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Abstract 

Chromatic stimuli across a boundary of basic colour categories (BCCs; e.g. blue and green) are 

discriminated faster than colorimetrically equidistant colours within a given category. Russian 

has two BCCs for blue, sinij ‘dark blue’ and goluboj ‘light blue’. These language-specific BCCs 

were reported to enable native Russian speakers to discriminate cross-boundary dark and light 

blues faster than English speakers (Winawer et al., 2007, PNAS, 4, 7780-7785). We re-evaluated 

this finding in two experiments that employed identical tasks as in the cited study. In Experiment 

1, Russian and English speakers categorised colours as sinij/goluboj or dark blue/light blue 

respectively; this was followed by a colour discrimination task. In Experiment 2, Russian 

speakers initially performed the discrimination task on sinij/goluboj and goluboj/zelënyj ‘green’ 

sets. They then categorised these colours in three frequency contexts with each stimulus 

presented: (i) an equal number of times (unbiased); more frequent (ii) either sinij or goluboj; (iii) 

either goluboj or zelënyj. We observed a boundary response speed advantage for goluboj/ zelënyj 

but not for sinij/goluboj. The frequency bias affected only the sinij/goluboj boundary such that in 

a lighter context, the boundary shifted towards lighter shades, and vice versa. Contrary to 

previous research, our results show that in Russian, stimulus discrimination at the lightness-

defined blue BCC boundary is not reflected in processing speed. The sinij/goluboj boundary did 

have a sharper categorical transition than the dark blue/light blue boundary, but it was also 

affected by frequency and order biases, demonstrating that “Russian blues” are less well-

structured than previously thought. 
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1. Introduction 

 

The universalist view of colour categorisation, broadly accepted since the seminal work 

of Berlin and Kay (1969/1991), and in a later revision termed the Universality and Evolution 

model (Kay, 2015; Kay & Maffi, 1999), posits that pan-human basic colour categories (BCCs) 

recur and evolve from a minimum of two to a maximum of 11 in a partially fixed order across 

languages. This view is complemented by the relativist view, or the Whorfian hypothesis of 

linguistic relativity: according to it, different languages divide the colour continuum in an 

arbitrary way (Saunders & vanBrakel, 1997). In the last two decades, the discourse between 

these two theoretical views has led to the emergence of the weak relativity hypothesis, a 

framework which reconciles some of the perceived contradictions between universalism and 

relativism by acknowledging that perceptual, linguistic, social and pragmatic factors all play a 

role in cognitive processing of colour (e.g. Roberson, 2005). Notably, the weak relativism 

embraces the possibility of emergence of new BCCs and their corresponding basic colour terms 

(BCTs), specific to a given language, beyond the established 11. Indeed, Berlin and Kay (Berlin 

& Kay, 1969/1991) were not doctrinaire on the limit and noted the possibility of more than 11 

BCCs in Russian, with two basic categories/terms for ‘blue’: sinij ‘dark blue’ and goluboj ‘light 

blue’. The possibility of BCCs exceeding the original “ceiling” has seen further empirical 

findings in relation to the BLUE area of colour space. In addition to Russian, two basic “blues” 

are also established in other Eastern Slavonic languages (Ukrainian, Belarusian), several 

languages in circum-Mediterranean area (Italian, Turkish, Greek, Maltese) and in Japanese and 

Thai (for reviews see Davidoff, 2015; Paramei & Bimler, 2020). 

In an identification task colours that fall near the centre of a BCC (category prototypes) 

have processing advantages compared to colours that fall near a category boundary. As an 
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example, prototype colours of blue or green categories are named and categorised faster and 

more accurately than a blue-green/turquoise (Agrillo & Roberson, 2009; Bornstein & Monroe, 

1980; Huette & McMurray, 2010; Jraissati, Wakui, Decock, & Douven, 2012). In comparison, in 

a same-different discrimination task, responses are more accurate and faster for stimuli at the 

category boundary than for within-category stimuli. These phenomena are known as categorical 

perception (CP) effects (Goldstone & Hendrickson, 2010; Hanley, 2016; Harnad, 1987). More 

recently, Witzel and Gegenfurtner (2016) proposed a weaker version of CP effects, which they 

labelled “categorical facilitation”, suggesting that categories facilitate only the identification of 

perceptual differences at the boundary. 

 “Categorical facilitation” was introduced in light of contradictory evidence for 

categorical perception, with sources of these contradictions rooted in variation among the studies 

of a category-probing metric, i.e. a measure of the categorical character of perception 

(performance measure), and a reference-metric, a measure of stimulus differences specified in a 

continuous way (see Christoph Witzel, 2018, for a thorough review). More specifically, recent 

studies have revisited categorical effects on colour discrimination using reference metrics other 

than the Munsell colour space, with more precisely controlled stimuli and rigorously defined 

differences between them – either by a number of just noticeable differences (JNDs; Witzel and 

Gegenfurtner, 2013, 2015) or perceptual distances estimated in terms of changes in the ratios of 

cone excitations (MacLeod-Boynton space; Danilova & Mollon, 2014), or the cone-opponent 

mechanisms (Derrington-Krauskopf-Lennie space; Cropper, Kvansakul, & Little, 2013; Witzel 

& Gegenfurtner, 2013, 2015), or as E (CIELUV colour space; Jraissati et al., 2012; Witzel & 

Gegenfurtner, 2016). Importantly, these studies reported a range of nuanced observations, not 

conforming to a strong categorical effect on colour discrimination: 
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− no reduction of discrimination thresholds was found at the category boundaries, but reaction 

times (RTs) appeared to be sensitive to the transition of colour categories when colour 

differences were suprathreshold (C. Witzel & Gegenfurtner, 2013, 2015, 2016); 

− absence of CP impact on threshold discrimination was confirmed for a language-specific 

category boundary (exemplified by the boundary between Korean chorok ‘green’, cheongnok 

‘blue-green’ and parang ‘blue’); a behavioural advantage was found, however, for 

suprathreshold cross-boundary discriminations (Roberson, Hanley, & Pak, 2009); 

− no enhancement of objectively measured discrimination was found for unique green, i.e. at the 

categorical boundary between bluish and yellowish hues (Danilova & Mollon, 2014); 

− the categorical advantage did not occur uniformly across all category boundaries, with 

contradictory effects at the green/blue boundary attributed to the difficulty of controlling 

effects of sensory mechanisms (C. Witzel & Gegenfurtner, 2015); 

− lateralisation of the CP effect to the right visual field, which was taken to be the landmark 

evidence for the influence of language lateralised in the left hemisphere (e.g., Drivonikou et al., 

2007; Gilbert, Regier, Kay, & Ivry, 2006), could not be replicated (Brown, Lindsey, & Guckes, 

2011; Suegami, Aminihajibashi, & Laeng, 2014; Webster & Kay, 2012; C. Witzel & 

Gegenfurtner, 2011). 

– when identical JND-calibrated pairs of stimuli were presented with either the discrimination or 

categorisation instruction (“same-different”), colour discrimination (estimated by a d’-

measure) was shown not to be affected by colour categorisation (Cropper et al., 2013). 

The findings listed above provide accumulated evidence in favour of Witzel and 

Gegenfurtner’s (2011; also Christoph Witzel, 2018; C. Witzel & Gegenfurtner, 2011) argument 

that most previous investigations of CP of colour were based on incorrect assumptions of 
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objective distances in the CIE colour space, whereby colour stimulus pairs claimed to be 

psychophysically equally distant may not have been so. 

In view of these recent findings, we endeavoured to scrutinise the processing-speed 

advantage at the sinij/goluboj boundary from the “categorical facilitation” perspective, in order 

to re-evaluate the limits of language’s influence on colour perception in the example of Russian 

blues. As in Winawer et al. (2007), the present study focuses on the two Russian BCTs for blue – 

sinij ‘dark blue’ and goluboj ‘light blue’. As these English glosses prompt, the distinction 

between the “Russian blues” is mainly driven by lightness (Davies & Corbett, 1994; Laws, 

Davies, & Andrews, 1995). Furthermore, psycholinguistic studies that employed colour stimuli 

varying in saturation revealed that the two “Russian blues” are also distinct along the saturation 

dimension, with goluboj having lower chromaticness than sinij (for reviews see Paramei, 2005, 

2007; Paramei, Griber, & Mylonas, 2017; Safuanova & Korzh, 2007). The Whorfian hypothesis 

predicts that language-specific BCCs would manifest a behavioural advantage at their additional 

cross-category boundary – as a more accurate and speedier discrimination of colours straddling 

the boundary – compared to languages that do not differentiate categorically that area of colour 

space. In line with this prediction, native Russian speakers were reported to discriminate dark 

and light blues faster than English speakers in a speeded matching-to-target, triad discrimination 

task (Winawer et al., 2007). 

In Winawer et al.’s study, Russian speakers showed a clear cross-category discrimination 

advantage for “near” colour pairs that disappeared with verbal interference (simultaneous silent 

rehearsal of a string of digits). However, data for individual colours were not presented: instead, 

RTs were collapsed across colours, specifically, over three discrimination colour pairs spanning 

or involving the boundary for the cross-category condition, and, for the within-category 
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condition, over three discrimination pairs on either side of the boundary. Since there were only 

four trials per colour pair, this implied 12 trials for the cross-category and 24 trials for the within-

category conditions. This number of trials might be satisfactory if the sampled area of colour 

space was uniform in perceptual terms and if this uniformity translated to RTs. However, as 

discussed by Mollon and Cavonius (1986), CIE colour spaces were built on the basis of threshold 

experiments in which participants discriminated nearby colours without any pressure to respond 

quickly. Thus, equal differences in a perceptually uniform space such as CIELab or CIELUV are 

not a guarantee that RTs to such stimuli will also be equal. In fact, low-level, cone-opponent and 

cone-additive mechanisms have a strong effect on RTs in a variety of tasks (Lindsey et al., 2010; 

Martinovic, Mordal, & Wuerger, 2011). 

The basic RT differences are further complicated if stimuli are to be discriminated based 

on luminance. According to the Weber-Fechner law, the just noticeable change in luminance is a 

fixed fraction of base luminance (Cornsweet & Pinsker, 1965). Presented on a light background, 

the darker colour pairs would thus be harder to discriminate, eliciting less accurate and slower 

responses. As an example, let us consider discriminating 6 cd/m2 vs. 10 cd/m2 on a 43 cd/m2 

background as opposed to 38 cd/m2 vs. 42 cd/m2 on that same background – the Weber fraction 

for brightness discrimination being ~0.11-0.14 in humans (Griebel & Schmid, 1997), the first 

pair would be around the limit of perception, with 0.12 (a difference of 0.093 on a pedestal of 

0.767 Weber contrast). Meanwhile the second pair would be easily discriminable. In a between-

subjects design, where two groups have a very large basic difference in response speed (in 

Winawer et al. ca. 180 ms in the “no interference” condition), such non-uniformity of RTs can 

pose a genuine problem, since between-subjects effects of independent variables on RTs are 

particularly pronounced for slow responders, as demonstrated by Kliegl, Masson, and Richter 



8 
 
 

(2010) who recently revisited these fairly well-known methodological concerns. These issues are 

relevant for between-subjects studies of bilingualism, wherein the experimental group 

(bilinguals) is significantly slower than the control group (monolinguals). This between-group 

RT difference is argued to reflect parallel activation of bilinguals’ two languages and, hence, 

slower lexical access to the target language due to temporal costs of inhibiting candidates in the 

non-target language (Kroll, Bobb, Misra, & Guo, 2008; Yu & Schwieter, 2018). 

In Winawer et al.’s study, the boundary RT advantage could have been due to slower 

responding to darker blues by slower, bilingual Russian speakers, compared to English speakers, 

inflating RTs in the within-category condition which would contain darker (and, thus, slower) 

discriminations. Thus, rather than being faster for cross-boundary pairs due to lexical access to 

sinij/goluboj terms, Russian participants in this alternative interpretation would have been much 

slower for darker within-boundary pairs than for lighter cross-boundary pairs. In light of these 

concerns, Winawer et al.’s RT evidence in favour of the Whorfian effect is not as robust as it 

may have initially seemed. 

In the present study we reassessed Winawer et al.’s RT advantage across the sinij/goluboj 

boundary in two experiments that employed the same categorisation and discrimination tasks as 

in the study in question. We used a greater number of trials to be able to explore performance for 

different colour pairs. In Experiment 1, we used a between-subjects design with native Russian 

speakers and English speakers, as per Winawer et al. In Experiment 2, we compared RTs for the 

sinij/goluboj boundary to RTs for the goluboj/zelënyj ‘green’ boundary in native Russian 

speakers. In addition, by using categorisation task variations, we examined whether the 

sinij/goluboj boundary depends on the presentation context, in particular, the stimulus frequency 

(cf. Parducci & Wedell, 1986), since such dependence would speak against a firm categorical 
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nature of the sinij/goluboj distinction. By re-evaluating the current evidence of language-driven 

effects observed for the “Russian blues”, our study provides an important contribution to the 

debate on the penetrability of perception by cognition, which remains a hotly contested topic 

(e.g. Firestone & Scholl, 2016; O'Callaghan, Kveraga, Shine, Adams, & Bar, 2017). 

 

2. Experiment 1: NATIVE RUSSIAN SPEAKERS VS. ENGLISH-SPEAKING 

CONTROLS 

 

In Experiment 1, we reassessed the no-interference condition of the Winawer et al.’s 

study using a between-participants design. From 20 colours in their study, we used 15, though 

with more trials per colour discrimination pair. Unfortunately, an exact replication was not 

feasible. First, Winawer et al. do not report the coordinates of the background. Second, it was not 

possible to produce the four lightest colours used in their experiment while having our monitor 

calibrated for stable output (i.e., with a maximum of 100 cd/m2 and a correlated colour 

temperature of 6500K). We also could not produce the darkest colour, probably due to the 

limitations of our monitor. Third, we aimed to provide additional detail on RTs for individual 

dark and light blue colour pairs and an exact replication would be unable to fulfil this objective 

since Winawer et al. had only 4 trials per colour. The reduced range of colours (from 20 to 15) is 

a relatively minor change, however, and the language-specific RT advantage for sinij/goluboj 

should still be obtained when the colour range contains the boundary. 

Moreover, in addition to a categorisation task, in which each colour is displayed an equal 

number of times, we employed two versions of the categorisation task with manipulation of 

stimulus presentation context to probe stability of the sinij/goluboj (Russian) and dark blue/light 
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blue (English) boundaries. Specifically, we introduced two biases by increasing the relative 

frequency of either exemplars in the upper luminance part of the stimulus range (“light bias”) or 

exemplars in the lower luminance part of the stimulus range (“dark bias”) during categorisation 

judgements (cf. Parducci & Perrett, 1971). 

2.1. Materials and Methods 

2.1.1. Participants 

Russian speakers (N=18) and English-speaking controls (N=20) were recruited from the 

University of Aberdeen student population. Each participant reported normal or corrected-to-

normal visual acuity and had normal colour vision as assessed by the City University Colour 

Vision Test (Fletcher, 1975). Participants gave written informed consent and were reimbursed 

for their time and effort. Data failed to be recorded for one Russian speaker due to technical 

failure; data for two controls were removed as no stable category boundary could be estimated 

(i.e. their responses for dark or light colours alternated rather than showing a relatively sharp 

switch from “dark” to “light”). Thus, the final sample included 17 native Russian speakers (age 

range: 21–23 years) and 18 controls (age range: 19–30 years). The study was approved by the 

ethics committee of the School of Psychology, University of Aberdeen, and was conducted in 

line with the Declaration of Helsinki. 

All Russian speakers were early bilinguals (i.e. with age of acquisition of the second 

language (L2) between 2−7 years old), with 11 with L2 Estonian (3 reported intermediate and 8 

high fluency in Estonian); 4 with L2 Lithuanian (all fluent); 1 with L2 Latvian (fluent); and 1 

with L2 English (fluent). Apart from the latter participant, 16 of the native Russian participants 

were also fluent in English (L3), acquired during their school and/or university studies, so can be 

considered trilinguals. As can be seen, the Russian speakers were mainly from the Baltic states, 
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reflecting the fact that European Union nationals are eligible for free university tuition at Scottish 

universities. 

In the control sample, participants were all English speaking, with English being the first 

language for 11 participants. The remaining participants had following languages as L1: French, 

German, Pashto, Dutch, Slovenian, Serbo-Croatian and Slovakian. Again, this reflects the multi-

cultural population of the University of Aberdeen’s student body. Among the control 

participants, 7 were monolinguals, 6 bilinguals, 2 trilinguals and 3 quadrilinguals. 

 

2.1.2. Materials 

The experiment was conducted using a Windows 7 Dell Precision PC with a ViSaGe 

MKII system [Cambridge Research Systems Ltd. (CRS), Rochester, UK]. The CRS toolbox for 

Matlab was used to display the stimuli and record the responses. Ilyama VisionMaster Pro 450 

cathode ray tube monitor was calibrated using a ColorCal 2 (CRS, Rochester, UK). The 

maximum luminance output was approximately 100 cd/m2. The purpose was to ensure that the 

monitor output was accurate and stable (Metha, Vingrys, & Badcock, 1993). Spectroradiometric 

measurements (Spectrocal, CRS, Rochester, UK) were used to generate colour stimuli using the 

CRS Colour Toolbox, as specified in Westland, Ripamonti, and Chung (2012). A Cedrus RB530 

response box (Cedrus, San Pedro, CA, USA) was used to collect responses. 

The background was set to CIE 1931 coordinates x=0.2962, y=0.3076, Y=48.88 cd/m2. 

The darkest blue in the Winawer et al. study had the CIE 1931 coordinates of x=0.1607, 

y=0.1085, Y= 6.69 cd/m2 while their lightest blue was x=0.2077, y=0.2377, Y=55.94 cd/m2. To 

achieve a stimulus array of equidistant 20 colours, we linearly interpolated 18 colours between 

the darkest and lightest blues from Winawer et al. in CIELUV space, which resulted in 20 
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equidistant colours with ∆E=4.25 between neighbouring colours. As shown in Fig. 1a,c, on our 

setup we could reproduce 15 out of the 20 colours used by Winawer et al., labelled colour 2 to 

colour 16 (C2‒C16); as mentioned above, we could not reproduce their darkest colour and four 

lightest colours. Table 1 provides coordinates of the stimulus set in the CIE XYZ and CIE LCh 

spaces. Note from Fig. 1c and Table 1 that darker blues differ in chromatic properties as well as 

in lightness, while lighter blues differ mainly in lightness. 

Participants were seated approximately 90 cm from the screen in an otherwise dark room. 

All colour squares subtended 4.8 of visual angle. In the categorisation task, a single square was 

presented in the centre of the screen. In the discrimination task, three squares were presented in a 

trial (target, match and alternate), with the target colour centred horizontally and placed 2.9 

above the discrimination pair (the match and the alternate squares). The discrimination pair were 

placed 4.4 right or left from the vertical line (Fig. 1b). The location of the match (left or right) 

was randomised. 

 

Table 1 

Coordinates of colour stimuli and the background used in Experiment 1. 

Colour 

No. 
X Y Z L c H 

2 9.88 6.67 44.93 31.04 75.11 295.50 

3 11.02 8.25 46.88 34.51 69.07 292.24 

4 12.44 10.07 49.83 37.97 64.63 289.13 

5 14.09 12.14 53.54 41.44 61.24 286.14 

6 15.98 14.48 57.89 44.91 58.56 283.24 

7 18.10 17.09 62.80 48.38 56.42 280.39 

8 20.46 20.01 68.26 51.84 54.68 277.60 

9 23.06 23.23 74.23 55.31 53.26 274.84 

10 25.92 26.79 80.71 58.78 52.11 272.12 

11 29.04 30.69 87.71 62.24 51.19 269.44 
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12 32.43 34.95 95.22 65.71 50.45 266.79 

13 36.10 39.59 103.25 69.18 49.89 264.18 

14 40.06 44.63 111.81 72.65 49.47 261.61 

15 44.32 50.07 120.91 76.11 49.18 259.08 

16 48.89 55.94 130.56 79.58 49.02 256.59 

Bgnd 47.07 48.88 62.96 75.38 9.24 280.70 

 

  

Figure 1. Stimuli and procedure. (a) Stimuli used by Winawer et al. (2007). We were able to 

reproduce 15 of the colours on our monitor for use in Experiment 1 (Russian vs. English 

speakers). We have labelled the colours from C2 to C16. (b) The categorisation task involved 

presentation of a single square. The discrimination, or matching-to-target task involved 

presentation of a triad of squares, with either the bottom left or bottom right square matching in 

colour the target on the top. (c) Stimuli used in our Experiment 2 (sinij/goluboj and goluboj/ 

zelënyj). Colour appearance on a standard screen roughly approximates their appearance in 

Experiment 2. Note that colours in the sinij/goluboj array vary mainly in lightness while colours 

in the goluboj/zelënyj array change only in hue. Colour 16 (goluboj) in the top array is 
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approximately the same as colour 2 in the bottom array. (d) CIELAB coordinates of stimuli used 

in Experiment 1 and Experiment 2. The grey dot indicates the background in Experiment 1. 

2.1.3. Procedure 

Categorisation task: The 15 colours were presented in a random order as single squares 

and categorised by Russian participants as sinij/goluboj and by controls as dark blue/light blue, 

while pressing the left button for sinij/dark blue and right button for goluboj/light blue. 

Following this “no bias” condition, the categorisation task was repeated with four trials for each 

of the eight lightest colours (C9‒C16) and two trials for the seven darkest colours (C2‒C8; “light 

bias”) or with four trials for the eight darkest colours (C2‒C9) and two trials for the seven 

lightest colours (C10‒C16; “dark bias”). Thus, there were twice as many trials in the biased 

section of the stimulus range. The trials were randomly intermixed for each participant. The two 

bias conditions were assigned between participants (“light bias”: even participants, “dark bias”: 

odd participants). 

Discrimination task (xAB): Participants were instructed to choose, which of the two 

bottom squares (A, B) matched in colour the top square (x) using the left and right buttons on the 

response box. On each trial, one of the bottom squares was an exact match of the top square 

(target); the colour of the alternate square was two colour steps (ΔE = 8.5) away from the target 

(e.g. C2 vs. C4), following the colour difference in Winawer et al. (2007), for which the RT 

facilitation was reported for cross-category colours. The stimuli were displayed until response 

followed by an empty grey screen for a 2 s inter-trial interval (ITI). 

The discrimination task started with a 20-trial practice block to familiarise participants 

with the task. The discrimination task proper included 13 discrimination colour pairs with two 

colour steps between the bottom A and B colours (C2 vs. C4; C3 vs. C5; …; C14 vs. C16). The 
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presentation of the discrimination pairs was randomised for each participant, with each pair 

presented 40 times for a total of 520 trials per participant, distributed across eight blocks (65 

trials/block). 

 

2.2. Results 

All analyses were performed in R (R_Core_Team, 2016), using packages gtools (Warnes, 

Bolker, & Lumley, 2015), Rmisc (Hope, 2013), dplyr (Wickham, Francois, Henry, & Mueller, 

2017), export (Wenseleers, 2016), ggplot2 (Wickham, 2009), lme4 (Bates, Maechler, Bolker, & 

Walker, 2015) and emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 2019). 

Categorisation task. First, each participant’s boundary was identified as the colour of the 

transition point from sinij to goluboj (Russians) or from dark blue to light blue (controls). As in 

Winawer et al.’s study, longer RTs were used to disambiguate the boundary since colours closest 

to boundaries tend to be categorised more slowly (Bornstein & Korda, 1984; Bornstein & 

Monroe, 1980; see Supplementary Fig. S1 for examples). The non-biased categorisation task 

yielded the following sinij/goluboj and dark blue/light blue (English) boundaries respectively (in 

terms of the stimulus number, Fig.1a): Russians C8.64  1.58 (mean  SD; range: C7−C11), 

controls C7.94  1.59 (range: C5−C11). These estimates did not differ significantly (t(33) = 1.31, 

p =.20). The boundary plots for individual participants in our study are presented in 

Supplementary Fig. S1. 
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Figure 2. Categorisation of blue colours for Russian speakers and controls. (a) Pie charts of the 

individual boundary choices, number-coded (colour 9 isrepresented by number 9 etc.). The area 

of the pie chart’s wedges corresponds to the frequency with which each colour represented the 

boundary in our sample. (b) Panels depict categorisation with and without the lightness-

frequency bias, with Russian speakers to the left and controls to the right. Averaged data is 

depicted by circles. Best-fitting functions are superimposed; the coloured stripes around the 

black lines correspond to 1 SE. Horizontal grey line corresponds to 50% categorisation, i.e. PSE; 

dashed lines correspond to 25% and 75% categorisation, i.e. JNDs. (c) Differences in 

categorisation between Russian and control speakers. The leftmost graph represents unbiased 

categorisation, the middle graph shows categorisation with light bias and the rightmost graph 
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with dark bias. Note: the dark and light blue stripes on the x-axes of both (a) and (b) highlight the 

colours that were shown twice as frequently within a biased context (C1-C8 for dark; C10-C16 

for light bias). Therefore, in panel (c), these are only highlighted on two of the graphs, as dark 

and light bias are plotted separately. 

 

We further visualised and statistically tested possible shifts in the boundary due to the 

dark/light bias manipulations (Fig. 2). For each group, data were collapsed across participants as 

the number of observations for each participant was too small for meaningful within-subjects 

analyses. Such aggregated boundary data can reveal overall trends in categorisation whilst 

removing noise inherent to datasets with limited number of observations, as demonstrated by 

Witzel and Gegenfurtner (2015) who found the same category effects on response times as well 

as on error rates for both individual and aggregated stimulus pairs. 

Further, categorisation at the boundary is inconsistent across repeated measurements 

which means that, depending on the size of the dataset, there may also be variation in boundary 

across measurements (see Figs. 6-7 in Witzel & Gegenfurtner, 2013). For Russian speakers, the 

numbers data points were as follows: for “no bias”, 255 data points (17 participants x 15 

categorisations each); for “dark bias”, 414 data points (9 participants x 46 categorisations each); 

for “light bias”, 368 data points (8 participants x 46 categorisations each; due to failure to record 

responses for one participant). For controls, for the “no bias” condition, there were 270 data 

points (18 participants x 15 categorisations each); for both “dark bias” and “light bias”, there 

were 414 data points (9 participants x 46 categorisations each). From these data, we computed 

points of subjective equality (PSEs; 50% categorisation) and just noticeable differences (JNDs; 

difference between 50% and 75% categorisation; cf. Knoblauch & Maloney, 2012). 
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We tested the influence of stimulus bias by comparing two generalised linear (glm) 

binomial probit models (Knoblauch & Maloney, 2012): a simple model which fits a single 

psychometric function to all the data (i.e. one intercept and slope) vs. a model which fits separate 

psychometric functions to the three bias types (“no bias”, “light bias” and “dark bias”). We 

found that Russian speakers’ responses were considerably influenced by the stimulus bias (χ2(4) 

= 16.83, p = .002). This was not due to differences between the “no bias” and “light bias” (χ2(2) 

= 3.97, p = .14), or “no bias” and “dark bias” (χ2(2) = 2.95, p = .23), but rather due to the 

difference between the two biased conditions (χ2(2) = 16.19, p < .001; Bonferroni-corrected p 

value .016). Figure 2 and Table 2 summarise these data. 

  

Table 2 

Colour categorisation (expressed as colour number in the stimulus set) PSEs and JNDs for 

Russian and control participants. Categorisation data was collected without stimulus bias, with a 

bias created by presenting more exemplars from the upper part of the stimulus range (“light 

bias”) and with a bias created by presenting more exemplars from the lower part of the stimulus 

range (“dark bias”). 

 Russian speakers Controls 

Presentation condition PSE JND PSE JND 

No bias 8.25 1.32 8.02 2.01 

Light bias 8.45 1.73 8.62 1.70 

Dark dias 8.01 1.08 8.61 0.78 
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As shown in Fig. 2 (top right), stimulus bias also affected the control group (χ2(4) = 

41.17, p < .001). Bonferroni-corrected post hoc tests between two of the three bias conditions 

revealed significant differences between “no bias” vs. “dark bias” (χ2(2) = 38.77, p < .001), as 

well as “light bias” vs. “dark bias” (χ2(2) = 19.58 p < .001), “no bias” vs. “light bias” (χ2(2) = 

7.67, p = .022) did not survive correction for multiple comparisons. 

We used the same approach to test whether categorisation differed between Russian and 

English speakers. Notably, the non-biased categorisation for Russian speakers was significantly 

different from that for English speakers (χ2(2) = 6.57, p = .038): inspection of Fig. 2 reveals that 

this is mainly due to a sharper function slope. Differences between the two language groups were 

even more pronounced at the “dark bias” (χ2(2) = 11.87, p = .003), but disappeared when the 

“light bias” was introduced (χ2(2) = 0.09, p = .96). For both English and Russian speakers, the 

slope at the “dark bias” appears to be steeper, as signified by a smaller JND, with the differences 

appearing to be especially dramatic for English speakers: from a slope shallower than that for 

Russians with “no bias”, they change to a steeper slope when the “dark bias” is implemented, 

with near-boundary C7 and C8 being categorised as darker than they were with “no bias”. 

Discrimination task. From the original 18,200 RTs (520 trials x 35 participants), we first 

excluded all responses in which an incorrect match was selected (3% trials); we then excluded, 

as outliers, any RTs shorter than 250 ms (only 1 trial) or longer than 1,500 ms (5% of correct 

trials). For the analysis of RT data in the match-to-target task we followed the approach 

employed by Winawer et al. Specifically, for the cross-category condition, we took the RTs from 

discrimination pairs that either crossed the boundary or involved the boundary (there were three 

such pairs), while selecting three discrimination pairs below and three above that boundary to 

represent the within-boundary condition. As in Winawer et al.’s study, this resulted in a 
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maximum of nine discrimination pairs per participant being utilised for the RT analysis. If the 

boundary was too close to the darkest or lightest end of the stimulus array, RT calculations for 

the cross- and within-category conditions were based on data for fewer colours, but the cross-

category data were never based on fewer than two discrimination pairs, and within-category data 

were never based on fewer than three discrimination pairs. After this data selection step, we were 

left with a total of 11,597 trials (69% of the post-exclusion total). 

We analysed the RT data using linear mixed effects (LME) models with the following 

factors: boundary (discriminations at or across the boundary vs. within-category discriminations) 

and language (Russian or non-Russian). We also included variability of RT across the 

discrimination pairs (C2 vs. C4, C3 vs. C5, C4 vs. C6 and so on), as well as by-participant 

variability in intercept and slopes as random effects. LME models are an ideal way of analysis 

for this type of data, since they can deal with missing data within a factorial model and, also, 

account for the variability that stems from the discrimination pairs, for which the cross- and 

within-boundary data was obtained. To determine the best fitting model, we first fitted the 

maximal model described above and then proceeded to remove, first, the random effects, and 

then one fixed effect/interaction at a time, while assessing if their inclusion failed to affect the 

model’s fit as measured by a chi-square test. 

For assessing this best fitting model, zero level for fixed effects was set for the Russian 

language group. Mean intercept for the final model at zero level, for Russian speakers, was 734 

ms (SE = 38 ms). The random slope effect of variability of RTs across discrimination pairs was 

kept as it contributed significantly to the model (χ2(1) = 526.76, p < .001). Removal of the 

language group effect also reduced the fit (χ2(1) = 5.04, p = .025; Ω2=0.40) with control group 

(English) faster than Russian speakers (−112 ms, SE = 48 ms). We removed the boundary-by-
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language group interaction (χ2(1) = 1.19, p = .28), and the effect of the boundary (χ2(1) = 1.10, p 

= .29), as their removal did not affect the model fit. Hence, the best fitting model only included 

the fixed effect of the language group and the random slopes of discrimination pairs. Thus, we 

found neither an effect of the boundary nor an interaction of the boundary with the language 

group. Fig. 3a shows mean RTs for cross- and within-boundary conditions for Russian speakers 

and controls; Figure 3b shows the same RTs with within-boundary conditions separated into 

those that fall below the boundary (i.e. darker blue) and those that fall above the boundary (i.e. 

lighter blue), while Fig. 3c depicts mean RTs for the same main factors separately for all 

discrimination pairs. 

 

  

Figure 3. Reaction times in the colour discrimination (xAB) task. (a) Mean RTs for cross-

boundary (black) and within-boundary (grey) discriminations for the two groups. (b) Mean RTs 

for cross-boundary (light grey), as well as below-boundary, darker blues (dark grey), and above-

boundary, lighter blues (black), discriminations for the two groups. (c) Cross-boundary and 

within-boundary categorisations are shown for each colour pair for the Russian speakers (top 

right) and the controls (bottom right). Discrimination colour pairs are labelled by the darker 

colour, e.g. pair 2 is C2 vs. C4, while pair 14 is C14 vs. C16. 
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We then performed a post hoc exploratory analysis of RT distributions. Having been 

surprised by lack of an interaction between the language group and the boundary, we scrutinised 

whether our “negative case” may have emerged because our Russian speakers were much faster 

than in the Winawer et al. study, i.e. 734 ms vs. 1,085 ms respectively. This question was 

prompted by methodological concerns that group differences in RTs can be confounded by the 

speed of responding, since in slower responders RT effects are increased (e.g. Kliegl et al., 

2010). Slower RTs for darker blues (Fig. 3b) imply that this may have indeed generated what 

was presumed to be the boundary effect in Winawer et al.’s study Density and cumulative 

distributions of RTs are shown in Fig. 4. As is apparent from Fig. 4 (left), compared to English 

speakers, Russian speakers had a smaller number of very fast responses, along with a larger 

number of slower responses. The two distributions are not statistically different for Russian 

speakers, as assessed by a two-sided Kolmogorov-Smirnov test (D = 0.02, p = .72). RT 95%-

confidence intervals for Russian speakers (Fig. 3a) varied approximately between 650 and 820 

ms. Thus, in our study the longer RTs had lesser influence on the mean RT than in the Winawer 

et al. study, where the mean RT was around 1,000-1,100 ms. 
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Figure 4. Densities (left) and cumulative densities (right) of RTs for Russian speakers and 

controls. This graph contrasts cross- and within-boundary colours, showing their distributions 

across the full range of possible RTs. 

 

Further post hoc RT analyses were conducted to ascertain if the observed findings are 

reliable and not dependent on the selection of the boundary colours or outlier rejection 

procedures. First, we considered only cross-boundary discriminations and compared them to the 

same within-boundary pairs as above, but this did not affect the RT distribution even when 

outliers longer than 1,500 ms were retained in the dataset (whole sample: D = 0.0267, p = .37; 

Russian speakers: D = 0.0290, p = .72). However, when we considered solely the colour at the 

PSE (C8) as the boundary for all observers and retained outliers we did obtain a significant 

difference: RTs were shorter at the boundary, both for the Russian speakers (D = 0.0575, p = 

.045) and for the sample as a whole (D = 0.0421, p = .031). Finally, we also conducted a post 

hoc analysis of accuracy, using mixed logit models (Jaeger, 2008; see Supplementary Material 2 

for more details): these indicate that discrimination of darker pairs resulted in lower accuracy 

than that of either cross-boundary or lighter pairs in English participants alone. Winawer et al.  

explored RT/accuracy trade-offs on the aggregate data. However, as darker and lighter pairs may 

give rise to different RTs, it is possible for ceiling accuracy for faster-to-respond lighter pairs to 

mask underlying differences in accuracy for slower-to-respond darker pairs when these 

conditions are combined to represent within-boundary pairs. If English participants responded 

less accurately and faster to darker pairs, then this could have affected the RT distribution as 

these would have contained fewer outlier longer RTs in their dataset than more accurate and 

slower Russian participants. 
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2.3. Interim conclusions 

We did not observe a sinij/goluboj boundary effect for Russian speakers, although we 

acknowledge that our experimental setup differed from Winawer et al.’s in several aspects. In 

particular, we employed a narrower sampling of blue colours, with five (one darkest and four 

lightest) blue colours from the Winawer et al. study absent in our stimulus set (cf. colours C1 and 

C17-C20 in Fig. 1a). Note that our labelling of colours starts with the darkest colour and goes 

towards lighter colours (i.e. opposite to that in the Winawer et al. notation). The category 

boundary estimated in our study, if expressed from lightest to darkest blues (as in Winawer et al., 

2007; Fig. 1), would be C12.36  1.58 for Russian and C13.06  1.59 for controls, thus, 

approximately 4-5 steps darker than in Winawer et al. (8.7  2.2 for Russians, 8.6  2.5 for 

controls). It may be that Winawer et al. used the background luminance  different from that in 

our study (the coordinates of the background were not reported in their paper), which would 

noticeably affect colour appearance. It is likely that their background luminance was greater than 

that of their lightest blue (Y=55.94 cd/m2) resulting in a contrast-induced subjective darkening of 

the test colours (cf. D. L. Bimler, Paramei, & Izmailov, 2009). Alternatively, the observed 

difference in the category boundary could be attributed to the assimilation effect of the stimulus 

range, in Winawer et al.’s case towards the lighter end of their stimulus set (Parducci & Wedell, 

1986). Indeed, our findings of the bias effects in the categorisation task confirm that the lighter 

or darker context can significantly affect performance, with the prevalence of lighter or darker 

stimuli respectively affecting the transition between light and dark blues. 

A steeper slope would be indicative of a sharper boundary between the two categories 

(Huette & McMurray, 2010) – and, indeed, compared to controls, Russians, who possess basic 

sinij and goluboj categories, revealed both a steeper slope and the boundary that appeared to be 
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less affected by biasing. The interpretation of the bias effects is, however, limited by an uneven 

number of trials for different bias condition categorisations. Therefore, we further investigated 

the effect of bias in a second experiment, to assess whether the boundary does shift depending on 

the presentation context – by using the “no bias”, “light bias” and “dark bias” contexts with 

approximately same numbers of trials. 

Furthermore,  the effect of the boundary on discrimination speed was absent for our 

sample of Russian-speaking participants. All our participants were recruited from the University 

of Aberdeen student population, with both Russian speakers and controls performing relatively 

fast. According to our results, Russian speakers were on average 112 ms slower at the 

sinij/goluboj boundary (734 ms) than were the controls at the dark blue/light blue boundary (622 

ms). The inter-group RT difference and its sign is comparable to that in the Winawer et al. study, 

who found that, on average, their Russian participants were slower than English participants by 

147 ms (1,085 ms vs. 938 ms respectively). Note though that in both our and Winawer et al.’s 

study, Russian participants were all bilingual (or, in our case, even trilingual). It is argued that 

both languages are activated in parallel in bilinguals whereby they experience decelerated lexical 

access to the target language due to temporal costs of inhibition of candidates in the nontarget 

language (Kroll et al., 2008). This is supported by the fact that whilst performing the 

categorisation task, many Russian participants had relatively long RTs at or near the boundary 

(see Supplementary  Fig. S1), while the controls were generally very fast. 

Finally, while the Russian sample in the Winawer et al. study were at least late bilinguals 

in English, our Russian speakers were all early bilinguals, predominantly from the Baltic states – 

Lithuania, Latvia and Estonia (i.e. formerly, 1940-1991, Soviet republics). It is worth noting that 

light blue term (žydra) is basic in Lithuanian (supposedly contact-induced, due to 



26 
 
 

communication pressure from neighbouring Russian-speaking population), but it is not basic in 

either Latvian or Estonian (D. Bimler & Uuskula, 2017). We cannot resolve whether (salient) 

‘blue’ terms in the respective L2 Baltic languages of our Russian speaking participants could 

have interfered with their L1 Russian concepts of sinij and goluboj, preventing manifestation of 

their RT advantage to emerge in the match-to-target task. However, we do observe a sharper 

categorical transition in this sample (Fig. 2c) which speaks in favour of their BCCs being more 

distinct than dark blue vs. light blue in the controls. 

Alternatively, the RT interaction in the Winawer et al. study might have emerged as an 

amplification of RT differences for darker blue discriminations (see Fig. 3c, showing longer RTs 

for darker discrimination pairs), which might have been more pronounced for the slower-

responding Russian speakers. The obvious way to resolve this question was to test a sample of 

monolingual (or late bilingual) Russian speakers while contrasting categorisation of sinij/goluboj 

with a categorisation along a hue-based boundary, such as goluboj/zelënyj ‘green’. This would 

enable (i) a direct comparison with the effects at the boundary of the established hue-defined 

basic colour categories, while also (ii) excluding the possibility of confounding effects of 

bilingualism, and (iii) avoiding the pitfalls of a between-participants design. In Experiment 2, we 

therefore proceeded to compare categorisation and matching-to-target solely in Russian 

(monolingual or late bilingual) speakers for sinij/goluboj and goluboj/ zelënyj ‘green’ colour sets. 

 

3. Experiment 2: RUSSIANS, SINIJ/GOLUBOJ VS. GOLUBOJ/ZELËNYJ ‘GREEN’ 

 

3.1. Materials and Methods 
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The design of this experiment was preregistered (https://osf.io/5m4h7/). The pre-registration, as 

well as data and the analysis code are available on the Open Science Framework (OSF). 

 

3.1.1. Participants 

Participants were 26 students or staff of the National Research University: Higher School 

of Economics (NRU: HSE) in Moscow, Russia. All were native Russian speakers, functional 

monolinguals or late bilinguals with English as L2. Their age ranged from 17–25 years. All 

participants reported normal or corrected-to-normal vision and self-reported normal colour 

vision. This was the first time they took part in any colour categorisation or discrimination 

experiment. Six participants were excluded from analyses (three because of missing data and 

three other because their category boundary fell beyond our colour range), resulting in a total of 

20 participants in the final dataset. All participants gave written informed consent to participate 

in the experiment. Participants were reimbursed for their time and effort. The study was 

approved by the NRU: HSE Ethics Committee and followed the tenets of the Declaration of 

Helsinki. 

 

3.1.2. Materials 

The experiment was implemented using psychophysics toolbox for Matlab (Brainard, 

1997) on a Windows 7 (64 bit) PC with 16 GB of RAM and Quadro K600 graphics. The monitor 

was a cathode ray tube HP p1230 (Hewlett-Packard, CA, USA) set to 1024 x 768 pixel 

resolution and 85 Hz refresh rate. Colour calibration was performed with an X-rite i1 Pro 

photometer (X-rite, MI, USA) in high resolution mode using displayCAL, an open source 

https://osf.io/5m4h7/
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display calibration software powered by ArgylCMS (https://displaycal.net). The room was dimly 

lit with artificial lighting. 

Colour stimuli used in Experiment 2 are given in Table 3 and presented in Fig. 1c,d. The 

monitor gamut was constrained, therefore the colours from Experiment 1 were halved in 

luminance (Y-values) while maintaining the X- and Z-values. Further, for the goluboj/zelënyj 

‘green’ discrimination task, we selected a shade of goluboj very close to the lightest blue sample 

in the sinij/goluboj discrimination task, so that we would be able to generate equally light and 

equally colourful stimuli in the CIE LCh space between this exemplar of goluboj and a good 

exemplar of zelënyj ‘green’. This ensured that the stimuli of the goluboj/zelënyj set varied only in 

hue and not in any other parameter. The background colour, at two luminance levels, was 

metameric to D65, with luminance of YW = 70 cd/m2 (white) or YG = 35 cd/m2 (grey). The white 

background was used for both categorisation and discrimination tasks, while the grey 

background was used only for the categorisation task. 

 

 Table 3. Coordinates of colour stimuli used in Experiment 2. 

Colour X Y Z L C h 

Blue 2 4.94 3.33 22.46 21.34 59.61 295.50 

Blue 3 5.51 4.13 23.44 24.09 54.82 292.24 

Blue 4 6.22 5.04 24.91 26.84 51.30 289.13 

Blue 5 7.04 6.07 26.77 29.59 48.60 286.14 

Blue 6 7.99 7.24 28.94 32.34 46.48 283.24 

Blue 7 9.05 8.55 31.40 35.10 44.78 280.39 

Blue 8 10.23 10.00 34.13 37.85 43.40 277.60 

Blue 9 11.53 11.62 37.11 40.60 42.28 274.84 

Blue 10 12.96 13.40 40.36 43.35 41.36 272.12 

Blue 11 14.52 15.34 43.85 46.10 40.63 269.44 

Blue 12 16.21 17.48 47.61 48.85 40.04 266.79 

Blue 13 18.05 19.80 51.62 51.61 39.59 264.18 

Blue 14 20.03 22.31 55.90 54.36 39.26 261.61 

Blue 15 22.16 25.04 60.45 57.11 39.04 259.08 

https://displaycal.net/
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3.1.2. Procedure 

The experiment started with the xAB discrimination task, i.e. in its design identical to that 

in Experiment 1, but with two 390-trial blocks, sinij/goluboj and goluboj/ zelënyj. The order of 

discrimination pairs was randomised for each participant. Responses were given using a 

gamepad. A trial was over when the participant indicated the target match with a left/right 

selection on the gamepad. 

This was followed by multiple categorisation tasks with different stimulus frequencies 

(lightness biases), as in Experiment 1. Categorisation blocks included variation of the colour sets 

(2), i.e. sinij/goluboj or goluboj/zelënyj; backgrounds (2), i.e. white or grey, and the lightness 

biases (3), i.e. “no bias”, “dark bias” and “light bias”. The order of the 12 categorisation blocks 

was randomised for each participant. 

Participants were asked to make a forced-choice judgement on whether a single square 

was goluboj or zelënyj ‘green’ (in one block) and sinij or goluboj (in another). In the “no bias” 

blocks, there were 45 trials in each block (3 per colour). In the biased blocks, two thirds of the 

Blue 16 24.44 27.97 65.28 59.86 38.91 256.59 

Green 2 24.44 28 61.67 59.89 35.82 255.19 

Green 3 23.71 28 60.54 59.89 35.82 249.79 

Green 4 23.01 28 59.10 59.89 35.82 244.39 

Green 5 22.36 28 57.38 59.89 35.82 238.99 

Green 6 21.75 28 55.40 59.89 35.82 233.59 

Green 7 21.20 28 53.22 59.89 35.82 228.19 

Green 8 20.70 28 50.86 59.89 35.82 222.79 

Green 9 20.25 28 48.36 59.89 35.82 217.39 

Green 10 19.87 28 45.77 59.89 35.82 211.99 

Green 11 19.54 28 43.13 59.89 35.82 206.59 

Green 12 19.27 28 40.46 59.89 35.82 201.19 

Green 13 19.06 28 37.82 59.89 35.82 195.79 

Green 14 18.91 28 35.23 59.89 35.82 190.39 

Green 15 18.82 28 32.72 59.89 35.82 184.99 

Green 16 18.79 28 30.31 59.89 35.82 179.59 
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colours were from the biased half of the array (i.e. “dark bias” or “light bias”; “blue bias” or 

“green bias” respectively), with 46 trials in each block (four per colour in the biased half, two per 

colour otherwise). 

Participants were allowed as many breaks between blocks as they wished; as a rule, the 

whole experiment took about 1 hour 20 minutes. 

 

3.2. Results 

Data analysis was performed in the same manner as in Experiment 1. Again, we first report 

outcomes of the categorisation task. 

Categorisation task. For the “no bias” condition, we obtained 900 data points (20 

participants x 45 categorisations each); for the “dark bias” and “light bias”, there were 920 data 

points (20 participants x 46 categorisations each). 

The sinij/goluboj boundary was 11.45 ± 1.99 (mean  SD; range 8-16) for the white 

background and 10.55 ± 1.79 (mean  SD; range 6-13) for the grey background. The 

goluboj/zelënyj boundary was 9.85 ± 1.09 (mean ± SD; range 7-11) for the white background 

and 10.80 ± 1.96 (mean ± SD; range 6-14) for the grey background. Boundary plots for 

individual observers are presented in Supplementary Table S3. 

Data were collapsed across observers to assess how the boundary shifted due to the 

background luminance and/or frequency bias. Table 4 shows that the background luminance 

affected the boundary location both for sinij/goluboj (χ2(2) = 44.33, p < .001) and goluboj/zelënyj 

(χ2(2) = 23.07, p < .001): specifically, the grey background resulted in the boundary shift towards 

darker blue or greener colours respectively. The effects of frequency bias were much more 

selective, affecting only the boundary between the blue categories defined by lightness. As 
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shown in Fig. 5 (top left), at the white background psychometric functions for sinij/goluboj 

shifted in the direction of the bias (χ2(4) = 37.50, p < .001). Significant differences were 

observed between all three bias conditions: “no bias” and “light bias” (χ2(2) = 12.18, p = .002); 

“no bias” and “dark bias” (χ2(2) = 8.73, p = .013); “light bias” and “dark bias” (χ2(2) = 32.86, p < 

.001; Bonferroni-corrected criterion p- = .016). At the grey background, biasing also resulted in 

boundary shifts (χ2(4) = 33.35, p < .001; Fig. 5, bottom left). Significant differences were 

observed between “no bias” and “light bias” (χ2(2) = 13.15, p = .0014), “no bias” and “dark bias” 

(χ2(2) = 29.27, p < .001), as well as “light bias” and “dark bias” (χ2(2) = 9.09, p = .011). For 

goluboj/zelënyj, in comparison (Fig. 5, bottom right), there was no effect of bias either for the 

white background (χ2(4) = 5.57, p = .23) or grey background (χ2(4) = 8.52, p = .07). 

 

Table 4. Colour category boundary (in terms of colour numbers) PSEs and JNDs for 

sinij/goluboj and goluboj/zelënyj. Categorisation data was collected without stimulus bias or with 

biases towards the lower or the upper part of the stimulus range. 

Background luminance White Background Grey background 

sinij/goluboj 

Presentation condition PSE JND PSE JND 

No bias 11.54 1.73 10.38 2.43 

Dark bias  10.88 1.80 9.86 1.93 

Light bias 12.29 1.93 9.15 1.85 

goluboj/zelënyj 

 PSE JND PSE JND 



32 
 
 

No bias 9.77 1.64 10.80 1.62 

Dark bias  9.67 1.61 11.03 1.73 

Light bias 10.04 1.79 11.39 1.63 

 

 

Figure 5. Categorisation of colours for sinij/goluboj and goluboj/zelënyj. (a) Pie charts of the 

individual boundary choices, number-coded (colour 6 isrepresented by number 6, etc.). The area 

of the pie chart’s wedges correspond to the frequency with which each colour represented the 

boundary in our sample. (b) Panels depict categorisation on a white background for sinij/goluboj 

(left) and goluboj/zelënyj (right). c) Categorisation on a grey background for sinij/goluboj (left) 

and goluboj/zelënyj (right). Averaged data is depicted by circles. Best-fitting functions are 

superimposed: the coloured stripes around the black lines correspond to 1 SE. The horizontal 
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grey line corresponds to 50% categorisation, i.e. PSE; the dashed lines correspond to 25% and 

75% categorisation, i.e. JNDs. Note: the dark/light blue or light blue/green strips on the x-axes of 

both (b) and (c) highlight the colours that were shown twice as frequently within a biased context 

(C2-C8 for lower bias; C10-C16 for upper bias). 

 

 

Sinij/goluboj and goluboj/zelënyj boundary positions were further examined by 

visualising (N-1) effects in categorisation: this would reveal whether a preceding trial had 

affected categorisation on a subsequent trial, also known as the order bias. We conjectured that 

closer to the prototype colour (for an overview of prototype models of categorisation, see 

Hampton, 1998), the influence of the context provided by the preceding trial would be minimal 

as categorical membership should be unambiguous; however, near the boundary, with colours’ 

lesser degree of category membership (cf. Douven, Wenmackers, Jraissati, & Decock, 2017), one 

would expect  a stronger influence of  context. The (N-1) plots are shown in Fig. 6. Colours that 

fall between 1 JND of the PSEs do not just have less firm category membership (categorisation 

scores that do not fall on the 0 and 100% lines) but also exhibit repulsive effects if the previous 

trial was e.g. much darker or much lighter. This demonstrates that (N-1) effects on aggregated 

data represent another way to investigate category boundaries, providing largely compatible 

results to the PSEs depicted in Fig. 5. 
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Figure 6. (N-1) effects for the categorisation into sinij/goluboj (a) and goluboj/zelënyj (b), 

representing the potential influence of the previous trial on categorisation (so-called order bias). 

Categories to which colours are assigned (y-axis) are depicted in relation to the colours from the 

previous (N-1) trial (x-axis) for each individual colour. Colours presented against a white 

background are on top and those presented against a grey background are on the bottom. Certain 

colours are uniformly categorised (0% or 100% on y-axis), however, some colours vary in terms 

of categorisation and this does not seem to be independent from previous trial’s colour – if there 

were no effect of the preceding trial, the lines depicting the best-fitting curve would be roughly 

flat. The numbers of colours that fall within the JNDs (see Fig. 5) are highlighted by red, while 

the colour closest to the PSE is, in addition, underlined. Colours presented on the previous trial 

have a repulsive effect on categorisation of colours at the PSE and colours most proximal to the 
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PSE: e.g. when categorising into sinij/goluboj, if C10 on a grey background is preceded by a 

darker sample, it is more likely to be categorised as goluboj. 

 

 

Discrimination xAB task. Discrimination task data. As in Experiment 1, we first 

excluded all incorrect responses (6% trials); we then excluded as outliers any RTs faster than 250 

ms (only 3 trials) and longer than 1,500 ms (4% of correct trials). Once we selected only the 

trials that fell into the boundary or non-boundary conditions, we were left with a total of 9,423 

trials (67% of the post-exclusion total). Since the discrimination pairs differed across the two 

colour sets (i.e. varying in lightness/chroma/hue in the sinij/goluboj, whilst varying in hue only 

in the goluboj/zelënyj condition), we fitted a separate LME model for each colour set, as outlined 

below. As in Experiment 1, if the boundary was too close to the darkest/lightest or 

bluest/greenest stimulus colour, the calculations of RTs for the cross- and within-category 

conditions were based on data from fewer than six colours; however, calculations for the cross-

category condition were never based on data from fewer than two discrimination pairs and for 

the within-category condition never based on data from fewer than three discrimination pairs. 

For RT data, we performed analysis using an LME model for each colour set 

(sinij/goluboj or goluboj/zelënyj) with the boundary (discriminations at or across the boundary 

vs. up to six nearest within-category discriminations) as a fixed effect. We also included 

variability of RTs across discrimination pairs (C2 vs. C4., C3 vs. C5, C4 vs. C6 and so on) and 

by-participant variability in intercept and slopes as random effects. 
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Figure 7. Reaction times in the colour discrimination (xAB) task for the two types of 

categorisation. (a) Mean RTs for cross-boundary (black) and within-boundary (grey) 

discriminations. (b) Mean RTs for cross-boundary (light grey), as well as below-boundary, 

darker blue/bluer (dark grey) and above-boundary, lighter blue/greener (black) discriminations. 

(c) Cross- and within-boundary categorisations are shown for each colour pair for sinij/goluboj 

(top right) and goluboj/zelënyj (bottom right) colour sets. 

 

 

We found that for the sinij/goluboj categorisation, the model that included random slopes 

for RTs across discrimination pairs failed to converge, so we used a model with only by-

participant random slopes and the fixed effect of the boundary. Mean intercept for this model at 

zero level, which was set as cross-boundary, was 567 ms (SE = 16 ms). Importantly, and 

contrary to previous research, removing the fixed effect of the boundary from the model did not 

alter the model fit (χ2(1) = 0.17, p =.68; with intercept estimated at 568 ms, SE = 16 ms), 

showing that discriminations at the boundary did not differ significantly from discriminations for 

nearby non-boundary colours. Inspection of Fig. 7b-c points at similar RTs between lighter and 
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darker pairs. This differs from Experiment 1 in which we observed shorter RTs for lighter pairs. 

The stimuli in Experiment 2 were darker (compare Y-values in Tables 1 and 3) and presented 

against a white rather than grey background, which implies that both darker and lighter pairs 

were considerably different from background luminance – unlike Experiment 1, in which lighter 

pairs were much closer to the luminance of the background. 

For the goluboj/zelënyj categorisation, random slopes for RT differences across 

discrimination pairs (χ2(1) = 267.4, p < .001) did contribute significantly to the model. Fig. 7c 

shows that for goluboj/zelënyj there seems to be a difference between cross- and within-category 

conditions across discrimination pairs, with shorter RTs for cross-category discrimination pairs 

for a few colours (colours C7-C9). Further removing the fixed effect of the boundary from the 

model, however, did not improve the fit (χ2(1) = 0.06, p = .81). Mean intercept for the best fitting 

model with random effects only was 681 ms (SE = 34 ms). The classical boundary effect of 

processing speed which seems to be present in Fig. 7a is actually a by-product of longer RTs for 

bluer discrimination pairs, as is apparent in Fig. 7b. Shorter RTs in the sinij/goluboj 

categorisation compared to the goluboj/zelënyj categorisation are probably due to facilitation of 

processing because of differences along multiple dimensions in colour space, since in the 

sinij/goluboj series colours varied along lightness, saturation and hue, while in the 

goluboj/zelënyj series only hue varied (cf. Garner & Felfoldy, 1970). 

We again performed a post hoc analysis of RT distributions; density and cumulative 

density functions are plotted in Fig. 8. For the sinij/goluboj series, the two distributions are not 

statistically different, as assessed by a two-sided Kolmogorov-Smirnov test (D = 0.016, p = .95), 

but they are significantly different for the goluboj/zelënyj series (D = 0.064, p < .001). Inspection 
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of Fig. 8 informs us that these differences in RTs are persistent and emerge already for very fast 

responses. 

 

 

Figure 8. Densities (left) and cumulative densities (right) of RT distributions for sinij/goluboj 

and goluboj/zelënyj series. This graph contrasts cross- and within-boundary colours, showing 

their distributions across the full range of RTs. 

 

4. Discussion 

In the Experiment 1, we compared speakers of different languages on the same part of the 

colour space in which one language (Russian) has two BCCs, while the other language (English) 

has a single BCC, while in Experiment 2 we compared two categorical distinctions, a hue-based 

goluboj/zelënyj and a lightness-based sinij/goluboj, in a single Russian sample. We did not 

observe a boundary advantage in processing speed for sinij/goluboj in either of the two 

experiments – neither for monolinguals nor bi-/multilinguals. We did, however, find a difference 

in categorisation between sinij/goluboj in Russian speakers and dark blue/light blue in English-

speaking controls: the transition of sinij to goluboj was somewhat sharper than the transition 

from dark blue to light blue respectively, which is characteristic of a firmer categorical 
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distinction. However, frequency biasing revealed a relative instability of the “Russian blues” 

boundary: in the “sinij bias” context, (medium) blue shades were more likely to be judged as 

goluboj. In some cases, similar effects also emerged in the “goluboj bias” context, with 

(medium) blue shades more likely to be judged as sinij. In contrast, the goluboj/zelënyj boundary 

remained robust against both goluboj and zelënyj bias contexts. These findings strongly suggest 

that although lightness-based sinij and goluboj categories function linguistically as BCCs in the 

Russian language, their boundary is not as firmly demarcated as between colour categories that 

are differentiated in terms of hue (here, goluboj and zelënyj). 

There may be several methodological sources of discrepancies between our and Winawer 

et al.’s results. As discussed already, first and foremost, their participants differed vastly from 

ours in response speed. Our RT analyses imply that the boundary effect for sinij/goluboj could 

potentially emerge for slower responses/responders but appears to be absent for faster 

responses/responders. In fact, Witzel and Gegenfurtner (2016) argue that red/brown RT category 

effects are driven by RTs for cross-boundary pairs being spread much less toward the upper end 

of the response time distribution than for within-category pairs. In a similar vein, Witzel and 

Gegenfurtner (2015) found that only an inexperienced group of participants, with mean RTs of 

~750-850 ms, showed consistent categorical facilitation, unlike a trained group whose mean RTs 

were ~500-600 ms (see Supplementary Figs. 5, 6 in their paper). 

Our Russian participants in Experiment 1 had mean RT over 700 ms but in Experiment 2, 

mean RT was closer to 500 ms. According to Witzel and Gegenfurtner (2015), categorical 

facilitation may be mediated by attention to the categorical distinction which does not occur 

when participants respond automatically based on sensory feed-forward information. However, 

neither of our experimental groups had much experience in performing colour discrimination 
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tasks and the mean RT of the Russian participants in Experiment 1 is closer to the inexperienced 

group in Witzel and Gegenfurtner’s study. Thus, we doubt that overall response speed is 

sufficient to explain the lack of response speed facilitation in our experiments. 

Winawer et al. observed a cross-category facilitation only for “near” comparisons 

(equivalent to those used in our study), but not for “far” comparisons, with twice as large colour 

distances. It is possible that in the context of “near” and “far” trials intermixed, the “near” trials 

were seen as subjectively more difficult which led Russian participants to increasingly attend to 

the sinij/goluboj categorical distinction. This could explain why Winawer et al. observe a RT 

advantage while we fail to do so. However, we do not believe that a mixture of “easy”/“far” and 

“hard”/“near” trials is a necessary prerequisite for observing categorical facilitation, as boundary 

RT effects for hue-based categories have been observed with “near” pairs alone (C. Witzel & 

Gegenfurtner, 2011, 2015). 

Based on additional analyses of RTs in which we included outliers, there is a more 

parsimonious explanation: an RT difference resembling the classic boundary effect may also be 

generated through amplification of longer RTs for darker blue discriminations. This might have 

been particularly pronounced in the slower, Russian-speaking group. Our data certainly conform 

to this interpretation, as in Experiment 1 we observe longer RTs for darker blues, similarly to 

longer RTs for blues as opposed to greens, a perceptually driven RT effect that is commonly 

observed at the green/blue boundary (Witzel & Gegenfurtner, 2011, 2015). Comparison of RTs 

in Experiment 1 and Experiment 2 further emphasises the importance of low-level factors as a 

driver of RTs when discriminating colour pairs in terms of lightness: RTs are dependent on the 

difference between luminance of colour samples and luminance of the background, with 
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responses being faster for pairs closer to the background (as would be predicted by the Weber 

ratio). 

Compared to the stimuli employed here, Winawer et al.’s stimulus set was slightly 

extended, including one additional darker and four additional lighter shades of blue (see Fig. 1). 

Extending the stimulus range can shift the mean (Parducci & Perrett, 1971), and in the present 

case it is likely to have shifted the sinij/goluboj boundary, which we show to be highly 

susceptible to both frequency and order biases. For the 15 colours from Winawer et al. that were 

used in our Experiment 1, we observe slower responses to darker blue stimuli as opposed to 

lighter blues, which are closer to the luminance of the background. Blue/green boundary effects 

observed in previous studies suffer from a similar non-categorical RT facilitation driven by RTs 

for bluer colours being longer than for greener colours, as observed by Witzel and Gegenfurtner 

(C. Witzel & Gegenfurtner, 2011, 2015) and in our own Experiment 2 (compare Fig. 7a and 7b). 

Based on this evidence, we conclude that the emergence of an observable RT advantage for 

cross-category colours in Winawer et al.’s study might have been an artifact of the non-uniform 

RT distributions driven by discriminations of darker vs. lighter colour pairs, further impacted by 

considerably longer overall RTs in the Russian group. 

We did, however, find a difference between sinij/goluboj in Russian speakers and dark 

blue/light blue in controls: as can be seen in Fig. 2, the transition from sinij to goluboj is 

somewhat sharper, which is characteristic of a firmer categorical distinction. Effects of bias also 

seemed to affect discrimination of dark blue shades in English speakers much more relative to 

sinij shades in Russian speakers. As mentioned earlier, sinij is the more chromatic of the two 

“Russian blues” categories. As demonstrated by Witzel (2016), speakers’ naming consensus as 

well as nameability of colours significantly increase with saturation. This implies that being 
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more chromatic, sinij-colours are expected to be named with greater consensus than goluboj-

colours. The greater consensus, in turn, implies greater stability of the category boundary (cf. 

Fider & Komarova, 2018). As an example of the pragmatic impact of this difference in 

colourfulness of the two colour terms for blue, Russian speakers are more likely to use seryj 

‘grey’ when describing light blue eyes compared to English speakers (Lowry & Bryant, 2019). 

Conversely, goluboj is also a term used to describe greyness of cat fur or pigeon feathers, which 

are both largely achromatic. Perhaps the more achromatic nature and the more diluted hue of 

goluboj makes it less structured. 

Frequency and order biasing effects (Figs. 5, 6) show differences between hue-based 

categories and “Russian blues” categories in our monolingual sample. We found both attractive 

and repulsive sequential effects of context on colour categorisation. In the current literature, a 

prominent topic concerns the degree to which, at a given moment, perception of various visual 

attributes is affected by the preceding stimulus. These serial dependencies can be both attractive 

and repulsive (Alais, Leung, & Van der Burg, 2017). Interestingly, there are pronounced 

attractive serial dependencies for oblique spatial orientations, but not for cardinal orientations 

(see Fig. 1 in Cicchini, Mikellidou, & Burr, 2017). Cardinal orientations (vertical, horizontal) 

represent categorical reference points when judging line orientation (Rosch, 1975). Similarly, we 

observe a frequency bias effect for sinij/goluboj, i.e. the lightness-based categorical distinction, 

but not for goluboj/zelënyj, a hue-based distinction. It appears that the hue-based categorical 

distinction between goluboj and zelënyj is firmer and more clearly delimited than the distinction 

between sinij and goluboj. 

Based on these outcomes, we conclude that hue-based basic categories may be better 

structured, i.e. have higher category strength and better demarcated boundaries (cf. Fider & 
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Komarova, 2018) than lightness-based sinij and goluboj. Combining the frequency effects 

(Parducci & Perrett, 1971; Parducci & Wedell, 1986) and the recently emerging exploration of 

serial dependencies would be promising and productive. It is likely that a hitherto unexplored but 

important aspect of categorical facilitation is its ability to minimise serial dependencies and 

range/frequency effects by providing the observer with a template that increases the fidelity of 

stimulus encoding. A strong categorical distinction between sensory stimuli should lead to their 

perception being robust to contextual influences. In our case, this holds for the hue-based 

boundary but not for the lightness-based boundary. In fact, colour category structuredness, 

quantified as its stability in relation to contextual influence, might provide a measure of category 

strength and serve to establish an objective hierarchy of demarcations between basic as well as 

non-basic colour categories at various lightness levels. 

Some might argue that our approach of collapsing categorisation data across participants 

when examining biases is not valid, as boundary effects are highly individual – this is certainly 

the approach taken by some researchers (e.g. Emery, Volbrecht, Peterzell, & Webster, 2017; 

Webster & Kay, 2012). Indeed, inspection of individual categorisation data, which we present in 

Supplementary Figs. S1 and S3, reveals that there is richness in individual categorisation 

datasets that is lost by reducing them to a single boundary value. This is particularly obvious for 

Experiment 2, where we record multiple responses for each colour and observe that for many 

participants the categorical transition is spread across several neighbouring colours. In fact, (N-1) 

effects derived from these data reveal that especially for sinij/goluboj but also for 

goluboj/zelënyj, colours at the group-derived PSE and around it seem to elicit less consistent 

responses, influenced by a repulsive bias from the previous trial (Fig. 6). We conclude that 

preceeding trial effects (i.e. (N-1) effects) seem to be a very promising vehicle to objectively 
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assess a boundary: they have been used for decades in studies of how templates in working 

memory affect attention (e.g. the dimension-weighting model; Found & Muller, 1996). If 

categorical facilitation is mainly driven by attentional allocation, as theorised by Witzel and 

Gegenfurtner (2018), this may make (N-1) effects very suitable to further interrogate categorical 

effects on perception. 

Russian sinij and goluboj are not the only blue lightness-based basic colour categories: 

the present findings could be validated by testing the category boundary effect for other 

languages with two “blues” (e.g. blu and azzurro in Italian or ao and mizu in Japanese, 

designating, respectively, ‘dark blue’ and ‘light blue’; for a review see Paramei & Bimler, 2020). 

Teget ‘dark blue’ and bordo ‘dark red’ are two frequent and salient non-BCCs in the Serbian 

language, segregating blue and red sub-areas of the colour space based on lightness. Jakovljev 

and Zdravkovic (2018) demonstrated cross-category advantages in a speeded discrimination task 

for teget/ ‘blue’ and bordo/‘red’. Interestingly, the colours in that study were much darker than in 

experiments reported in this paper, as both teget and bordo refer to particularly dark shades of 

blue and red: blue stimuli ranged between 0.43–3.96 cd/m2 while red stimuli ranged between 

1.04–10.84 cd/m2. As these are non-BCCs and Jakovljev and Zdravkovic (2018) did not test a 

control group whose language does not have counterparts of such colour terms, it may be that 

these RT advantages are specific to certain (sub-)areas of colour space irrespective of the 

language or irrespective of whether the colour terms that divide these areas of colour space are 

basic or non-basic. 

Event-related potential (ERP) studies of colour categorisation (e.g. Maier & Rahman, 

2018; Thierry, Athanasopoulos, Wiggett, Dering, & Kuipers, 2009; for a review see C. Witzel & 

Gegenfurtner, 2018) are often taken as robust evidence of categorical facilitation. The study of 
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Thierry et al. (2009), in particular, has been taken as firm evidence of an early neural locus of the 

two “Greek blues” effect, similar to the “Russian blues” effect observed by Winawer et al. 

However, the evidence provided by these ERP studies is not as convincing as it might 

seem at first sight. Some major caveats are already discussed in the recent review by Witzel and 

Gegenfurtner (2018). There are also further issues which are well-known to those with ERP 

expertise – namely, these studies commonly report very small between-subjects effects (e.g. in 

Thierry et al., the crucial three-way interaction has effect size µp
2 = 0.112, which makes its CI 

using non-central F distribution 0.004-0.273; calculated as per Uanhoro, 2017). 

Furthermore, these low-powered, small effect-size outcomes are observed from data 

taken from narrow temporal windows and more-or-less arbitrarily chosen electrode sites, which 

introduces unnecessary researcher degrees of freedom (Gorgolewski & Poldrack, 2016; Luck & 

Gaspelin, 2017). The choice of ERP components and their temporal windows/electrode sites is 

rarely theoretically motivated beyond an argument that the perceptual vs. cognitive locus of 

categorical effects can be determined from whether early or late parts of the ERP waveform are 

modulated, whereby early parts are often taken to imply pre-attentive modulation in spite of the 

fact that it is well-known that attention can modulate even the earliest ERP components (e.g. 

Erlbeck, Kubler, Kotchoubey, & Veser, 2014; Handy & Mangun, 2000). A re-analysis of 

existing ERP studies using more advanced, state-of-the-art approaches that are blind to time-

window or electrode-site selection (e.g. the mass-univariate-analysis approach; Pernet, 

Chauveau, Gaspar, & Rousselet, 2011) would be able to show if the observed ERP effects are in 

fact sufficiently robust to represent a meaningful contribution to the literature. 

To conclude, contrary to previous reports, our results imply that in Russian the lightness-

defined blue basic colour categories differ behaviourally from the hue-based basic colour 
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categories: sinij/goluboj category boundary is more context-sensitive and does not reliably 

manifest speeded discrimination differences. Firestone and Scholl (2016) suggest several 

potential pitfalls for studies that aim to assess whether cognitive factors exert a direct top-down 

influence on perception. Our experiments, together with previous work (Danilova & Mollon, 

2014; Roberson et al., 2009; Roberson, Pak, & Hanley, 2008; C. Witzel & Gegenfurtner, 2011, 

2013, 2015, 2018) demonstrate how important it is to disambiguate low-level differences and 

high-level effects when studying colour categorisation effects –in terms of the thorough stimulus 

control and the presentation context, as well as comprehensive data analysis that take into 

account both between-colours and between-participants differences. 

Our findings have broad implications – conceptually, for studies of Whorfian effects and 

colour categorisation, and methodologically, for reintroducing the range/frequency effects, (N-1) 

effects, and for cumulative RT distribution analyses as highly promising tools to study 

categorical facilitation. The present findings provide further evidence of the transient nature of 

the influence of language on perception, where visual decisions may or may not be augmented 

by top-down modulation (Firestone & Scholl, 2016; O'Callaghan et al., 2017): effects of 

language on perception are stronger in the tasks that promote categorisation (e.g. the 

categorisation task, where we observe a sharper transition in Russians’ categorisation compared 

to controls) and weaker or non-existent in the tasks that do not explicitly require it but rather 

incite a discrimination judgement (i.e. the xAB task; cf. Lupyan, 2012; Webster & Kay, 2012; 

Christoph Witzel, 2018). This defies a simplified model, in which basic colour categories by 

default enact a powerful influence on perceptual processes.  
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Supplementary Figure 1a.  

 

Categorisation of colours for individual Russian-speaking participants from Experiment 1. Colours (2-

16, see Fig.1) are depicted on the x axis, with sinij categorisations plotted as blue dots on the bottom and 

goluboj categorisations as blue dots on the top of the graphs. Note that the y axis, depicting reaction 

times, is differently scaled between participants, with the individual plots ordered from faster to slower 

overall responders. The boundary is indicated by a dashed grey line. 
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Supplementary Figure 1b. 

 

Categorisation of colours for individual non-Russian-speaking controls in Experiment 1. Colours (2-16, 

see Fig.1) are depicted on the x axis, with sinij categorisations plotted as blue dots on the bottom and 

goluboj categorisations as blue dots on the top of the graphs. Note that the y axis, depicting reaction 

times, is differently scaled between participants, with the individual plots ordered from faster to slower 

overall responders. The boundary is indicated by a dashed grey line. 
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Supplementary Material 2:  

Analysis of Accuracies in Experiment 1 

 

We applied a mixed logit model on our accuracy data, with Language (Russian or English) and 
Boundary (across or within) as fixed effect factors and random intercepts and slopes for 
participants and discrimination pairs. Random effects for discrimination pairs contributed 
significantly to the model (χ2(1) = 54.40, p < .001). The interaction did not contribute 
significantly (χ2(1) = 2.13, p = .14) and neither did Language (χ2(1) = 4.46, p = .11). To further 
explore accuracy data, we split the within-boundary pairs to those below and above the 
boundary (i.e. darker and lighter pairs). With the separation of darker and lighter within 
boundary pairs, the random effect of RT variability across discrimination pairs was no longer 
contributing to the model (χ2(1) = 0.43, p = .51), implying that differences in RTs were fully 
captured by separating the boundary variable into darker, lighter and cross-boundary pairs. The 
interaction of Language and Boundary was now highly significant (χ2(1) = 13.67, p < .001). We 
used emmeans package (Russel, 2019) to perform post-hoc tests on this interaction, using 
Tukey’s HSD to correct for multiple comparisons.  
 
These are presented in the Table below, with significant differences in bold: 
 

Statistical 
comparison 

Estimate of 
difference  
(log units) 

SE of the 
estimate 

z ratio p value 

darker pairs, 
English – cross-
boundary, 
English 

-1.305 0.198 -6.576 <.001 

darker pairs, 
English – lighter 
pairs, English  

-1.798 0.234 -7.697 <.001 

darker pairs, 
English – darker 
pairs, Russian   

-1.111 0.402 -2.762 0.06 

darker pairs, 
English – cross-
boundary, 
Russian        

-1.6571 0.421 -3.932 0.001 

darker pairs, 
English – lighter 
pairs, Russian  

-1.6203 0.420 -3.862 0.002 
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boundary, 
English – lighter 
pairs, English      

-0.4924 0.261 -1.884 0.412 

Cross-
boundary, 
English – darker 
pairs, Russian       

0.1941 0.424 0.458 0.997 

Cross-
boundary, 
English – cross-
boundary, 
Russian           

-0.3518 0.442 -0.795 0.968 

Cross-
boundary, 
English – lighter 
pairs, Russian      

-0.3149 0.441 -0.715 0.980 

lighter pairs, 
English – darker 
pairs, Russian   

0.6865 0.442 1.554 0.629 

lighter pairs, 
English – cross-
boundary, 
Russian        

0.1405 0.459 0.306 0.9996 

lighter pairs, 
English – lighter 
pairs, Russian   

0.1774 0.457 0.388 0.999 

darker pairs, 
Russian – cross-
boundary, 
Russian        

-0.5460 0.250 -2.183 0.246 

darker pairs, 
Russian – 
lighter pairs, 
Russian  

-0.5091 0.247 -2.060 0.309 

Cross-
boundary, 
Russian – 
lighter pairs, 
Russian   

0.0369 0.276 0.133 1.00 
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It can be seen that the interaction is driven by two types of differences: 1) performance is 
worse for darker, below boundary pairs than both cross-boundary pairs and lighter pairs in 
English participants only; 2) performance for these darker pairs in English participants is also 
worse than performance for cross-boundary and lighter pairs in Russian participants. This is also 
clearly visible from the box plot below. 
 

 
  
Box and whisker plot of accuracy from Experiment 1: Dot represents the mean, the top and 

bottom of the box represent 25th and 75th percentiles, whiskers extend to the most extreme 

data point which is no more than 1.5 times the length of the box away from the box. Any data 

points outside that range are marked as outliers.  
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Supplementary Figure 3a. 

 

Categorisation of colours into sinij/goluboj for the Russian-speaking sample from Experiment 2 (white 

background). Colours (2-16, see Fig.1) are depicted on the x axis. Blue dots depict the proportion of 

goluboj categorisations. Thus, sinij categorisations are plotted as blue dots that fall on the x axis itself 

while the proportion of goluboj categorisations will fall between 0 and 1. Note that the y axis, depicting 

reaction times (and, between 0 and 1, proportion of goluboj categorisation), is differently scaled 

between participants. The boundary is indicated by a dashed grey line. 
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Supplementary Figure 3b. 

 

Categorisation of colours into goluboj/green for the Russian-speaking sample from Experiment 2 

(white background). Colours (2-16, see Fig.1) are depicted on the x axis. Blue dots depict the proportion 

of green categorisations. Thus, goluboj categorisations are plotted as blue dots that fall on the x axis 

itself while the proportion of green categorisations will fall between 0 and 1. Note that the y axis, 

depicting reaction times (and, between 0 and 1, proportion of green categorisation), is differently scaled 

between participants. The boundary is indicated by a dashed grey line. 

 

 


