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ABSTRACT
An established characteristic of neoplastic cells is their metabolic reprogramming, known as the
Warburg effect, with greater reliance on energetically less efficient pathways (such as glycolysis and
pentose phosphate shunt) compared with oxidative phosphorylation. This results in an
overproduction of acidic species that must be extruded to maintain intracellular homeostasis. We
recently described that blocking the proton currents in leukemic cells mediated by Hv1 ion
channels triggers a marked intracellular acidification and apoptosis induction. Moreover, histamine
H1-receptor antagonists were found to induce apoptosis in tumoral cells but the mechanism is still
unclear. By using Jurkat T cells, we now show how diphenhydramine inhibits Hv1 mediated
currents, inducing a drop in intracellular pH and cellular viability. This provides evidence of a new
target structure responsible of the known pro-apoptotic action of antihistaminic drugs.
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Introduction

Diphenhydramine (DPH) is a well-known first-genera-
tion histamine H1-receptor antagonist, commonly used
in treatment of allergic diseases. Its usefulness is princi-
pally related to a decrease of histamine effects produced
during the hypersensitivity reaction. Furthermore, it
has been reported that DPH has other molecular targets
such as muscarinic and NMDA glutamatergic receptors
which explain most of its adverse reactions.1,2

On the other hand, Jangi et al. clearly described that
DPH promoted leukemic Jurkat T cell death by apo-
ptosis at higher doses than those needed for its anti-
histaminic action.3 The authors later found similar
results in other malignant cell lines.4,5 Although these
observations are reproduced with several antihista-
minic drugs, other evidence contradicts the involve-
ment of the H1 receptor pathway in the apoptosis
mechanism as it is exerted even in presence of exoge-
nous histamine, a-fluoromethylhistidine treatment or

H1 receptor knockdown. Moreover, antihistaminic
pro-apoptotic action affected neither cAMP nor
cGMP intracellular levels, both widespread second
messengers.4,5

In addition, it is widely known that neoplastic cells
show significant changes in glucose metabolism relying
on glycolytic and pentose phosphate pathways instead
of oxidative phosphorylation for energy production.6,7

This fact leads to acidic species overproduction and
therefore a strong need for proton extrusion to avoid
intracellular acidification.8 In this sense, several proton
transporters were found overexpressed in tumor cells
and they have been a matter of study in recent years.
MCT, NHE, CA, NBC and V-ATPase (see abbreviations
below) are the structures that most captured the atten-
tion in this field.9,10 Although less studied, the Hv1
channel has a strong capacity of restoring intracellular
pH after heavy acid loads; and as it is a passive transport
pathway, its activity does not require any expense of
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energy.11 This channel has been found upregulated in
several tumor cell lines12-16 and clinical isolates, correlat-
ing with poor prognosis in human breast and colorectal
cancer.17,18 In the same manner, other ion channels are
emerging as key players in tumoral development.19,20

Recently our group showed that Hv1 channel in
Jurkat T cells is indispensable for pHi regulation as its
inhibition exerted by Zn2C or ClGBI, both proved
Hv1 blockers,21 induced an immediate drop in basal
pHi along with significant impairment of the cell’s
capacity for restoring intracellular pH after heavy acid
loads. Moreover, we observed that upon Hv1 channel
blockade, acidification progressed from a pH around
7.2 to values below 6.8 and promoting cell death by
apoptosis.22

In addition, Kim et al. have recently reported that
DPH and chlorpheniramine induce a significant inhibi-
tory effect on Hv1 currents in murine BV12 microglial
cells.23 These authors also assert that Hv1 inhibition is
independent of histamine receptor activity, as histamine
does notmodify any property of Hv1 currents.

Overall, we hypothesized that, if DPH is able to
inhibit Hv1 in human Jurkat T cells (likewise it does
in microglial cells), it could induce cell acidification as
an early event of its known pro-apoptotic effect.3 In
this work we present electrophysiological data

showing the inhibition by DPH on Hv1 currents in
Jurkat T cells and its action on intracellular pH.

Results

We first examined the effect of DPH on whole-cell
currents mediated by Hv1 channels in Jurkat T cells,
depicted in Fig. 1. Extracellular perfusion of 0.1 mM
DPH significantly inhibited the Hv1 current (Fig. 1a),
achieving its maximal effect between 3 and 5 minutes.
Moreover, 0.1 mM histamine affected neither the Hv1
current nor its inhibition by DPH. The effect of DPH
was partially reversible (around 80%) in all tested cells
after 15 min. (One Way ANOVA and Holm-Sidak
post hoc analysis, n D 4–8, p < 0.05).

We next evaluated the effect of long-term DPH
mediated Hv1 inhibition on pHi. Jurkat T cells were
incubated with 0.1, 0.5 and 1.0 mM DPH for 24 hours
alone or in presence of 0.1 mM histamine (experimen-
tal conditions used by Jangi et. al.3 to demonstrate
DPH pro-apoptotic effects). Then pHi, cell size and
complexity were simultaneously analyzed by flow
cytometry and the results are presented in Fig. 2.

As it can be seen, in 0.5 and 1 mM DPH conditions
a clear change in cell size and complexity (a typical
phenomenon of the apoptotic process) occurred in

Figure 1. DPH inhibitory effects on Hv1 whole-cell currents. (a) Superimposed typical whole-cell currents recorded in response to 4-s
long pulses, stepping from a holding potential of ¡40 mV to levels ranging from C40 to ¡60 mV, with 20 mV increments in control
conditions, after development of a stable effect of histamine (H), histamine plus DPH, DPH alone and after the drug washout. (b) Mean
§ SEM current density versus voltage (I-V) curves, corresponding to all mentioned conditions. The � and z indicate a statistically signifi-
cant difference by multiple comparison vs. control group at each membrane potential (One Way ANOVA and Holm-Sidak post hoc analy-
sis, n D 4–8, p < 0.05).
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parallel with pHi acidification (Fig. 2a and b,
respectively). Considering this shift, we evaluated the
percentage of viable cells observing a concentration
dependent decrease unaffected by the presence of
0.1 mM of histamine (Two Way ANOVA and
Holm-Sidak post hoc analysis, n D 5–6, p<0.05, see
mean values Fig. 2c).

Simultaneously, fluorescence emission of the pH
sensitive ratiometric probe BCECF was measured in
the same cells, where a decrease in the values of FL1/
FL3 ratio means intracellular acidification (Fig. 2b).
Moreover, using the calibration curve performed in
each experiment, FL1/FL3 ratio values were used to
calculate the mean pHi value for each population

Figure 2. DPH effects on Jurkat T cells intracellular pH and viability. (a) Representative dot-plots of cells after 24 hours treatment with
the indicated conditions, showing size (FSC) and complexity (SSC). Equivalent conditions in the presence of 0.1 mM histamine exhibited
the same pattern (data not shown). (b) Representative histograms of the FL1/FL3 Ratio (proportional to pHi) for the same conditions
shown in (a), where a shift toward left implies an intracellular acidification. (c) Mean values for % of viable cells in each condition. Aster-
isks refer to a statistically significant difference by Holm-Sidak post hoc analysis vs. control. (d) Mean values for intracellular pH in each
condition. Asterisks refer to a statistically significant difference by Holm-Sidak post hoc analysis vs. control n D 5–6, p<0.05.
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(Fig 2d). The latter figure shows that DPH, in parallel
with viability impairment, induced a significant dose
dependent acidification that was also unaffected by
0.1 mM histamine (Two Way ANOVA and Holm-
Sidak post hoc analysis, n D 5–6, p<0.05). Neither the
viability nor the pHi showed differences in control
conditions (0 mM DPH) with or without 0.1 mM his-
tamine (Student’s t-test, p<0.05). These results are
coherent with our patch-clamp recordings, where the
presence of 100 mM of histamine did not modify Hv1
currents or the inhibition exerted by DPH.

Discussion

We previously demonstrated that Zn2C and ClGBI,
two Hv1 channel blockers, induced apoptosis of Jurkat
T cells following a profound intracellular acidifica-
tion.22 Now, in this work, we describe that DPH also
inhibited proton currents in these leukemic cells,
resulting in a drop on pHi in the same conditions
where apoptosis was described previously.3 Our initial
hypothesis has thus been reinforced by the results
obtained with another compound that inhibits Hv1
channels, and the observed effect on pHi and apopto-
sis were similar to the ones observed with Zn2C and
ClGBI.

Our results and those reported by Jangi et al.
showed the same concentration-dependent behavior
in a range of concentration where the fractional occu-
pancy of the H1-receptor is constant (remaining above
the 99,9%, calculated assuming a pKi D 7.9, IUPHAR
DB) suggesting that DPH effects were not a conse-
quence of H1 histamine receptor blockade.

In addition, the facts that both human Jurkat T cells
and murine BV12 microglial cells23 exhibit the same per-
centage of proton current DPH inhibition with the same
concentrations, as well as the short period of time action
needed (3–5 min.) let us speculate that a direct interac-
tionHv1-DPH is involved in DPH pro-apoptotic effects.

Altogether, Hv1 inhibition is reinforced as a pro-apo-
ptotic stimulus and a mechanism plausible to clarify the
unexplained anti-tumorigenic properties of certain drugs.

Methods

Cell culture

Jurkat T cells were grown in DMEM High Glucose
(25 mM) medium supplemented with 10% (vol/vol)
heat-inactivated fetal bovine serum (Internegocios), in

5% CO2/95% humidified air at 37�C at an average
density of 106 cells per ml.

Patch clamp experiments

The cells were observed with a mechanically stabilized,
inverted microscope (Telaval 3, Carl Zeiss, Jena)
equipped with a 40x objective lens. The standard
tight-seal whole-cell configuration of the patch-clamp
technique was used to record macroscopic whole-cell
currents.24 Pipettes were drawn from capillary glass
(PG52165–4, WPI, Boca Raton, Fla., USA) on a 2-
stage vertical micropipette puller (PP-83, Narishige,
Tokyo, Japan) and pipette resistances were 2–4 MV

measured in extracellular solution. Ionic currents were
measured with an appropriate amplifier (Axopatch
200A, Axon Instruments, Foster City, Calif., USA).
Whole-cell currents were filtered at 2 kHz, digitized
(Digidata 1440, Molecular Devices, LLC. Orleans
Drive Sunnyvale CA, USA) at a sample frequency of
10 kHz and stored on a computer hard disk for later
analysis. Total cell membrane capacitance was esti-
mated by integrating the capacitive current transient
elicited by the application of 10-mV hyperpolarizing
step pulse from a holding potential of ¡60 mV. The
estimated membrane capacitance of Jurkat T cells was
8.5 § 2.8 pF (n D 18). All the experiments where per-
formed using an agar-salt bridge.

Application of test solutions was performed
through a multibarreled pipette positioned close to the
cell investigated. After each experiment on a single
cell, the experimental chamber was replaced by
another one containing a new sample of cells. All
experiments were performed at room temperature
(»22�C).

The extracellular saline solution (ESS) used for
recording HC currents contained (in mM): 100 4-(2-
Hydroxyethyl) piperazine-1-ethanesulfonic acid
(HEPES), 2 MgCl2.6H2O, 90 N-Methyl-D-glucamine
(NMDG), 1 ethyleneglycol-bis(b-aminoethylether)-N,
N,N,�N-tetraacetic acid (EGTA) and pH adjusted to
7.8 with HCl. The composition of the intracellular
pipette solution (IPS) containing (in mM): 100 MES, 2
MgCl2.6H2O, 90 NMDG, 1 EGTA and pH adjusted
to 6.3 with HCl.

For Hv1 blockade experiments, DPH solutions
were made adding appropriate amounts of 100 mM
aqueous stock solution to the ESS the same day of the
experiment.
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Flow cytometry pHi determinations

Cells were incubated in 96-well plates (200 ml/well) at
a starting concentration of 0.5 £ 106 cells/ml and cul-
tured in the conditions abovementioned (see “Cell cul-
ture” section). Cells were exposed for 24 h to DPH 0.1,
0.5 and 1.0 mM before flow cytometry measurements.
As DPH and histamine have been dissolved in aque-
ous media, control condition is simply medium addi-
tion in the same volume as stimulus.

The protocol described in Current Protocols in
Cytometry (1997)25 was used for pH measurement
with BCECF using Pseudo Null Calibration (also
depicted by P. Frank et al26 and D. A. Eisner et al.,27

among others). Briefly, after incubation cells were cen-
trifuged 5 min at 500 rpm and loaded with 2 mg/ml
BCECF-AM 15 min at 37�C, centrifuged and resus-
pended in 10% FBS-HEPES solution. Prior measure-
ment every batch of cells were exposed to the
corresponding treatment condition at the same con-
centration of incubation to prevent eventual pHi
recovery. Pseudo Null Calibration curve was per-
formed according to Chow et al25 in each experiment
(points pH D 8.0/7.7/7.4/7.1/6.8). The fluorescence of
BCECF was monitored by a FACSCalibur flow cytom-
eter (Becton-Dickinson) for an amount of 20.000 cells
per tube. Data were acquired with CellQuest Pro 5.2.1
program and further analyzed with Flowing Software
v2.5.1 (byPerttuTerho, Turku Center for Biotechnol-
ogy, Finland) software. A two order polynomial fitting
between Ratio of FL1/FL3 channels vs. calibration pH
values was performed for each experiment, the output
equation was later used to calculate pHi in each
condition.

Viability determinations

Simultaneous to FL1 and FL3, FSC and SSC intensity
was acquired from the same batch of cells of pHi
determinations; these parameters reflect cell size and
granularity, respectively. Typically, during apoptosis
progression cells reduce its volume and increase its
intracellular complexity, so the percentage viable cells
has been estimated as those that remains in the FSC/
SSC gate were control cells commonly reside.

Statistics

The results are expressed as mean § standard error of
the mean (SEM). Paired or unpaired Student’s t tests

were used to compare 2 groups. ANOVA (One Way
or Two Way) test was used to compare 3 or more
groups. In all cases, a P value lower than 0.05 was
considered for establishing statistically significant
differences.

Reagents

Two0,70-Bis(2-carboxyethyl)-5(6)-carboxyfluorescei-
nacetoxymethyl ester (BCECF-AM) was obtained
from Invitrogene (Invitrogen Corporation, USA).
All other reagents are from Sigma-Aldrich (St.
Louis, MO) unless otherwise indicated. DMEM
medium and FBS were purchased from local
suppliers.

Abbreviations
BCECF-AM 20,70-Bis(2-carboxyethyl)-5(6)-carbox-

yfluoresceinacetoxymethyl ester
CA Carbonic anhydrase
cAMP cyclic adenosine 30,50-monophosphate
cGMP cyclic guanine 30,50-monophosphate
ClGBI 2-(6-chloro-1H-benzimidazol-2-yl)

guanidine
DMEM Dulbecco’s Modified Eagle’s Medium.
DPH Diphenhydramine
FL1 and FL3 Fluorescence detectors 1 (530 nm) and

3 (661 nm), respectively
FSC forward scatter detector
H histamine
Hv1 Voltage gated proton channel
IUPHAR DB International Union of Basic and Clin-

ical Pharmacology Database
MCT Monocarboxylate transporters
NBC Sodium bicarbonate co-transporter
NHE Sodium-proton exchanger
NMDA N-Methyl-D-aspartate
pHi Intracellular pH
SSC side scatter detector
V-ATPase Vacuolar type HC ATPase
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