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ABSTRACT: We present a comprehensive experimental study of thermodynamic and
rheological properties of semidilute polymer solutions in good solvent. Osmotic pressure
and viscosity measurements have been done in several polymer-solvent systems at
different temperatures. A renormalization group technique was applied to analyze the
data using de Gennes’s blobs model to connect dynamic and conformational quantities.
The behavior of polymer systems in the whole range from dilute to semidilute solutions
can be satisfactorily described using only a few nonuniversal quantities experimentally
determined. An adequate agreement between experiments and theory was found,
showing universal behavior with a system-dependent constant b that does not depend
on molecular weight or concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B:
Polym Phys 40: 290–301, 2002
Keywords: heterogenous polymers; viscosity; thermodynamics

INTRODUCTION

It has been known for a long time that polymer
solutions show universal behavior; macroscopic
properties depend on variables such as molecular
weight and concentration through general rela-
tionships that hold for a wide range of chemically
different systems.1–3 The details of the micro-
scopic interactions (system and temperature de-
pendent) are hidden in a few nonuniversal con-
stants. The power laws (such as Flory’s equation)
derived from scaling arguments are perhaps the
best known manifestation of universality.

However, power laws are only valid in the lim-
iting cases of infinitely dilute and semidilute so-
lutions. In the crossover region universality still
holds, but the scaling hypothesis is not valid, and
the relations do not have a simple form. The pow-
erful renormalization group (RG) techniques are
needed to derive these relations from a micro-
scopic model.4,5 Power laws are then obtained in
the appropriate limits.

To date, reasonable understanding of dilute
solutions exists, and extensive experimental in-
formation allows the prediction of their properties
from the knowledge of a few nonuniversal quan-
tities.6,7 Progress has also been made in the de-
scription of semidilute solutions, and now ther-
modynamic and conformational properties can be
similarly accounted for.8–11 The treatment of dy-
namic properties, on the other hand, is more dif-
ficult because of the screening of the hydrody-
namic interaction.12–14

Despite these progressions, we feel that from
the experimental point of view a comprehensive
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analysis is still required. In a previous article11

we presented an analysis of viscosity and dielec-
tric relaxation times of cellulose trinitrate solu-
tions on the basis of RG results. Here we attempt
to consider static and dynamic data under a com-
mon scheme. We report extensive experimental
measurements of osmotic pressure and Newto-
nian viscosity of polymer solutions across the di-
lute–semidilute transition, comprising several
chemically different systems and temperatures.
Results are analyzed using the renormalization
group scheme developed by Schäfer that allows
the computation of quantities such as osmotic
pressure and radius of gyration. To extend our
study to dynamic properties, a relationship be-
tween them and conformational properties was
established using scaling arguments from the de
Gennes’s blob model. Nonuniversal quantities
were identified and calculated, showing that the
overall behavior can be satisfactorily described.

Elsewhere we have applied the same scheme to
the description of thermodynamic and rheological
properties of ternary polymer solutions, thus
achieving a unified approach to the description of
all these systems.15

This article is organized as follows. First, we
summarize the relevant RG results. Second, we
give details on the samples and experimental
measurements. Third, we discuss the results and
finally our conclusions.

THEORETICAL BACKGROUND

Experimentally, it has been well established that
from the dilute to the semidilute regime, macro-
scopic properties of polymer solutions are univer-
sal functions of the overlap parameter c/c*, where
c* is a critical concentration at which the polymer
coils begin to overlap.16,17 c* is usually defined as

c* 5
3M

4pSG,0
3 NA

(1)

where M is the molar mass of the solute, NA is
Avogadro’s number, and SG,0 is the radius of gy-
ration of a single chain.

A few years ago, Schäfer developed a renormal-
ization group approach for the description of con-
formational and thermodynamic universal prop-
erties of polymer solutions.8–10 This theory pro-
vides a unified treatment of temperature and
concentration crossover of excluded volume inter-

actions, providing a single computational scheme
for all physically observable quantities. The sys-
tem is described using the well-known Gaussian
model with excluded volume interactions. The
polymer chain is characterized by a microscopic
length l and a quantity m,18 representing the
strength of the two-body interaction in the cluster
expansion. The solution is defined by the number
concentrations of polymer chains cp, a number-
average chain length N, and a chain-length dis-
tribution P(n).

In this scheme,9 all macroscopic quantities can
be expressed in terms of two variables, f and w. f
is related to the excluded volume interaction, and
it is normalized so that f 5 0 in the Q state and f
5 1 in the good solvent limit. Variable w must be
introduced in the description of the concentration
crossover to consider the screening of the ex-
cluded volume. Because the interactions are
screened beyond the correlation length j, the
renormalization procedure must be carried out
until the characteristic length l essentially coin-
cides with j (j approaches SG in the infinite dilu-
tion limit). Because j depends on both molecular
weight and concentration, this requires the intro-
duction of w. Variable w runs from 1 in the dilute
limit to 0 in the semidilute case. Thus, the RG
theory incorporates in a rigorous way the concept
of blobs.9

Physical quantities are obtained as a perturba-
tive series in w and f. Perturbative results are
generally available up to first order. Second-order
calculations exist for osmotic pressure in some
particular cases, but we prefer to use the first-
order expansion to compare the results of differ-
ent properties.

The connection with experiment is realized by
writing measurable variables cl and N (cl 5 cp z N)
in terms of w and f. The procedure is called a
mapping of unrenormalized (or bare) variables
onto renormalized scaling field ones and needs
the introduction of two nonuniversal scale func-
tions sN and sl that absorb the microscopic details
of the systems. Except for the value of these func-
tions, the (cl, N) dependence is universal.

An experiment traces out a path in w-f space,
called a crossover diagram.9 In particular, start-
ing from a dilute solution (w 5 1) in the excluded
volume regime (f 5 1) and increasing the concen-
tration, a double crossover can be observed; there
is a concentration transition (w 5 1 3 w 5 0) in
the excluded volume regime (f 5 1) followed by a
“temperature” crossover in the semidilute regime
(w 5 0). Actually, the path is not a step function
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in w-f space, that is, both variables change simul-
taneously. However, at high molecular weights
the first crossovers happens much more quickly
than the second, and it is correct to speak of a
double crossover to a good approximation. As a
result of the molecular weights and concentration
ranges covered in these experiments, the second
crossover is not observed, and it is reasonable to
use f 5 1. In this limit, the universal functions
take the simplest form. On the one hand, f drops
out and we are left with expansions of all observ-
ables in terms of w only. On the other hand, both
nonuniversal scaling functions sN and sl are com-
bined in a single quantity B 5 slsN

n, where n
5 0.588 is the excluded volume critical exponent.
The mapping between w and the experimental
variables (c } cl, Mn } N) is then obtained through
the overlap parameter s (} c/c*) that for f 5 1 is
written as9

s 5 0.5~1 2 w!w123nS9
8 1

1
4

w1/2

1 1 w1/2D 3n

(2)

in terms of w, and

s 5 b3cMn
3n21 (3)

where c is the polymer concentration in grams per
milliliter, and Mn is the number-average molecu-
lar weight. b (b } B) is the nonuniversal quantity
and cannot be calculated from theory but must be
determined by fitting experimental data to theo-
retical expressions. However, we note that b
should be independent of molecular weight and
concentration.

Once b is fixed, all observables become func-
tions of s parametrically through w.9 For in-
stance, the osmotic pressure P can be written as

P

P0
5

17
16 1

13~1 2 w!

32w 1
~1/8w 2 1/4!w1/2

1 1 w1/2 (4)

where P0 is Van’t Hoff’s value P0 5 RTc/Mn,
where R 5 8.314 J/(mol z K), and T is the absolute
temperature.

The radius of gyration is given by

S2

S0
2 5 1.30w213

w
9
8 1

1
4

w1/2

~1 1 w1/2!
4

2n @1 1 D~w!#

@1 1 D~1!#

(5)

where D(w) is a function of polydispersity, and S0
is the radius of gyration at infinite dilution. For
monodisperse systems D(w) is given by

D~w! 5 0.062 2 0.240w1/2 2 0.008w 1 0.265w3/2

2 0.142w2 (6a)

whereas for an exponential chain-length distribu-
tion19

D~w! 5 0.062 1 0.173w 2 0.141w2

~0 # w # 1! (6b)

We also use these results to interpret dynamic
properties. Using de Gennes’s reptation theory
(as has been done;11 see appendix), we can obtain
the following relationship between the radius of
gyration and the viscosity:

hsp

@h#c 5 SS2

S0
2D~3n24!/~2n21!

(7)

where hsp and [h] are the specific and intrinsic
viscosities, respectively. This approximate equa-
tion is obtained within the scaling theory in the
semidilute regime. It has the expected dilute and
semidilute limiting behavior (Zimm and de
Gennes, respectively). Because there are no rig-
orous RG results for the viscosity, we use it to
describe the full crossover.

Some remarks should be made regarding the
use of eq 7 in the crossover. As it is well known,
when the concentration increases, chains begin to
overlap, and the interactions within a chain are
modified by the presence of the other chains. The
static consequence is the screening of the ex-
cluded volume interactions, and the concomitant
dynamic feature is that the hydrodynamic inter-
action is also screened. The relaxation times
change from a Zimm behavior to a Rouse one. At
still higher overlap, chains begin to entangle and
reptation dynamics (de Gennes) sets in. In eq 7
the excluded volume screening is indirectly con-
sidered through the RG treatment of the radius of
gyration. This has the effect of smoothly interpo-
lating between the Zimm and de Gennes expo-
nents (see appendix). Although it is only a crude
approximation, it roughly gives the correct behav-
ior in the crossover, and we thus prefer to avoid
other procedures as explained in the ensuing dis-
cussion.
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From eqs 2, 3, and 5–7 the dilute limit for
viscosity (see appendix) is obtained as

hsp

c 5 @h# 2 2@h#~3n 2 4!~4/5!3ns 1 O~s2!

< @h# 2 2@h#~3n 2 4!~4/5!3nb3Mn
3n21c (8)

Comparing eq 8 with Schulz–Blaschke’s formula
(eq 11) and considering that [h] ’ hsp/c (as c3 0),
the constant kB can be written as

kB 5 3.017
Mn

3n21

@h#
b3 (9)

Equations 4, 7, and 9 give three different ways to
compute b. We have used these expressions in
many chemically different systems.

EXPERIMENTAL

Materials

To explore the applicability of the theoretical
framework discussed previously, we should study
as many polymer-solvent systems as possible. For
this study, we used poly(methyl methacrylate)
(PMMA), polystyrene (PS), poly(styrene-co-
methyl methacrylate) (CoSM) with compositions
ranging from 25 to 75%, and cellulose trinitrate
(CTN). For the solutions we used toluene, isopho-
rone (3,5,5-trimethylciclohexenone), and tetrahy-
drofuran (analytical grade, provided by Merck,
J. T. Baker, and Sintorgan) distilled before use.

Standard PS samples were obtained from Pres-
sure Chemical Co. PMMA and CoSM were syn-
thesized by mass radical polymerization with pu-
rified azobisisobutyronitrile (Merck) as a radical
initiator. Monomers were provided by Pasa (sty-
rene) and Fluka (methyl methacrylate). Both
were washed with a 10% sodium hydroxide solu-
tion to eliminate the inhibitor, then with distilled
water, finally dried with calcium chloride, and
distilled before use. Polymerization was carried
out under vacuum at 50 °C for PMMA and 40 °C
for CoSM. Reaction times (from 3 to 72 h) were
chosen to obtain a conversion no greater than
10%. After synthesis, the polymers were purified
by multiple reprecipitation in methanol.

The cellulose trinitrate samples were prepared
from native cotton as previously reported.20 With
this procedure, samples with a nitrogen content of

13.9 6 0.5% (corresponding to a substitution S
5 2,90 6 0,02) were obtained.

Characterization

Copolymer Composition

The composition of the copolymer samples was
determined by elemental chemical analysis or cal-
culated from the expression derived from the ter-
minal model of radical copolymerization.21 For
two monomers 1 and 2, the molar fraction of 1 in
the polymer is given by

N1 5
r1n1

2 1 n1n2

r1n1
2 1 2n1n2 1 r2n2

2 (10)

where n1 and n2 are the molar fractions of the
monomers in the reactive mixture, and r1 and r2
are the reactivity coefficients. In our case, 1 is
styrene and 2 is methyl methacrylate, and r1
5 0.52 and r2 5 0.46.22,23

Molecular Weight and Polydispersity

The Mn and viscometric (Mh) molecular weights
were measured for all samples. Mn’s for PMMA,
PS, and CoSM were calculated from membrane
osmometry measurements in toluene solutions at
36 °C. Mn values for CTN were obtained by means
of size exclusion chromatography of tetrahydrofu-
ran solutions. For three of the CTN samples, this
was also done from membrane osmometry in iso-
phorone solutions, prepared by shaking them for
48 h at 30 °C.

Mh values of all polymer samples were calcu-
lated from intrinsic viscosity through the Mark–
Houwink–Sakurada relationship [h] 5 k(Mh)a,
where k and a are system and temperature de-
pendent quantities. The values of k and a used
here are given in Table I.

Table II shows the characteristics of the ho-
mopolymer samples used in this work, whereas
Table III lists those of the copolymers.

Measurement

Osmotic pressure measurements were done with
Hewlett–Packard 501 and Knauer membrane os-
mometers. The regenerated cellulose membranes
were provided by Sartorius and Schleicher und
Schuell.

Intrinsic viscosity [h] was determined using
Schultz–Blaschke’s equation24
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hsp

c 5 @h# 1 @h#kBhsp (11)

where c is the solution concentration, hsp is the
specific viscosity, and kB is the Schultz–Blaschke
constant. hsp was measured with Ostwald viscom-
eters, where the flow time of the pure solvent was
always higher than 150 s; thus, kinetic energy
corrections could be neglected. Newtonian viscos-
ity was obtained with a Haake RV2 rotoviscom-
eter.

RESULTS

Osmotic Pressure

Osmotic pressure as a function of the concentra-
tion was measured from the dilute to the semidi-

lute regime. Some typical curves are shown in
Figure 1(a). Results can be plotted as function of
the overlap parameter s. This is made by means of
eqs 2–4, adjusting Mn and b for each sample
through a least-squares fit. As shown in Figure
1(b), all data collapse nicely onto a universal
curve that is well represented by the theoretical
expression. The overlap parameter can be consid-
ered a universal variable.

The values b obtained in this way are collected
in the first column of Table IV for all systems. We
expect from theory that b depends on tempera-
ture and chemical composition but not on molec-
ular weight. This independence of molecular
weight seems to hold, as can be seen in Figure 2
where values of b for CoSM50/50 in toluene are
shown as a function of Mn.

Newtonian Viscosity

Newtonian viscosity as a function of the concen-
tration was also measured for dilute through se-
midilute solutions. Figure 3(a) shows some typi-
cal curves. By using eqs 2, 3, and 5–7, a universal
curve can be constructed plotting hsp/(c[h]) as a
function of the overlap parameter s, where b is
calculated for each sample by doing a least-
squares fit. Figure 3(b) indicates the experimen-
tal data as a function of the universal variable s
together with the theoretical curve. A good fit to
the data is obtained despite the rather harsh ap-
proximations involved in eq 7. The corresponding
b values are given in Table IV. As before, b is
independent of molecular weight, as can be seen
in Figure 4 for CTN-isophorone.

Table I. Parameters of the
Mark–Houwink–Sakurada Equation

Systema
T

(°C)
103 k
(mL/g) a Reference

PMMA/chloroform 25 4.85 0.80 25
PMMA/toluene 30 7.0 0.73 22
PS/toluene 30 12.0 0.71 22
CoSM50/50/toluene 30 8.21 0.74 28
CTN/acetone 20 59.3 0.76 26, 27

a Values of k and a for samples of CoSM25/75 and CoSM75/25
are unknown. Hence, to characterize CoSM25/75, values of the
PMMA/chloroform system were used, whereas in the charac-
terization of CoSM75/25 we used values corresponding to
CoSM50/50/toluene.

Table II. Characteristics of the Homopolymer Samples Used in This Work

Sample 1023 Mn (g/mol)
1023 Mh

(g/mol) Mh/Mn Solvent
[h] (cm3/g)
(at 30 °C)

PMMA-288 288.7 6 0.1 551 6 4 1.91 6 0.01 — —
PMMA-336 336 6 13 577 6 11 1.72 6 0.10 Toluene 102 6 1
PMMA-559 599.7 6 0.6 1185 6 8 1.97 6 0.01 Chloroform 347 6 2
PMMA-801 801 6 2 1615 6 10 2.01 6 0.02 — —
PMMA-1201 1201 6 117 1838 6 28 1.55 6 0.17 Toluene 246 6 4
PS-300 300 6 4 792 6 18 2.64 6 0.09 Tolueneb 182 6 3
CTN-51 51.2 6 0.9 98 6 2 1.92 6 0.07 Isophorone 280 6 5
CTN-142 142.7 6 0.1 307 6 8 2.14 6 0.06 Isophorone 908 6 29
CTN-216 216.6 6 0.2 420 6 10 1.94 6 0.05 Isophorone 1111 6 5
CTN-277 277.8 6 0.6a 580 6 10 2.09 6 0.04 Isophorone 1479 6 15
CTN-447 447 6 11a 760 6 20 1.71 6 0.09 Isophorone 1778 6 30
CTN-575 575 6 14a 960 6 20 1.67 6 0.07 Isophorone 1839 6 22
CTN-626 626 6 16a 1040 6 30 1.67 6 0.09 Isophorone 2197 6 59

a From size exclusion chromatography.
b At 25 °C.
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Although it would be expected that the value of
b should not depend on the property being mea-
sured, we encounter different values when com-
puting b from osmotic pressure and viscosity. We
discuss this question subsequently.

Finally, we measured b as a function of tem-
perature for CTN-isophorone systems. Values of b
are given in Table V. A slight decrease is observed
in accordance with an exothermic behavior of the
solution.

Dilute Solution Viscosity

b can also be determined from viscosity of very
dilute solutions using eq 8. Values obtained in
this way are collected in the third column of Table
IV. Figure 5 depicts the fit for some representa-
tive samples. The value of b so obtained is com-
patible with that for semidilute solutions.

DISCUSSION AND CONCLUSIONS

We have presented an extensive experimental
study of thermodynamic and rheological proper-
ties of dilute to semidilute polymer solutions.
Data for several polymer-solvent systems at dif-
ferent temperatures were analyzed with renor-
malization group theory, using de Gennes’s blobs
model to connect dynamic and conformational
quantities. As seen in Figures 1(b), 3(b) (for the
dilute–semidilute crossover), and 5 (for the infi-
nitely dilute limit), a universal behavior is fol-

lowed that is well described by theoretical predic-
tions.

A nonuniversal quantity b related to the micro-
structural characteristics of the systems was de-
termined fitting experimental data to theoretical
expressions. As predicted by theory, b was inde-
pendent of molecular weight and concentration
(Figs. 2 and 4) and depended on the nature of the
systems. For the sake of comparison we summa-
rize the values of b for each system in Table VI.
One would expect (from the static RG theory at
least) that b would have the same value indepen-
dent of the measured property. However, we
found differences between the thermodynamic
and dynamic properties. This disagreement could
perhaps be ascribed to eq 7 that is derived from
scaling arguments and clearly does not consider
the screening of the hydrodynamic interaction at
the same level as the screening of the excluded
volume.

One would think of looking for an alternative
RG-based scheme to describe the simultaneous
screening of the excluded volume and the hydro-
dynamic interaction. At least one such scheme
exists, that of Shiwa and coworkers.12–14 Al-
though it is not a unified RG description (in the
sense that excluded volume is treated with RG,
whereas the hydrodynamic interactions are con-
sidered within the mode-coupling theory), it does
treat hydrodynamic screening in a theoretically
more satisfying manner. However, two universal
variables are still needed to describe the dynam-
ics and statics. This scheme has the advantage

Table III. Characteristics of the Copolymer Samples Used in This Work

Sample Comp.a 1023 Mn (g/mol) 1023 Mh (g/mol) Mh/Mn [h] (cm3/g)c

CoSM25/75-1078 0.33b 1078 6 245 2261 6 20 2.10 6 0.52 309 6 2
CoSM25/75-2460 0.33b 2460 6 954 3579 6 57 1.45 6 0.69 432 6 5
CoSM50/50-227 0.51b 227 6 47 415 6 9 1.83 6 0.08 118 6 2
CoSM50/50-272 0.51b 272 6 7 559 6 10 2.06 6 0.09 147 6 2
CoSM50/50-565 0.51b 565 6 57 1322 6 26 2.34 6 0.29 278 6 4
CoSM50/50-759 0.53 759 6 46 1633 6 34 2.16 6 0.18 325 6 5
CoSM50/50-906 0.53 906 6 60 1492 6 33 1.66 6 0.15 304 6 5
CoSM50/50-945 0.51 945 6 80 1777 6 35 1.88 6 0.20 346 6 5
CoSM50/50-1073 0.53 1073 6 163 1938 6 28 1.81 6 0.31 369 6 4
CoSM50/50-1082 0.53 1082 6 109 2474 6 53 2.29 6 0.28 430 6 8
CoSM75/25-546 0.69b 546 6 95 1335 6 19 2.44 6 0.42 280 6 3
CoSM75/25-647 0.69b 647 6 94 1599 6 34 2.47 6 0.42 320 6 5

a Styrene molar fraction.
b Calculated from eq 10.
c In toluene at 30 °C.
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that it is based on a static, mature RG theory that
can describe both temperature and concentration
crossovers, which considers polydispersity and
has been generalized to ternary systems. Also, on
the practical side, there is (to our knowledge) no

published expression for the osmotic pressure in
Shiwa’s scheme.

Improvements of eq 7 at this (non-RG) level are
possible. Clearly, several relaxation mechanisms
are found in the solution, and the viscosity is
determined by the characteristic times of all of
them, particularly in the crossover region. In par-
ticular, it is well known that a regime with Rouse
behavior exists between the Zimm and reptation
limits. One expects that explicit consideration of
this regime in the model could substantially alter
the dependence of Newtonian and intrinsic vis-
cosities on concentration and molecular weight.
Several models have been proposed to consider
the Rouse behavior.2,29–32 All of them decouple
the time dependence of the center-of-mass motion
(diffusion) from stress relaxation (viscosity) and
produce a pseudo 3.4 exponent. Accordingly, we
also considered a model (on the basis of Doi–
Edwards’s developments) to consider the Rouse
behavior,2,32 using the blob picture as shown in
the appendix to connect the parameters a and Ne
with S2 and S0

2 (eq A6) (see ref. 32 for details). One
arrives at the following relationship between vis-
cosity and radius of gyration (cf. with eq 7):

hsp

c@h#
5 SS2

S0
2D~3n24!/~2n21!H3F1 2 SS2

S0
2D1/~4n22!G3

1 SS2

S0
2D3/~4n22!J (12)

This equation correctly predicts a power law re-
lationship between viscosity and molecular
weight with a 3.4 exponent. The theoretical pre-
diction of eq 12 is represented as a dotted line in
Figure 3(b). Within the experimental range
(which covers essentially the transition between
dilute and semidilute regimes), a fit with this
model produces values of b 5–15% higher than
those found with eq 7. In the dilute limit, one
finds from eq 12

hsp

c < @h# 2 @h#~6n 2 5!~4/5!3nb3Mn
3n21c (13)

and with this equation we obtain values of b 45%
greater than those found with eq 9 (the values
obtained with eqs 12 and 13 remain compatible
with each other within experimental uncertain-
ties). Therefore, even if explicit inclusion of the
Rouse regime seems to improve the situation (in
the sense that b’s obtained from different proper-

Figure 1(a). Typical data for osmotic pressure:
PMMA-1201 in toluene at 36 °C (circles), CoSM50/50-
759 in toluene at 36 °C (squares), and CTN-142 in
isophorone at 30 °C (triangles). Figure 1(b). Universal
behavior of the osmotic pressure as function of the
overlap parameter s: PMMA-1201 in toluene at 36 °C
(circles), CoSM50/50-759 in toluene at 36 °C (squares),
and CTN-142 in isophorone at 30 °C (triangles). The
continuous curve is the theoretical prediction.
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ties are closer to each other), it is not enough to
explain the observed differences, at least at this
non-RG level and without introducing additional
adjustable constants.

To avoid introducing new fitting parameters,
we can stick to eq 7, which (although admittedly
crude in its approximations) gives a very simple
connection with the static RG theory. Then, ac-
cepting that a different constant is needed for
dynamic properties, a reasonable quantitative
agreement can be achieved within a unified
scheme. These results together with our previous
study11 of relaxation times seem to indicate that
one b is enough to describe all dynamic proper-
ties. In light of these results, we suggest that by
measuring two quantities btherm and bdyn, the
behavior of polymer solutions across the whole
dilute–semidilute crossover can be predicted in a
unified framework. This could considerably sim-

Table IV. Values of b for All Systems Used in This Work

Polymer Solvent b (Osmosis)
b (Newtonian

Viscosity)a
b (Dilute Solution

Viscosity)a

PS-300 Toluene 0.2137 (2)b — —
CoSM75/25-546 Toluene 0.22 (2)b 0.117 (5) —
CoSM75/25-647 Toluene 0.215 (5)b 0.120 (4) —
CoSM50/50-227 Toluene 0.205 (3)b — 0.118 (4)
CoSM50/50-272 Toluene 0.1992 (9)b 0.117 (1) 0.112 (5)
CoSM50/50-565 Toluene 0.204 (4)b — 0.108 (5)
CoSM50/50-759 Toluene 0.2043 (7)b 0.116 (2) 0.107 (5)
CoSM50/50-906 Toluene 0.204 (1)b — 0.100 (8)
CoSM50/50-945 Toluene 0.1890 (8)b 0.121 (3) 0.106 (5)
CoSM50/50-1073 Toluene 0.199 (2)b 0.118 (4) 0.110 (2)
CoSM50/50-1082 Toluene 0.202 (7)b 0.120 (3) 0.096 (3)
CoSM25/75-1078 Toluene 0.20 (3)b 0.106 (6) —
CoSM25/75-2460 Toluene 0.204 (5)b 0.10 (1) —
PMMA-336 Toluene 0.183 (4)b — —
PMMA-559 Toluene 0.165 (3)b — —
PMMA-801 Toluene 0.188 (2)b — —
PMMA-1201 Toluene 0.181 (4)b — —
PMMA-288 Isophorone 0.169 (4)a — —
CoSM25/75-1078 Isophorone — 0.116 (4) 0.09 (1)
CoSM25/75-2460 Isophorone — 0.103 (5) 0.075 (5)
CTN-51 Isophorone 0.275 (2)a — 0.200 (2)
CTN-142 Isophorone 0.31 (1)a 0.271 (5) 0.255 (9)
CTN-216 Isophorone 0.30 (1)a 0.269 (2) 0.205 (1)
CTN-277 Isophorone 0.350 (7)a 0.256 (1) 0.244 (1)
CTN-447 Isophorone — 0.274 (6) 0.255 (3)
CTN-575 Isophorone — 0.272 (4) 0.200 (2)
CTN-626 Isophorone — 0.297 (3) 0.221 (3)

Errors are given in parenthesis (precision in the last decimal place).
a T 5 30 °C.
b T 5 36 °C.

Figure 2. Dependence of b values, as determined
from osmotic pressure data, on molecular weight. Sys-
tem: CoSM50/50 in toluene at 36 °C.
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plify the experimental characterization of poly-
mer solutions, important for laboratory as well as
industrial applications.
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APPENDIX

Equation 7 is obtained as follows.11 According to
the reptation model, a chain occupies a tubelike

Figure 3(a). Typical data for Newtonian viscosity at
T 5 30 °C: CTN-142 in isophorone (circles), CoSM50/50-
759 in toluene (squares), and CoSM75/25-546 in toluene
(triangles). Figure 3(b). Universal behavior of viscosity
as function of the overlap parameter s at T 5 30 °C:
CTN-142 in isophorone (circles), CoSM50/50-759 in tol-
uene (squares), and CoSM75/25-546 in toluene (trian-
gles). The continuous curve is the theoretical prediction
according to eq 7, and the dotted line is the prediction
according to eq 12. The main figure shows the fit to eq
7, whereas the inset is the fit to eq 12.

Figure 4. Dependence of b values, as determined
from viscosity data, on molecular weight. System: CTN
in isophorone at 30 °C.

Table V. Values of b as a Function of Temperature,
from Newtonian Viscosity, for Cellulose Trinitrate-
Isophorone

Sample
T 5 20

°C
T 5 30

°C
T 5 50

°C
T 5 70

°C

CTN-51 0.226 (3) — — —
CTN-142 0.278 (2) 0.271 (5) 0.261 (3) 0.249 (6)
CTN-216 0.279 (2) 0.269 (2) 0.259 (4) 0.246 (4)
CTN-277 0.263 (2) 0.256 (1) 0.238 (2) 0.220 (5)
CTN-447 0.285 (4) 0.274 (6) 0.248 (8) 0.241 (6)
CTN-575 0.300 (6) 0.272 (4) 0.264 (8) 0.256 (9)
CTN-626 — 0.297 (3) 0.284 (2) 0.280 (3)

Errors are given in parenthesis (precision in the last dec-
imal place).
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region, which it vacates as it diffuses, creating a
new tube around itself. The dynamics of this pro-
cess were discussed by de Gennes33 to determine
the low-frequency properties of entangled poly-
mers using two concentration-dependent param-
eters a and Ne—the distance and the number of
monomers between entanglements. Consider a
chain that consists of a series of segments of size
proportional to a. The total number of segments is
proportional to N/Ne, and (assuming the hydrody-
namic interaction is not screened within the seg-
ments) the chain-friction coefficient fchain will be
(using the Stokes–Einstein relation)

fchain } 6phsaSN
Ne

D }
kT

Dtube
(A.1)

where N is the number of monomers, and hs is the
solvent viscosity. To disengage from a given tube,
the molecule must diffuse a distance of the order
of the chain length a N/Ne. Therefore, the longest
relaxation time tr will be

tr }
1
2

Sa
N
Ne

D2

Dtube
(A.2)

The polymer contribution to the solution viscos-
ity, h 2 hs is obtained by assuming a Maxwell
fluid

h 2 hs } trG (A.3)

where G is the relaxation strength associated
with tr, and h is the solution viscosity. Assuming
that the instantaneous network of entanglements
behaves like a rubber, the modulus G is propor-
tional to the number concentration of entangle-
ments34

G }
c

Ne
(A.4)

where c is the weight polymer concentration.
From eqs A1–A4 it is possible to obtain the re-
duced viscosity

hsp

c }
SNa

Ne
D3

Ne
(A.5)

Figure 5. Universal behavior in the dilute limit at T
5 30 °C: CTN-142 in isophorone (circles), CoSM25/75-
2460 in isophorone (squares), and CTN-447 in isopho-
rone (triangles). The continuous curve is the theoretical
prediction, eq 8.

Table VI. Summary of b for Each System

Polymer Solvent T (°C) b (Osmosis)
b (Newtonian

Viscosity)
b (Dilute Solution

Viscosity)

PS Toluene 36 0.2137 (2) — —
CoSM75/25 Toluene 36 0.22 (1) 0.118 (6)a —
CoSM50/50 Toluene 36 0.200 (6) 0.118 (5)a 0.11 (1)a

CoSM25/75 Toluene 36 0.20 (3) 0.10 (1) —
PMMA Toluene 36 0.18 (1) — —
PMMA Isophorone 30 0.169 (4) — —
CoSM25/75 Isophorone 30 — 0.11 (1) 0.08 (2)
CTN Isophorone 30 0.31 (3) 0.27 (2) 0.22 (3)

a T 5 30 °C.
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To arrive at an expression in terms of molecular
parameters, we argue that a is proportional to the
correlation length, identifying the segments of the
entanglement picture with the blobs of the static
description of semidilute solutions.35 Thus, the
scaling relations of the blob picture allow us to
write

a } Ne
n; S0 } Nn; S } aSN

Ne
D1/2

(A.6)

From eqs A5 and A6 we then obtain

hsp

c }
S0

3

N SS2

S0
2D~3n24!/~2n21!

(A.7)

Although obtained for the semidilute solution, eq
A7 has the correct dilute solution behavior,
namely, Zimm’s result

@h# }
S0

3

N (A.8)

Then eqs A7 and A8 lead to eq 7, where we use an
equals sign because the proportionality constant
must be 1, as seen from the infinite dilution limit.

Equation 7 yields de Genne’s relation in the
semidilute limit (w 3 0; s 3 ‘); then

hsp/~c@h#! } w~3n24! } s~~3n24!/~123n!! (A.9)

and so

hsp 3 M3c3/~3n21! ~w 3 0! (A.10)

We use this equation across the whole crossover,
although clearly outside the range of validity of
the arguments used to obtain it. As shown, the
dilute and semidilute limits are described cor-
rectly. In the crossover region, the renormaliza-
tion group (RG) expression has the effect of inter-
polating smoothly between the limits.

Finally, to obtain the dilute limit (w3 1) of eq
7, we begin expanding eq 2 up to first order in (1
2 w) to get

s 5
1
2 S5

4D
3n

~1 2 w! 1 O~1 2 w!2 (A.11)

Then the radius of gyration (eq 5) is written at
first order as

S2

S0
2 5 1 1 ~2n 2 1!~w 2 1! 1 O~w 2 1!2 (A.12)

where we have neglected the influence of polydis-
persity, [1 1 D(w)]/[1 1 D(1)] ’ 1. Equations A11,
A12, and 7 then yield eq 8.
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solutions see Kappeler, C.; Schäfer, L. Macromole-
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