
Experimental Framework to Simulate Rescue Operations
after a Natural Disaster

Framework Experimental para Simular Operaciones de Rescate luego de un Desastre
Natural

Luis Veas-Castillo1 , Gabriel Ovando-Leon1 , Gabriel Astudillo2 , Veronica Gil-Costa3 ,
and Mauricio Marin1

1DIINF, CITIAPS, CeBiB, Universidad de Santiago de Chile, Santiago, Chile
{ luis.veasc, juan.ovando, mauricio.marin }@usach.cl

2Universidad de Valparaı́so, Valparaı́so, Chile
gabriel.astudillo@uv.cl

3 Universidad Nacional de San Luis, San Luis, Argentina
gvcosta@unsl.edu.ar

Abstract

Computational simulation is a powerful tool for per-
formance evaluation of computational systems. It is
useful to make capacity planning of data center clus-
ters, to obtain profiling reports of software applica-
tions and to detect bottlenecks. It has been used in
different research areas like large scale Web search
engines, natural disaster evacuations, computational
biology, human behavior and tendency, among many
others. However, properly tuning the parameters of
the simulators, defining the scenarios to be simulated
and collecting the data traces is not an easy task. It
is an incremental process which requires constantly
comparing the estimated metrics and the flow of simu-
lated actions against real data. In this work, we present
an experimental framework designed for the develop-
ment of large scale simulations of two applications
used upon the occurrence of a natural disaster strikes.
The first one is a social application aimed to regis-
ter volunteers and manage emergency campaigns and
tasks. The second one is a benchmark application a
data repository named MongoDB. The applications
are deployed in a distributed platform which combines
different technologies like a Proxy, a Containers Or-
chestrator, Containers and a NoSQL Database. We
simulate both applications and the architecture plat-
form. We validate our simulators using real traces col-
lected during simulacrums of emergency situations.

Keywords: Experimental framework, Simulation,
Benchmark

Resumen

La simulación computacional es una poderosa her-
ramienta para evaluar el rendimiento de sistemas. Re-
sulta útil para realizar el planeamiento de capacidad
de clusters de Centros de Datos, para obtener perfiles

de aplicaciones y detectar cuellos de botella. Se ha
utilizado en diferentes áreas de investigación como bus-
cadores web a gran escala, evacuaciones por desastres
naturales, biologı́a computacional, comportamiento
y tendencia humana, entre otros. Sin embargo, ajus-
tar correctamente los parámetros de los simuladores,
definir los escenarios de simulación y recopilar los
rastros de datos no es una tarea fácil. Es un proceso
incremental que requiere contrastar constantemente
las métricas estimadas y el flujo de acciones simu-
ladas con datos reales. En este trabajo, presentamos
el diseño de un marco experimental para el desarrollo
de simulaciones a gran escala de aplicaciones sociales
utilizadas después de un desastre natural. La primera
es una aplicación social destinada a registrar volun-
tarios y gestionar campañas en emergencias y tareas.
La segunda aplicación es un repositorio de datos lla-
mado MongoDB. Las aplicaciones se depliegan en
una plataforma distribuida que combina diferentes tec-
nologı́as como Proxy, Orquestador de Containers, Con-
tainers y una Base de Datos NoSQL. Simulamos am-
bas aplicaciones y la plataforma computational. Val-
idamos nuestros simuladores utilizando trazas reales
recopiladas durante simulacros.

Palabras claves: Framework Experimental, Simu-
lación, Benchmark

1 Introduction

Performance evaluation by means of discrete-event
simulation of large scale social software applications
is a topic that has deserved little attention even in well-
established research areas such as Web search [1, 2],
whereas has deserved none in much less developed
areas such as emergency management of natural dis-
asters. Yet performance is a relevant topic to be taken
into consideration when designing social applications
intended to scale to thousands/millions of users. This

-ORIGINAL ARTICLE-

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 62 -

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-1825-0097


is especially relevant when the target recipients are
people affected by a disaster or volunteers that must be
properly coordinated to be effective and efficient in re-
lief operations. In these cases, it is desirable to be able
to anticipate critical issues when operating the applica-
tion at large scale and demanding user dynamics such
as the amount of hardware resources required to sup-
port the workload and points of potential bottlenecks.
In general, these issues are indeed relevant in many
other application domains when they are required to
be prepared for success coming from an exponential
growth in new users and activity. In practice, testing
the application may be too expensive or not feasible
under large scale scenarios at software development
time, which gives place to the need for tools able to
predict performance. During production operation,
performance evaluation is also relevant in the form
of capacity planning studies devoted to determine the
economical use of hardware resources deployed at the
data center [3].

The complexity of these applications/systems
placed in their operational contexts is evident. Per-
formance is featured by both the dynamics of user
behavior and the multiple software and hardware plat-
forms where the applications are expected to be run.
We mean platforms ranging from clusters of proces-
sors to large collections of smartphones, with different
layers of data communication in between, and multiple
software platforms providing services to the applica-
tions [4]. This combination makes it difficult (maybe
impossible) to properly evaluate performance with an-
alytical methods in a meaningful practical sense.

In this work, we present an experimental framework
for large scale piloting-based simulations aimed to
manage the rescue operations and tasks after a natural
disaster strikes. Figure 1 shows the general scheme
of our proposed framework. The “Data Traces” box
represents traces of user requests that show the users
behavior in each application, like the requests sent to
each application, its timestamp and the GPS position.
We obtain this information during a simulacrum of a
natural disaster where different agencies and institu-
tions, such as ONEMI1 and MovidosxChile2, instruct
people to use social applications specially designed
to manage information and coordinate the human re-
sources (volunteers). We call this piloting. We gen-
erate a larger synthetic trace of requests by adapting
the real trace based on its empirical distribution. Then
we use the synthetic trace to perform an application-
specific benchmark on each system/app through REST
services. This allows us to obtain the real execution
time for each task executed in the apps. For example,
for the “Register New User” task we obtained an aver-
age execution time of 442.1 ms and a standard devia-
tion of 25.8 ms on the platform described in Section 3.

1https://www.onemi.gov.cl/noticia/crean-software-y-
aplicaciones-para-organizar-ayuda-en-caso-de-catastrofes/

2https://movidosxchile.cl/

In addition, we developed hardware benchmarks [5] to
obtain runtime distributions, e.g. for the network com-
munication. The simulator takes as input parameters
the execution times obtained with the benchmarks and
simulates computational infrastructure which includes
the Bot (Front-End) used to access the application, the
communication network and the distributed cluster of
multi-core computers (Back-End) where the applica-
tions are executed and receive requests according to
the synthetic trace.

Figure 1: General scheme of our experimental design.

As a case study, we simulate two applications. The
first one is a social application aimed to register volun-
teers and manage emergency campaigns. The second
application is a data repository named MongoDB [6].
We validate our simulations results against real data
obtained from the piloting. The parameters of the
simulator have to be adjusted to reduce the error of
the simulation. Results show that our simulators are
highly correlated with the real data and we can esti-
mate the execution times of the applications with a
small relative error of 1,37 at most.

The remaining of this paper is organized as follows.
Section 2 presents the experimental design. Section
3 presents the technologies used to design our dis-
tributed platform and the applications. In Section 4 we
experimentally validate our simulators and Section 5
concludes.

2 Experimental Framework for Large
Scale Piloting-Based Simulations

2.1 Experimental Framework

The deployment of the experimental scenario consists
mainly of a series of activities, which aim to obtain
valid data, close to reality, which will allow the result-
ing models and simulators to be developed, adjusted
and validated. Figure 2 shows the different compo-
nents that are part of the experimental framework,
where different agencies and institutions participate
during the piloting of social applications and in the
simulacrum of natural disasters in the north and south
of Chile. They also give access to distributed comput-
ing architecture in which the computing platform can
be deployed.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 63 -



Figure 2: Experimental framework. At left, the
Chilean agencies involved during a natural disaster
strikes. At right, the distributed computational infras-
tructure provided by REUNA and national universi-
ties. Each computer image represents a cluster of
distributed multi-core computers.

During the piloting of applications, the people who
participate in the simulacrum access the apps through
their mobile phones. There are some applications
such as Volunteer Recruitment, used to coordinate
the dynamic registration of users to different types
of missions generated after a natural disaster, and the
application Map of Needs, which reads the constant
flow of information published in Twitter, classifies and
groups these tweets and then creates a map with the
statistics collected. The piloting of applications was
carried out in collaboration with agencies and gov-
ernment institutions such as ONEMI, CIREN3, SER-
NAGEOMIN4, HRT5, different ONGs and nonprofit
foundations MovidosxChile and TECHO6.

2.2 Data and Traces

We obtained data from two simulacrums of natural
disasters coordinated by the ONEMI in two cities:
Iquique and Valparaiso. During the first simulacrum
of a tsunami in Iquique, we obtained traces contain-
ing information about the use of the applications with
about 200 operations and the position of the people.
These traces gave us a perspective of the behavior of
the users and the use of the applications. The second
simulacrum was in Valparaiso. We tested our com-
plementary GPS location-system for Android, called
“Traza de Evacuación”, which allows us to record the
geographical location and battery level of 20 users for
every 5 minutes. Most of the data collected belonged
to students of the University of Valparaiso, moving to

3https://www.ciren.cl/
4http://www.sernageomin.cl/
5https://www.hospitaldetalca.cl/
6http://www.techo.org/paises/chile/

security points. Figure 3 shows the data obtained dur-
ing the first simulacrum. Figure 3(a) shows the initial
position of the people using the applications and Fig-
ure 3(b) shows the percentage of users accessing the
applications, where the x-axis is a simulacrum window
time and the y-axis is the percentage of users requests
sent to the system.

To increase the number of operations to be tested,
we create synthetic traces of requests using an empir-
ical distribution according to Figure 3(b). Therefore,
the new trace of requests follows a similar distribution
to the real trace of user requests obtained during the
simulacrum.

(a)

(b)

Figure 3: (a) Initial position of people at the beginning
of the simulacrum. (b) Frequency of users accessing
to the application. The x-axis shows the number of
times the application was used and the y-axis shows
the percentage of users.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 64 -



We also collected data about the computation and
communication costs of a computing platform using
self-developed application-specific benchmark pro-
grams which use as input the synthetic trace of re-
quests. To this end, we instrumented the codes of the
social applications to measure the time required to
process data in the CPU, to access secondary mem-
ory (disk) and to send messages through the network
(for more details on benchmarks programs see [2, 7]).
We executed those benchmarks on a set of multi-core
computers as described in Section 4. We run tests to
analyze the behavior of the apps (bottlenecks, delay
times, etc.) on high demand. The results of these
benchmarks are used to feed the simulators.

2.3 Model and Simulation

We implemented two simulators that describe the right
part of Figure 2. First, we implemented an agent-based
simulator to simulate the piloting of applications and
the behavior of the people in a natural disaster situa-
tion. Then, we implemented a discrete event simulator
to evaluate the computing infrastructure performance
and capacity. Figure 4 shows the general scheme of
the performance simulator with the configuration pa-
rameters and the outputs. This simulator allows us
to estimate the computational cost of the parallel and
concurrent tasks executed by the apps. We set the sim-
ulator parameters [8] based on the values obtained
with the benchmarks.

Figure 4: Main components of the simulator used to
measure the performance of social apps.

Figure 4 shows that the input parameters are “Plat-
form Configuration” and “traces”. These are JSON
files read by the simulation program. The file named
“Platform Configuration” describes the principal hard-
ware components that will be represented in the sim-
ulator. It includes the multi-core processors and their
capacity, a subdivision of these multi-cores into virtual
machines, a detailed description of the systems and
their principal dominant cost operations. The domi-
nant costs are the execution times of the simulated com-
ponents - Front-End, Back-End and Database (DB).
Figure 5 shows all of these components. The second
input parameter file named “traces” is also a JSON
file divided in two parts. The first part includes the
requests sent by the users, that are based on the ap-
plications piloting and the natural disasters experts
comments. The second part includes the events time-
line that allows to trigger particular events based on

computing infrastructure experts’ comments and the
natural disasters simulacrums that we have participated
in. Figure 6 shows an example of a crash of a server
in a particular zone of the country. It shows all of the
“traces” data.

Figure 5: Input data to the simulator: Configuration
Platform file.

Figure 6: Input data to the simulator: Traces file.

The simulation model uses a processes and re-
sources approach. Processes represent threads in
charge of processing high cost operations executed
in computational infrastructure. Resources are shared
artifacts such as posting lists, data structures for par-
tial results, global variables, RAM memory, cores,and
the communication interfaces represented by a tube
network that simulates the point-to-point transfer of
messages. Our simulator programs are implemented
on top of the LibCppSim library [9]. This library
manages the creation/removal of co-routines as well as
the future event list. The library ensures that the sim-
ulation kernel grants execution control to co-routines
in a mode of one co-routine at a time. Co-routines are

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 65 -



activated following the sequential occurrence of events
in chronological order.

Co-routines represent processes that can be blocked
and unblocked at will during simulation by using the
operations passivate(), hold() and activate(). When
a hold(∆t) operation is executed, the co-routine is
paused for a given amount of ∆t units of simulation
time representing the dominant cost of a task. Once
the simulation time ∆t has expired, the co-routine is
activated by the simulation kernel. The dominant costs
come from tasks related to ranking of documents, in-
tersection of posting lists and merge of partial results.
These costs are determined by benchmark programs
implementing the same operations executed on single
processors. Additionally, a co-routine executes a passi-
vate() operation to stop itself, indicating it has paused
its work. Finally, a co-routine in passivate state can
be activated by another co-routine using the activate()
operation. Figure 7 shows the class diagram with the
simulator main classes.

Figure 7: Class diagram of our Discrete event Simula-
tor.

Typically, the implementation of large-scale
databases enforces the scheduling policy of one single
thread per core to prevent from saturation at processor
level. Thus, the incoming requests (operations like
search, update, insert and delete) are queued in the as-
signed thread to receive service which is also reflected
in the corresponding simulation.

To simulate the network, the messages are sent over
a “tube” network. Each message includes the data, a
header with sender and receiver identifiers, and the
number of packages forming the message. All input
packages go to the same input queue. Benchmark
programs are devised to evaluate the cost of different
communication patterns such as multicast, broadcast,
and point-to-point messages [2].

3 Platform Architecture

In this work we model and simulate a platform com-
posed of three main components: (1) a Front-End, (2)
a Back-End and (3) a Data Repository. Each com-
ponent can be replicated, distributed and partitioned

depending on its workload and communication require-
ments. The Front-End is deployed on the user device,
directly interacts with the user and communicates with
the Back-End. The Back-End is the host of the appli-
cations and communicates with the Data Repository
component. It performs data searches and executes
transactions. The Data Repository stores the data in
non-relational databases like MongoDB or Cassandra.
Both, the Back-End and the Data Repository can be
deployed on different clusters of servers.

Our platform has a container orchestrator [10]
and the container technology [11], allowing the de-
ployment of applications based on microservices, to
achieve self-scalable, fault-tolerant and stateless sys-
tems, making the infrastructure configuration transpar-
ent to the programmer. The specific technologies se-
lected to deploy the social applications are Kubernetes
[12] and Docker [13], due to its wide dissemination in
the technological community. They also have support
in the software communities and they can efficiently
deploy the applications in separated geographical ar-
eas [14]. In Figure 8 we show the general scheme of
the architecture, where Nginx [15] is the entry point,
which is the application server and serves as a proxy.
The container orchestrator manages and redirects the
requests to a container. Finally, the figure shows the
interaction between different Back-Ends and different
Data Repositories like MongoDB, Cassandra, Mari-
aDB, etc. The orchestrator also starts new instances
of the applications that are running in the containers.
New instances are started when some applications fails
or when more resources are needed to support users
demand. To this end, the ImageRepo keeps an un-
deployed image of all orchestrated containers. As a
particular example, Figure 9 shows the deployment
of a complete platform distributed among clusters of
computers and coordinated by a container orchestrator.

Figure 10 summarized the virtualization technolo-
gies used to deploy the social application into the plat-
form which -as mentioned before- is composed of
one or more cluster of servers. Our platform supports
different types of configurations: No-sharing, virtual
machine monitor (VMM), Cloud-computing and Con-
tainer. In the no-sharing configuration, we install the
operating system (O.S.) which manages the resources,
the runtime libraries and then we deploy the applica-
tions. Another configuration is when the hardware is
directly connected to the VMM (hypervisor) regardless
of the operating system, indicated by the star symbol
(*) in Figure 10. Cloud-computing is not strictly a
virtual technology but it provides tools to manage vir-
tual machines and their resources, making tasks such
as Live Migration easier, and resizing of virtual ma-
chines based on workload. Container virtualization
allows creating an architecture based on isolated and
scalables microservices deployed in the clusters, but
by itself requires manual intervention to manage the
containers. However, an orchestrator allows the auto-

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 66 -



Figure 8: Deployment of the general architecture.

Figure 9: Distributed Platform deployment: an exam-
ple.

matic management of the containers and the efficient
distribution of the workload between them [16].

Figure 10: Virtualization technologies used to consol-
idate a platform composed of servers.

3.1 Social Applications

In this section we describe two applications used dur-
ing the simulacrum. The application named Ayni7 is
in charge of managing the actions executed by groups
of volunteers. The volunteers are gathered through a
“BOT” of Telegram (Front-End), implemented with the
API available by Telegram. These volunteers sign-in
in the ongoing emergency and report their abilities or
skills (physics, emotional, knowledge, etc.). Then, an

7https://citiaps.usach.cl/portafolio/ayni

automatic process is used to select the volunteers. Fi-
nally, the volunteers can participate in the tasks created
as a result of the emergency. The architecture of this
system is presented in Figure 11(a). It is composed of
two Front-Ends, one Back-End and a Data Repository.

The second application is MongoDB. It is a data
repository (NoSql database), based on documents
(JSON type data), and collections of these documents.
It is scalable, it can be replicated and it supports fault
tolerance. Its main components are MongoD, MongoS
and the ConfigServer. These components and their
connections are shown in Figure 11(b).

The Ayni application is composed of different tasks
(like “Register a New User” or “Create Emergency”),
and each task executes different activities (such as
“Create Profile”, “Insert Emergency”, “Notify User”,
etc.). The execution of each task in each application
is represented with a DAG (Directed Acyclic Graph).
The nodes of the DAG are the processing elements
which represent the use of a resource (internal or ex-
ternal) of each application and the edges represent the
connections, which can be an internal such as Con-
nection Bus when it comes to applications deployed
on the same server, or the Network, when it comes
to communication between applications deployed on
different servers. Figure 12 shows the DAGs of the
“Create Emergency” task executed in the Ayni appli-
cation. The activities and their set of tasks represent
the vertices, and the blue arrows represent the edges or
instance of communication. The flow chart of the first
row, corresponds to activities executed in the Front-
End. The flow chart of the second row, correspond to
activities executed in the Back-End and flow chart of
the third row correspond to activities executed in the
Data Repository.

4 Results

We simulate the platform and the applications de-
scribed in Section 3 by applying the experimental
design described in Section 2. Experiments were per-
formed on a AMD Opteron(TM) Processor 6272 with
32 cores and 64 GB of RAM. Table 1 shows some of
the tasks executed by the Ayni application at the Front-
End (Bot) and at the Back-End (distributed platform)
during the simulacrum. For each task we show the

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 67 -



(a)

(b)

Figure 11: (a) System architecture for the Ayni applica-
tion. (b) Components of the MongoDB data repository.

number of times it was invoked by the users. The X
symbol represents that the task is not executed in the
Front-End.

Table 2 shows the results (average (avg) running
time in milliseconds and the standard deviation (std))
obtained with the benchmark programs executed in the
Bot -which includes the Api Telegram (Api TelA)- and
in the Back-End -including the database access (DB).
In addition, in the Back-End only the Task number
7 used the Api Telegram, obtaining an average time
of 1400.896 ms and standard deviation of 522.141.
These results were used to set the simulated work in
the hold() function of the Libcppsim library.

In Figure 13 we show the execution time in millisec-
onds of different tasks executed in the real platform
and in our simulator. We show that our simulator is ca-
pable of reporting similar results to the real distributed
platform. The lines in the plot are almost overlapped.
We obtained a Pearson correlation of 0.91. A Person
correlation value of 1 is total positive linear correla-
tion, 0 is no linear correlation, and −1 is total negative
linear correlation. Therefore, our simulator reports
values highly correlated with the real ones. We also

Table 1: Tasks executed in the Front-End and the Back-
End

Tasks Front-End Back-End

(1) Help 162 162
(2) Cancel 194 194
(3) Register New User 136 136
(4) Accept Register 109 107
(5) Cancel Registration 60 60
(6) Get User Description 65 65
(7) Create Emergency X 137
(8) Create Task X 132
(9) End Emergency X 163
(10) End Task X 150
(11) Get Active Emergencies 140 140
(12) Get Detail My Emergencies 118 115
(13) Get Detail My Tasks 141 141

calculated the root mean square error of the deviation
which is a measure of the differences between values
obtained by the sequential simulation and the values
reported by the parallel simulations. It is defined as
Eq (1):

εm =

s
∑(xi − x)2

(n(n−1))
(1)

For the values presented in Figure 13 we obtained
a root mean square error of 2.1. Then we calculated
the relative error (er) as Eq (2), which give us a value
of 0.04. Therefore, these results confirm that our sim-
ulator is capable of reproducing the times of a real
application with a very small error.

εm

x
= 0.04 (2)

The lines in Figure 14 show the execution time in
milliseconds reported by a real execution of the Mon-
goDB and the values reported by our simulator. We
executed the insert operations with different size of
data ranging from 100 bytes to 16 Mb. The insertions
were performed on four different collections. In the
first collection we inserted data with sizes between 100
bytes and 4Mb. In the second collection we inserted
data with sizes between 4Mb and 8Mb, in the third
collection data sizes between 8Mb and 12Mb and in
the last collection data sizes ranging from 12Mb to
16Mb. There are peaks representing insert operations
when the collection does not exist, in this case Mon-
goDB creates a new collection. We also show results
when executing insert operations with a primary key
error. That is, we insert a document with a primary
key that already exists and therefore the document is
not inserted in the collection.

Results presented in Figure 14 show that the simu-
lation achieves good agreement with the results from
the actual implementation of MongoDB for insert op-
erations. We computed er = 1.02 and a Pearson corre-
lation of 0.86.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 68 -



Figure 12: The Create Emergency task: sequence of operations executed in the Front-End, Back-End and in the
Data Repository.

Table 2: Average execution time in milliseconds and
the standard deviation obtained with benchmark pro-
grams running in the Front-End (Bot) and in the Back-
End (distributed platform).

Front-End(Bot) Back-End
(Task) Api
Metric Time TelA Time DB

(1)-avg 7.071 419.118 0.022 2.931
(1)-std - 16.610 0.003 5.267
(2)-avg 419.102 416.266 0.020 -
(2)-std 39.499 39.519 0.004 5.861
(3)-avg 442.138 807.447 8.788 1.850
(3)-std 25.896 478.831 6.000 4.390
(5)-avg 485.891 1153.298 0.206 32.083
(5)-std 89.136 754.766 0.034 19.503
(7)-avg - - 0.161 87.846
(7)-std - - 0.063 355.488
(8)-avg - - 0.073 21.210
(8)-std - - 0.015 0.087
(11)-avg 475.070 1428.465 0.586 31.011
(11)-std 29.494 408.329 0.117 18.170
(12)-avg 58.636 1590.329 0.520 58.636
(12)-std 28.623 523.968 0.087 28.623
(13)-avg 30.194 915.439 0.291 11.700
(13)-std 25.640 288.175 0.050 15.039

In Figure 15 we executed a trace composed of 600
tests for each basic CRUD operation (insert, select,
update and delete). Results show that our simulator is
capable of reproducing the behavior of a real imple-
mentation of MongoDB. We obtained a relative error
er = 1.37 and a Pearson correlation of 78%.

5 Conclusions

In this work, we have presented an experimental de-
sign for large scale simulations. In particular, we focus
on a social application and a data repository applica-

Figure 13: Execution time in milliseconds reported
by a real execution of the tasks and the simulator, one
example out of twenty examples of 5960 tests

tion. We have presented the hardware design which
uses virtualization technologies to enable scalability,
fault tolerance and to make the infrastructure config-
uration transparent to the programmer. Our approach
is based on the piloting of the applications during the
simulacrum of a natural disaster scenario. With the
collaboration of Chilean agencies, we collected data
traces during a simulacrum which were later used to
feed our simulators.

As a case of study, we evaluated two applications.
The first one named Ayni, which is used to manage
the volunteers and the emergency campaigns. The
second application is the MongoDB used to store the
statistics and information about the tasks assigned and
completed by the volunteers. We validated our simu-
lators against real data. The results showed that our
simulators are able to estimate the execution times of
the tasks executed in each application with a minimum
error. Moreover, the results obtained by our simulators
are highly correlated with the real data.

As future work, we intend to combine our simula-
tion framework with data mining and machine learning

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 69 -



Figure 14: Insert task: Time in milliseconds obtained
with a real execution of MongoDB and our simulator.

Figure 15: Execution times in milliseconds reported
by a real implementation of MongoDB running on
a single computer and our simulator for a trace with
7520 CRUD operations

techniques to develop a capacity planning model. We
also plan to include agent-based simulation combined
with Generative Adversarial Networks to study the
behavior of people during the evacuation and obtain
situation-maps of the affected zones.

This work was developed as part of a larger project
that aims to deliver an Emergency Management Sup-
port Platform through Social Applications. To this end,
different tasks and developments (like different agent-
based and discrete event-based simulators, the design,
implementation and testing of applications) are per-
formed in parallel by different research groups in the
context of large-scale disaster simulations, involving
a methodology for Fault Tolerant deployment, among
others.

Competing interests

The authors have declared that no competing interests exist.

Authors’ contribution

LVC and GOL deployed the computational platform, they
programmed the discrete event simulator, executed the tests
and obtained the experimental results. GA implemented
the agent-based simulator to analyze the simulacrum traces.

Finally, VGC and MM conducted the research project. All
authors read and approved the final manuscript.

Acknowledgements

This work has been partially funded by CeBiB and project
FB00001.

References

[1] V. Gil-Costa, J. Lobos, A. Inostrosa-Psijas, and
M. Marin, “Capacity planning for vertical search en-
gines: An approach based on coloured petri nets,” in
International Conference on Application and Theory
of Petri Nets and Concurrency, pp. 288–307, Springer,
2012.

[2] V. Gil-Costa, M. Marin, A. Inostrosa-Psijas, J. Lobos,
and C. Bonacic, “Modelling search engines perfor-
mance using coloured petri nets,” Fundamenta Infor-
maticae, vol. 131, no. 1, pp. 139–166, 2014.

[3] J. Allspaw, The art of capacity planning: scaling web
resources. ” O’Reilly Media, Inc.”, 2008.

[4] J. Rogstadius, M. Vukovic, C. A. Teixeira, V. Kostakos,
E. Karapanos, and J. A. Laredo, “Crisistracker: Crowd-
sourced social media curation for disaster awareness,”
IBM Journal of Research and Development, vol. 57,
no. 5, pp. 4–1, 2013.

[5] M. Alaniz, S. Nesmachnow, B. Goglin, S. Iturriaga,
V. G. Gosta, and M. Printista, “Mbspdiscover: An au-
tomatic benchmark for multibsp performance analysis,”
in Latin American High Performance Computing Con-
ference, pp. 158–172, Springer, 2014.

[6] R. Copeland, MongoDB Applied Design Patterns:
Practical Use Cases with the Leading NoSQL
Database. ” O’Reilly Media, Inc.”, 2013.

[7] A. Inostrosa-Psijas, V. Gil-Costa, R. Solar, and
M. Marı́n, “Load balance strategies for devs approx-
imated parallel and distributed discrete-event simu-
lations,” in 2015 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based
Processing, pp. 337–340, IEEE, 2015.

[8] M. Marin, V. Gil-Costa, C. Bonacic, and A. Inostrosa,
“Simulating search engines,” Computing in Science &
Engineering, vol. 19, no. 1, pp. 62–73, 2017.

[9] M. Marzolla et al., “libcppsim: a simula-like, portable
process-oriented simulation library in c++,” in Proc. of
ESM, vol. 4, pp. 222–227, Citeseer, 2004.

[10] G. Osborne and T. Weninger, “Ozy: a general orchestra-
tion container,” in 2016 IEEE International Conference
on Web Services (ICWS), pp. 609–616, IEEE, 2016.

[11] T. Adufu, J. Choi, and Y. Kim, “Is container-based
technology a winner for high performance scientific
applications?,” in 2015 17th Asia-Pacific Network Op-
erations and Management Symposium (APNOMS),
pp. 507–510, IEEE, 2015.

[12] K. Hightower, B. Burns, and J. Beda, Kubernetes: up
and running: dive into the future of infrastructure. ”
O’Reilly Media, Inc.”, 2017.

[13] D. Merkel, “Docker: lightweight linux containers for
consistent development and deployment,” Linux jour-
nal, vol. 2014, no. 239, p. 2, 2014.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 70 -



[14] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli,
“Geo-distributed efficient deployment of containers
with kubernetes,” Computer Communications, 2020.

[15] W. Reese, “Nginx: the high-performance web server
and reverse proxy,” Linux Journal, vol. 2008, no. 173,
p. 2, 2008.

[16] H. Falatiuk, M. Shirokopetleva, and Z. Dudar, “In-
vestigation of architecture and technology stack for e-
archive system,” in 2019 IEEE International Scientific-
Practical Conference Problems of Infocommunications,
Science and Technology (PIC S&T), pp. 229–235,
IEEE, 2019.

�

�

�

�

Citation: L. Veas-Castillo, G. Ovando-Leon, G. 
Astudillo, V. Gil-Costa and M. Marı́n. Experimen-
tal Framework to Simulate Rescue Operations after 
a Natural Disaster. Journal of Computer Science 
& Technology, vol. 20, no. 2, pp. 62-71, 2020. 
DOI: 10.24215/16666038.20.e07.
Received: March 31, 2020 Accepted: August 30,
2020.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-
NC.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 71 -




