . ,HNN), π̂ ′(H ′

11,H
′

12, . . . ,H
′

NN) and weak limit states
ρ̂∗(H11,H12, . . . ,HNN), ρ̂ ′

∗
(H ′

11,H
′

12, . . . ,H
′

NN) such that

⟨π̂⟩ρ̂∗
= P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN

⟨π̂ ′
⟩ρ̂′

∗
= P(H ′

11,H
′

12, . . . ,H
′

NN)dH
′

11dH
′

12 · · · dH ′

NN (26)

where again we have omitted the explicit dependence on H11,H12, . . . ,HNN . Since ρ̂ ′
∗
and π̂ ′ refer to the transformed

density probability P(H ′

11,H
′

12, . . . ,H
′

NN) then it must be satisfied that

π̂ ′
= Ûπ̂ ÛĎ, ρ̂ ′

∗
= Û ρ̂∗ÛĎ. (27)
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From Eqs. (26) and (27) one obtains

P(H ′

11,H
′

12, . . . ,H
′

NN)dH
′

11dH
′

12 · · · dH ′

NN = ⟨π̂ ′
⟩ρ̂′

∗
= ⟨Ûπ̂ ÛĎ

⟩Û ρ̂∗ÛĎ = Tr(Û ρ̂∗ÛĎÛπ̂ ÛĎ)

= ⟨π̂⟩ρ̂∗

= P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN (28)

where Tr(. . .) stands for the trace operation. Since the volume element dH11dH12 · · · dHNN is invariant under the
transformation, i.e. dH ′

11dH
′

12 · · · dH ′

NN = dH11dH12 · · · dHNN , then the desired result is obtained straightforwardly. �

6. Physical relevance

6.1. Kicked rotator

We illustrate the role played by the Gaussian ensembles in mixing quantum systems with an emblematic example of the
literature: the kicked rotator [12,13]. The Hamiltonian is given by [12, p. 9]

Ĥ = L̂2 + λ cos θ̂
∞

m=−∞

δ(t − mτ)

which describes the free rotation of a pendulumwith angular momentum L̂, periodically kicked by a gravitational potential
of strength λ. Themoment of inertia I is normalized to one, and τ is the kicking period.We focus on the fully chaotic regime,
that corresponds to λ > 5 [12, pp. 10, 11]. We show that the kicked rotator behaves like a quantum mixing system in this
regime. Let ρ̂ be the state of the system at t = 0

ρ̂ =


k

ρkk|ak⟩⟨ak| +


k≠l


l

ρkl|ak⟩⟨al|, ρkl = ⟨ak|ρ̂|al⟩ ∀k, l. (29)

Here {|ak⟩} is the Floquet eigenbasis [12], with eigenvalues {e−iφk} where {φk} are the so called Floquet phases. For an
observable Ô, afterM kicks one has

⟨Ô⟩ρ̂(Mτ) = Tr(ρ̂(Mτ)Ô) =


k

ρkkOkk +


k≠l


l≠k

ρklOkle−iM(φk−φl), Okl = ⟨ak|Ô|al⟩ ∀k, l. (30)

It is shown that for λ > 5 the quadratic mean value of the momentum, ⟨L̂2⟩, exhibits exponential localization having a
characteristic macroscopic width ls. Moreover, ifM ≫ ls the phases in the factors e−iM(φk−φl) in (30) oscillate rapidly in such
a way that only the diagonal terms survive; thus

⟨Ô⟩ρ̂(Mτ) ≃


k

ρkkOkk forM ≫ ls. (31)

Note that, if we define the diagonal part of ρ̂ as ρ̂∗ =


k ρkk|ak⟩⟨ak|, then we have

⟨Ô⟩ρ̂∗
=


k

ρkkOkk. (32)

Therefore we deduce that

lim
M→∞

⟨Ô⟩ρ̂(Mτ) =


k

ρkkOkk = ⟨Ô⟩ρ̂∗
. (33)

Recalling Eqs. (7) and (8), it follows that for λ > 5 the kicked rotator behaves as a mixing quantum system. Even more, ρ̂∗ is
the weak limit which is also a mixture of pure Floquet eigenstates {|ak⟩} and then it can be interpreted as a decohered state,
diagonal in the Floquet basis, with a decoherence time tD = Nτ ∼ τ ls.

Summingup, forλ > 5 the kicked rotator is amixing quantumsystem (with decoherence in the Floquet basis and induced
by dephasing) and therefore, the validity of the application of the Gaussian ensembles is justified due to Theorem 5.2 in the
classical limit h̄ → 0.

6.2. Some standard approaches and the mixing quantum formalism

Here we provide a discussion of the connection between Random matrix theory (RMT) and quantum chaotic systems,
based on some attempts made in previous works (see, for instance, [21–24]) and from the point of view of mixing quantum
systems. Due to the vast body of work on the subject ([25–33], among others) and since our starting point are the mixing
dynamical systems, we restrict the discussion to quantum systems that are chaotic in their classical limit.

Beyond the success of RMT in the prediction of statistical properties in several phenomena and its consolidation as a
specific discipline, there exist questions laying on the foundations of RMT that still remain open or partially answered.
Below we quote some of these issues and discuss them from the point of view of the mixing quantum formalism.
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• From the point of view of the quantum mechanics, the redundant information contained in the exponentially large number of
relevant periodic orbits conceals possible connections between quantum chaotic systems and RMT [22].

In the mixing quantum formalism the only relevant information about the system is contained in the correlations
between the observables and the weak limit, as shown in Eqs. (7) and (8). As we mentioned at the beginning of the
Section 4, the weak limit process is a type of decoherence of the observables [8,14,15]. Thus, the redundant information
is suppressed by the cancellation of the quantum mixing correlations in the asymptotic limit.

• Although there have been several ways to deduce the BGS conjecture, for instance the non-linear σ -model [24] and the
semiclassical trace formula [12], all the attempts are based on some kind of semiclassical approximation [23].

One of the advantages of the mixing quantum approach is that it allows to deduce the Gaussian ensembles
distributions as a consequence of the quantum factorization property in terms of operators and states (Theorem 5.2),
i.e. in the language of the quantum mechanical operators. However, the classical limit has to be considered in order to
apply the quantum factorization property.

• In Gaussian ensembles the behavior is studied along the energy axis rather than the time axis, while the thermodynamics
systems evolve along the time axis. Furthermore, since there is no way of describing mathematically the transition from one
level to the next then there is no analogue of the time arrow of thermodynamics [21].

From Eqs. (22) and (23) it can be seen that the evolution is involved (in the asymptotic limit) since the joint density
probability P(H11,H12, . . . ,HNN) and its marginals P11(H11), P12(H12), . . . , PNN(HNN) are expressed in terms of traces of
projectors in theweak limit,which also allows to give a probabilistic interpretation according to the Born rule. In addition,
one can say that in a mixing quantum system the time arrow is due to quantum mixing correlations which gives place
to an irreversible dynamics expressed by the mixture character of the weak limit, as shown in Eqs. (32) and (33).

• Since the trajectories of a dynamical system are system-specific, the role of the ensemble theory of statistical mechanics rules
out. Instead, ensembles of different Hamiltonians are able to mimic the statistical behavior of a dynamical system.

In themixing quantum formalism the key point is to consider the statistical description given by the Ergodic Hierarchy
in terms of correlations between subsets in phase space instead of using trajectories. In particular, for the mixing level
one has that any two subsets separated enough in time have a null correlation and can be interpreted as statistically
independent events. Moreover, this statistical independence property can be generalized for subsets in a sequence, the
factorization property (Lemma 3.1), that characterizes randomness between subsets. In turn, in the classical limit the
quantum factorization property (Theorem 4.4) allows to express the randomness in terms of the factorization of mean
values in the weak limit.

In order to illustrate how the Gaussian ensembles are deduced from the standard approaches in RMT, below we provide
a schematic picture showing some of them along with the mixing quantum formalism.

Wigner–Dyson original approach
universality in fluctuations of quantum spectra H⇒ randomness and invariance H⇒ Gaussian ensembles
semiclassical trace formula
Gutzwiller trace formula H⇒ n-point correlation functions in the classical limit H⇒ Gaussian ensembles
mixing quantum formalism
factorization property H⇒ quantum factorization property in the classical limit H⇒ Gaussian ensembles.

7. Conclusions

We have proposed a novel way to deduce the Gaussian ensembles within the quantum mixing level of the quantum
ergodic hierarchy. The relevance of our main contributions, Theorems 4.4 and 5.2, lies in the following remarks:

• In the classical limit the randomness condition of Gaussian ensembles results as a consequence of the quantum mixing
correlations.

• The probability density function for the Hamiltonian matrix elements can be computed in terms of the mean value of a
projector in a weak limit (Eq. (23)). In addition, this can be considered as a kind of analogue of the Born rule.

• For the kicked rotator case we show that mixing quantum formalism links decoherence, in the Floquet basis and induced
by dephasing, with Gaussian ensembles in terms of the weak limit which also can be interpreted as a decohered state.
Moreover, starting with a pure state the mixture character of its weak limit expresses the irreversible dynamics of the
mixing quantum systems, as shown in Eqs. (32) and (33).

• Going further, from Theorems 4.4 and 5.2 we could rephrase the statement of the Bohigas–Giannoni–Schmit
conjecture [3] for the family of mixing quantum systems as: Hamiltonian matrix elements of mixing quantum systems
show, in the classical limit, the same probability density function as predicted by Gaussian ensembles.

Summarizing, we conclude that the ‘‘imitation’’ of statistical properties of quantum systems having a mixing (and
therefore chaotic) classical limit arises as a consequence of the quantum factorization property within the mixing quantum
formalism.



444 I.S. Gomez, M. Portesi / Physica A 479 (2017) 437–448

Acknowledgments

This work was partially supported by CONICET and Universidad Nacional de La Plata, Argentina.

Appendix A. Proof of Lemma 3.1

Proof. Let us write f∗(q, p) as a linear combination of characteristic functions in the form f∗(q, p) =


i αi1Ci(q, p) with
Ci ∩ Cj = ∅ if i ≠ j and


i Ci = Γ . Then


Γ
f∗(q, p)dqdp =


i αiµ(Ci) = 1. For A1, A2 ⊆ Γ , from definition (3) we can write

µ(TtA1 ∩ A2) = C(TtA1, A2)+ µ(A1)µ(A2). (A.1)

Let us compute the following expression:
i

αi


j

αjµ(TtCi ∩ (A1 ∩ Cj ∩ A2))

=


i

αi


j

αj

C(TtCi, A1 ∩ Cj ∩ A2)+ µ(Ci)µ(Cj ∩ A1 ∩ A2)


=


i

αi


j

αjC(TtCi, A1 ∩ Cj ∩ A2)+


i

αiµ(Ci)


j

αjµ(Cj ∩ A1 ∩ A2)

=


i

αi


j

αjC(TtCi, A1 ∩ Cj ∩ A2)+


j

αj


Γ

1Cj∩A1∩A2(q, p)dqdp

=


i

αi


j

αjC(TtCi, A1 ∩ Cj ∩ A2)+


Γ


j

αj1Cj(q, p)1A1(q, p)1A2(q, p)dqdp

=


i

αi


j

αjC(TtCi, A1 ∩ Cj ∩ A2)+


Γ

f∗(q, p)1A1(q, p)1A2(q, p)dqdp. (A.2)

Also we have that
i

αi


j

αjµ(TtCi ∩ A1 ∩ Cj ∩ A2)

=


i

αi


j

αjµ(TtCi ∩ Tt(T−tA1) ∩ Cj ∩ A2)

=


i

αi


j

αjC(Tt(Ci ∩ T−tA1), Cj ∩ A2)+


i

αiµ(Ci ∩ T−tA1)


j

αjµ(Cj ∩ A2)

=


i

αi


j

αjC(Tt(Ci ∩ T−tA1), Cj ∩ A2)

+


i

αi


Γ

1Ci(q, p)1T−tA1(q, p)dqdp


j

αj


Γ

1Cj(q, p)1A2(q, p)dqdp

=


i

αi


j

αjC(Tt(Ci ∩ T−tA1), Cj ∩ A2)

+


Γ

f∗(q, p)1T−tA1(q, p)dqdp

Γ

f∗(q, p)1A2(q, p)dqdp

=


i

αi


j

αjC(Tt(Ci ∩ T−tA1), Cj ∩ A2)+


T−tA1

f∗(q, p)dqdp

Γ

f∗(q, p)1A2(q, p)dqdp. (A.3)

Now by the definition of the Frobenius–Perron operator Pt and since f∗ is a fixed point of Pt , we have
T−tA1

f∗(q, p)dqdp =


A1

Pt f∗(q, p)dqdp =


A1

f∗(q, p)dqdp =


Γ

f∗(q, p)1A1(q, p)dqdp. (A.4)

Then using (A.4) we can recast (A.3) as
i

αi


j

αjµ(TtCi ∩ A1 ∩ Cj ∩ A2) =


i

αi


j

αjC(Tt(Ci ∩ T−tA1), Cj ∩ A2)

+


Γ

f∗(q, p)1A1(q, p)dqdp

Γ

f∗(q, p)1A2(q, p)dqdp. (A.5)
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In the limit t → ∞, the correlations C(TtCi, A1 ∩ Cj ∩ A2) and C(Tt(Ci ∩ T−tA1), Cj ∩ A2) become vanishingly small due to
Eq. (4) since Tt(Ci ∩ T−tA1) ⊆ TtCi and Cj ∩ A2 are sufficiently separated in time for large times. Therefore, from Eqs. (A.2)
and (A.5) we have

lim
t→∞


i

αi


j

αjµ(TtCi ∩ A1 ∩ Cj ∩ A2) =


Γ

f∗(q, p)1A1(q, p)1A2(q, p)dqdp

=


Γ

f∗(q, p)1A1(q, p)dqdp

Γ

f∗(q, p)1A2(q, p)dqdp.

If we have n characteristic functions 1A1 , 1A2 , . . . , 1An we can apply the last equality n−1 times so that we prove the desired
result. �

Appendix B. Proof of Lemma 4.1

Proof. Let s be a real number and let us consider the evolved operator ÛĎ
s ÔÛs for a given operator Ô. From Eq. (8) we have

lim
t→∞

⟨ÛĎ
s ÔÛs⟩ρ̂(t) − ⟨ÛĎ

s ÔÛs⟩ρ̂∗
= 0 (B.1)

and applying trace properties we can rewrite it as

lim
t→∞

⟨Ô⟩ρ̂(t+s) − ⟨Ô⟩Ûsρ̂∗Û
Ď
s

= 0. (B.2)

Since

lim
t→∞

⟨Ô⟩ρ̂(t+s) = lim
t→∞

⟨Ô⟩ρ̂(t) = ⟨Ô⟩ρ̂∗
(B.3)

then it follows that ⟨Ô⟩Ûsρ̂∗Û
Ď
s

= ⟨Ô⟩ρ̂∗
for all observable Ô, which means that

Ûsρ̂∗ÛĎ
s = ρ̂∗ ∀s ∈ R. � (B.4)

Appendix C. Proof of Lemma 4.2

Proof. From the definition of the Weyl symbol, Eq. (9), one has

WÂ(q, p) =


R
⟨q +∆|Â|q −∆⟩e2i

p∆
h̄ d∆. (C.1)

Then it follows that

WÂ(Ttq, Ttp) =


R
⟨Ttq +∆|Â|Ttq −∆⟩e2i

Tt p∆
h̄ d∆. (C.2)

Now we make the change of variables∆ −→ ∆ = T−t∆, then

∆ = Tt∆ and d∆ = |Tt |d∆ (C.3)

being |Tt | the Jacobian determinant of Tt restricted to the coordinates q. Moreover, since the Liouville classical evolution
preserves the volume of phase space we can assume that |Tt | = 1. Then, using (C.3) and that |Tt | = 1 we can recast (C.2) as

WÂ(Ttq, Ttp) =


R
⟨Ttq + Tt∆|Â|Ttq − Tt∆⟩e2i

Tt pTt∆
h̄ d∆. (C.4)

It is clear that

⟨Ttq + Tt∆| = ⟨Tt(q + ∆)| = ⟨q + ∆|ÛĎ(t)

|Ttq − Tt∆⟩ = |Tt(q − ∆)⟩ = Û(t)|q − ∆⟩ (C.5)

and also

e2i
Tt pTt∆

h̄ = e2i
p∆
h̄ ⇐⇒

TtpTt∆
h̄

−
p∆
h̄

= mπ with m ∈ Z ⇐⇒ p(t)∆(t)− p∆ = mh/2. (C.6)

Since the quantum phase space is grained due to the Indetermination Principle by cells of volume h/2, then in the classical
limit for h vanishingly small the condition of (C.6) is satisfied. Therefore, replacing (C.5) and (C.6) in (C.4) we obtain the
desired result. �
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Appendix D. Proof of Lemma 4.3

Proof. By applying the definition of Frobenius–Perron operator, Eq. (5), to theWigner functionWρ̂∗
(q, p), using Lemma 4.1

and Eq. (12), we have
A
PtWρ̂∗

(q, p)dqdp =


T−tA

Wρ̂∗
(q, p)dqdp =


R2

Wρ̂∗
(q, p)1T−tA(q, p)dqdp. (D.1)

Now let π̂A be the operator such that Wπ̂A(q, p) = 1A(q, p). By applying Eq. (14) to π̂A it follows that WÛĎ
t π̂AÛt

(q, p) =

1A(Ttq, Ttp) = 1T−tA(q, p). Then using this in Eq. (D.1) we have
A
PtWρ̂∗

(q, p)dqdp =


R2

Wρ̂∗
(q, p)WÛĎ

t ÎAÛt
(q, p)dqdp

= Tr(ρ̂∗Û
Ď
t ÎAÛt) = Tr(Ût ρ̂∗Û

Ď
t ÎA) = Tr(ρ̂∗ ÎA) =


R2

Wρ̂∗
(q, p)WIA(q, p)dqdp

=


R2

Wρ̂∗
(q, p)1A(q, p)dqdp

=


A
Wρ̂∗

(q, p)dqdp. (D.2)

Then, since A ⊆ Γ is arbitrary and given that PtWρ̂∗
(q, p) and Wρ̂∗

(q, p) are non negative, it follows that PtWρ̂∗
(q, p) =

Wρ̂∗
(q, p) almost everywhere on R2. Nevertheless, since we only use PtWρ̂∗

(q, p) and Wρ̂∗
(q, p) by means of integrals we

can consider without loss of generality that PtWρ̂∗
(q, p) = Wρ̂∗

(q, p) for all (q, p) ∈ R2. This completes the proof. �

Appendix E. Proof of Lemma 5.1

Proof. Since P(H11,H12, . . . ,HNN), P11(H11), P12(H12), . . . , PNN(HNN) are positive numbers then one can consider dH11, dH12,
. . . , dHNN > 0 sufficiently small such that

0 < Pij(Hij)dHij < 1/2 ∀ i, j = 1, . . . ,N

0 < P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN < 1/2. (E.1)

Let α, β be positive numbers such that

α < min {P(H11,H12, . . . ,HNN), P11(H11), P12(H12), . . . , PNN(HNN)}

max {P(H11,H12, . . . ,HNN), P11(H11), P12(H12), . . . , PNN(HNN)} < β ≤ 1/2.
(E.2)

Since 0 < α < β ≤ 1/2 then there exists γ ≥ 0 such that α + β + γ = 1. From Eqs. (E.2) one has
P(Hij)dHij

α
> 1,


P(Hij)dHij

β
< 1 ∀ i, j = 1, . . . ,N (E.3)

and 
P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN

α
> 1,

P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN

β
< 1.

(E.4)

Now consider the systems of equations
u2
ij + v2ij = 1 uij

P(Hij)dHij
α

2

+

 vij
P(Hij)dHij

β

2

= 1
(E.5)
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and 
u2

+ v2 = 1 u
P(H11,H12,...,HNN )dH11dH12···dHNN

α

2

+

 v
P(H11,H12,...,HNN )dH11dH12···dHNN

β

2

= 1.
(E.6)

Eqs. (E.5) and (E.6) represent the intersection of the unitary circle with ellipses whose major axis are equal to


P(Hij)dHij
α

,
P(H11,H12,...,HNN )dH11dH12···dHNN

α
and whose minor axis are equal to


P(Hij)dHij

β
,


P(H11,H12,...,HNN )dH11dH12···dHNN
β

for all i, j =

1, . . . ,N . Then it follows that (E.5) and (E.6) have solutions (uij, vij), (u, v) with uij, vij, u, v ≠ 0 for all i, j = 1, . . . ,N .
Let {|ψi⟩}

N
i=1 be the eigenbasis of the Hamiltonian Ĥ . Now since α + β + γ = 1 then one can define the state

ρ̂∗ = α|ψ1⟩ ⟨ψ1| + β|ψ2⟩ ⟨ψ2| + γ |ψ3⟩ ⟨ψ3| (E.7)

and the operators

π̂ij =

uij|ψ1⟩ + vij|ψ2⟩

 
uij⟨ψ1| + vij⟨ψ2|


∀ i, j = 1, . . . ,N

π̂ = (u|ψ1⟩ + v|ψ2⟩ ) (u⟨ψ1| + v⟨ψ2|) . (E.8)

Since u2
ij + v

2
ij = 1, u2

+ v2 = 1 and due to the eigenbasis {|ψi⟩}
N
i=1 is orthonormal then one has that π̂ij and π̂ are projectors

for all i, j = 1, . . . ,N . From Eqs. (E.5) and (E.6) one obtains

⟨πij⟩ρ̂∗
= Tr(ρ̂∗πij) = αu2

ij + βv2ij = P(Hij)dHij ∀ i, j = 1, . . . ,N

⟨π⟩ρ̂∗
= Tr(ρ̂∗π) = αu2

+ βv2 = P(H11,H12, . . . ,HNN)dH11dH12 · · · dHNN (E.9)

where Tr(. . .) denotes the trace operation.
Due to Eq. (E.9) and since dH11dH12 . . . dHNN can be taken arbitrary small one can see that the projector π̂ij is associated

with the probability of the ijth Hamiltonian matrix element is Hij and π̂ is associated with the joint probability of the
Hamiltonian matrix elements are H11,H12, . . . ,HNN . Physically, this can be considered a kind of analogue of the Born rule.
Thus, it is reasonable to consider that there exist a relationship between π̂ and π̂ij for all i, j = 1, . . . ,N . Assuming that π̂ is
an analytical function of the projectors πij one has

π̂ =

∞
k11,k12,...,kNN=0

ak11,k12,...,kNN (π̂11)
k11(π̂12)

k12 · · · (π̂NN)
kNN (E.10)

where ak11,k12,...,kNN are constant coefficients. Since the trace ⟨π⟩ρ̂∗
is proportional to the joint density probability

P(H11,H12, . . . ,HNN) then all the projectors π̂ij must be appear on the product (π̂11)
k11(π̂12)

k12 · · · (π̂NN)
kNN in Eq. (E.10),

i.e. kij ≠ 0 for all i, j = 1, . . . ,N . Moreover, using that πij is a projector for all i = 1, . . . ,N then the only power that survive
in (E.10) is kij = 1 for all i, j = 1, . . . ,N , thus one can recast (E.10) as

π̂ = K π̂11π̂12 · · · π̂NN (E.11)

where K is a constant coefficient to be determined by the condition of π̂ is a projector. Indeed, since π̂2
= π̂ one has

K 2(π̂11π̂12 · · · π̂NN)
2

= K π̂11π̂12 · · · π̂NN . (E.12)

Now by taking the classical limit h̄ → 0 the product π̂11π̂12 · · · π̂NN becomes commutative so

(π̂11π̂12 · · · π̂NN)
2

= π̂2
11π̂

2
12 · · · π̂2

NN = π̂11π̂12 · · · π̂NN . (E.13)

By replacing this in Eq. (E.12) one obtains K 2
= K and since π̂ cannot be the null projector it follows that K = 1. Therefore,

π̂ = π̂11π̂12 · · · π̂NN . �
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