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Abstract

Background: Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among
gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater
ecosystems and many species are ecologically and economically important. Ampullariids exhibit various
morphological and physiological adaptations to their respective habitats, which make them ideal candidates for
studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the
biogeography of native and invasive populations. The limited availability of genomic data, however, hinders
in-depth ecological and evolutionary studies of these non-model organisms.

Results: Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails.
Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome
assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages
and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading
frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to
1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI’s non-redundant,
Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes. With these data we developed
AmpuBase, a relational database that features online BLAST functionality for DNA/protein sequences, keyword
searching for unigenes/functional terms, and download functions for sequences and whole transcriptomes.

Conclusions: In summary, we have generated comprehensive transcriptome data for multiple ampullariid genera
and species, and created a publicly accessible database with a user-friendly interface to facilitate future basic and
applied studies on ampullariids, and comparative molecular studies with other invertebrates.

Keywords: (3 to 10) biological invasion, Caenogastropoda, Genomic database, RNA-Seq, Lanistes, Pila, Asolene,
Marisa, Pomacea

Background
Apple snails are a family (Ampullariidae) of snails
belonging to Caenogastropoda, the largest and most
diverse clade within the class Gastropoda [1–3]. Apple
snails seem to have originated on Gondwana [4], with
the oldest fossils coming from Early Cretaceous deposits
in Africa [5]. After the breakup of Gondwana roughly

100 million years ago, apple snails have undergone diver-
sification in the New World and Old World respectively
[4, 6]. Currently, around 120 species of apple snails are
recognised in nine genera, including the Old World gen-
era Afropomus, Forbesopomus, Lanistes, Pila and Saulea,
and the New World genera Asolene, Felipponea, Marisa
and Pomacea [7]. In what follows we abbreviate
Pomacea, but not Pila to avoid confusion of these two
genera. Ampullariids are distributed in a wide variety of
freshwater habitats, including swamps, wetlands, lakes
and rivers [7–9]. Members of the family exhibit a wide
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range of morphological, behavioural and physiological
adaptations to their inhabited environments [10, 11]. For
example, the evolutionary radiation of Lanistes in Lake
Malawi contains species with contrasting morphological
and behavioural features that have been interpreted as
differential adaption to habitats which differ in wave ac-
tion, food resources, and predators [9, 12]. Due to their
long evolutionary history, wide geographic distribution
and high diversity, Hayes et al. [4] suggested that ampul-
lariids altogether provide an interesting system to study
speciation and phylogeography in freshwater gastropods.
Furthermore, several species of apple snails, especially P.
canaliculata and P. maculata, are notorious invasive
species in Asia and Hawaii, where they cause dramatic
agricultural losses [10, 13], and other conservation con-
cerns such as reductions in aquatic plant diversity and
shift in wetland ecosystem functions [14, 15]. Therefore,
there is substantial interest in the mechanisms of adapta-
tion that have enabled these species to become invasive
pests [16, 17], and in their biological control [18, 19].
Ampullariids are well-known for their diverse repro-

ductive behaviours. While they are all dioecious and
most genera of apple snails deposit their eggs in a jelly
mass underwater, two genera (i.e., Pomacea and Pila)
produce calcareous egg clutches that are deposited
above the waterline. The shift from aquatic to aerial
oviposition thus has occurred at least twice in the evolu-
tion of ampullariids, indicating parallel evolution in the
genera Pomacea and Pila with respect to the changes in
egg deposition behaviour and morphology (e.g., larger
lung size and longer siphons [10]). Such behavioural and
morphological adaptations in Pomacea are known to be
accompanied by biochemical adaptations to predation
[20]. In this regard, studies of several Pomacea species
have shown that the major proteins of the egg perivitel-
line fluid (PVF), the fluid that surrounds and nourishes
the embryo, possess multiple protective functions
against predators including several anti-predation pro-
teins (perivitellins) displaying anti-digestive, anti-
nutritive, neurotoxic and aposematic properties [20–23].
Comparison between the protein-coding genes of P.
canaliculata and P. maculata has revealed the involve-
ment of gene duplication and positive selection in the
formation and evolution of some PVF proteins [24, 25].
Further comparison with more distantly related genera/
species would yield novel insights into the origin and evo-
lution of PVF proteins that may underlie the diversity of
reproductive behaviour and morphology in apple snails.
Apart from their use in ecological and evolutionary stud-

ies, some ampullariids, including P. canaliculata and M.
cornuarietis, have been used in toxicological studies due to
their high fecundity and the high sensitivity of their juve-
niles to pollutants such as heavy metals [26], organic pesti-
cides [27] and organotins [28]. Mortality and deficiencies

of growth or development have typically been considered
to be informative toxicity end-points. Nevertheless, the
lack of extensive genomic resources hinders the documen-
tation of molecular pathways in toxicological studies of
apple snails.
To facilitate molecular-oriented studies on apple

snails, we sequenced the transcriptomes of seven species
of apple snails: Lanistes nyassanus; Pila ampullacea;
Asolene platae; Marisa cornuarietis; Pomacea diffusa;
Pomacea scalaris and Pomacea canaliculata. Together
with our previously generated RNA-Seq data for P.
canaliculata [29] and P. maculata [25], we cover eight
species which represent five genera (Fig. 1a) and both
the New World and Old World clades. Among the Old
World species are L. nyassanus, a species endemic to
Lake Malawi in the East African Rift [9, 30]; and Pila
ampullacea, a common species in the paddy fields and
irrigation channels of northern Thailand [31]. Among
the New World species, A. platae is restricted to the La
Plata River basin and has a distribution range from
Bolivia to the northern Buenos Aires province of
Argentina [32]; this species has a slower growth rate and
smaller reproductive output than other ampullariids and
probably less invasive [33]. The other five species have
been introduced from South America to various fresh-
water ecosystems in North America, Asia and Pacific
islands including Hawaii [10, 13, 34, 35]. Following their
introduction, two species of Pomacea (i.e., P. canalicu-
lata and P. maculata) have become widely distributed
and they are regarded as some of the most notorious in-
vasive species in freshwater habitats [7, 34, 36, 37]. Our
species selection thus covers the various phylogenetic
lineages, the diversity of reproductive strategies, the
most important invaders, and members that are com-
monly adopted in ecotoxicology. Fig. 1b shows the
phylogenetic relationships among the species used in
this study, whereas a phylogeny featuring more extensive
taxon sampling is presented in Additional files 1 and 2.

Construction and content
Sample collection and preparation
Adult snails were collected from the field in various re-
gions of South America, Africa and Asia, or purchased
from an aquarium shop in Hong Kong (Table 1). All
snails were reared in aquaria filled with tap water and
acclimated for at least one month at 26 ± 1 °C and a
photoperiod of 14 h light/ 10 h dark. Snails were fed
with a mixed diet of lettuce, carrot and fish meal once a
day and the water was renewed twice a week. For most
of the species, four to five female and male snails were
chosen for dissection to obtain various tissues. For L.
nyassanus, however, due to limited individuals available,
only a female was used for dissection. Dissected tissues
were immediately fixed in RNAlater™ (Invitrogen, USA)
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and then stored at − 20 °C until they were subjected to
RNA extraction.

RNA isolation and sequencing
Total RNA was extracted separately from each tissue
sample using TRIzol® reagent (Invitrogen, MA, USA)
following the manufacturer’s protocol. In general, two
RNA samples, including one of the albumen gland (AG),
and one of other tissues (OT), which contained equal
amounts of RNA extracted from three to four tissue
types, were prepared for sequencing (Table 1). AG was
always processed separately, because this organ, which
secrets the perivitelline fluid that protects and nourishes
the embryo, is expected to play a crucial role in the
reproduction and evolution of ampullariids [24, 25, 38].
More tissue types of P. canaliculata were sequenced due
to the need for producing tissue-specific gene expression
data in another project for this species. To enhance the
comprehensiveness of the transcripts for P. canaliculata,

we combined our new data with the transcriptome data
we generated from a previous study [29] for assembly.
The transcriptome data of P. canaliculata from another
study [39] were not included here because of uncertainty
of sample preparation, and because more data would not
likely improve the assembly metrics [40]. Raw reads of
P. maculata were obtained from a recent publication
[25], and re-assembled as described below. In P. scalaris,
only AG was sequenced due to the lack of high quality
RNA in OT preserved in RNAlater. For all samples, the
quality of extracted RNA was determined using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Germany).
Samples with an RNA Integrity Number ≥ 8 were used for
cDNA library construction using a TruSeq RNA Sample
Prep Kit v2 (Illumina, California, USA), and sequenced in
paired-end mode on an Illumina HiSeq sequencer
(Illumina, California, USA). Library construction and
sequencing were conducted by BGI Hong Kong as a com-
mercial service.

a

b

Fig. 1 Geographical distribution and phylogeny of apple snails used in the present study. a Rough native distribution ranges of the Old World
(Lanistes and Pila) and New World (Asolene, Marisa and Pomacea) genera/species [7, 56]. b A maximum likelihood tree showing the phylogenetic
relationship among the eight species of ampullariids based on sequences of three genes used in previous phylogenetic studies of ampullariids [6,
52]. Methodological details for the phylogenetic analysis can be found in Additional file 1. Bootstrap support values are shown, as is a scale bar of
0.05 substitution per site. Photo credit: L. nyassanus, Pila ampullacea and M. cornuarietis (JCHI); A. platae and P. scalaris (SI); P. canaliculata, P.
maculata and P. diffusa (HM)
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Transcriptome assembly and annotation
Illumina raw reads were cleaned by removing adaptor
sequences, reads with > 5% unknown “N” bases or > 20%
bases with a quality score ≤ 10 (Table 1). Trimmomatic
v0.33 was then used to further remove low quality reads
with a quality score < 20 and a length < 40 base pairs
(bp) [41]. For each species, clean reads from different
tissue samples were pooled for de novo assembly using
Trinity 2.2.0 under default settings [42]. The assembled
transcripts (ranging from 126,582 to 388,329; Table 2)
were clustered with CD-HIT-EST 4.6.6 to reduce redun-
dancy using a threshold of 95% sequence similarity [43].
Open reading frames (ORFs) were predicted with Trans-
Decoder 3.0.0 (https://transdecoder.github.io/) using a
threshold of ≥100 amino acids. Only the single best ORF
per transcript was retained. The longest ORF in each
gene cluster was selected as the unigene. Expression

levels were estimated as transcripts per kilobase million
read (TPM) using Salmon 0.7.2 [44], and unigenes with
TPM less than 0.5 were considered as non-expressed
[25]. The level of completeness of our eight assembled
transcriptomes was evaluated using BUSCO (bench-
marking universal single-copy orthologs) v1.1b [45].
Predicted protein sequences were annotated using

BLASTp 2.4.0+ [46] against NCBI’s non-redundant (nr)
database with an E-value of 1 × 10− 5. Gene Ontology
(GO) function for each unigene was assigned using
Blast2GO [47] with BLASTp nr input. Sequences were
also submitted to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) Automatic Annotation Sever (http://
www.genome.jp/kegg/kaas/) to determine their func-
tional relationships using the bi-directional best-hit
method. References for the KEGG annotation included
the default representative eukaryotic genomes as well as

Table 1 A summary of transcriptome data from eight apple snails used for database construction. Tissues: albumen gland (AG), digestive
gland (DG), foot (F), gill (G), lung (L), mantle (M), kidney (K), stomach (S), testis (T) and other tissues (OT; including DG, F, M and T)

Species (SRA accession No.) Sampling location Tissue Platform Length (bp) Clean read (bp) Q20 (%) GC (%)

Old World

Lanistes nyassanus Dohrn,
1865 (SRP127201)

F4 or F5 offspring from a lab inbred
population; originally collected from
Lake Malawi, Africa

AG Hiseq2000 100 36,892,514 97.89 47.34

OT without T Hiseq2000 100 39,555,832 98.04 45.12

Pila ampullacea
(Linnaeus, 1758) (SRP127221)

Wild-caught from Nong Phok
District, Roi Et Province, Thailand

AG Hiseq4000 100 78,216,048 98.66 46.44

OT Hiseq4000 100 82,268,586 98.76 44.34

New World

Asolene platae (Maton,
1809) (SRP127224)

Wild-caught from Lago de Regatas,
Buenos Aires, Argentina

AG Hiseq2000 90 47,404,352 96.8 46.08

AG Hiseq4000 100 69,830,648 98.89 45.95

OT without T Hiseq4000 100 97,420,524 99.18 45.42

Marisa cornuarietis
(Linnaeus, 1758) (SRP127203)

Aquarium shop, Mong Kok, Hong
Kong

AG Hiseq2000 90 51,889,926 97.55 46.11

OT Hiseq2000 90 53,590,040 96.62 45.24

Pomacea diffusa Blume,
1957 (SRP127204)

Aquarium shop, Mong Kok, Hong
Kong

AG Hiseq2000 90 54,266,010 97.71 44.11

OT Hiseq2000 90 54,579,594 96.91 44.91

Pomacea scalaris
(d’Orbigny, 1835) (SRP127220)

Wild-caught from Lago de Regatas,
Buenos Aires, Argentina

AG Hiseq2000 90 72,341,892 98.43 43.05

Pomacea canaliculata
(Lamarck, 1819) (SRP127216)

Wild-caught from Sheung Shui,
Hong Kong

AG Hiseq2500 125 50,399,554 97.90 45.04

DG Hiseq2500 125 45,063,414 97.78 49.34

F Hiseq2500 125 54,307,040 98.17 43.78

G Hiseq2500 125 49,217,508 98.01 45.20

K Hiseq2500 125 50,518,406 98.04 45.33

L Hiseq2500 125 40,886,322 97.97 45.30

M Hiseq2500 125 48,951,426 98.09 46.47

S Hiseq2500 125 44,860,264 97.65 45.28

T Hiseq2500 125 52,304,178 97.70 45.71

(SRA030614.2) Wild-caught from Yuen Long, Hong
Kong

OT without T Hiseq2000 90 25,723,522 95.65 46.83

Pomacea maculata Perry,
1810 (SRP127219)

Wild-caught from Paraná River,
Argentina

AG Hiseq2000 100 52,732,156 98.20 44.94

OT Hiseq2000 100 54,961,478 98.26 45.05
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the genomes of several invertebrates: Helobdella ro-
busta, Lottia gigantea, Crassostrea gigas, Octopus
bimaculoides, Schistosoma mansoni, Nematostella vec-
tensis and Hydra vulgaris. The annotation results are
summarized in Table 2.

AmpuBase database construction
AmpuBase is a relational database that provides public
access to these newly assembled ampullariid transcrip-
tomes and annotations. The database structure and lay-
out are similar to those of PcarnBase [48], except that
data from several species can be searched at the same
time and that the GO and KEGG search pages are inte-
grated. In brief, for each species, a relational database
was developed using MySQL v5.6.34 and hosted on an
Apache HTTP server. The BLAST search function is
powered by ViroBLAST [49] using the PHP programming
language. The database consists of DNA and protein se-
quences of all unigenes that are linked with associated
NCBI nr, GO and KEGG annotations through unigene ID.
The database consists of five entity tables (“NCBI annota-
tion”, “Proteins”, “DNAs”, “Gene Ontology” and “KEGG”)
and two relation tables (“NCBI_GO_relation” and
“NCBI_KEGG_relation”).

Utility and discussion
Transcriptome assembly metrics
There were between 72,341,892 to 462,231,634 bp of clean
data, corresponding to between 20,730 and 35,828
unigenes with ORFs in each of the eight species (Table 2;
Fig. 1a). The mean N50 value (shortest sequence length at
50% of the unigenes; 1576 bp) and the percentage of an-
notated unigenes (average 75.9%) in our study are higher
than the corresponding values from previously published

ampullariid transcriptomes (P. canaliculata, N50: 283 bp,
29.2% unigenes annotated [29]; P. maculata, N50:
1332 bp, 36.6% unigenes annotated [25]). Our transcrip-
tome assembly metrics are comparable to those of
recently published transcriptomes from other families of
mollusks (Table 3), indicating the overall robustness of
our transcriptome sequencing, assembly and annotation
pipeline.
To further evaluate the completeness of transcrip-

tomes, we examined the proportions of complete as well
as partial homologs of 843 conserved metazoan genes
within the eight coding unigene sets. The transcriptomes
contain 77.46 to 92.41% of the complete conserved
metazoan genes, and 87.54 to 96.09% of the genes if
fragmented BUSCO hits are also included (Table 2).
These BUSCO metrics are comparable with those of
other mollusc transcriptomes published in recent years
(Table 3).

AmpuBase: Functions and applications
AmpuBase is available online via web interface at http://
www.comp.hkbu.edu.hk/~db/AmpuBase/. The database
can be searched with BLAST or other query terms. The
BLAST search function allows users to blast query
sequence(s) or fasta files against single or multiple
DNA/protein datasets with default settings (under Basic
Search option) or customizable settings (under Advance
Search option) (Fig. 2a). Upon submitting a BLAST
search, matched sequences are returned with their E-
value and similarity score, and information on the
corresponding annotation can be obtained by clicking
“Unigene ID” (Fig. 2b).
Apart from BLAST search, the transcriptome data can

be searched in two other ways (Fig. 2c). General Annota-
tion Search allows one to query the relevant annotations

Table 3 Comparison of transcriptome assembly metrics between this study and some other studies of mollusks

Items This study
(mean)

P. canaliculata
[our previous
study; [29]

P. maculata
[our previous
study; [25]

Reishia
clavigera [57]

Potamopyrgus
antipodarum [58]

Lottia cf.
kogamogai [59]

Nucula
tumidula [59]

Mytilisepta
virgata [60]

De novo assembly

transcripts 37,193 128,436 105,349 38,466 62,862 34,794 273,272 49,501

Unigenes 26,867 – – 32,798 – – – –

N50 (bp) 1576 283 1332 2236 690 817 2100 1046

Mean length (bp) 1128 420 878 1709 999 – – 679

BUSCO

Complete genes 82.13% 40.21% 71.89% 93.00% 89.09% 33.93% 83.63% 66%

Fragmented 8.35% 39.38% 18.86% 3.56% 6.80% 34.48% 11.39% 10%

Annotation

Protein database 75.95% 24.04% 33.79% 74.40% 25.13% 48.23% 14.11% 25%

GO 48.00% 6.83% 15.30% 45.42% (overall) 25.22% 8.75% (overall)

KEGG 15.41% 10.07% 23.61% 15.66% 27.04% 6.78%
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(i.e., NCBI annotation, GO and KEGG) either by using
the unigene ID or unigene name (e.g., perivitellin ovoru-
bin). Each successful query returns a table that contains
Unigene ID, NCBI’s nr, GO and KEGG description (if
available). The resultant sequences can be downloaded
by selecting the Unigene ID and clicking “Submit” for
further analysis, for example, phylogenetic analysis of
perivitellin ovorubins, major and multiple functional
proteins in PVF [20, 24, 25]. In addition, GO and KEGG
Annotation Search is also provided for searching GO
and KEGG information using GO ID, KEGG ID or a
keyword. All sequence data for these ampullariid
transcriptomes are available for download under the
“Downloads” menu, for transcriptome wide data mining
and analysis of a specific gene.

Conclusions
In this study, we have generated a large set of transcrip-
tome data for eight species that represent five genera of
Ampullariidae. These data are compiled in a relational
database, AmpuBase, which greatly enhances the publicly
available genomic resources for ampullariids. The data-
base provides tools for sequence- or keyword-based query
functions, which will facilitate in-depth ecological and
evolutionary studies on ampullariids, and comparative

studies with other invertebrates. AmpuBase will be
updated when more genomic data become available in the
future.

Additional file

Additional file 1: Phylogenetic tree of ampullariids based on DNA
sequences of cytochrome c oxidase I (COI), 16S rRNA (16S) and 18S rRNA
(18S) as listed in Additional file 2. Sequences were aligned and gaps were
trimmed with MUSCLE. Phylogenetic analysis was conducted using the
concatenated sequences (COI: 502 bp; 16S: 362 bp; 18S: 269 bp). The
maximum-likelihood method implemented in MEGA5 [50] was used and
the GTR + Γ + I evolutionary model was selected. Members of Viviparidae
and Campanilidae served as outgroups. Values at nodes are percentages of
100 bootstrap replicates. Scale bar represents 0.1 substitution per site. Spe-
cies with transcriptomes assembled in the present study are highlighted in
blue. List of taxa and GenBank accession numbers for sequences of COI, 16S
and 18S used in phylogenetic analysis. (DOCX 364 kb)

Additional file 2: List of taxa and GenBank [51] accession numbers for
sequences of COI, 16S and 18S used in phylogenetic analysis [6, 52–55].
(DOCX 20 kb)
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16S: 16S rRNA; 18S: 18S rRNA; AG: Albumen gland; bp: Base pair;
BUSCO: Benchmarking universal single-copy orthologs; COI: Cytochrome c
oxidase I; DG: Digestive gland; F: Foot; G: Gill; GO: Gene Ontology; K: Kidney;
KEGG: Kyoto Encyclopedia of Genes and Genomes; L: Lung; M: Mantle;
N50: Shortest sequence length at 50% of the unigenes; nr: Non-redundant;
ORFs: Open reading frames; OT: Other tissues; PVF: Perivitelline fluid;
S: Stomach; T: Testis; TPM: Transcripts per kilobase million read
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a c

Fig. 2 The web interface of AmpuBase. a Illustration of the Basic and Advanced BLAST search options. b An example of the search result of a BLAST
search, showing matched sequences, each with their BLAST statistics. c Illustration of the search functions in AmpuBase based on annotation
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