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Abstract. An equivalence between the category of MV -algebras and the category MV•

is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated

lattice with bottom is an MV -algebra if and only if it satisfies the equations a = ¬¬a,
(a → b) ∨ (b → a) = 1 and a � (a → b) = a ∧ b. An object of MV• is a residuated lattice

which in particular satisfies some equations which correspond to the previous equations.

In this paper we extend the equivalence to the category whose objects are pairs (A, I),

where A is an MV -algebra and I is an ideal of A.
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1. Introduction

In 1958 J. Kalman proved in [7] that if A is a bounded distributive lattice,
then

K(A) = {(a, b) ∈ A × A : a ∧ b = 0}
is a centered Kleene algebra by defining

(a, b) ∨ (d, e) = (a ∨ d, b ∧ e),

(a, b) ∧ (d, e) = (a ∧ d, b ∨ e),

∼ (a, b) = (b, a),

(0, 1) as the bottom, (1, 0) as the top and (0, 0) as the center.
Later, in 1986, R. Cignoli proved in [3] the following facts: (1) K can

be extended to a functor from the category of bounded distributive lattices
to the category of centered Kleene algebras, (2) there is an equivalence
between the category of bounded distributive lattices and the category of
centered Kleene algebras whose objects satisfy an additional condition called
“interpolation property”, (3) the category of Heyting algebras is equivalent
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to the category of centered Nelson algebras. In [1], the previous results were
extended giving categorical equivalences for some categories of residuated
lattices. An equivalence for the category MV of MV -algebras was developed
in [2].

Let A ∈ MV and let · be the product of A. The set

K•(A) := {(a, b) ∈ A × A : a · b = 0}
plays an important role in the construction of a categorical equivalence for
MV [2]. Our main goal in this paper is to extend this equivalence by means
of a new construction

K•(A, I) := {(a, b) ∈ A × A : a · b ∈ I},

where I is an ideal of A. If I is the zero ideal, then K•(A, I) = K•(A).

In [8,12], L. Monteiro and I. Viglizzo consider the following structure:
given an ideal I and a filter F of a bounded distributive lattice �A, ∧, ∨, 0, 1�,
let M(A, I, F ) = {(a, b) ∈ A × A : a ∧ b ∈ I & a ∨ b ∈ F}. In M(A, I, F )
were defined binary operations ∨, ∧ and ∼ as in the case of K(A). It was
proved that the structure �M(A, I, F ), ∧, ∨, ∼, (0, 1), (1, 0)� is a De Morgan
algebra. Let A ∈ MV and I an ideal of A. In particular, I is an ideal of the
underlying lattice of A. Since M(A, I, A) = {(a, b) ∈ A×A : a∧ b ∈ I} then
the definition of K•(A, I) is analogous to that of M(A, I, A), but changing
the infimum operation by the product operation. For additional motivation
see [6,9,11].

In [10] the logic �L• was defined, whose algebraic models are the objects
of a category called MV• [2]. Let AMV be the Lindenbaum algebra of the
infinite valued propositional calculus �L of �Lukasiewicz and AMV• the Lin-
denbaum algebra of the calculus �L•. In [10, Theorem 3.9] it was proved that
there exists an ideal I of AMV such that κ(AMV•) ∼= AMV/I, where κ is a
unary operation defined on objects of MV•. Also, in [1, Corollary 5] it was
proved that κ(AMV•) ∪ {c} generates AMV• , where c is a center, that is:
∼c = c. So, we have some link between �L• and �L. Let us try to explain
what this link means.

It is a known fact that in any MV -algebra there exists a bijection be-
tween congruences and ideals, and that ideals are in bijection with the filters
by means of the involution of the algebra. Also, the filters of AMV are in
bijection with the theories of �L, where a theory is a class of formulas that
contains the axioms and is closed by the rule of inference Modus Ponens.
Taking into account this bijection, we can say, roughly speaking, that the
classes of formulas in �L• of the form κ(X) are in correspondence with the
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classes of formulas of �L “modulo” the theory corresponding to the filter

¬I = {¬a : a ∈ I}.

For example, the classes of formulas of the form xn ⊕xn+1, for every propo-
sitional variable xn, belong to that theory.

Let us also remark the following fact: if A ∈ MV and I is an ideal of A,
K•(A/I) = {(a/θI , b/θI) ∈ A/I × A/I : a/θI · b/θI = 0/θI}, where θI is the
congruence associated to the ideal I (see ([5, Section 1.2]). We think that it
is interesting to study the set K•(A, I) = {(a, b) ∈ A × A : a · b ∈ I} since

(a/θI , b/θI) ∈ K•(A/I) if and only if (a, b) ∈ K•(A, I).

The paper is organized as follows. In Sect. 2 we give some basic results
about the categories considered in [2]. We also introduce and study the
category IMV: the objects are pairs (A, I), where A ∈ MV and I is an
ideal of A, and the morphisms f : (A, I) → (B, J) are morphisms f :
A → B in MV which satisfy the condition I ⊆ f−1(J). In Sect. 3 we
build up an adjunction between IMV and a new category whose objects are
algebras. In Sect. 4 we obtain an equivalence for the category IMV, which is
a generalization of the equivalence given in [2] for the category MV. Finally,
in Sect. 5 we make some remarks about properties of the constructions
developed throughout this work.

2. Preliminary Definitions and Results

Since we are working on ideas and results of the paper [2], we recommend
the reader to have the mentioned paper at hand while reading this work.
All the residuated lattices considered in this paper are distributive and com-
mutative, so we shall omit mentioning these two conditions in the sequel,
assuming them as given. Recall that a residuated lattice is said to be in-
tegral if it is bounded above by the unit of the product. All the categories
considered in this paper have an underlying class of algebras, so we shall
use the same notation for the category and the class of algebras.

Let �A, ∧, ∨, ·, →, 0, 1� be an object in the category IRL0 of integral resid-
uated lattices with bottom. We define the set K•(A) as in the case of MV -
algebras. For A ∈ IRL0, we define the operations ∨, ∧ and ∼ as in the case
of K(A). We also define the following binary operations:

(a, b) ∗ (d, e) = (a · d, (a → e) ∧ (d → b))

(a, b) → (d, e) = ((a → d) ∧ (e → b), a · e).
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An involutive residuated lattice is an algebra T = �T, ∧, ∨, ∗, →, ∼, 1�
such that

1. �T, ∧, ∨, ∗, →, 1� is a residuated lattice.

2. ∼ is an involution of the lattice that is a dual automorphism, i.e.,
∼∼x = x for every x.

3. x ∗ y ≤ z if and only if x ≤ ∼(y ∗ (∼z)).

In this case we have that ∼(y ∗ (∼z)) = y → z and ∼x = x → 0.
An involutive residuated lattice is said to be centered if it has a distin-

guished element, called a center, that is, a fixed point for the involution.
A c–differential residuated lattice is an integral involutive residuated lattice
with bottom and center c, satisfying the following Leibniz condition [1, De-
finition 7.2]: For any x, y ∈ T , (x ∗ y) ∧ c = ((x ∧ c) ∗ y) ∨ ((y ∧ c) ∗ x). We
denote the category of c–differential residuated lattices by DRL.

The algebra �K•(A), ∧, ∨, ∗, →, ∼, (0, 1), (1, 0), (0, 0)� is an object of DRL,
where (0, 1) is the bottom, (1, 0) is the top and c = (0, 0). The assignment
A �→ K•(A) extends to a functor K• : IRL0 → DRL. For any T ∈ DRL,
consider C(T ) := {x ∈ T : x ≥ c}. It is defined a functor C : DRL → IRL0,
which is left adjoint to K• [1, Theorem 7.6].

The adjunction C � K• : IRL0 → DRL restricts to an equivalence C �
K• : IRL0 → DRL� ([1, Corollary 7.8]), where DRL� is the full subcategory
of DRL whose objects T satisfy the following condition:
(CK•) For every pair of elements z, w ∈ T such that z, w ≥ c and z ∗ w ≤ c,
there exists x ∈ T such that x ∨ c = z and ∼ x ∨ c = w.

If T is an algebra of DRL�, there exists a map κ : T → T that satisfies
the following two conditions:

(k1) κx ∧ c = x ∧ c,

(k2) κx ∨ c = c → x.

Conversely, if T is an algebra of DRL in which there exists an operator κ
that satisfies (k1) and (k2), then (CK•) holds on T [2, Theorem 1]. In what
follows we denote by DRL� the category whose objects have a unary operator
κ in its signature, and verify the corresponding equations. In every integral
residuated lattice �A, ∧, ∨, ·, →, 0, 1�, we define ¬a = a → 0 for every a ∈ A.
If we consider an algebra A of IRL0, then κ : K•(A) → K•(A) is given by
κ(a, b) = (¬b, b).

The category MDRL is the full subcategory of DRL� whose objects satisfy
the equation
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(Inv•) ∼κx = κ∼κx.

Let iIRL0 be the full subcategory of IRL0 whose objects satisfy the equa-
tion

(Inv) ¬¬a = a.

For T ∈ DRL� we have that κ(T ) = {x ∈ T : κx = x}. If T ∈ MDRL,
then κ(T ) ∈ iIRL0. If g : T → S is a morphism in MDRL, then κ(g) :
κ(T ) → κ(S) is the morphism in iIRL0 given by the restriction of g to
κ(T ). On the other hand, if A ∈ iIRL0 then K•(A) ∈ MDRL. If f : A →
B is a morphism in iIRL0, then we define K•(f) : K•(A) → K•(B) as
(K•(f))(a, b) = (f(a), f(b)), which is a morphism in MDRL. For every A ∈
iIRL0 we have the isomorphism α : A → κ(K•(A)) given by α(a) = (a,¬a),
and for every T ∈ MDRL we have the isomorphism βT : T → K•(κ(T )) given
by βT (x) = (λx, λ∼x), where λx = ∼κ∼x = κ(x ∗ c) (see [2, Lemma 7]).
There is a categorical equivalence κ � K• : iIRL0 → MDRL [2, Theorem 11].

Recall that an MV -algebra is term equivalent to an integral residuated
lattice with bottom �A, ∨, ∧, ·, →, ¬, 0, 1� that satisfies (Inv) and the follow-
ing equations:

(Lin) (a → b) ∨ (b → a) = 1,

(QHey) a · (a → b) = a ∧ b.

The category MV• is the full subcategory of MDRL whose objects satisfy
the equations

(Lin•) (x → y) ∨ (y → x) ≥ c,

(QHey•) c ∗ x ∗ (x → (y ∨ c)) = c ∗ (x ∧ y).

There is a categorical equivalence κ � K• : MV → MV• [2, Corollary 15].
Consider the following equation in MDRL:

(P•) (κx → κy) ∨ (κy → κx) = 1.

Remark 1. In every algebra of MDRL we have that the conditions (P•)
and (Lin•) are equivalent. In order to prove it, suppose that we have the
condition (Lin•). Hence, (κx → κy)∨ (κy → κx) ≥ c. Thus, by [2, Corollary
12] we obtain that 1 = κ((κx → κy)∨(κy → κx)) = (κx → κy)∨(κy → κx).
Conversely, suppose that we have the condition (P•). It follows from [2,
Corollary 12] that in every algebra of DRL� we have the equation x ≤ κx,
so (x → κy) ∨ (y → κx) = 1. By the categorical equivalence between DRL�

and IRL0 it is possible to prove the equation c ∧ (x → κy) = c ∧ (x → y).
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Hence, c = (c ∧ (x → κy)) ∨ (c ∧ (y → κx)) = c ∧ ((x → y) ∨ (y → x)), i.e.,
(x → y) ∨ (y → x) ≥ c.

In the following diagram we have the relationship among the above men-
tioned categories, where inc denotes the inclusion functor:

MV
inc ��

K•

��

iIRL0
inc ��

K•

��

IRL0

K•

��
MV•

κ

��

inc �� MDRL

κ

��

inc �� DRL�.

κ

��

Remark 2. Let A ∈ MV and let I, J be ideals of A. Then

(a) K•(A) = K•(A, I) if and only if I = {0}.

(b) If I ⊆ J , then K•(A, I) ⊆ K•(A, J). In particular, K•(A) ⊆ K•(A, I) ⊆
K•(A, A) = A × A.

(c) K•(A, I) is closed under the operations ∨, ∧, ∼, ∗, →, (0, 1), (1, 0)
and (0, 0) given in K•(A). There exists in K•(A, I) an unique unary
operation κ which satisfies (k1) and (k2): this map takes the form
κ(a, b) = (¬b, b), as in the case of K•(A). Therefore, we obtain that
�K•(A, I), ∧, ∨, ∗, →, ∼, κ, (0, 1), (1, 0), (0, 0)� is an algebra.

In what follows we will give an example of K•(A, I) for an algebra A ∈ MV
and an ideal I of A.

Example 1. In 1958 Chang introduced the MV -algebra C [4,5], defined
by C = Γ(Z ⊗ Z, (1, 0)), where Z is the set of integer numbers, Z ⊗ Z is the
lexicographic product and Γ is the categorical equivalence between �–groups
with strong unit, and the category MV.

Let I be the following ideal of C: I = {⊥} ∪ {m : m > 0}. We define
+ − = {(x, y) ∈ C × C : (x > 0 & y < 0) or (x = ⊥ & y < 0) or (x >
0 & y = �)}. The sets − +, + + and − − are defined in a similar way. We
shall prove that K•(C, I) is the union of the quadrants + −, − + and + +
that we show in the following graphic of C×C. In fact, if (x, y) ∈ C×C is in
+ −, the product x.y is positive or ⊥ and the same is true for (x, y) ∈ − +.
If (x, y) ∈ + +, then x · y is ⊥.

Author's personal copy



A Categorical Equivalence Motivated by Kalman’s Construction

�

−1

−2

...

...

2

1

⊥

(�, ⊥)
���������� − +

����������

(⊥, ⊥)

����������
+ +

�
�

�
�

�
�

�

�
�

�
�

�
�

� − − (�, �)

����������

����������

�
�

�
�

�
�

� + −

�
�

�
�

�
�

�

����������

(⊥, �)

����������

����������

Inspired by the construction of K•(A, I) we give the following

Definition 1. Let IMV be the category whose objects are pairs (A, I),
where A ∈ MV and I is an ideal of A, and whose morphisms f : (A, I) →
(B, J) are morphisms f : A → B in MV that satisfy the condition I ⊆
f−1(J).

A Connection Between the Categories MV and IMV

Let A ∈ MV, and let I be an ideal of A. The relation given by (a, b) ∈ θI

if and only if d(a, b) ∈ I is a congruence relation in A, where d(a, b) =
(a � b) ⊕ (b � a). Moreover, the correspondence I �→ θI is a bijection from
the set of ideals of A onto the set of congruences on A [4, Proposition 1.2.6.].
If θ is a congruence of A and a ∈ A, we write a/I in place of a/θI .

Proposition 1. There is an adjunction Q � E : MV → IMV.

Proof. Define the functors E : MV → IMV and Q : IMV → MV. If
A ∈ MV, then E(A) = (A, {0}). If f : A → B is a morphism in MV, then
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E(f) = f . If (A, I) ∈ IMV then Q(A, I) = A/I. If g : (A, I) → (B, J)
is a morphism in IMV, then the condition I ⊆ g−1(J) allows us define a
morphism Q(g) : A/I → B/J in MV as Q(g)(a/I) = g(a)/J . Note that for
A ∈ MV we have that (Q ◦ E)(A) = A/{0}, and for (A, I) ∈ IMV we have
that (E ◦ Q)(A, I) = (A/I, {0}).

For every (A, I) ∈ IMV we define the morphism η(A,I) : (A, I) →
(A/I, {0}) in the obvious way, that is, η(A,I)(a) = a/I. An easy moment’s
reflection shows that for every morphism g : (A, I) → (B, J) in IMV the
following diagram commutes:

(A, I)
η(A,I) ��

g

��

(A/I, {0})

(E◦Q)(g)

��
(B, J)

η(B,J) �� (B/J, {0}).

Hence, η : 1IMV → E ◦ Q is a natural transformation. Let g : (A, I) →
(B, {0}) be a morphism in IMV. The inclusion I ⊆ g−1({0}) allows us to
define a morphism f : A/I → B in MV as f(a/I) = g(a).

It is immediate that the following diagram commutes:

(A, I)
η(A,I) ��

g ���������������� (A/I, {0})

E(f)

��
(B, {0}).

We have that f is the unique morphism in IMV with the above mentioned
property. Therefore, we have that Q � E.

3. The Adjunction

In this section we consider a new category we shall call IMV•, and we build
up functors K• : IMV → IMV• and κ : IMV• → IMV. We also prove that
there exists an adjunction κ � K• : IMV → IMV•. Let A ∈ MV. In what
follows we introduce a category whose definition is motivated by properties
satisfied for the algebra �K•(A, I), ∧, ∨, ∗, →, ∼, κ, (0, 1), (1, 0), (0, 0)�:

Definition 2. We define the category IMV• as the category whose objects
T = �T, ∧, ∨, ∗, →, ∼, κ, 0, 1, c� are algebras of type (2, 2, 2, 2, 1, 1, 0, 0, 0)
which satisfies the following conditions:
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1. �T, ∧, ∨, 0, 1� is a bounded distributive lattice, ∗ is an associative and
commutative operation, and x ∗ y ≤ z if and only if x ≤ y → z if and
only if x ≤ ∼(y ∗ (∼z)), for any x, y, z.

2. ∼ is an involution of the lattice that is a dual automorphism, i.e., ∼∼x =
x for every x.

3. c = ∼c = c → 0 and (x ∗ ∼x) ∧ c = 0.

4. For any x, y, (x ∗ y) ∧ c = ((x ∧ c) ∗ y) ∨ ((y ∧ c) ∗ x).

5. κ is defined by the equations (k1) and (k2).

6. T satisfies the conditions (Inv)•, (P)• and (QHey)•.

Remark 3. (a) Let (A, I) be an object in IMV. Then we have that the alge-
bra �K•(A, I), ∧, ∨, ∗, →, ∼, κ, (0, 1), (1, 0), (0, 0)� is an object in IMV•.
If f : (A, I) → (B, J) is a morphism in IMV, then the map K•(f) :
K•(A, I) → K•(A, J) given by K•(f)(a, b) = (f(a), f(b)) is a morphism
in IMV•. Therefore, we have defined a functor K• from IMV to IMV•.

(b) MV• is a full subcategory of IMV•. Moreover, MV•
� IMV•. In order

to prove it, consider the real interval [0, 1] and A = I = [0, 1] endowed
with its structure of MV -algebra. Then K•([0, 1], [0, 1]) = [0, 1] × [0, 1]
and ((12 , 1

2) → (1, 1))∨((1, 1) → (12 , 1
2)) = (12 , 1

2) � c, so K•([0, 1], [0, 1]) /∈
MV•.

(c) There are many differences between MV• and IMV•. Let (A, I) ∈ IMV.
The assertion (a, b) ∈ K•(A) is equivalent to any of the following asser-
tions: (a, b) → (0, 1) = ∼(a, b), (a, b) ≤ κ(a, b) or (a, b) = ((a, b)∨(0, 0))∧
κ(a, b). Then, κ does not have necessarily the same behavior in K•(A)
and K•(A, I). In general, in IMV• the equation x ∗ 1 = x is not true:
more precisely, an object of IMV• is an object of MV• if and only if it
satisfies the equation x ∗ 1 = x. Therefore, the objects of IMV• do not
necessarily have residuated lattices as reducts.

(d) The condition x ∗ y ≤ z if and only if x ≤ y → z for any x, y, z is
equivalent to the equations x∗(y∨z) = (x∗y)∨(x∗z), x → (y∧z) = (x →
y)∧ (x → z), x∗ (x → y) ≤ y and y ≤ x → (x∗y). Besides the condition
x∗y ≤ z if and only if x ≤ ∼(y ∗ (∼z)) for any x, y, z is equivalent to the
condition x → y = ∼(x ∗∼y) for any x, y. Therefore, IMV• is a variety.
Also note that c ∗ x ≤ c, c ∗ c = 0 and (x ∗ y) → z = x → (y → z).

The next goal is to define a functor from IMV• to IMV.
The proof of the following technical lemma follows from similar ideas to

that given in [2].
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Lemma 1. Let T ∈ IMV•. Then:

1. κ(x ∧ y) = κx ∧ κy.

2. x ≥ c if and only if κx = 1, and κx = 0 if and only if x ∧ c = 0.

3. κ(x ∧ c) = κx.

4. κx = κy if and only if x ∧ c = y ∧ c.

5. κκx = κx.

6. κ(T ) = {x ∈ T : κx = x}.
7. x ∨ c = κ∼x → c and κ(T ) is closed under ∼.

8. For every x ≤ c, c ∗ κx = c ∧ κx = x.

9. For every x, y ≤ c, κx ∗ y = κy ∗ x.

10. For every x, ∼ κx = κ((∼ x) ∗ c).

11. For every x, y ≤ c, κx ∗ κy = κ(κx ∗ y), so κx ∗ κy = κ(κx ∗ κy).

12. For every x ≥ c, x = κ(x ∗ c) ∨ c.

13. For x ≥ c, y ≥ c, x = y if and only if x ∗ c = y ∗ c.

14. For every x, y, κ(x + y) = κ(x) + κ(y), where x + y = ∼(∼x ∗ ∼y).

Corollary 2. Let T ∈ IMV• and x, y ∈ T . Then:

(i) c ∗ (c → x) = x ∧ c.

(ii) κ(x ∨ y) = κx ∨ κy.

(iii) c ∗ κx = c ∧ x = c ∧ κx.

(iv) c ∗ κ(x ∗ y) = c ∗ ((λx ∗ κy) ∨ (λy ∗ κx)), where λx = ∼κ∼x.

(v) c ∗ κx = c ∗ κy if and only if κx = κy.

(vi) κ(x ∗ y) = (λx ∗ κy) ∨ (λy ∗ κx).

(vii) c → κx = c → x.

(viii) c ∧ (x → κy) = c ∧ (x → y).

Proof. Let us prove (i) by using the item 10. of Lemma 1:

c ∗ (c → x) = c∗ ∼ (c∗ ∼ x)
= ∼ (c → (c∗ ∼ x))
= ∼ (κ(c∗ ∼ x) ∨ c)
= ∼ (∼ κx ∨ c)
= κx ∧ c
= x ∧ c.
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Now we prove (ii). We have, in first place, (κx∨κy)∧c = (x∧c)∨ (y ∧c) =
(x∨ y)∧ c. We also prove that (κx∨κy)∨ c = c → (x∨ y). In order to show
it, note that c ≤ c → x, c → y. Then by item 13. of Lemma 1, the problem
is reduced to show that ((c → x) ∨ (c → y)) ∗ c = (c → (x ∨ y)) ∗ c.

From (i):

((c → x) ∨ (c → y)) ∗ c = (x ∧ c) ∨ (y ∧ c)
= (x ∨ y) ∧ c
= (c → (x ∨ y)) ∗ c.

The condition (iii) follows from the condition (i) because c ∗ κx = c ∗ (c ∨
κx) = c ∗ (c → x) = c ∧ x.

Now we prove the condition (iv). First note that it follows from condition
(i) that

c ∗ κ(x ∗ y) = c ∗ (c ∨ κ(x ∗ y))
= c ∗ (c → (x ∗ y))
= (x ∗ y) ∧ c
= ((x ∧ c) ∗ y) ∨ ((y ∧ c) ∗ x).

Besides by item 10. of Lemma 1 and the condition (iii) we have that

c ∗ ((λx ∗ κy) ∨ (λy ∗ κx)) = (c ∗ λx ∗ κy) ∨ (c ∗ λy ∗ κx)
= (c ∗ κ(x ∗ c) ∗ κy) ∨ (c ∗ κ(y ∗ c) ∗ κx)
= (x ∗ c ∗ κy) ∨ (y ∗ c ∗ κx)
= ((x ∗ (c ∧ y)) ∨ ((y ∗ (c ∧ x)).

Thus, we obtain c ∗ κ(x ∗ y) = c ∗ ((λx ∗ κy) ∨ (λy ∗ κx)).
In order to prove the condition (v), suppose that c ∗ κx = c ∗ κy. Taking

into account (iii) we obtain x ∧ c = y ∧ c. Hence, by item 4. of Lemma 1 we
have that κx = κy.

The item (vi) is consequence of the items (iv) and (v), and the item (vii)
follows from Item 5 of Lemma 1.

Finally we prove the item (viii). By items (i) and (vii) we obtain

c ∧ (x → κy) = c ∗ (c → (x → κy))
= c ∗ (x → (c → κy))
= c ∗ (x → (c → y))
= c ∗ (c → (x → y))
= c ∧ (x → y).

Lemma 3. Let T ∈ IMV•. Then κ(T ) is closed under ∧, ∨, 0, 1, ∼, ∗ and
→. Moreover, 1 ∗ κx = κx for every x ∈ T .
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Proof. Straightforward computations based on Lemma 1 and Corollary 2
prove that κ(T ) is closed under ∧, ∨, 0, 1, ∼, ∗ and →. It follows from
Lemma 1 and Corollary 2 that if x ∈ T , then

1 ∗ κx = κ(c) ∗ κ(x ∧ c)
= κ(κ(x ∧ c) ∗ c)
= κ(x ∧ c)
= κx.

Corollary 4. Let T ∈ IMV•. Then κ(T ) ∈ MV.

Proof. It follows from Lemma 3 that ∼x = ¬x for every x ∈ κ(T ). Hence,
�κ(T ), ∧, ∨, ∗, →, 0, 1� ∈ iIRL0. Let x, y ∈ κ(T ). Taking into account that T
satisfies (QHey•) we have that

c ∗ (x ∧ y) = c ∗ x ∗ (x → (y ∨ c))
= c ∗ x ∗ (c → (x → y))
= c ∗ x ∗ (x → y).

Hence, by (v) of Corollary 2 we have that κ(T ) satisfies (QHey). It is
immediate that the condition (P•) on T implies the condition (Lin) on
κ(T ).

If T ∈ IMV•, we define the following sets:

1. IT = {y ∈ T : y ∧ c = 0}.

2. JT = λ(IT ).

Note that if (A, I) ∈ IMV, then κ(K•(A, I)) = κ(K•(A)).

Proposition 2. If (A, I) ∈ IMV, then JK•(A,I) = {(a,¬a) : a ∈ I}.
In particular, the map α(A,I) : (A, I) → (κ(K•(A, I)), JK•(A,I)) given by
α(A,I)(a, b) = (a,¬a) is an isomorphism in IMV.

Proof. It follows from straightforward computations (see [2, Theorem 11]).

Proposition 3. If T ∈ IMV•, then (κ(T ), JT ) ∈ IMV.

Proof. We will prove that JT is an ideal of κ(T ). It is immediate that
JT ⊆ κ(T ) and 0 ∈ κ(T ). Now let us show that λx∗λy ∈ JT for x, y ∈ T such
that x∧c = y∧c = 0. Using item 14. of Lemma 1 we obtain λ(x∗y) = λx∗λy.
Besides (x ∗ y)∧ c = ((x∧ c) ∗ y)∨ ((y ∧ c) ∗x) = 0. Finally, let z ∈ κ(T ) and
x ∈ T such that z ≤ λx and x∧c = 0. We prove that there is y ∈ T such that
z = λy and y∧c = 0. First note that z = λz. Let y = x∧z. Hence, y∧c = 0.
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Since κ preserves finite meets and joins then λ(x ∧ z) == λx ∧ z = z, so
z ∈ JT .

Remark 4. If T ∈ MV•, then JT = {0}.

Motivated by the proof of [2, Theorem 11], we show the next

Theorem 5. Let T ∈ IMV•. Then the map βT : T → K•(κ(T ), JT ) given
by βT (x) = (λx, λ∼x) is a morphism in IMV• which is an injective map.

Proof. First note that (z, w) ∈ K•(κ(T ), JT ) if and only if (z, w) ∈ κ(T ) ×
κ(T ), and z ∗ w = λy for some y ∈ T such that y ∧ c = 0. The map βT is
well defined. In order to prove it, let x ∈ T . Then (λx, λ∼x) ∈ κ(T ) × κ(T ),
λx∗λ∼x = λ(x∗∼x) and (x∗∼x)∧c = 0. Thus, (λx, λ∼x) ∈ K•(κ(T ), JT ).
Now we prove that βT is an injective function. Let x, y ∈ T such that
βT (x) = βT (y). Then, κx = κy and κ∼x = κ∼y. Hence, x ∧ c = y ∧ c and
x ∨ c = y ∨ c, so x = y. Thus, βT is an injective function. Properties of κ
(see Lemma 1 and Corollary 2) show that βT preserves the operations.

Lemma 6. Let g : T → U be a morphism in IMV•. Then the map κ(g) :
(κ(T ), JT ) → (κ(U), JU ) given by κ(g)(t) = g(t) is a morphism in IMV.
Moreover, the assignment T �→ (κ(T ), JT ) extends to a functor κ : IMV• →
IMV.

Let g : T → U be a morphism in IMV•. Direct computations show that
the following diagram commutes:

T
βT ��

g

��

K•(κ(T ), JT )

K•(κ(g))
��

U
βU �� K•(κ(U), JU ).

Hence, we have that β : 1IMV• → K•◦κ is a natural transformation, where
1IMV• : IMV• → IMV• is the identity functor. Now consider the morphism
π1 : (κ(K•(A, I)), JK•(A,I)) → (A, I) in IMV given by π1(a,¬a) = a. Let
T ∈ IMV• and g : T → K•(A, I) a morphism in IMV•. We define the
morphism f : (κ(T ), JT ) → (A, I) as f = π1 ◦ κ(g). We will show that the
following diagram commutes:

T
βT ��

g ����������������� K•(κ(T ), JT )

K•(f)
��

K•(A, I).

(1)
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Consider the map π2 : K•(A, I) → A given by π2(a, b) = b. As λ(a, b) =
(a,¬a) in K•(A, I), for every t ∈ T we obtain that

(K•(f) ◦ βT )(t) = K•(f)(λt, λ∼t)
= (f(λt), f(λ∼t))
= ((π1(g(λt)), (π1(g(λ∼t)))
= (π1(λg(t)), π1(∼λg(t)))
= (π1(g(t)), π2(g(t)))
= g(t).

Thus, the morphism f is such that the diagram (1) commutes. It follows
from the definition of κ that f is the unique morphism in IMV with the
above mentioned property. Therefore we conclude the following

Theorem 7. There is an adjunction κ � K• : IMV → IMV•.

4. The Categorical Equivalence

In this section we restrict the category IMV• in order to obtain a categorical
equivalence between the restricted category and IMV. We find a condition
(ICK•) and we prove that it is equivalent to the existence of a partial function
S which is defined by equations.

Moreover, we prove that the existence of S is equivalent to the existence
of a new operation � defined by equations in κ(T ) × IT . We have that
Sx = κt � y, where x = t ∨ y, t = x ∧ c ∈ (c], y ∈ IT , where (c] is the set of
the elements that are least or equal to c and IT is defined in Sect. 3.

But the condition (ICK•) is also equivalent to the existence of � in T ×T ,
defined by equations, as we show in Proposition 4.

The algebra �T, �, 0� is a commutative monoid (Proposition 6).
Let T ∈ IMV•. We consider the following condition:

(ICK•) For any z, w ≥ c such that z ∗ w ≤ y ∨ c for some y ∈ IT , there
exists x such that x ∨ c = z and ∼x ∨ c = w.

Remark 5. (a) If T ∈ DRL�, then the conditions (CK•) and (ICK•) are
equivalent.

(b) The condition (ICK•) is equivalent to the following one: for any z, w ≥ c
such that (z ∗ w) ∨ c = y ∨ c and y ∧ c = 0 for some y, there is x such
that x ∨ c = z and ∼x ∨ c = w.

(c) If (A, I) ∈ IMV, then K•(A, I) satisfies (ICK•).
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Let T ∈ IMV•. We define the following set:

MT = {x ∈ T : x ∨ c = y ∨ c for some y ∈ IT }.

Remark 6. Let x ∈ MT . Then, there exists y ∈ IT such that x ∨ c = y ∨ c.
Let t = x ∧ c. It is immediate that x ∨ c = (y ∨ t) ∨ c, x ∧ c = (y ∨ t) ∧ c,
from where x = y ∨ t. Conversely, let x = y ∨ t, with y ∈ IT and t ≤ c. Then
we have that x ∈ MT because x ∨ c = y ∨ c. Thus, we obtain that

MT = {x ∈ T : x = t ∨ y, for some t ≤ c and y ∈ IT }.

Moreover, the previous decomposition is unique. Let x = y∨ t = y� ∨ t�, with
y, y� ∈ IT and t, t� ≤ c. Then, x∧c = (y∨ t)∧c = t∧c = t. In the same way,
x∧ c = t�. So, t = t�. Moreover, y ∨ c = y� ∨ c = x∨ c and y ∧ c = y� ∧ c = 0,
from where y = y�.

Fot T ∈ IMV• we define (if it is possible) a function S : MT → T through
the following equalities:

(S1) Sx ∧ c = x ∧ c.

(S2) Sx ∨ c = (c ∧ ∼x) → x.

Let A ∈ MV. In K•(A), the map κ plays a crucial role. If we restrict
to the elements least or equal c, we have the inequality x ≤ κx. In the
pairs, (0, b) ≤ (b → 0, b). We can generalize this situation to K•(A, I), for
(A, I) ∈ IMV•, by considering the inequality (a, b) ≤ (b → a, b) with a ∈ I.
This idea motivates the definition of the function S because MK•(A,I) =
{(a, b) : a ∈ I} and S : MK•(A,I) → K•(A, I) is given by S(a, b) = (b → a, b).
We are going to see that S also has an important role in K•(A, I).

We remark that when T has the form K•(A, I), the domain MT of S is
in bijection to the set (c] × IT , where IT is in this case equal to I × {1}. In
the particular case I = {0}, IT is reduced to {(0, 1)} and then the domain
of S is (c] × {(0, 1)}, which is isomorphic to (c].

Thus, if we restrict to the case I = {0}, (ICK•) becomes (CK•) and S
becomes κ. In fact, the operator κ is determined by its values in the set (c].

Lemma 8. Let T ∈ IMV•. The following conditions are equivalent:

1. T satisfies (ICK•).

2. There exists a function S : MT → T which satisfies (S1) and (S2).

Proof. 1. ⇒ 2. Let x ∈ MT . Then there is y such that x ∨ c = y ∨ c
and y ∧ c = 0. We define w = ∼x ∨ c and z = ∼x → (x ∨ c). We have
that z ∗ w ≤ y ∨ c. Besides w ≥ c, and z ≥ c because ∼x ∗ (c ∧ ∼x) ≤ c.
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Thus, there is t such that t ∨ c = z and ∼t ∨ c = w. Put Sx = t. Hence,
Sx ∧ c = ∼w = x ∧ c and Sx ∨ c = z = (c ∧ ∼x) → x.

2. ⇒ 1. Suppose that there exists S. Let z, w ≥ c be such that z∗w ≤ y∨c
and y ∧ c = 0 for some y. Since (∼w ∨ y) ∨ c = y ∨ c and y ∧ c = 0 then
∼w ∨y ∈ MT . Then we define the element x = z ∧S(∼w ∨y). We will prove
that x ∨ c = z and ∼x ∨ c = w.

The condition z ∗(∼y∧w) ≤ z ∗w ≤ y∨c implies the following inequality

z ≤ (w ∧ ∼y) → (y ∨ c). (2)

Then using (2) we have that

x ∨ c = (S(∼w ∨ y) ∨ c) ∧ (z ∨ c)
= ((c ∧ ∼y ∧ w) → (y ∨ ∼w)) ∧ z
= ((w ∧ ∼y) → (y ∨ c)) ∧ z
= z.

Finally we have that

∼x ∨ c = ∼S(∼w ∨ y) ∨ c
= ∼(S(∼w ∨ y) ∧ c)
= ∼((∼w ∨ y) ∧ c)
= w.

Remark 7. If (A, I) ∈ IMV we define a map � : κ(K•(A, I)) × IK•(A,I) →
K•(A, I) by �((¬b, b), (d, 1)) = (¬b ⊕ d, b). The soundness of the definition
follows from that (¬b⊕d)·b = (b → d)·b ≤ d ∈ I. Then, (¬b⊕d, b) ∈ K•(A, I).

Let T ∈ IMV•. Recall that for every x, y ∈ T the operation + is defined
by x + y = ∼(∼x ∗ ∼y).

Motivated by the Remark 7, for T ∈ IMV• we define (if it is possible) a
function � : κ(T ) × IT → T through the following equalities (for x ∈ T and
y ∈ IT ):

(�κ 1) (κx � y) ∧ c = (κx + y) ∧ c,

(�κ 2) (κx � y) ∨ c = (c ∗ κx) + (y ∨ c).

Remark 8. Let (A, I) ∈ IMV. Then (a, b) ∈ MK•(A,I) if and only if a ∈ I,
and y ∈ IK•(A,I) if and only if there exists a ∈ I such that y = (a, 1).

For every (a, b) ∈ MK•(A,I) there exist x ≤ c and y ∈ IK•(A,I) such that
S(a, b) = κx � y. We can consider x = (0, b) and y = (a, 1).

Lemma 9. Let T ∈ IMV•, x ∈ T and y ∈ IT . Then c ∗ ∼y = c, 1 → y = 0,
y + κx = κx and κy = 0.
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Proof. Let x ∈ T, y ∈ IT . Then c ∗ ∼y = c ∗ (∼y ∨ c) = c ∗ 1 = c, so
c∗∼y = c. As y ∈ IT we obtain (1∗∼y)∨c = 1 and (1∗∼y)∧c = ((1∧c)∗
∼y)∨ ((∼y ∧ c) ∗ 1) = c∨ ((∼y ∧ c) ∗ 1) = c, so 1 ∗∼y = ∼y, i.e., 1 → y = 0.
Besides, y + κx = ∼(∼y ∗ ∼κx) = ∼(∼y ∗ (1 ∗ ∼κx)) = ∼((1 ∗ ∼y) ∗ ∼κx) =
∼(1 ∗ ∼κx) = κx. Finally we have that 0 = κ(y ∧ c) = κy ∧ κc = κy.

Note that

(κx + y) ∧ c = κx ∧ c = x ∧ c,

(c ∗ κx) + (y ∨ c) = (c ∧ x) + (y ∨ c).

Using the previous lemma, the following can be proved

Lemma 10. Let T ∈ IMV•. There exists S which satisfies (S1) and (S2) if
and only if there exists � which satisfies (�κ1) and (�κ2).

Proof. Suppose that there exists S. In first place, let x ∈ T , x ≤ c and
y ∈ IT . We define κx � y = S(x ∨ y). Then we have that

(κx � y) ∧ c = (x ∨ y) ∧ c
= x .

Besides we have that
(κx � y) ∨ c = (c ∧ ∼(x ∨ y)) → (x ∨ y)

= (c ∧ ∼y) → (x ∨ y)
= (c ∗ κ∼y) → (x ∨ y)
= κ∼y → (c → (x ∨ y))
= κ∼y → (c ∨ κ(x ∨ y))
= κ∼y → (c ∨ κx)
= κ∼y → (c → x)
= (c ∗ κ∼y) → x.

On the other hand,

x + (y ∨ c) = ∼(∼x ∗ (∼y ∧ c))
= ∼(∼x ∗ κ∼y ∗ c)
= (c ∗ κ∼y) → x .

So, (κx � y) ∨ c = x + (y ∨ c).
In second place, for any x ∈ T , we have that κx� y = κ(x∧ c)� y. Then

it suffices to define κx � y = S((x ∧ c) ∨ y) and the proof follows.
Conversely, let x ∈ MT . Then there is y ∈ IT such that x∨ c = y ∨ c. We

define Sx = κx � y. Then we have that

Sx ∧ c = (κx � y) ∧ c
= x ∧ c
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and
Sx ∨ c = (κx � y) ∨ c

= (c ∧ x) + (y ∨ c)
= ∼((c ∨ ∼x) ∗ (∼y ∧ c))
= ∼(∼x ∗ (∼y ∧ c))
= (c ∧ ∼y) → x
= (c ∧ ∼x) → x.

Remark 9. For (A, I) ∈ IMV we define a map � : K•(A, I) × K•(A, I) →
K•(A, I) by �((a, b), (d, e)) = (a⊕d, b·e). In order to prove the well definition
of this map, let i = a · b and j = d · e. Hence k = i ⊕ j ∈ I, and a ⊕ d ≤
(b → i) ⊕ (e → j) = (¬b ⊕ i) ⊕ (¬e ⊕ j) = ¬(b · e) ⊕ k = (b · e) → k. Thus,
(a ⊕ d) · b · e ≤ ((b · e) → k) · b · e ≤ k ∈ I. Therefore, (a ⊕ d) · b · e ∈ I.

Motivated by the Remark 9, we will extend the domain of � to T × T .
For T ∈ IMV• we define (if it is possible) a function � : T × T → T

through the following equalities:

(�1) (x � y) ∧ c = (x + y) ∧ c,

(�2) (x � y) ∨ c = (c ∗ x) + (y ∨ c).

Remark 10. The second equation above seems to be “asymmetric” in the
variables x and y. But

(c ∗ x) + (y ∨ c) = (c ∗ y) + (x ∨ c).

Indeed,

(c ∗ x) + (y ∨ c) = ∼(∼(c ∗ x) ∗ (∼y ∧ c))
= ∼((c → ∼x) ∗ (κ∼y ∗ c))
= ∼((c ∗ (c → ∼x)) ∗ κ∼y)
= ∼((c ∧ ∼x) ∗ κ∼y)
= ∼((κ∼x ∗ c) ∗ κ∼y)
= c → (λx + λy).

As we can see, in the last equation there is not any distinction between x
and y.

Then we have the following

Proposition 4. Let T ∈ IMV•. Then T satisfies the condition (ICK•) if
and only if there exists the map � : T × T → T which satisfies (�1) and
(�2).
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Proof. Suppose that T satisfies the condition (ICK•). By Corollary 11 we
have that the map βT : T → K•(κ(T ), JT ) is an isomorphism, so by Remark
9 we have that there is �̂ in K•(κ(T ), JT ) which satisfies the conditions
(�1) and (�2). We shall prove that the map � : T × T → T is given by
z � w = β−1

T (x�̂y), where z = β−1
T (x) and w = β−1

T (y). First note that
β−1

T preserves all the operations of the algebra (in particular, it preserves +
because this operation is defined using ∗ and ∼). Thus we have that

(z � w) ∧ c = (β−1
T (x�̂y)) ∧ c

= β−1
T (x�̂y) ∧ β−1

T (c)
= β−1

T ((x�̂y) ∧ c)
= β−1

T ((x + y) ∧ c)
= (β−1

T (x) + β−1
T (y)) ∧ β−1

T (c)
= (z + w) ∧ c.

Besides we have that

(z � w) ∨ c = (β−1
T (x�̂y)) ∨ c

= β−1
T (x�̂y) ∨ β−1

T (c)
= β−1

T ((x�̂y) ∨ c)
= β−1

T ((x ∗ c) + (y ∨ c))
= (β−1

T (x) ∗ β−1
T (c)) + (β−1

T (y) ∨ β−1
T (c))

= (z ∗ c) + (w ∨ c).

Conversely, if there exists � : T × T → T which satisfies (�1) and (�2),
then there exists � : κ(T ) × IT → T which satisfies (�κ1) and (�κ2).
Therefore, by Proposition 5 we have that T satisfies the condition (ICK•).

Proposition 5. Let T ∈ IMV•, and let βT be the morphism given in
Theorem 5. The following conditions are equivalent:

(1) βT is a surjective map.

(2) For every z, w ∈ κ(T ) such that z ∗ w = λy and y ∧ c = 0 for some
y ∈ T , there is x ∈ T such that λx = z and ∼κx = w.

(3) T satisfies (ICK•).

(4) There exists a function S : MT → T that satisfies (S1) and (S2).

(5) There exists a map � : κ(T ) × IT → T that satisfies (�κ1) and (�κ2).

(6) There exists a map � : T × T → T that satisfies (�1) and (�2).

Proof. The equivalence between (1) and (2) follows from the definition
of βT .
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(2) ⇒ (3). Let z, w ≥ c such that (z ∗ w) ∨ c = y ∨ c and y ∧ c = 0, for
some y ∈ T . We define z = λz and w = λw. It is immediate that z ∗w = λy.
Thus, there is x ∈ T such that λx = z and ∼κx = w. Hence, x ∨ c = z and
∼x ∨ c = w. Thus, we have shown the condition (3).

(3) ⇒ (2). Let z, w ∈ κ(T ) such that z ∗ w = λy and y ∧ c = 0, for
some y ∈ T . We define t = z ∨ c and u = w ∨ c. We have that t, u ≥ c. As
c ∗ (z ∨ w) = z ∨ w, we obtain and t ∗ u = (z ∗ w) ∨ c = λy ∨ c = y ∨ c. Then,
there is x ∈ T such that x ∨ c = z ∨ c and ∼x ∨ c = w ∨ c. It follows from
properties of κ the fact that λx = z and ∼κx = w. Hence, we have proved
the condition (2).

The equivalence between (3) and (4) follows from Lemma 8, and the
equivalence between (4) and (5) follows from Lemma 4. Finally, the equiv-
alence between (3) and (6) follows from Proposition 4.

Therefore we conclude the following

Corollary 11. There is an equivalence between the category IMV and the
the full subcategory of IMV• whose objects satisfy the conditions (2), (3),
(4), (5) or (6) of Proposition 5.

Let f : T → U be a morphism in the category IMV• where the objects
satisfy the condition (ICK•). Then, by the proposition above, there exist
the binary operations � and �̂ on T and U (respectively). Straightforward
computations show that for every x, y ∈ T we have that f(x � y) ∧ c =
(f(x)�̂f(y))∧c and f(x�y)∨c = (f(x)�̂f(y))∨c, so f(x�y) = f(x)�̂f(y).
Then we obtain the following

Corollary 12. The class of algebras of IMV• which satisfy (ICK•) is
a variety if we consider � in the signature of the algebras. Moreover, the
category associated to the previous variety is equivalent to IMV.

5. Final Remarks

In this section we are looking for answers for the following questions:

(1) When does an object of IMV• satisfy the equation x ∗ 1 = x?

(2) What properties are satisfied by the binary operation �?

We start with the following

Lemma 13. Let T ∈ IMV• and x ∈ T . Then x ≤ x ∗ 1.
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Proof. Let x ∈ T . Thus, by Corollary 2 we have that

(x ∗ 1) ∧ c = ((x ∧ c) ∗ 1) ∨ ((1 ∧ c) ∗ x)
= (c ∗ (c → x) ∗ 1) ∨ (c ∗ x)
= (c ∗ (c → x)) ∨ (c ∗ x)
= (c ∧ x) ∨ (c ∗ x) ≥ c ∧ x.

Besides we have that ((x ∗ 1) ∨ c) ∗ c = (x ∗ 1) ∗ c = x ∗ c = (x ∨ c) ∗ c.
By distributivity we conclude that x ≤ x ∗ 1.

Lemma 14. Let T ∈ IMV• and x ∈ T . The following conditions are equiv-
alent:

1. c ∗ x ≤ x.

2. c ∗ x ≤ c ∧ x.

3. x → x = 1, i.e., x ∗ 1 ≤ x.

Proof. 1. ⇒ 2. We have that c ∗ x ≤ x and c ∗ x ≤ c, i.e., c ∗ x ≤ c ∧ x.
2. ⇒ 1. It is immediate.
1. ⇒ 3. We have that c∨(x → x) = x → x, i.e., 0 = c∧(x∗∼x) = x∗∼x.

Hence, x → x = 1.
3. ⇒ 1. It is immediate.

For T ∈ IMV• and x ∈ T , we have that x ∗ 1 ≤ x if and only if x ∗ 1 = x.
Then we have the following

Corollary 15. Let T ∈ IMV•. Then T ∈ MV• if and only if for any x it
holds the condition (1), (2) or (3) of Lemma 14.

We end this paper doing some final considerations about the operation
� : T × T → T .

Lemma 16. Let T ∈ IMV•. Then for every x, y ∈ T we have the following
conditions:

1. (c ∗ x) + (y ∨ c) = c → (λx + λy) = c ∨ (λx + λy).

2. If there exists the map � then λ(x � y) = λx � λy.

Proof. 1. Let x, y ∈ T . It follows from Remark 10 that (c ∗ x) + (y ∨ c) =
c → (λx + λy). Besides

c → (λx + λy) = c ∨ κ(λx + λy)
= c ∨ (κλx + κλy)
= c ∨ (λx + λy).
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2. Let x, y ∈ T . We have that

λ(x � y) ∧ c = ∼(c ∨ κ∼(x � y))
= ∼(c → ∼(x � y))
= c ∗ (x � y)
= c ∗ (c ∨ (x � y))
= c ∗ (c → (λx + λy))
= c ∧ (λx + λy)
= c ∧ (λx � λy),

and
λ(x � y) ∨ c = ∼(c ∧ κ∼(x � y))

= ∼(c ∧ ∼(x � y))
= c ∨ (x � y)
= c → (λx + λy)
= c → (λλx + λλy)
= (λx � λy) ∨ c.

Hence, λ(x � y) = λx � λy.

Proposition 6. Let T ∈ IMV• such that there exists �. Then �T, �, 0� is
a commutative monoid.

Proof. It is immediate that � is commutative.
Let x, y, z ∈ T . We will prove that � is associative.
First we have that

(x � (y � z)) ∧ c = (x + (y � z)) ∧ c
= c ∗ (c → (x + (y � z)))
= c ∗ ∼(c ∗ ∼x ∗ ∼(y � z))
= c ∗ ∼(c ∗ ∼x ∗ (c ∨ ∼(y � z)))
= c ∗ ∼(c ∗ ∼x ∗ ∼(c ∧ (y � z)))
= c ∗ ∼(c ∗ ∼x ∗ ∼(c ∧ (y + z)))
= c ∗ ∼(c ∗ ∼x ∗ (c ∨ (∼y ∗ ∼z)))
= c ∗ ∼(c ∗ ∼x ∗ (∼y ∗ ∼z)).

By this reason we also have that

((x � y) � z) ∧ c = (z � (x � y)) ∧ c
= c ∗ ∼(c ∗ ∼z ∗ (∼x ∗ ∼y)).

Thus, using the associativity and commutativity of ∗ we obtain

(x � (y � z)) ∧ c = ((x � y) � z) ∧ c. (3)
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Second, we have that

(x � (y � z)) ∨ c = c → (λx + λ(y � z))
= ∼(c ∗ ∼λx ∗ ∼λ(y � z))
= ∼(c ∗ ∼λx ∗ (c ∨ ∼λ(y � z)))
= ∼(c ∗ ∼λx ∗ ∼(c ∧ λ(y � z)))
= ∼(c ∗ ∼λx ∗ ∼(c ∧ (λy � λz)))
= ∼(c ∗ ∼λx ∗ ∼(c ∧ (λy + λz)))
= ∼(c ∗ ∼λx ∗ (∼λy ∗ ∼λz)).

Besides we have that
((x � y) � z) ∨ c = (z � (x � y)) ∨ c

= ∼(c ∗ ∼λz ∗ (∼λx ∗ ∼λy)).

Hence, using again the associativity and commutativity of ∗ we obtain

(x � (y � z)) ∨ c = ((x � y) � z) ∨ c. (4)

Then by Eqs. (3) and (4) we obtain x � (y � z) = (x � y) � z.
Finally we will prove that x � 0 = x for every x ∈ T . We have that

(x � 0) ∧ c = (x + 0) ∧ c
= c ∗ (c → (x + 0))
= c ∗ ∼(c ∗ (∼x) ∗ 1)
= c ∗ ∼(c ∗ ∼x)
= c ∗ (c → x)
= x ∧ c,

and
(x � 0) ∨ c = c → (λx + 0)

= c → λx
= ∼(c ∗ κ∼x)
= ∼(c ∧ ∼x)
= x ∨ c.

Therefore, we obtain that x � 0 = x.
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