
Adaptive Robotic Control Driven by a Versatile Spiking
Cerebellar Network
Claudia Casellato1*, Alberto Antonietti1,2, Jesus A. Garrido2,3, Richard R. Carrillo4, Niceto R. Luque4,

Eduardo Ros4, Alessandra Pedrocchi1", Egidio D’Angelo2,3*"

1 NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy, 2 Brain Connectivity

Center, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Nazionale Casimiro Mondino, Pavia, Italy, 3 Department of Brain and Behavioral Sciences,

University of Pavia, Pavia, Italy, 4 Department of Computer Architecture and Technology, Escuela Técnica Superior de Ingegnerı́as Informática y de Telecomunicación,
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Abstract

The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine
motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural
basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral
outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real
environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of
different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural
network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies
based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have
been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular
task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as
arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A
bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in
the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning
its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express
knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and
generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning
functions.
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Introduction

The cerebellum plays an essential role in adaptive motor control

including fast and smooth coordination, on-line adaptation of

movement, and classical conditioning of various behavioral

responses [1]. The cerebellum is thought to assist these operations

by predicting system future states through associative learning of

precise timing between subsequent components of the sensorimo-

tor process [2,3]. To develop a comprehensive theory of

sensorimotor learning and control, it is crucial to determine the

neural basis of coding and plasticity embedded into the cerebellar

neural circuit [4].

As a first step in assessing the role of cerebellar plasticity in

learning, simplified analog models were developed and tested in

the context of various sensorimotor tasks. These models were

based on the Adaptive Filter Model derived from the Marr-Albus

Motor Learning Theory [5,6,7,8,9,10]. In these models, param-

eter adaptation was driven by the correlation of a sensory error

signal with a motor command signal, which were proposed to

correspond to climbing fiber and mossy fiber signals, respectively.

Learning was proposed to occur as long-term synaptic plasticity at

the parallel fiber - Purkinje cell synapses in the form of long-term

depression under instructive control by climbing fibers. Simula-

tions carried out with these models suggested that a control

scheme incorporating cerebellum adaptation played indeed a

critical role for point-to-point arm movement and for prism glasses

compensation in throwing at a target [11,12], for anticipatory grip

force modulation [13], and for Pavlovian collision avoidance [14].

While computational simulations guarantee repeatability over

trials and therefore a systematic evaluation of the control scheme,

testing with real robots is needed to assess the robustness and
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generalizability of models in closed-loop conditions, in which

unwanted perturbations disturb learning and control. To this

purpose, analog adaptive models of cerebellum were tested as

controllers of real robots performing collision avoidance and eye

movement tasks [15,16,17,18]. These robotic models were able to

learn smooth motor responses and thus confirmed that the

cerebellum could operate as a predictive controller under closed-

loop conditions.

Although analog models provided insights into the overall

cerebellar process of learning and control, the cerebellar network

operates on the basis of implicit computations with spikes. A bio-

realistic approach to sensorimotor learning and control requires

therefore to develop adaptive Spiking Neural Networks (SNNs).

SNNs can more directly cross-validate computational principles

derived from cell physiology, as they can incorporate the timing

based on neuronal firing [19]. Since biological organisms set up

effective control systems using ensembles of interconnected firing

neurons, SNNs clearly do have the potential to produce effective

control systems for robots [20]. Generic SNNs were applied to

control sensorimotor tasks in simulations ranging from eye [21] to

multi-joint arm movements [22]. A cerebellar SNN was used to

demonstrate time-control in delay-eyeblink conditioning [23] and

simultaneous time- and gain-control in optokinetic response

adaptation [24] in computational simulations.

A critical issue is that learning has to be inferred from the

interaction of an embodied system with its environment, which

implies controlling a robot with SNNs in real-time. Generic SNN-

based controllers were used to drive mobile robots [25,26,27] with

training methods using genetic algorithms. Cerebellar-based SNN

controllers were developed and tested in real robots performing

Pavlovian conditioning tasks [28,29]. In particular, a large-scale

cerebellar SNN based on the liquid-state machine model and

expressing a single plasticity site at the parallel fiber - Purkinje cell

synapses [29] was able to actuate a robot to hit a ball with proper

timing, i.e. shortly in advance of ball arrival. It was not clear,

however, whether the SNN controller was able to elaborate

general control functions using realistic spiking representations of

neurons and performing versatile smooth adaptive timing and gain

control. Indeed, very often the models using cerebellar principles,

more or less detailed and realistic, have been designed specifically

for one single task [30,31,32,33,34], while the real cerebellum is

good at learning a wide variety of tasks, going from stimuli

associations to adaptive sensorimotor transformations and coordi-

nation.

In this framework, we have coupled a realistic cerebellar SNN

with a real robot and challenged the system in multiple

sensorimotor tasks. The cerebellar SNN has been derived from a

detailed cerebellar network [35], designed to run in real-time

through acceleration technologies [36], and interfaced with a

robotic controller using Analog/Digital and Digital/Analog

transformation algorithms. The neurorobot has been tested in

multiple learning paradigms including Pavlovian associative tasks

and continuous closed-loop tasks (vestibulo-ocular reflex and

upper limb reaching under perturbing force-fields). The neuror-

obot adapted its performance and efficiently controlled the

different tasks exploiting the internal firing dynamics of the neural

network and successfully dealt with changing environmental

conditions and with hard real-time constraints. Thus, the

cerebellar SNN operated as a generalized predictive controller,

showing that the SNN-robot provides a flexible and modular

platform to link low-level brain circuit operations with high-level

behavioral functions.

Methods

Spiking cerebellar model
The SNN was built exploiting the Event-Driven simulator based

on Look-Up Table (EDLUT) [37], which is an open-source

computer application for simulating SNNs. The EDLUT neural

simulator is open source and available at https://code.google.

com/p/edlut/. The three experimental set ups built in a simulator

environment are also made available in ModelDB http://senselab.

med.yale.edu/modeldb/enterCode.asp?model=167414. EDLUT

operates by compiling the dynamic responses of pre-defined cell

models into lookup tables, thus allowing real-time performance.

The present cerebellar SNN architecture represents a cerebellar

modular element and consisted of (Fig. 1):

N 20 Mossy Fibers (MFs) as input.

N 1500 Granule cells (GRs); as in real cerebellum, each GR

receives four excitatory input connections selected randomly

from MFs with constant synaptic weights. When an input

signal arrives, a spatiotemporal activity pattern is generated

and the population of active neurons in the granule layer

changes in time according to the received MF signals. The

output of these GRs are conveyed through the Parallel Fibers

(PFs).

N 24 Inferior Olive cells (IOs); each IO sends a Climbing Fiber

(CF) to one Purkinje cell (PC).

N 24 Purkinje Cells (PCs); each GR is connected to 80% of the

PCs, through the PFs.

N 12 Deep Cerebellar Nuclei cells (DCNs); each DCN receives

inhibitory connections from 2 PCs and excitatory connections

from all the 20 MFs.

In the SNN, synaptic adaptation occurs at PF–PC connections

as a change in synaptic conductance (w) through a spike-timing

dependent plasticity rule inducing either Long-Term Depression

(LTD) or Long-Term Potentiation (LTP) [38]. LTD results from

coincident PF- and CF-activation, taking into account all the PF

spikes falling within a given time window preceding the CF spikes

(eligibility trace). This is obtained convolving the PF activity with a

kernel function taking into account the physiological delay of the

neural circuit, which ranges from 50 to 150 ms [39]. Conversely,

LTP results from PF-stimulation alone [36]. The learning rule is:

DwPFi?PCj
tð Þ~

b
ÐtIOSPIKEj

{?
K(tIOSPIKEj

{x)H(x)PFi
dx if PFi is active and t~tIOSPIKEj

a if PFi is active and t=tIOSPIKEj

0 otherwise

8>>>>><
>>>>>:

where

K(t)~e{
t{t0

t

� �
sin 2p

t{t0

t

� �� �20

H(t)~
1 if PFi is active at time t

0 otherwise

�

where b is the LTD constant (,0), a is the LTP constant (.0);

tIOSPIKEj is the time when the corresponding CFj emits a spike; K
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is the integral kernel function; t is used in order to normalize the

arguments in the learning rule and it is set to 1 second; t0
corresponds to the physiological delay of the neural circuit and it is

set to 100 ms, as dictated by biology.

a and b can be tuned, with a lower than the absolute value of b,

otherwise LTP, constantly generated when a state-related activity

comes from GRs, could counterbalance and nullify LTD effects.

We have explored different a and b values within reasonable

ranges, evaluating their effect on the acquisition effectiveness and

rate, on the late acquisition stability and on the extinction

effectiveness and rate, in computational simulations of eye blinking

conditioning (see below Protocols section).

In the continuous closed-loop tasks, topography is maintained at

level of IOs, PCs and DCNs: a group of IOs carries information

about the error (positive and negative separately) of a specific

Degree of Freedom (DoF) and projects on a corresponding group

of PCs. These PCs then project to a group of DCNs, which

produce an agonist or antagonist motor action (positive or negative

torque) on that specific DoF.

Set-up
The main robot was a Phantom Premium 1.0 (SensAbleTM),

with 3 DoFs, each equipped with digital encoders and controllable

by torque commands. This robot was integrated with an optical

tracking system (VICRA-Polaris, NDITM) acquiring marker-tools

at 20 Hz. A secondary robotic device (Phantom Omni, SensA-

bleTM) was synchronized into the controller to add desired

perturbations in the different tested paradigms. The controller,

developed ad-hoc in C++, exploited the low-level access provided

by the Haptic Device Application Programming Interface and sent

the torque signals to the joints by servo loops (HDCALLBACKS)

executed in high-priority threads at 1 kHz. For the tracking

device, the low-level libraries from Image-Guided Surgery Toolkit

(http://www.igstk.org/), based on Request-Observer patterns,

were used to acquire the visual information. The cerebellar model

was embedded into the C++ controller and its updating ran at

1 kHz. All the experiments were performed on a desktop PC (Intel

Core i7-2600 CPU @3.40 GHz).

Protocols
Three paradigms were designed to mimic human learning

observed in neurophysiological studies: (1) Eye Blinking Classical

Conditioning (EBCC), which was tested both in computational

simulations and in real robot, (2) Vestibulo-ocular Reflex (VOR),

tested in real robot, and (3) upper-limb perturbed reaching, tested

in real robot. The same cerebellar SNN was embedded into the

controller with inputs and outputs customized for each specific

protocol (Fig. 2).

EBCC in simulations and Associative Pavlovian task in

real robot. During EBCC, pairs of a Conditioned Stimulus

Figure 1. Cerebellar SNN. The computational model applied for creating the cerebellar spiking neural network embedded into the controller of
the robotic platform.
doi:10.1371/journal.pone.0112265.g001
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(CS: a stimulus that normally does not evoke the blink, like a tone)

and an Unconditioned Stimulus (US: a stimulus, such as an air

puff, that normally evokes the blink Unconditioned Response

(UR)), presented at a constant Inter-Stimuli Interval (ISI), promote

the acquisition of a Conditioned Response (CR), i.e. a blink

response anticipating the US with its peak time-locked to the US

onset. Once acquired this temporal association between stimuli,

Figure 2. Real robot experiments: neurophysiology, robotic set-up and cerebellar controller. EBCC-like, VOR and upper limb perturbed
reaching: on the left column the typical set-up used in neurophysiological studies; in the middle the corresponding set-up used in our robotic tasks
and on the right column the cerebellar network with the task-specific input and output signals. (A), (B) and (C): the EBCC-like Pavlovian task is
reproduced into the robotic platform as a collision-avoidance task. The CS onset is based on the distance between the moving robot end-effector and
the fixed obstacle placed along the trajectory, detected by the optical tracker. The US is the collision event. US is fed into the CF pathway, CS into the
MF pathway; the DCNs trigger the conditioned response (anticipated stop). (D), (E) and (F): the VOR is reproduced into the robotic platform by using
the second joint of the robotic arm as the head (imposed rotation) and the third joint (determining the orientation of the second link, on which the
green laser is placed) as the eye. The disalignment between the gaze direction (i.e. second link orientation) and the environmental target to be
looked at (hold and eventually moved by another robotic device) is computed through geometric equations from the optical tracker recording. The
image slip is fed into the CF pathway, the vestibular stimulus about the head state into the MF pathway; the DCNs modulate the eye compensatory
motion. (G), (H) and (I): the perturbed reaching is reproduced into the robotic platform by applying a viscous force field on the moving robotic arm by
means of the other robotic device attached at its end-effector. The joint error is fed into the CF pathway, the desired plan into the MF pathway; the
DCNs modulate the anticipatory corrective torque.
doi:10.1371/journal.pone.0112265.g002
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the CR is evoked by applying the CS alone, until a progressive

extinction of that learned association takes place [40] (Fig. 2A).

The EBCC protocol consisted of a sequence of 400 repetitions

where CS-US pairs were presented (acquisition phase) followed by

a sequence of 200 CS-alone trials (extinction phase). For each

repetition, the CS was generated as a random spike pattern on the

20 MFs, with an instantaneous spike probability equal to 5% (i.e.

50 Hz). The US was produced as a random spike pattern on the

24 IOs, with an instantaneous spike probability equal to 1% (i.e.

10 Hz), lasting 100 ms and ending together with CS (‘‘delay-

EBCC’’).

In order to validate whether the MF input features and the GRs

architecture were adequate to let the GR layer works as a not-

recurrent state generator, a similarity index C was computed by

measuring the correlation between each pair of granular layer

states (i.e. pairs of time steps) within-trial [41,29,42]:

C t,tzTð Þ~

X
i
fi(t):fi(tzT)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
f 2
i (t)

q
:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
f 2
i (tzT)

q

where fi corresponds to the instantaneous frequency of the i-th
neuron (frequency measured within a 20-ms time window) and

C(t,t+T) takes values from 0 to 1 (0 if the two activity vectors are

complementary, 1 if they are identical).

The DCN spike patterns were decoded into analog signals at

each time sample [36]: if a spike occurred, a fixed amount was

added to the ongoing output, whereas if no spike occurred, a decay

function was applied. Then, the output was averaged on a moving

window of 100 samples (100 ms), then sent as motor command.

This was the SNN output signal driving the behavioral outcomes.

When it crossed a pre-set threshold equal to 20, a CR was

generated.

Nucleo-olivary inhibition was introduced in the model: when a

CR occurred, the US had a lower excitatory effect on the IOs, i.e.

the spike probability was decreased to 0.5% (5 Hz). Indeed, the

eyelid blink (CR) modifies the effect of the air-puff (US), since the

noxiousness of the latter diminishes if the cornea is protected by

the eyelid; however, the inhibition should not be complete,

because perceiving the airpuff is needed to trigger the anticipatory

action the next time the CS is perceived. Hence, the modulation of

the IO firing probability is fundamental both to stabilize

acquisition and to avoid overtraining [40,14].

First of all, we focused on the setting of LTD and LTP

parameters of the cerebellar model, by exploring the effects of

different a and b on EBCC learning in computational simulations.

As first step, a gross exploration of 25 combinations of a and b was

performed, for each one repeating an EBCC test with 400 trials of

acquisition and 200 trials of extinction. ISI was set to 300 ms, with

CS lasted 400 ms and US 100 ms; each trial duration was 500 ms,

whose last 100 ms were rest (all neurons silent). In each EBCC

test, the acquisition capability and rate were quantified by the

maximum output reached during the acquisition trials (maximum

among the DCN within-trial maxima) and by the first trial during

which the first CR was produced. As index of acquisition stability,

the standard deviation of the DCN maxima, from the trial during

which the first CR was generated and the last trial of acquisition

(400th), was computed. Finally, the extinction capability was

quantified by the maximum DCN output achieved within the last

10 trials of the extinction phase. Thus, the model tuning was

performed so as the cerebellar controller would be able to (i)

produce high DCN output, (ii) reach the CR threshold as fast as

possible, (iii) minimize the variations during late acquisition, and

(iv) minimize the DCN output at the end of extinction.

Afterwards, in the parameter sub-space meeting these require-

ments, a finer exploration was carried out, running EBCC

simulations with further 100 combinations of a and b, and

evaluating the same parameters as for the gross exploration.

Finally, a and b have been set within a steady sub-space and kept

for all the simulations and real-robot tasks.

In order to test the generalizability of the tuned cerebellar

circuit, at least in computational simulations, other two EBCC

tests with shorter and longer ISIs, within a physiologically effective

range [43,44], were carried out.

a) ISI = 200 ms, with CS lasted 300 ms and US 100 ms; each

trial lasted 400 ms, whose last 100 ms were rest (all neurons

silent).

b) ISI = 400 ms, with CS lasted 500 ms and US 100 ms; each

trial lasted 600 ms, whose last 100 ms were rest (all neurons

silent).

In real robot, the Pavlovian EBCC-like protocol was translated

into a collision-avoidance task [28,29,14]. As for EBCC compu-

tational simulations, each test was made up of 400 trials of

acquisition and 200 trials of extinction.

The robotic arm (Phantom PremiumTM) was moving on a pre-

defined straight trajectory (using joint torques computed through a

Proportional-Derivative feedback controller (PD), given the

desired joint kinematics and the actual joint kinematics). During

the acquisition phase, a fixed obstacle, attached to the other

robotic device, was placed along that path (Fig. 2B). The CS was

the visual stimulus indicating that the arm was approaching to the

obstacle (‘‘warning’’), triggered by a threshold algorithm based on

the distance between obstacle-vertex and robot end-effector (CS-

threshold), detected by the tracking system; whereas the US was

triggered by the collision event. The CS was carried by the MFs

and the US by the CFs (Fig. 2C). During the extinction phase, the

obstacle was removed and hence no US signal was fed into the

circuit.

The CR generation was computed from the DCN firing rate,

analogously to the output decoding approach described above for

EBCC simulations. The UR was a stop reaction after the US-

collision, achieved by a feedback control. The CR was a stop

anticipating the US-collision, triggered by the cerebellar network.

As in EBCC simulations, the nucleo-olivary inhibition was

implemented: when a CR had been just produced during an

acquisition trial, an inhibited US pattern was fed into the IOs; and

the US onset was defined based on an estimated ISI, i.e. equal to

the last one achieved when an actual US-collision occurred.

In order to validate the robustness and stability of the embedded

cerebellar controller, different stimuli patterns, i.e. two CS-

thresholds (CS-th1 125 mm; CS-th2 110 mm), were defined so as

to generate two different ISIs (not perfectly repeatable across trials

because of the actual robotic environment); for each CS-threshold,

12 tests were carried out.

For both simulated and real robot tests, the number of CRs and

the anticipation of CRs with respect to US onset were computed.

The CR number was the percentage of CR occurrence within

consecutive blocks of 10 trials each. The CR anticipation was

calculated as the time difference between the DCN activity causing

a CR and the US onset.

VOR in real robot. The VOR consists of eye movements

stabilizing images on the retina during head motion, and its tuning

is ascribed mainly to the cerebellar flocculus [45] (Fig. 2D).

The VOR protocol was reproduced in real robot by using the

2nd joint as the head, on which a desired joint displacement was

imposed, and the 3rd joint as the eye motion driven only by the

Robotic Control by Spiking Cerebellar Network
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cerebellar SNN. The set-up was arranged so that the two involved

joints (2nd and 3rd) moved on a horizontal plane (Fig. 2E). The

Head Rotation (HR) generating the vestibular input was provided

to the 20 MFs exploiting Radial Basis Functions (RBFs) to

transform the analog angular time-profile into spike patterns [38];

the Gaussian RBF centers were equally distributed in the angular

range. The visual error, thanks to the tracking system, was

computed as the disalignment angle between the actual gaze

direction, i.e. the orientation of the second link of the robot, and

the desired one aligned with the object to be fixed; this analog

error was translated into irregular spike patterns on the group of

12 IOs corresponding to the actual error sign, through a

probabilistic Poisson process where the instantaneous error signal

was compared to a number between 0 and 1 randomly generated

each time [46]. The firing rate of the DCN spiking activity was

proportionally translated into a net torque on the 3rd joint, positive

or negative depending on the error sign at each time sample [36]

(Fig. 2F).

Similarly to the Pavlovian task, the protocol consisted of a

sequence of 400 repetitions where a head turn was imposed and

the target object was fixed, followed by 200 repetitions with the

same head turn but with the target moving in the same direction as

the head, thus requiring a strong VOR gain-down [47].

In order to validate the robustness and stability of the embedded

cerebellar controller, different stimuli patterns, i.e. two Head

Rotations (HR1 from 0u to 30u and back to 0u in 2 seconds, HR2

from 0u to 20u and back to 0u in 2 seconds) were imposed; each

trial lasted 3 seconds: 2 seconds of movement and 1 second of rest.

For each HR, 12 tests were carried out.

Root Mean Square (RMS) of gaze direction error was

computed.

Perturbed reaching in real robot. Force field compensa-

tion during arm reaching movements critically depends on the

cerebellum, since it acts as a comparator of predicted and

perceived state of the limb, adapting to new dynamics [48]

(Fig. 2G).

The arm desired kinematics was defined on the 3 DoFs in joint-

space, and achieved thanks to a simple PD feedback controller.

After 50 repetitions without any external disturbance, a viscous

force field was introduced, as F(t) = c?v(t); where F(t) is the

Cartesian force produced by the secondary robot on z direction

perpendicular to the trajectory of the moving end-effector, c is the

constant field strength, v is the x-component of the end-effector

Cartesian velocity, where the x direction is the trajectory direction

in the robot reference frame. The viscous force field pushed the

moving end-effector, thus deviating significantly the trajectory by

perturbing mostly the 3rd joint (Fig. 2H).

Similarly to the previously described robotic tasks, after a

baseline phase of 50 trials, the disturbing force lasted 400

repetitions (acquisition phase), followed by 200 extinction trials

in which the force field was removed. Analogously to the encoding

and decoding strategies used for the VOR protocol, the 20 MFs

were fed with the 3rd desired angle translated into spikes by RBFs,

while the 3rd joint error was translated by a Poisson approach into

spikes to the 12 IOs of the corresponding sign. The DCN firing

rate was proportionally translated into a net torque on the 3rd joint

and added to the PD feedback torque (Fig. 2I).

In order to validate the robustness and stability of the embedded

cerebellar controller, different perturbations, i.e. two Force Field

constants (c1 = 0.0040 kg/s, c2 = 0.0033 kg/s), were imposed

during the forward phase of the trajectory, lasting 1 second.

Then, 3 seconds were used just to go back and recover the initial

configuration. For each force field, 12 tests were carried out.

RMS of the 3rd joint deviation was computed.

Results

A realistic SNN of the cerebellum [38] was customized,

embedded into a real-time system controller and integrated into

a sensorized robotic platform. In order to test the generalized

learning and control capabilities of this neurorobot, we have

designed prototypical human-like sensorimotor tasks, addressing

the main aspects of learning and control: (i) associative learning of

a well-timed stimuli association (EBCC), (ii) combined learning of

timing and gain in a closed-loop reflex movement (VOR), (iii)

combined learning of timing and gain in a closed-loop voluntary

limb movement (force-field reaching). By varying stimuli and

perturbations patterns, control robustness and generalizability,

driven by implicit spiking dynamics of the same cerebellar model,

have been investigated.

Cerebellar SNN tuning
From the gross exploration of LTD and LTP parameters,

through a series of EBCC simulations, we identified an acceptable

parameter subspace, where the SNN controller was able (i) to

exploit the DCN firing activity range, reaching a maximum output

close to the DCN maximum firing rate, (ii) to reach the CR

threshold as fast as possible during the acquisition trials, (iii) to

minimize the variations during late acquisition, and (iv) to

minimize the DCN output at the end of extinction, close to silent

DCN status (Fig. 3A, B, C and D). Then, with a higher resolution

exploration, we evaluated the same indexes in further EBCC

simulations (Fig. 3E, F, G and H). The best performance was

figured out with a= 0.005 and b= 21. Anyway, in the neighbor-

hood, the behavioral outcomes were comparable and meaningful,

thus demonstrating a stable and reliable performance of the SNN

controller around the chosen parameters.

EBCC simulations
The EBCC is a paradigm of associative temporal learning [49],

used as a prototype to investigate the cerebellar function. The

cerebellum learns to generate a CR time-locked and anticipated

with respect to the US, with the CR maximum occurring at the

time when the US is expected [40].

The CS-related mossy fiber spike pattern was expanded into the

granular layer, robustly operating as not-recurrent state generator,

as validated by the GR layer similarity matrix during the 400 ms

of CS-related MF activity of one acquisition trial (Fig. 4). C(t,t+T)
was 1 when T = 0 because of the trivial identity, while it

monotonically decreased as T increased, with a mean value

(excluding the main diagonal) equal to 0.126. The granular layer

hence represented univocally the passage of time and the system

state.

From GRs, activity was transmitted to PCs. MF activity also

excited the DCNs. The US-related spike pattern from IOs reached

the PCs, which in turn inhibited the DCNs. During the 400 ms of

CS, the mossy fibers had a mean firing rate of 3968 Hz, while the

IOs, during the 100 ms of US, had a mean firing rate of 1063 Hz.

While the mossy fibers always conveyed the same pattern, the IO

firing rate was inhibited to 562 Hz when DCNs had acquired

predictive motor responses (CRs). At the beginning of EBCC

acquisition (Fig. 5A), PCs were spontaneously active, with a firing

rate of 81649 Hz and supplied tonic inhibition to the DCNs. The

activity pattern of Purkinje cells changed during conditioning:

their firing rate decreased along with the development of PF-PC

LTD. During the CS, the PC firing rate was reduced to

68658 Hz and the firing DCNs passed from 463 to 866 Hz,

producing CRs (Fig. 5B). Then, for some trials, even if only CS

was presented, the network output still produced CRs, until a
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complete extinction was driven by PF-PC LTP, which raised PCs

activity and hence re-inhibited the DCNs (Fig. 5C).

An extended representation of the whole family of responses in

PCs and DCNs (Fig. 6A and 6B) shows that, during learning, PC

firing rate decreased while DCN firing rate increased progressively

(Fig. 6C). During extinction the firing rates tended to recover to

their initial values. Learning and extinction proceeded along a

sigmoidal time-course (R2 = 0.885 for the acquisition curve and

R2 = 0.893 for the extinction curve). At the end of the learning

process, a mean CR occurrence of 8865% (averaged over the last

300 acquisition trials) was achieved, comparable to the level of

CRs acquired in neurophysiological experiments [50] (Fig. 6D).

Moreover, at the end of the learning process, CRs were closer to

US onset than at the beginning; the average anticipation value

during the whole acquisition phase was 77630 ms (Fig. 6E).

In the model, there were 28870 plastic synapses (around 80% of

#GRs?#PCs), some undergoing LTP and others LTD. From an

intermediate and neutral initial value, the synapses involved into

the state representations during ISI moved towards higher weight

values; while, the PF-PC synapses mostly activated into the state

representations associated with the incoming US depressed their

weights towards zero (Fig. 7A). Indeed, within single trials, during

the first 300 ms (i.e. with only CS-related mossy fiber signals), a

slight LTP occurred for all synapses since parallel fibers carried to

PCs a state-related activity without any associated activity coming

from the IOs. When US arrived, a robust LTD took place on the

active PF-PC synapses (Fig. 7B).

Even with different ISIs, the cerebellar SNN learned to

effectively produce CRs time-locked to the US onset (Fig. 8). In

the case of a longer ISI, the CR occurrence was 9368% (averaged

over the last 300 acquisition trials) and the CR anticipation was

1706134 ms; whereas with a shorter ISI, the CR occurrence was

9565% and the CR anticipation was 57610 ms. It is consistent

with a positive correlation between ISI and CR anticipation [51].

Associative Pavlovian task in real robot
The repeatability observed in EBCC was not guaranteed when

Pavlovian conditioning was implemented as a collision-avoidance

task performed by a real robot, because of the presence of

uncontrolled and noisy real-world conditions (Fig. 9). Indeed, the

ISIs were not constant; the mean ISI1 (with CS-th1) across all the

acquisition trials of the 12 tests was 401.2667.7 ms; while the

mean ISI2 (with CS-th2) was 326.9678.7 ms. It was due to the

refresh of the tracking system and to some trajectory variability

across repetitions due to inertial components of the robot.

However, the cerebellar SNN was able to progressively produce

predictive CRs, slightly less stable than in EBCC computational

simulations. At the beginning of acquisition, no output was

produced by DCNs, resulting in collisions between the robot end-

effector and the obstacle. During learning, CRs (anticipated stop

responses) were produced, thus preventing collisions. At the end of

the training phase, the CR rate with ISI1 was 92610% and the

CR anticipation was 1416133 ms (averaged over the last 300

acquisition trials of the 12 tests); with ISI2, the CR rate was

92611% and the CR anticipation was 100668 ms (Fig. 9A and

C). The firing patterns in the SNN controller showed a behavior

similar to the EBCC computational simulations (Fig. 9B and D).

Thus, although with the real robot the SNN controller had to cope

with additional sources of instability, a CR learning similar to the

simulations was generated, even if with a higher standard

deviation.

VOR in real robot
The VOR is a paradigm of time-dependent gain learning in

reflex movements, in which phase and gain of eye movements

have to be finely tuned in order to obtain image stabilization

during head rotation. For both test conditions, the maximum HR

came out not perfectly constant, both across trials of the same test

and across the 12 tests (HR1 = 30.861.3u; HR2 = 20.360.6u).

Figure 3. Cerebellar SNN tuning by EBCC simulations. Exploration of LTD and LTP parameters in EBCC tests (400 trials of acquisition and 200
trials of extinction). A gross exploration (first column) with 25 combinations (centers of each pixel) and then a finer exploration (second column) with
100 combinations (i.e. pixels) of the parameter space were carried out. The impacts on learning were quantified by the maximum of the DCN within-
trial maxima (A and E), by the number of the first trial when CR threshold was overcome (B and F), by the standard deviation of the DCN maxima
during late acquisition (C and G), and by the DCN activity at the end of extinction (D and H). Yellow arrows indicate the optimal directions of these
indexes. Green squares on the first column represent the gross area selected for the finer exploration. The light blue squares in the second column
represent the optimal area within the LTD and LTP parameters have been chosen. Red cross within pixels means no results came out with that
combination of parameters, relative to the specific index.
doi:10.1371/journal.pone.0112265.g003

Figure 4. Granular layer: spatio-temporal activity. (A) similarity
indexes between pairs of instantaneous patterns in the GR layer during
a 400-ms CS sent as a 50 Hz random activity on the 20 MFs. The values
of indexes are represented in grey scale; black 0, white 1. The darker the
matrix is, the better uncorrelated activity patterns are. (B) raster plot of
the 1500 GR cells during the CS.
doi:10.1371/journal.pone.0112265.g004
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Figure 5. EBCC in simulations: SNN working. The first test of delay-EBCC was implemented with ISI = 300 ms, 400-ms CS and 100-ms US; each
repetition lasted 500 ms. The protocol consisted of 400 repetitions of acquisition (CS-US pairs) and 200 of extinction (CS-alone). On the left column,
the raster plots of the network activity (excluding the 1500 GRs) of three trials in different phases of the learning process: early acquisition, late
acquisition and late extinction. Aligned on the right, the activity of each cell population as mean of the active cells’ instantaneous firing rates (spike
counting within a mobile 25-ms time window and then 50-ms smoothing). In all the trials, the CS-related MF spike pattern was equal to 3968 Hz. The
IOs showed a firing rate of 1063 Hz in the trials where no response was generated ahead of the US onset (A); whereas, the IO firing rate was reduced
to 562 Hz when a CR anticipated the US onset (B). (A) At the beginning of the acquisition (1st repetition), PCs were spontaneously active, with an
overall firing rate during the CS of 81649 Hz, supplying tonic inhibition to the DCNs. (B) The activity pattern of Purkinje cells was altered during
conditioning, reducing the firing rate in a time-dependent manner (68658 Hz), thanks to a temporal-specific LTD at PF-PC connections.
Consequently the DCN activity increased (866 Hz), overcoming the threshold before the US onset. Hence, a CR was produced (black star) (380th

repetition). (C) After some trials in which the network output still produced CRs even if only CS was presented, a complete extinction, driven by the
LTP mechanism, re-increased the PCs activity and hence re-inhibited the DCNs (580th repetition).
doi:10.1371/journal.pone.0112265.g005
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During the head movement, the gaze deviated from target. At

beginning of learning, the RMS gaze error was up to 13.7u60.9u
and 10.3u60.2u for HR1 and HR2, respectively. During learning,

the cerebellar SNN tuned eye motion in order to continuously

compensate head rotation. At the end of training, the gaze RMS

error was reduced to 4.6u60.4u and 6.2u60.1u for HR1 and HR2,

respectively (averaged over the last 300 acquisition trials of the 12

tests). After allowing the system to stabilize, the target began to

move in the same direction as the head. This caused an initial

overcompensation determining an absolute RMS gaze error of

13.2u61u and 8.6u60.2u, for HR1 and HR2, respectively (at the

first extinction trial, i.e. moving target, averaging the 12 tests), with

a mean gaze error value of the opposite sign. The VOR was then

re-modulated dropping the absolute RMS error back to 7.5u60.3u
and 3.9u60.1u for HR1 and HR2, respectively (averaged over the

last 10 extinction trials of the 12 tests) (Fig. 10A and C).

The SNN did not perfectly achieve the ideal zeroing of the gaze

error. It is due to the not repeatability in time and space across

Figure 6. EBCC in simulations: motor response generation. 3D plots of PC activity (A) and of DCN activity (B), along time and trials (one each
10 repetitions, for picture clarity). The activity is computed as firing rate in a mobile 25-ms time window, averaged across all cells of each population.
(C) PC firing rate, averaged within each trial (during CS-related MF excitation). The whiskers represent the standard deviations. One each 10
repetitions is depicted for picture clarity. (D) Number of CRs (%) along acquisition and extinction trials, computed as percentage number of CR
occurrence within consecutive blocks of 10 trials each. Both acquisition and extinction phases were fitted by the best least-squares sigmoid fitting
curves, i.e. the ones minimizing the residual error (Root mean square error: 6.091% for the acquisition phase, 5.758% for the extinction one). The
vertical dashed line highlights the shift between acquisition and extinction phases. (E) CR anticipation, computed as mean within blocks of 100 trials
each. The whiskers represent the standard deviations of the CR latency within each block. The vertical dashed line highlights the shift between
acquisition and extinction phases.
doi:10.1371/journal.pone.0112265.g006
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trials for uncertainty in the motion and sensory recordings of the

real low friction robot used in the tests. Moreover, the chosen

cerebellar parameters were optimized on EBCC simulations; a

partially task-dependent tuning could enhance the performance,

although fast and stable acquisition and extinction were robustly

expressed also in this task.

The mossy fibers encoded the head angle, the climbing fibers

encoded a negative error, the PC firing rate decreased due to LTD

letting the corresponding DCNs to proportionally increase their

firing rate based on the present head rotation state. The DCN

firing rate corresponded to an eye torque (amplified by a constant

gain equal to 0.5), able to compensate for head rotation (Fig. 10B

and D).

Perturbed reaching in real robot
The perturbed reaching is a paradigm of time-dependent gain

learning in voluntary multi-joint movements. The cerebellum

produces an accurate compensation to external force. It is added

to the feedback motor commands, which are not able to learn and

anticipate the perturbation effects. For both test conditions, the

maximum external force came out not perfectly constant, both

across trials of the same test and across the 12 tests (1.2560.03 N

for c1; 0.9260.02 N for c2).

During the first 50 trials without any external force disturbance,

the cerebellum action was just a refinement keeping the deviation

(proprioceptive-like error, or joint error) near to zero (1.860.8u
and 1.760.5u for c1 and c2, respectively, averaged over the first 50

trials of the 12 tests). Afterwards, when the force field was suddenly

activated, the 3rd joint motion did not compensate for it, bringing

the 3rd joint RMS error to 10.6u60.3u for c1 and to 6.9u60.3u for

c2, respectively (at the first trial of the activated force field,

averaging the 12 tests). The mossy fibers encoded the desired angle

of the 3rd joint, the climbing fibers encoded alternatively a positive

or negative error, the PC firing activity decreased due to ensuing

LTD, letting the corresponding DCNs to proportionally increase

their firing rate, which was translated into a torque sent on the 3rd

joint, amplified by a constant gain equal to 1.5 and to 1 for c1 and

c2, respectively. During learning, the SNN tuned the 3rd joint

torque in order to continuously compensate for the force field.

Figure 7. Plasticity. (A) histograms of the PF-PC weights at the end of
three trials (1st, 380th, 580th, as in Fig. 5). All weights were initialized at
4 nS. (B) blow-up of PF-PC synaptic weights, depicted one each 100
(288 lines) for picture clarity, within one repetition (the 1st trial, from 0.0
to 0.5 s), in order to show the time-dependent changes of each weight.
In red, the weights underwent basically a LTP during the test, while in
grey the overall depressed synapses (LTD).
doi:10.1371/journal.pone.0112265.g007

Figure 8. EBCC in simulations: different ISIs. One representative
trial for each of the other two tests of EBCC, taken in late acquisition
when a stable CR generation was achieved (380th trial). (A) ISI = 200 ms
(B) ISI = 400 ms. The cerebellar SNN was able to associate different
combinations of stimuli.
doi:10.1371/journal.pone.0112265.g008
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After adaptation, the RMS error decreased to 5.1u60.2u and

1.5u60.1u for c1 and c2, respectively (averaged over the last 300

acquisition trials of the 12 tests). Then, the force was removed

yielding an overcompensation and causing a rebound of RMS

error to 4.9u60.2u and 3.3u60.1u, for c1 and c2, respectively (at

the first trial of force field cancelation, averaging the 12 tests), with

a mean gaze error value of the opposite sign. The corrective motor

command was eventually re-modulated causing the RMS error to

drop back to 0.7u60.1u and 0.6u60.1u for c1 and c2, respectively

(averaged over the last 10 extinction trials of the 12 tests) (Fig. 11).

Discussion

The main result in this paper is that a SNN of the cerebellum

embedded into an appropriate control system can be successfully

used to control a robot. As the modular structure of the real

cerebellum, the same principles, embedded into the cerebellar

microcircuit model, were applied to a variety of tasks with different

nature, calling for complex timing and movement patterns. The

cerebellar SNN learned to adjust timing and gain of the motor

responses by predictively tuning its output to different input

stimuli. Thus, the cerebellar SNN operated as a spiking adaptive

forward controller. As a whole, the system demonstrated the main

abstract functions ascribed to the cerebellum - timing, prediction

and learning [52,2,53] - and allowed their analysis to be

performed in terms of spike discharge in the different network

components.

The SNN operates as a generalized adaptive controller in
real robot

The SNN processed mossy fiber inputs as arbitrary contextual

signals, irrespective of whether they conveyed a tone, a vestibular

stimulus or the position of a limb. The climbing fiber inputs

conveyed the need for the cerebellar output to be greater at a

particular time. The SNN accounted with high precision for the

temporal shift between the information travelling in the MF and

CF pathways. The issue of temporal credit assignment was faced

through the eligibility trace embedded into the learning rule.

In all the tested sensorimotor tasks, the cerebellar SNN worked

as a forward controller, i.e. able to provide motor commands in a

predictive manner, progressively learning how to cope with the

incoming sensory perturbations, along repetitions of task in

procedural learning. The predictive function was also demon-

strated by the after-effects occurring transiently when the external

stimulus was suddenly changed after a stable behavior was

Figure 9. Associative Pavlovian task in real robot. (A) and (C) Number of CRs (%) along trials (400 acquisition trials and 200 extinction trials),
computed as percentage number of CR occurrence within blocks of 10 trials each, for real robot tests with ISI1 and ISI2. For each ISI, the black curve is
the average on the 12 tests, and the grey area is the standard deviation. In spite of the uncertainty and variability introduced by the direct interaction
with a real environment, the cerebellar SNN was able to progressively learn a CR anticipating the US and to extinguish it. (B) and (D) Raster plot of the
recorded network activity (excluding the 1500 GRs), in late acquisition when a stable CR generation was achieved (380th repetition, from 1520 s to
1520.6 s). The learning process induced a temporal-specific LTD at PF-PC connections, thus reducing the PC activity and consequently increasing the
DCN activity, which overcame the threshold just before the US onset. Hence, a CR was detected (black star).
doi:10.1371/journal.pone.0112265.g009
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achieved. The after-effect was evident in early extinction phases, (i)

in the EBCC, when CRs were elicited by the CS alone, (ii) in the

VOR, when an eye overcompensation was produced while the

target started to move, and (iii) in the reaching task, when an

overestimated torque was applied at the previously perturbed joint

after the force-field was canceled. These over-actions of the

cerebellar controller were rapidly re-modulated based on the new

input configurations.

The here reproduced adaptation process and fast extinction

reflect the known disparity in rates for adaptation and for

abolishing the after-effects. Extinction was achieved without

returning to the original configuration of weights. Such a

configuration might be closer in weight space to the weight

configuration that triggers the acquired responses, for which, at

reacquisition, returning to this configuration might be achieved

faster [14].

Being characterized by realistic architecture and spiking signals,

our cerebellar SNN drove adaptive behaviors analogous to those

found in humans in different closed-loop sensorimotor tasks. (i) In

the EBCC-like, the robot achieved CR levels and anticipation

values similar to those found in humans (who showed CR values of

72614% and anticipation values of 140630 ms with 400-ms ISI

[50,54]). It should also be noted that, as well as in humans, the

ratio between ISI and anticipation tended to remain constant [55].

(ii) In the VOR, the SNN-driven overall behavior was comparable

with neurophysiological studies focused on visual-vestibular

training [56,57,58]. (iii) In the perturbed reaching, the robot

behavior was comparable to neurophysiological studies in which

healthy subjects performed a planar reaching protocol at natural

speed perturbed by a viscous force field [59].

Firing patterns of the cerebellar SNN
All learning paradigms were driven by the same network,

designed with cell amounts of each population and ratios of

connectivity as in real cerebellum, working with firing rates similar

to those of the real cerebellar cell populations and with stable LTD

and LTP rates of the plasticity mechanisms.

The crucial position of the cerebellum in the brain and its

involvement in sensorimotor and cognitive processing make it an

ideal structure for investigating the role of neural plasticity in

learning [4]. The present spiking forward controller operated by

regulating the firing pattern in DCN neurons under PC control

[60]. Along learning, the response of PCs to MF inputs decreased

and this increased the discharge in DCN neurons. The process was

Figure 10. VOR in real robot. (A) and (C) Gaze angular error (RMS within each trial) during 400 repetitions with fixed target and 200 repetitions
with moving target, which required a strong reduction of the previously learned VOR. For each HR (HR1 and HR2), the curve is the average on the 12
tests, and the area is the standard deviation. (B) and (D) Raster plot of the recorded network activity (excluding the 1500 GRs), in one repetition (380th

repetition), where the acquisition had been completed, characterized by a stable and effective compensatory eye movement. There was still an error
(negative), but the IOs fired at a very low rate. The head rotation on the 2nd joint (vestibular stimulus) was decoded by the MFs through RBFs. The
DCN activity was significant for the negative DCNs, which produced a negative torque, applied on the third joint; thus, it produced an eye turn, with
the same shape of the head turn but the opposite sign, and with an intensity peak of 36 mNm for HR1 and 27 mNm for HR2. Note: there was no MF
and PC activity during the last second because that part of the repetition was only necessary to steadily bring back the robot to its initial position,
without any cerebellar activation.
doi:10.1371/journal.pone.0112265.g010
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better exemplified in the adaptation of the EBCC, in which a

precise time relationship between the events can be established.

Since the DCN spike pattern changes occurred before the US

arrival, the DCN discharge accurately predicted the US and

therefore could facilitate the release of an anticipatory behavioral

response. At the same time, the IO signal carrying US decreased.

The prediction of a noxious stimulus triggers an anticipatory

motor command. The inhibition mechanism of the IOs by the

DCNs implies to translate the motor command into a sensory

prediction signal, allowing a single cerebellar area to simulta-

neously tackle both motor execution and sensory prediction [14].

The generalizability of the learning model is demonstrated by

the applicability of the same structural and functional principles of

the cerebellar SNN to different operative conditions. As in

Yamazaki’s work using computational models [24], the granular

layer was able to recode MF signals into a high-dimensional sparse

spatiotemporal spike pattern, irrespective of whether mossy fibers

conveyed constant signals (e.g. during the CS) or time-varying

Figure 11. Perturbed reaching in real robot. (A) and (D) Joint angular error (RMS within each trial) during the 650 repetitions: 50 trials without
force field, then 400 with a viscous force field (force field c1 and force field c2) and the last 200 again with null force field. The last phase clearly shows
the after-effect phenomenon, occurring when the perturbation was suddenly canceled after a complete acquisition. For each force field, the curve is
the average on the 12 tests, and the area is the standard deviation. (B) and (E) For each force field, Cartesian trajectories on the xz plane in some
representative trials: ideal trajectory in dashed green, 1st perturbed trial (51st) in thick red, last perturbed trial (450th) in thin red, 1st re-unperturbed
trial (451st) in thick blue, last trial (650th) in thin blue. (C) and (F) Raster plot of the recorded network activity (excluding the 1500 GRs), in one
repetition (430th repetition), where the acquisition had been completed, characterized by a stable compensation of the constant external
perturbation. There was still an error (negative and positive), but the IOs fired at a very low rate. The DCN activity was evident almost only on the
negative DCNs, which produced a negative corrective torque on the third joint, able to counterbalance the viscous force fields.
doi:10.1371/journal.pone.0112265.g011
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signals (e.g. during head rotation or arm angular displacement). A

structural variant of the SNN used for the EBCC task only, both in

simulations and in real robot tests, was the inhibitory projection

from cerebellar nuclei to IOs. Indeed, in VOR and perturbed

reaching (or Optokinetic reflex in [24]), image slip or joint error

gradually decreased during training and this naturally diminished

the CF signal to PCs without the need of any additional DCN-IO

inhibitory mechanism.

In the cerebellar SNN, the parameter correlating response

patterns to behavior was the average firing frequency. The

effectiveness of SNN firing rates in controlling the robotic learning

could be taken as an indication that rate coding is indeed

appropriate to regulate sensorimotor activity, in line with the

observation that frequency may be superior to delay (or latency)

for accurately coding sensory inputs and motor outputs [26].

However, the biological reality is more complex. The cerebellum

is endowed with mechanisms both tuning the composition and

delay of well-timed spike bursts in the granular layer and

modulating tonic firing discharge in Purkinje cells and DCN cells

[61]. A simple hypothesis is that additional time-dependent

mechanisms would further improve the cerebellar SNN perfor-

mance and accuracy. A hint on how these different mechanisms

could combine in optimizing cerebellar learning and control could

emerge from the implementation of more realistic neurons and

higher order firing pattern statistics (including millisecond-scale

correlations and bursting) in the SNN (e.g. see [62] [63]).

Although, in the present SNN, all neurons were simple leaky

Integrate&Fire and the architecture of the network was scaled and

simplified, multiple associative behaviors could be reliably learned

and processed, by neurophysiological firing rates of the different

cell populations. Moreover, a single elementary site of plasticity

was sufficient to drive learning.

The present SNN was constructed using a minimal structure to

let the underlying operative principles to emerge. As expected, this

strategy did not allow a full reproduction of the corresponding

human behaviors. This suggests that the complex properties of

biological firing patterns and local connectivity are required for

higher order processing of multimodal firing patterns integrated

into response cycles, as it occurs during complex multi-joint

coordinated motor activities under control of cortical rhythmic

discharges [51]. The neurorobot attained a stable human-like

response level with also a human-like rate in all the tasks. Hence,

the embedded computational model can acquire correct respons-

es, even with the IOs sustaining a physiologically correct low rate

of activity, without slowing down the learning processes. However,

the accuracy was not always maximized, leaving not negligible

residual errors. The model with one plasticity site, tuned only once

and applied in multiple and completely different tasks, is able to

produce a behavior as trade-off between rate, accuracy and

versatility. Distributed plasticity sites could equip the model with a

better capability to effectively adapt to any dynamic ranges of

stimuli, operating as adaptive gain controllers. Furthermore, the

SNN started from a naı̈ve state, but finer circuit mechanisms could

also be involved to introduce consolidation and memory transfer

mechanisms. A larger and more detailed network, with multi-site

plasticity (e.g. [64]) and a library of basic motor repertoires, could

enhance the learning processes.

Finally, we have conformed to a general scheme, in which

mossy fibers convey contextual information and climbing fibers

convey instruction signals for learning. However, the real

biological role of IOs is debated, ranging from carriers of error-

like or of generic attention signals [65,66]. Whatever the true

biological meaning, the complex spike frequency decreases with

learning resembling experimental observations [67,68]. Recently

new evidences about the mechanisms of the olivocerebellar circuit

showed burst-like activities on subthreshold oscillations, going

beyond the assumption of an all-or-none teaching signal, and thus

linking the timing and learning aspects of motor function [69,70].

It can be envisaged that the controller could be used to test

different hypotheses on the role and functioning of IOs and

climbing fibers in the future.

Perspectives and limits of the cerebellar SNN
The neurorobot implementation had to face two crucial issues,

those of implementing a real-time SNN and of connecting it with

the system controller. The cerebellum SNN was built using the

EDLUT simulator with exponential synapse models and leaky

integrate-and-fire neurons. According to the event-driven simula-

tion strategy proposed in [37], the behavior of each cell type with

each possible condition was precompiled in look-up tables during a

pre-simulation stage. The EDLUT SNN is expandable, i.e. it can

be scaled and implemented with new cellular models without

altering its main structure. The limitation is that the more complex

are the neurons and the larger is the network, the higher are the

RAM requirements. In its present configuration, the EDLUT

SNN allowed cerebellum-like models with tens of thousands of

cells to run in real-time in a common personal computer [71]. The

transformation of the analog desired or actual states into MF spike

trains was implemented by using overlapping radial basis functions

[36,72] as receptive fields of the input-variable space. These RBFs

generated sparse activity patterns in the MFs that facilitated the

coding in successive layers. Although this encoding strategy

required a high number of fibers to encode a few variables, the

use of evolutionary algorithms may be implemented in order to

generate RBF settings that optimize both the information

transmission and storage capacity [73].

The present cerebellar SNN was designed to emulate a single

functional module, intended as the minimal unit capable of

controlling a given behavior. A more complex and diversified

input-output space could be emulated by considering that the

cerebellum can be seen as a repetition of modules weakly

interacting through mossy, climbing and parallel fiber connections

[45]. Thus, in principle, this cerebellar SNN can be updated with

more detailed neurophysiological properties, for example by

adding new neural dynamics and learning rules, and expanded

to account for multiple interconnected modules. Distributed

multiple forms of plasticity observed in the cerebellar network

[74,75,76] are required to extend the learning properties leading

to robustness, acceleration, multi-scale adaptation and consolida-

tion of memory. Distributed plasticity, nuclear and cortical, has

been recently implemented in an analog cerebellar model [32] and

it could be translated into the real-time EDLUT simulator by

applying appropriate and optimized information-coding strategies,

thus enriching the cerebellar SNN with multi-site plasticity.

This update may allow us to achieve a higher level of realism,

extending the neurorobot functionalities over a rich and redun-

dant multi-sensory space and a multi-joint output space [77,78]. A

large-scale network of the cerebellum representing multiple

modules in detail would require high performance computing,

hardware accelerators and neuromorphic circuits [79,29,27,80] in

order to be compatible with the compact design and real-time

requirements of neurorobotic applications.

Conclusions

We have efficiently linked low-level brain circuits with high-level

functions integrating a SNN into a neurorobot operating in real-

time. The main added value of learning in our neurorobot is that it
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succeeded in reproducing how biological systems acquire,

extinguish and express knowledge of a noisy and changing world,

in multiple cerebellum-driven learning tasks performed by a real

robot moving in perturbed environments. The real world is always

more noisy than the worst case simulation can accomplish [81],

and learning is actually a long-lasting experience-dependent

change in behavior, which can realistically be observed only from

an embodied system.

It is envisaged that improving the realism of the SNN will allow

us to make predictions about the nature of implicit computations

occurring in the cerebellar SNN. This approach has the

challenging potential to represent the initial building block of a

more complex brain-inspired controller, into which other realistic

SNNs emulating different brain structures involved in sensorimo-

tor integration could be embedded.

As broader robotic implications, semi-autonomous robots can

take advantage of cerebellar-inspired building blocks in their

control system whether it allows them to adapt to multiple context-

dependent behaviors [12].
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