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Abstract

We investigate the effects of diffusivity on pattern formation in the excitable 2D Bär model with periodic boundary conditions. Our
work generalizes previous findings of Roussel and coworkers in 1D and focusses on the turbulent states, including the spiral breakdown
process. Diffusion coefficients (D(u)) quadratically dependent on the activator concentration were studied. Inhibition of the spiral insta-
bility was found with a negative linear coefficient in the concentration dependence of D(u). At a given value of e the inhibition can be
complete for nonflux boundary conditions while a delay of the instability occurs in systems with periodic boundary conditions. Positive
quadratic coefficients in the concentration dependence of D(u) strongly modify the defect statistic in the chaotic zone.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Spatiotemporal patterns such as target patterns, spiral
waves, and turbulence have been observed in excitable
media and modeled by reaction–diffusion equations. In
particular, the onset of turbulent behavior has received a
great deal of theoretical and experimental attention [1–4].

Though pattern formation has been studied mainly con-
sidering a constant diffusion coefficient, this is indeed an
exceptional situation. In surface chemical reactions for
example, this case corresponds to a noninteracting adsor-
bate that occupies just one lattice site in an array of equiv-
alent lattice sites. Intermolecular forces, substrate-
mediated interactions, and even blocking of adjacent sites
by adsorbates are all factors that may cause the surface dif-
fusion coefficients to vary with coverage [5,6]. Other non-
trivial coupling modes have also been invoked [7,8].

Other systems also have transport coefficients that
strongly depend on the local concentrations: active trans-
port through ionic channels in the cell, glucose-dependent
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glucose transport, autocatalytic proton transport, proton-
dependent peptide transport, and even processes in popula-
tion dynamics [9–11].

Roussel and coworkers studied the concentration-
dependent diffusivities on a two-variable Gray–Scott excit-
able media model in one spatial dimension [5,12]. Their
work showed that these dependences can induce a transi-
tion from self-replicating behavior to stationary patterns
with no change in the relative diffusivity between the acti-
vator and the inhibitor.

In the 1D-Bär model with nonflux boundary conditions,
the existence of a stabilization effect of the backfiring has
been reported [6].

Following the studies performed by Roussel and
coworkers in Ref. [6], we analyze the Bär model in 2D, with
periodic boundary conditions. We propose diffusion coeffi-
cients dependent on the local concentration of the activator
and investigate their effects on pattern formation.

Our study focusses on the turbulent states, including the
spiral breakdown process. In early studies turbulent states
have been characterized by performing defect statistic, and
variations in the average value of defects (l) and in its var-
iance (r) have been related to changes in the medium excit-
ability. Quite recently it has been shown that defect statistic
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is also dependent on the dimension of the dynamic system
and on the existence of noise [13,14]. In the present work,
we show that defect statistic is also altered by the charac-
teristics of the transport process. This result applies to
the case of diffusivities strongly dependent on the activator
concentration and has not been reported before.

The development of turbulent states is a relevant issue in
many biological problems [15–18]. It is now widely
accepted that ventricular arrhythmias are due to the exis-
tence of spiral waves of electrical activity in the heart mus-
cle. The evolution from this state to ventricular fibrillation
implies a transition from a state dominated by spirals to a
chaotic or turbulent state. The elucidation of the influence
of the transport processes on the development of the cha-
otic states is relevant in the study of this type of transitions.

The present work is organized as follows: in Section 2
we describe the model and details of our calculations. Sec-
tion 3 summarizes our results, and Section 4 our
conclusions.

2. The model

The well-known model developed by Bär et al. is written
as

ou
ot
¼ rðDruÞ � 1
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where u is the activator, v is the inhibitor, and f(u) is given
by

f ðuÞ ¼
0 u < 1

3

1:0� 6:75uðu� 1Þ2 1
3
6 u 6 1

1 u > 1

8><
>:

9>=
>;
: ð3Þ

The Bär model has been well characterized in earlier
studies, assuming homogeneous media and constant diffu-
sion coefficients [2]. The decisive parameters of the model
are b (which is the excitation threshold) and e (which is
the relationship of the time scales of the fast (activator,
u) and the slow (inhibitor, v) variables). The system pre-
sents a saddle-node bifurcation at b = 0 and two unstable
fixed points. The medium is excitable for small positive b

and a < 1 + b. In two spatial dimensions, a variety of wave
forms are generated as the two decisive parameters b and e
are varied. For a = 0.84 and b = 0.07, the system exhibits
steadily rotating spirals in the range 0.01 < e < 0.06. At
e = 0.06 spirals undergo a transition to meandering and
for e > 0.07 they break and the system exhibits turbulence
due to breakup and autoreplication of spirals.

Turbulent regimes have been described in terms of topo-
logical defects, which are local zeros of the order parameter
and correspond to the case of u and v assuming their unsta-
ble fixed point values in the reaction term of Eq. (1). The
structure of the spatiotemporally chaotic states has been
described by means of the statistic of the topological
defects, i.e., analyzing the dependence of the mean value
and the variance of the number of topological defects on
e. It has been shown then that initially almost fixed, rotat-
ing defects gradually lose their rotational motion, until this
degree of freedom is eventually transformed into an
entirely translational motion or diffusive mode. As e
increases, the systems undergo a transition from a ‘hard-
disk liquid’ state to a ‘point gas’ state [2].

For a = 0.84 and b = 0.07, the system has a saddle point
at e = 0.19 and a Hopf bifurcation at e = 0.2245.

Now we consider the influence of concentration-depen-
dent diffusion coefficients on pattern formation. Specifi-
cally, we consider that the local diffusion coefficient
depends on the activator u, and therefore, D(u) may vary
in time and space due to the spatiotemporal variation of
u. We assume that

DðuÞ ¼ D0
u 1þ kuuðx; tÞ þ kuuðuðx; tÞÞ2
h i

; ð4Þ

where D0
u ¼ Duð0Þ, ku and kuu are constants.

The effect of a linear dependence of Du on u, on the wave
stability in the Bär model, has been previously studied in
1D [6], with nonflux boundary conditions. In the present
work, we explore the influence, on the turbulent states, of
a quadratic dependence of Du on u, in 2D, with periodic
boundary conditions. Our calculations explore part of the
(ku,kuu, e)-parameter space, with a = 0.84 and b = 0.07.

Simulations were performed in a two-dimensional
256 · 256 point grid with periodic boundary conditions.
We used an Euler integration scheme for both the reaction
and the diffusion terms. For the latter a nine-point stencil
with Dx = Dy = 0.196 was used. The integration time step
was chosen in each case to ensure mathematical stability.
Results were checked to be independent of the integration
step for sufficiently small values of Dt.

3. Results

We started our investigations by extending the previous
studies in 1D performed by Roussel et al. [6] to 2D. This
involves exploring the subspace (ku, 0, e), where we consider
both negative and positive values of ku.

In 1D with nonflux boundary conditions, the existence
of a stabilization effect of the backfiring has been reported.
Negative values of ku stabilize the wave instability that pro-
duces the backfiring. In Ref. [6] the induction time, mea-
sured as the time required for a secondary peak to
appear from a given initial condition, was measured as a
function of ku to quantify the stabilization effect. The first
splitting was used to eliminate effects due to crowding,
which become significant at later times [6].

In 2D a spiral instability leads to the spiral breakdown,
and we verified a stabilization effect in our simulations with
periodic boundary conditions, with negative values of ku

(not shown here for brevity). Roussel and coworkers have
reported the existence of a threshold value of ku (at a given
value of e) below which the inhibition is complete. This



Fig. 1. Statistic of defects in the Bär model with: (a) linearly dependent
D(u) on u (i.e., kuu = 0), (b) constant D 6¼ 1 (for comparison purposes). In
both figures l and r2 are represented by filled and open symbols
respectively. (a) Circles stand for the case D(0) = 1.0, ku = 0.0 and squares
stand for the case D(0) = 1.0, ku = �1; (b) circles stand for the case
D(0) = 0.5, ku = 0.0, and squares stand for the case D(0) = 1.5, ku = 0.0.
Other parameters were: a = 0.84, b = 0.07. Periodic boundary conditions
were used. Both l and r2 were calculated over a total of 5000 frames
sampled every 0.95 s.
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threshold cannot be found in our simulations with periodic
boundary conditions, the spiral breakdown always occurs
for sufficiently long times. By performing 2D simulations
with nonflux boundary conditions, we verified that this fact
is due to the nature of the boundary conditions: complete
inhibition exists in systems with nonflux boundary condi-
tions, and a delay of the instability occurs in systems with
periodic boundary conditions.

As in Ref. [6] we did not find instability inhibition for
constant diffusion coefficient D < 1, i.e., the inhibition of
the instability is a consequence of the spatial modulation
of the diffusion coefficient, which makes the amount of
activator supplied by diffusion insufficient to overcome
the negative dynamic influence of the inhibitor in the back
of the wave.

Then we studied the chaotic zone, and turbulent states
were characterized by determining the variation of both
the mean value (l) and the variance (r) of the number of
topological defects in the medium, with e. For the 2D
Bär model with constant diffusion, the chaotic states were
previously characterized, and a transition, was found with
the increase of e, characterized by a loss of rotational
motion and an increase in the translational mobility of
defects. Because both l and r depend on the size of the sys-
tem, the intrinsic variable r2/l is preferable to characterize
the spatiotemporal state of the system. r2/l tends to zero
approaching the spiral instability, while toward the Hopf
bifurcation it approaches unity [2].

The above-described transition was called a ‘liquid–gas
transition’. In the present simulations, we have similarly
characterized the chaotic states by means of l and r2.

As shown in Fig. 1a, both l and r increase as ku

decreases. However, by comparing Fig. 1a with Fig. 1b
(which shows the changes in l and r with constant D 6¼ 1)
it can be seen that these phenomena are due to the decrease
of the diffusion coefficient alone rather than to its spatial
variation.

Finally, we note that the liquid–gas transition is not
modified by the diffusion coefficient linearly dependent on
u-concentration. This regime is indeed modified by the qua-
dratic dependence of the diffusion coefficient D(u) on u (Eq.
(4)) as is shown below.

Though both positive and negative values for kuu were
considered, we only report here the results for kuu > 0. Pat-
tern formation with kuu > 0 is less sensitive to the initial con-
ditions, and the discussion can be realized in terms of a
phase diagram in the (b, e)-parameter space, as in the origi-
nal Bär model (Eqs. (1)–(3)). In order to rationalize the
observed behavior we chose the specific values D0

u ¼ 1,
�ku = kuu = const, with 0 < const < 4. Therefore D(u) P 0
reaches its minimum value for u = 1/2 and D(u) = 1 for
u = 0 and u = 1. Pattern formation was studied then as a
function of e and kuu. We found that states of spirals, mean-
dering, and chaos are still observed, though there is a clear
modification of the phase space.

Fig. 2 shows the spiral breakdown initiation as a func-
tion of kuu and e. The spiral breakdown starts at higher val-
ues of e as kuu increases (and ku = kuu decreases), i.e., the
inhibition of the spiral instability is progressively inhibited.
As in the linear case with periodic boundary conditions, the
inhibition is not complete but just delayed.

Chaotic states show significant differences with respect
to the original Bär model. Both l and r2 rapidly increase
with epsilon, and the movement of defects becomes
restricted in space, i.e., degrees of freedom are strongly
inhibited. All these features are shown in Figs. 3 and 4
for the particular case �ku = kuu = 4, which is the maxi-
mum value of kuu that ensures mathematical stability.
The high r2 value found in this case when we compare it
with the original Bär model implies a high rate of creation
and destruction of defects. Also the translational move-
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Fig. 2. Patterns as a function of e and kuu in the Bär model (a = 0.84,
b = 0.07 and periodic boundary conditions) with D(u) = 1 + kuu + kuuu2

(ku = �kuu).

Fig. 3. Statistic of defects in the Bär model with (a = 0.84, b = 0.07 and
periodic boundary conditions) D(u) = 1 � 4u + 4u2. Circles: l vs. e,
squares: r2 vs. e. Open symbols correspond to the original Bär model
and have been included for comparison purposes. Both l and r2 were
calculated over a total of 5000 frames sampled every 0.95 s.

Fig. 4. Trajectory of some topological defects over 0.95 s in a system with:
(a) constant D = 1 and (b) D(u) = 1 � 4u + 4u2. a = 0.84, b = 0.07,
e = 0.14. Periodic boundary conditions were used. Lattice size: Dx ·
L = 0.196 · 256 = 50.18.

Fig. 5. l vs. kuu for D(u) = 1 + kuu + kuuu2 (ku = �kuu), a = 0.84,
b = 0.07, e = 0.10. Periodic boundary conditions were used. l was
calculated averaging a total of 5000 frames sampled every 0.95 s.
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ment of defects should be highly correlated with each
other. Fig. 5 shows that l monotonically increases with
kuu. The lower the kuu value, the higher the minimum of
D(u) (see Eq. (4)), and the movement of defects becomes
more localized.
The calculation of the mean value and the variance of
the number of defects has been proposed as a means of
characterizing the excitability of a given system. This result
suggests, however, that both l and r also depend on the
transport properties of the medium.

4. Conclusions

In the present work, we studied the effect of the concen-
tration-dependent diffusion coefficient on the spatiotempo-
ral behavior of the Bär model. We generalize previous
findings of Roussel and coworkers in 1D [6].

The main results of our work can be summarized as
follows:

(i) Inhibition of the spiral instability can be found with a
negative linear coefficient in the concentration depen-
dence of the diffusion coefficient (ku). At a given value
of e, complete inhibition exists (for a given threshold
value of ku) in systems with nonflux boundary condi-
tions, and a delay of the instability occurs in systems
with periodic boundary conditions.
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(ii) Linear dependences of the diffusion coefficient on
concentration do not qualitatively modify the chaotic
zone.

(iii) A quadratic dependence with the coefficients ku =
�kuu strongly inhibits the spiral instability, bringing
the initiation of the spiral breakdown to higher values
of e. Also the chaotic zone is strongly altered. Both l
and r show a positive dependence on e, which is
stronger than in the original Bär model. The transla-
tional movement of defects is strongly inhibited,
while the rate of both defect-creation and defect-
destruction processes increases.

Defect statistic has been extensively studied as a means
of characterizing the excitability of a given system. It has
been argued that the quantification of the mean value
and the variance of the number of defects could be used
to estimate the excitability of the system, i.e., the e value
in the Bär model.

Our work suggests that a local modulation of the trans-
port properties of the medium should equally modify the
turbulent states in excitable media. These modifications
have not been reported so far and appear as a consequence
of a second-order modulation of the diffusion coefficient
dependence on the activator concentration. In surface reac-
tions, the concentration dependence of the diffusivities is
often dramatically nonlinear, as is certainly the case in bio-
logical applications due to highly nonlinear responses of the
transporters to local concentrations. The existence of turbu-
lent states of electrical activity in the heart muscle is related
to the appearance of ventricular fibrillation, a severe cardiac
condition that normally evolves from ventricular arrhyth-
mias throughout a spiral breakdown scenario.
View publication statsView publication stats
The present study contributes to the elucidation of the
influence of transport processes on the development of cha-
otic states [19].
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