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Abstract: Respondent-driven sampling (RDS) is a snowball-type sampling method used to survey
hidden populations, that is, those that lack a sampling frame. In this work, we consider the problem
of regression modeling and association for continuous RDS data. We propose a new sample weight
method for estimating non-linear parameters such as the covariance and the correlation coefficient.
We also estimate the variances of the proposed estimators. As an illustration, we performed
a simulation study and an application to an ethnic example. The proposed estimators are consistent
and asymptotically unbiased. We discuss the applicability of the method as well as future research.
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1. Introduction

Respondent-driven sampling (RDS) is a refined form of snowball sampling for collecting data
from hidden populations that lack a sampling frame. Therefore, these populations are difficult to
reach and cannot be dealt with using traditional sampling techniques. RDS was first introduced
by Heckathorn [1] and was developed afterwards by Salganik and Heckathorn [2] and Volz and
Heckathorn [3]. Some recent papers in parameter and variance estimation are given by [4-6]. Some
popular examples of RDS are HIV at-risk people, the LGBTI community and injection drug users [7-9].
Other examples are given in [10,11].

A long-standing problem in non-probabilistic sampling is regression modeling for RDS data. Several
authors have considered this issue from different perspectives. For instance, there have been a surge
of studies in machine learning and statistical framework to solve similar problems. Wong et al. [12]
studies the problem of biased standard errors of non-linear transport models. Imani et al. [13,14] use
an approximation of a distribution using a Markov chain Monte carlo (MCMC) algorithm and an
approximate MCMC implementation, respectively.

Model-fitting should incorporate sample weights as well as information about correlation between
sample units [3]. Avery et al. [15] review some available methods in an RDS framework dealing with
this problem in a simulation study with binary response. One popular method for addressing the
problem of the correlation structure between recruits and recruiter in a network is clustering, that is,
transforming RDS data into clustered data [16-18]. Clustering is connected with the homophily in the
population, that is the tendency to associate with those with similar characteristics. Becket et al. [16]
use clusters to consider correlation for estimating diabetes prevalence and discrete covariates in an
empirical study. Nevertheless, using clustering can be problematic as sometimes clusters, if they exist,
may be difficult to identify. Hubbart et al. [19] point some of the problems involved with using
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generalized estimating equations (GEE) when the number of clusters is small and Rao et al. [20] stress
some of the problems involved with not adjusting properly to clusters.

Regression methods for analyzing data have not been fully validated [16]. Therefore, as no clear
approach for regression modeling in RDS is available, some authors use standard statistical methods
without adjusting for RDS data [21,22]. On the other hand, some authors use weighted regression
for estimating prevalence of characteristics of interest in real-life examples [23-26]. Most of them use
individual weights calculated (typically with the respondent driven sampling analytical tool (RDSAT))
and export them to standard statistical software to apply the weighted method. Methods incorporating
sample weights will tend to improve their performance when homophily is small in the population, as
they typically do not account for the potential dependence of the units. While this might be an issue in
populations with high homophily, there is no clear reliable regression method in RDS accounting for
clustering, that can be extensively used in applications. Adjusting for clusters requires knowledge of
the population and if it is not well performed in practice, or even if clusters do not actually exist in the
population, might result in biased estimates [20]. Our method addresses the problem of regression
modeling and association between continuous variables by proposing a new sample weight estimation
method for continuous data. The focus of our work was to propose a method for estimating non-linear
parameters such as the covariance and the correlation coefficient. We derived expressions for the
estimators that make use of the RDS estimators admitting continuous data and showed that they share
properties with them, such as being consistent and asymptotically unbiased. A diagram is given in
Figure 1. We also estimated the variances of the proposed methods. Our method may fill a gap as no
such an approach has achieved in an RDS framework: most studies incorporate the weights using
standard statistical software and unlike our proposal, they are focused on prevalence estimation.

Non-linear parameters for continuous data
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Figure 1. Schematic representation of the proposed method.

We begin in the next section by introducing respondent-driven sampling. In Section 3, we propose
estimators for the population covariance and for the correlation coefficient. Estimators of the variances
of the proposed estimators are considered in Section 4. A simulation study was performed to illustrate
their performance, described in Section 5. An application to study the living conditions of Indigenous,
Montubios and Afro-Ecuadorian young people are presented in Section 6. Finally, Section 7 presents
concluding remarks.

2. Background

The main idea behind the estimation in RDS [3] is to treat this sampling as a random walk on
an undirected network. It is well known from Markov chain theory that the stationary (equilibrium)
probability of a node is then proportional to its degree.
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We assume the target population consists of N people (nodes) with labels 1, ..., N. We assume
the target population is connected by a network of mutual relations with N x N adjacency matrix Z.
That is z;; = z;; = 1 if i and j are connected and 0 otherwise. We define the nodal degree of a the
personi, §; = Zj zjj, as the number of network ties or alters of node i.

An small initial sample s is selected from the population members accessible to researchers that
are called the seeds and comprise wave 0 of the sample. Each member of wave v is given a number
of uniquely identified coupons to distribute among their alters. Coupon recipients returning their
coupons to the study center are subsequently enrolled in the study. The wave number of a respondent
is one more than that of their recruiter. This procedure is repeated until the desired sample size,
n, is attained.

Let the N-vector y represent a variable of interest. If y have binary response and groups A and B,
the more usual estimators in RDS are the RDS-I ratio estimator, the RDS-II estimator [3] and the Gile
and Hanckock [27] version for sampling with replacement.

The RDS-I estimator for estimating proportions with y binary response and groups A and B is
defined as

Pa= CBAIA)B/(CBADB + éABDA)r @

with Cup = o +rAA r o is the number of people of A’s recruiting B’s in the sample, 74 4 the number of
people of A’s recruiting A’s in the sample, Cp4 = m , 74 is the number of people of B's recruiting
A’s in the sample, 14 and np the number of sample units belong to groups A and B respectively,
and D4 and Dy are the average degree of people in groups A and B, respectively.

The RDS-SS [27] estimator for estimating proportions:

pa= Y ()7 Y A( , @)

kesy kes

with 71(J;) the estimated population distribution of degrees through successive sampling.
The RDS-II estimator of the mean Y allows continuous variables and takes the form of the Hajek

estimator as follows: A
Y=Y 6w/ Y6 €)
kes kes

with &y the degree reported by respondent k.

3. Estimation of Some Non-Linear Parameters

The widespread use of regression based on sample survey data requires a careful assessment of
the use of standard techniques. It is clear that usual estimators of parameters involved in regression
are not valid in the case of RDS scheme. In this section, we develop some estimators for population
variances, covariances and the correlation coefficient.

3.1. Estimation of the Variance and the Covariance
We define the population covariance as:

Syx = ﬁ g,(yk - Y)(x — X).

We can write this parameter as:

1

I N1

mTyTx =0= f(91/ 02, 93)/

being Ty = 01 = Ly ik, Ty =02 = Yy yx and Ty = 03 = Y11 X
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Similarly, the finite population variances are defined as

1 1
2
= - T
Sy = N1 N(N-1)¥
and 1 1
2 2
— Tex — T2
5= o N(N—-1)*

Let us construct estimators for these parameters assuming that y; and x; are observed for the
units of the RDS sample s.

If there exists 61, 6, and 95 consistent estimators of 61, 6, and 63, a consistent estimator of Syx
will be

A 1 4 1 A A .
Syy = 01 — 0,65 = 0. 4
yx N_ll N(N_1)23 ()
We can estimate these totals with the RDS-II estimator: )
Tyuy = New s et Ty = Nowy y26, !, and Tyxan = Now v yxxid, !, being 8, = ):u”5;1
the average degree.
Then, the estimator of the covariance is
A 1 . 1 N .
SnyH = mTnyH - mTyHHTxHH- ®)

If N is large, Ty HH can be written in a more straightforward way that does not depends on N:

. 5 ., 2 _ _
SyxHH = ;v Y yexid - n% Yowd Y o ©)
S S S

Using the idea of the RDS-SS estimator, we propose to estimate the totals as:

Tyss = Loyrt(6) ™, Tyxss = Leyint(8) ! and Tyyss = Yoyt (6) ", being 7(J;) the
estimated population distribution of degrees through successive sampling.

Then, the estimator of the covariance is

1 . 1 PN
= ——T — ——T55Tss.
Syxss N =18 T NN 1y Lvss Txss

If N is unknown, a consistent estimator for Syx is:

N 1 . 1 PO
Syxss = = Tyxss — mTyssszs, )

N-1 N-1

with N = Y, #(6;) L.
RDS-SS and RDS-II estimators of a total are asymptotically unbiased, thus the proposed estimators
will be asymptotically unbiased.

3.2. Estimation of the Correlation Coefficient

In this section, we consider the estimation of the correlation coefficient between two variables, say
y and x, defined by

p - Syx/Sny.

Two estimators for this parameter can be obtained by using RDS-II and RDS-SS estimators which
are previously defined:

PHH = 57— ®)
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and )
S
~ yxSS
Pss = z—= 9)
SyssSxss
being $ 1 Tyym L_f12 8§ = T L_ 72 . Sss = = Tyuss —
& SyHH = N T N(N-T) yHH7 OxHH = N1 LocHH TONNT) CxHH? 9ySS T N-T11yySS

_ 1 1 2
N(N—l)TySS and SxSS = TTxxSS N(N—l)TxSS'

4. Estimation of the Variances

We consider the variance estimation of the covariance of Sy
Using a Taylor linearization, we write

with R
i — 9f (01(s),...,03(s)) oo
] I~ 1reees 3
90;
V(6o) = V(Z“’ﬂ;) = ZZUJZV(QA]) + Zw,w]cov(@,aj),
and
V(0) ~ V(6,) = 2@]2‘7 )+ ) ;i cov(§ 5])
. ) o
being w1 = yiy, w2 = — ¥y @3 = NN
They are estimated by
. . T 7,
wl - wll wz - 7m, w3 — 7m

Note: A more straightforward computational expression can be derived from formulae 5.5.10 in

Sarndal et al. [28]
We estimate the variances and covariances of the above-mentioned totals for the RDS-II

estimator as

V(Tyxun) = T Z Néoyixdy ' — Tyarin)?,
S

V(TyHH) = m ;(N&ywk’l - AyHH)z,

N 1 A _ N

V(Tyun) = i—1)n Y (Néoxo, ' — Tenn),

S
A A 1 A _ N
cov(Tyxan, Tann) = =1 Y (NSoyrxdy = Tyerm) (NSoxid, = Tomim),
S

SN A 1 N _ A N _ R
COU(TnyH/ TyHH) = W Z(Nfsv]/kxk5k t— nyH)(Nva]/k‘Sk T yHH)/
s

and ,
coo(Tyup, Tenn) = = Y (Nowykd; ' — Tyrn) (NSoxis ' — Tiemm).
S

The proposed RDS-II estimator is only analogous to the Hansen and Hurvitz estimator [29],
but as data are correlated in an RDS framework, the above-mentioned estimators can perform poorly.
Even though Volz and Heckathorn [3] derived a variance estimator that accounts the MCMC structure
of the sample for categorical variables, we can not use this variance estimator in this context.
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We estimate now the variances and covariances of the totals for the RDS-SS estimator by using
the Deville and Sarndal [30] method for estimating the variance of the Horvitz-Thompson estimator.
The variances are estimated as

~ o 1
V(Tyxss) =

Y (1= () (22— Yy /#(6))?

1- ZkGS a% kes ﬁ((sk) les

V(Tyss) = 1_21” L1 =700 (5~ Lo/ 3(@)*
and
V(Tuss) = ———— Y (1 1(6)) Gy — Lo /(5

2
1= Y kes 0% jce les

The covariances are estimated as

. . 1 . YiX . .
c00(Tyxss, Tyss) = T—pea zg(l = 7t(0x))( 7%]({(5:) - %ﬂl%xz/ﬂ(fsz))( ff?gk) - lezs:ﬂlyl/n(‘sl)),
PP = 1 N X N X N
COU(TnyS/ Tyss) = m %(1 = 7(66))( gl({&f) - lezsﬂlylxl/”((sl))(Tz;k) - lezsﬂlxl/”(‘sl)),

and

C/U\U(Tyss, Tess) =

1 . Yk . Xk .
5 2 (A=A (=~ — o ay /() (s — Yo mxi /7 (o)),
[T 1£< ( (7T((5k) Y ay )><7T((5k) ). )
where a; = (1 —7(0))/ Lies(1 — 72(d1)).

As the correlation coefficient estimators are ratio estimators, the estimators of their variances can
be easily obtain by using Taylor linearization (see e.g., [31]).

5. Simulation Experiments

In this section, a limited simulation study was carried out to illustrate the performance of the
proposed estimators under different scenarios. The main factor of interest was the estimation of the
population covariance and the correlation between continuous covariates. We used our own code
written in R to compute the proposed estimators. Programming details and code are available from
the authors.

The simulated population size was N = 10000. A NxN network connection indicator matrix C
was randomly generated, with Cij either 0 or 1, a connection indicator between node i and j,
fori,j =1,...,N.Resulting Cij will determine degree, as Zz’eu,i;&j cij = 6;. Ten seeds were selected at
random from the network with probability proportional to their degree, with three maximal coupons
issued for each participant.

The values of the variable of interest y were generated from a normal distribution y; ~
N(5000,500), for j = 1,...,5000. Three auxiliary variables were then generated from the values
of y, which were: x; = (y —e1) /0.5 with e; ~ N(500,500), x, = (y — e2)/0.5 with e, ~ N(500,700)
and x3 = (y — e3)/0.5, where e3 ~ N(500,300). The resulting correlation coefficients were p = 0.7007
for x1, p = 0.571 for x, and p = 0.8579 for x3, respectively. The simulations were also performed for
other different covariates and therefore different values of p, but the results were qualitatively similar
and hence are not reported here. Sample size was n = 500 and samples were selected using simple
random sampling without replacement, just like RDS is usually conducted in practice.
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For each regression model, we computed the two proposed estimators of the population
covariance Sy, and the correlation coefficient p. We investigated the percent relative bias

rb% = Epic (8 — 6) /6 % 100,
and the percent relative mean squared error
rmse% = Epc[(8 — 6)%]/6% % 100,

for each estimator §yx and p. Simulation results were based on B = 1000 samples and E;c denotes the
average of the Monte Carlo replications.

The estimators of the covariance are approximately unbiased, as relative biases are around 1%
for all scenarios considered, with even lower biases for the correlation coefficient estimates, with all
of them less than 1%, as shown in Tables 1 and 2. Small relative efficiency values for estimating the
parameters with quite similar results obtained with both estimators, indicating that they are effective
in estimating these non-linear parameters.

Table 1. Percent relative bias (rb%) and the relative mean squared error (rmse%) for estimating Sy
with estimators SAyx/ RDS—11 and SAyle Ds—ss in the three scenarios. RDS—respondent-driven sampling.

~

. S, - S .
Estimators yx,RDS—I1 yx,RDS—SS

rb% rmse% rb% rmse%

Scenariol 1.4953 0.8158 1.5055 0.8065
Scenario2 1.7857 1.0906 1.7897 1.0782
Scenario3 1.2745 0.6516 12924  0.6447

Table 2. Percent relative bias (rb%) and the relative mean squared error (rmse%) for estimating the
correlation coefficient p with estimators prps—_j; and prps—ss in the three scenarios.

Estimators PRDS—II PRDS—SS

rb%  rmse% rb% rmse%

Scenariol 0.4738 0.1262 0.4786 0.1245
Scenario2 0.8656 0.3347 0.8628 0.3304
Scenario3  0.1889  0.0244 0.2003  0.0242

6. Application to a Real Survey

In this section, the proposed estimators were applied to a real survey involving discrimination and
the under-representation of young Indigenous, Montubios and Afro-Ecuadorian people in Ecuador.
The RDS methodology was applied to a population of young (18 to 29 years old) Indigenous, Montubios
and Afro-Ecuadorian people living in the city of Riobamba (Ecuador). They have historically been
suffering from exclusion and under-representation and therefore, this group lacks a reliable sampling
frame [32-35]. A total of 814 people were recruited in six waves and questioned on their social and
economic background and living conditions using a dual system of incentives to motivate recruitment.
The reported income of the household is the variable of interest and the age of the respondent is
the covariate. This is unpublished data that is intended for publication in a manuscript that is in
preparation [36].

Good overall performance of the two proposed estimators for the covariance and the correlation
coefficient, with a bias approximately around 5% and similar small values of the relative mean squared
error rmse, as shown in Tables 3 and 4.
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Table 3. Percent relative bias (rb%) and the relative mean squared error (rmse%) for estimating Sy
with estimators §yx, RrRDS— 11 and gyx, RrDS—ss for the ethnic example.

~ ~

Syx,RDS—I1 Syx,RDS—5S

rb% rmse% rb% rmse%

—5.671021 0.8551362 —7.147357 0.5216048

Table 4. Percent relative bias (rb%) and the relative mean squared error (rmse%) for estimating the
correlation coefficient p with estimators prps—j; and prps—sg for the ethnic example.

PRDS—II PRDS—SS

rb%  rmse% rb% rmse%

6.1371  0.4460 4.9065  0.2407

7. Discussion

RDS were used extensively to study the prevalence of a disease. As more RDS practitioners are
incorporating this methodology to their toolbox, model-fitting in an RDS framework has become an
important issue of interest. We proposed a new sample weight estimation method for continuous data.
Our approach is most appropriate for situations in which homophily is small. While we consider this
is a novel approach for continuous RDS data, accounting for clustering remains an open question. It is
possible to extend this methodology to adjusting to clusters, as part of future research.

As an illustration of the applicability of the proposed method, we performed a simulation study
and an application to an ethnic example. Nevertheless, the focus of our work has been to propose a
method for estimating non-linear parameters with new sample weights. We derived expressions of
the variances and showed that the proposed estimators have desirable properties. Our simulation
study does not show significant differences in terms of bias or root mean square error between the two
proposed estimators. Furthermore, the calculation complexity of the two estimators is similar. There is
therefore no objective reason to prefer one over the other.

Taken together, the results about the dependence between continuous variables presented in this
paper add to the growing literature on respondent-driven sampling, allowing researchers to obtain
better information about key hidden populations.
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