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Mining Similar Aspects for Gene Similarity
Explanation Based on Gene Information

Network
Yidan Zhang, Lei DuanB, Huiru Zheng, Jesse Li-Ling, Ruiqi Qin, Zihao Chen, Chengxin He, Tingting Wang

Abstract—Analysis of gene similarity not only can provide information on the understanding of the biological roles and functions of a
gene, but may also reveal the relationships among various genes. In this paper, we introduce a novel idea of mining similar aspects
from a gene information network, i.e., for a given gene pair, we want to know in which aspects (meta paths) they are most similar from
the perspective of the gene information network. We defined a similarity metric based on the set of meta paths connecting the query
genes in the gene information network and used the rank of similarity of a gene pair in a meta path set to measure the similarity
significance in that aspect. A minimal set of gene meta paths where the query gene pair ranks the highest is a similar aspect, and the
similar aspect of a query gene pair is far from trivial. We proposed a novel method, SCENARIO, to investigate minimal similar aspects.
Our empirical study on the gene information network, constructed from six public gene-related databases, verified that our proposed
method is effective, efficient, and useful.

Index Terms—similar aspect, gene information network, gene meta path
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1 INTRODUCTION

Searching similar genes is a fundamental problem that
has been studied in biological research such as gene clus-
tering [1], [2], prediction and evaluation of protein interac-
tion [3], [4], prediction of gene function [5], [6], and priori-
tization of disease-associated genes [7], [8]. Gene similarity
analysis is an important task as it can provide abundant
information for the understanding of their biological roles,
functions, as well as the various relationships among them.

Intuitively, gene similarity analysis involves two im-
portant parts, i.e., the similarity measure and similarity
comparison.

• Firstly, the similarity measure determines how simi-
lar two genes are, usually in a quantitative way.

• Secondly, the similarity comparison distinguishes
each gene pair from the others by comparing their
similarities, in order to tell how significantly similar
a gene pair is compared with the others.

Generally, current research on the gene similarity analy-
sis can be divided into three main categories: the sequence-
based, the annotation-based, and the association-based ap-
proaches.

• Sequence-based: Some studies find similar genes by
analysing their sequences for genes with similar se-
quences are likely to be similar in functions. Some
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methods align all the sequences to perform the anal-
ysis. For example, BLAST [9] is an alignment search
tool for finding regions of similarity between gene
sequences, which are used to identify members of
gene families. T-Coffe [10] was designed for multiple
sequence alignment, which can provide a dramatic
improvement in accuracy. Some heuristics method-
s base the similarity analysis mainly on statistical
characteristics of data. For example, CPF [11] em-
ployed compounded information to conduct DNA
clustering, where word frequency, position and clas-
sification information of nucleotide bases from DNA
sequences were used. Zhou et al. [12] constructed
complex networks of DNA sequences for clustering
analysis based on the central dogma. However, such
methods tend to be time-consuming or inaccurate,
and the data used are rather simple, and can provide
very limited information. Besides, such methods can
only handle a single data source.

• Annotation-based: Some studies conduct the gene sim-
ilarity analysis by their Gene Ontology (GO) annota-
tions [13], which systematically annotate gene func-
tions. For example, Aurelien et al. proposed ViSEA-
GO [14], an extension of classical functional GO anal-
ysis, which focuses on functional coherence through
visualization, semantic similarity and enrichment
analysis of Gene Ontology. Giri et al. [15] proposed
a multi-view gene clustering approach containing
two complementary views, one of which is based on
Euclidean distance between gene expression values
and the other is based on a GO-based gene-gene
similarity measure. However, although GO is of large
scale and covers a wide range of data, it is not
accurate as it is half-manually sorted. Consequently,
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errors may occur and biased conclusions may be
drawn.

• Association-based: Some studies analyse the gene sim-
ilarity based on the associations between genes
and gene-related entities. For example, RWRB [8]
constructs an integrated gene similarity network
based on five individual gene or protein similarity
networks to infer causal genes of target diseases.
GAIN [16] constructs bipartite networks of biologi-
cal entities, where the interaction-profile similarities
are calculated and compared, and the modules of
genes with similar profiles are defined. RGFSN [17]
is an integrated gene functional similarity network
established by six different methods and is further
refined by the PPI networks to perform the protein
complex prediction. However, such methods are lim-
ited in giving explanations to the results, as they only
conduct the computation of similarity and directly
compare the results, lacking reasonability.

Unfortunately, current methods have the following lim-
itations in terms of (1) similarity measure when evaluating
the similarity of two query genes, or (2) similarity compari-
son when evaluating the distinctiveness of the query genes
to the other genes, both of which have been pointed out as
two critical parts in gene similarity analysis:

• For similarity measure, there are two major drawbacks:
(i) the absolute numerical result produced by the
similarity measure is directly used as the final eval-
uation of gene similarity, which may lead to biased
conclusions that lack of reasonability. (ii) the adopted
similarity measure for different queries is fixed rather
than flexibly adjust itself to various queries according
to their unique characteristics.

• For similarity comparison, two drawbacks also exist:
(i) the conclusion is drawn either by comparing the
quantitative results of the targets directly, or by using
a threshold to judge whether the query genes are
similar or not, while both of them are unreasonable.
(ii) the query genes are invariably compared with the
rest of the genes in the whole gene set, which lacks
of reasonability and flexibility, and it is not always
necessary to do so.

Consequently, such limitations result in the weakness
in the explanations of the gene similarity. To address the
aforementioned challenges, it is necessary to evaluate gene
similarity with flexible similarity measures and a reasonable
way of similarity comparison.

Intuitively, genes can be regarded as similar if, for ex-
ample, they are annotated by the same GO term, they are
targeted by the same miRNA, they can cause the same
disease, or any over two of these situations combined.
Therefore, the similarity of two genes can be reflected by
the strongness of their relationships in different aspects. In
other words, the similar aspect of a set of genes indicates
they have a similar relationship. For example, three genes,
ABCC8, GCK and KCNJ11, all can result in a type of diabetes
called NIDDM (non-insulin-dependent diabetes mellitus). Thus,
a similar aspect among the above three genes is the fact that
they can cause the same disease NIDDM.

Formally, for query genes, we consider evaluating and
explaining their similarity by their similar aspects, and thus
propose a novel approach, SCENARIO (short for similar
aspects for gene similarity explanation), for gene similar
aspects detection. The characteristics of SCENARIO include:
(1) it uses the similar aspect for the final evaluation of gene
similarity rather than the quantitative results produced by
the similar measures; (2) it uses flexible similarity measure
which is able to make a slight adjustment to itself regard-
ing to different query genes by their characteristics; (3) it
uses rank statistics as the comparison between query genes
with others without any manually predefined threshold; (4)
it flexibly supports the comparison of two or more than
two query genes with gene pairs in their neighborhood
to discover the similar aspect for the query genes; (5) it
computes gene similarity solely based on the associations
between genes and their related biological entities, and
detects similar aspects based on multiple data sources; (6)
it is capable of explaining the similarity between any query
genes by detecting their similar aspect.

The main contributions of this work are as follows:

• We introduce the novel problem of mining similar
aspects of genes from a gene information network.

• We propose SCENARIO, a general framework for
calculating aspect similarity for query genes to detect
their similar aspect, which can be used to explain the
similarity between them.

• We show how SCENARIO measures gene aspect
similarity under a flexible meta path-based method,
and compare the similarities in an adjustable scope.

• We evaluate SCENARIO on a random gene set to
demonstrate its effectiveness in searching the similar
aspect between query genes.

The rest of the paper is organized as follows. We review
related work in Section 2, and formulate the problem of
mining similar aspects in Section 3. In Section 4, we discuss
the critical techniques of our method SCENARIO. We report
a systematic empirical evaluation in Section 5, and conclude
the paper in Section 6.

2 RELATED WORK

2.1 Gene Similarity Analysis Under Multiple Data
Sources
Technological advances in data generation from multiple
levels of biology have driven the field of bioinformatics
for the past decades, producing ever-increasing amounts
of data as researchers strive to develop various databases.
Analysis under multiple data sources methods are now
emerging that aims to bridge the gap between our ability
to generate vast amounts of data and our understanding of
biology.

Aerts et al. [18] developed a software termed Endeavour
that can find candidate genes underlying biological pro-
cesses or diseases by fusing multiple data sources to rank
unknown candidate test genes according to their similarity
with known training genes. Genehopper [19] was developed
as a search engine where a user can explore the neigh-
borhood of a target gene by a gene-to-gene search as the
weighted sum of nine normalized gene similarities based on



IEEE TCBB 3

multiple data sources. Besides, each weight can be adjusted
by the user, allowing flexible customization of the gene
search. Wang et al. [20] proposed a novel machine learning
model, named MFR, for accurately measuring the similarity
between gene expressions by incorporating features of gene
ontology, transcriptomics, proteomics and so on. Bass et
al. [21] represented biological processes among biological
entities such as genes, tissues, proteins, and metabolites
as networks, and utilized different association indices to
integrate the networks to explore the similarity between
genes.

However, existing gene similarity analysis methods un-
der multiple data sources focus on how to fuse multiple data
sources or how to measure the similarity between genes,
while failing to explain the gene similarity after data fusion.

2.2 Similarity Measure Based on Ontology
Ontology is widely used to measure the semantic similarity
of two entities. Typically, Resnik [22] proposed a notion of
information content (IC) to measure the semantic similarity
of concepts in an IS-A taxonomy. Consequently, Lin [23]
presented an information-theoretic definition of similarity
which could be applicable in a number of different domains,
e.g., the biology domain, as long as probabilistic models are
available.

In the bioinformatics field, GO is a standardized vocab-
ulary of terms defined to represent gene product properties,
which can annotate the function of genes. The GO terms are
organized in a tree structure, thus some methods compute
the similarity by utilizing the topological structure of GO
terms in the graph [24]. In order to eliminate the misleadings
from gene annotation statistics, Wang et al. [25] proposed a
hybrid method considering not only the number of two GO
terms’ common ancestors, but also the distances between
them and these ancestors.

GO-based approaches measure the gene similarity by
using functional annotation. However, there are many non-
functional relationships among genes, such as gene expres-
sion, transcription, and phenotype. As a result, the non-
functional relationships among genes should be considered
when measuring gene similarity.

2.3 Similarity Search on Heterogeneous Information
Network
Heterogeneous information network (HIN) is a novel tool
used to model the real-world in many scenarios, such as
social networks and bibliographic networks. Due to the
multiple types of objects and links involved in the network,
the relations in HIN carry richer information and complex
semantics than the relations in homogeneous networks do.
Similarity search, which is a typical and important problem
in data mining, has been studied by many researchers
utilizing HIN.

PathSim [26] was proposed to measure the similarity
between peer objects in a HIN, which was defined on a
meta path framework. Considering the structure of meta
path is relatively simple, Huang et al. [27] then proposed the
concept of meta structure, which can describe more com-
plex relationships between nodes, to measure the similarity
between objects in HIN.

As an extension of similarity search, recommendation
problem has also attracted the attention of researchers. Shi
et al. [28] proposed the weighted HIN and weighted meta
path to distinguish different attribute values of links, which
can better capture the subtle semantics of paths for more
accurate recommendations. Zhao et al. [29] proposed the
concept of meta graph and introduced it to HIN to represent
high-level semantics of recommendations, and based on the
meta graph, the heterogeneous information in HIN was
further fused to make better recommendations.

We tackled the problem of similar aspect mining in [30], a
preliminary version of this paper. Compared to that work, in
this paper, we provide a more flexible version of our method
as well as a more detailed description of the key steps in the
method, and perform more extensive empirical evaluations,
including mining similar aspects from multiple genes.

3 PROBLEM FORMULATION

We start with some preliminaries. Gene information net-
work, which is a typical heterogeneous information net-
work, can flexibly represent the relationships among gene-
related biological objects [31]. Formally,

Definition 1 (Gene Information Network). A gene infor-
mation network (GIN) is a graph G = (V,E) with an
object mapping function ϕ : V → A and a link mapping
function ψ : E → R subject to |A| > 1 and |R| > 1,
whereA refers to the set of gene-related biological object
types and R denotes the set of relation types between
objects. Each object v ∈ V belongs to an object type
ϕ(v) ∈ A, and each link e ∈ E belongs to a relation
type ψ(e) ∈ R.

Definition 2 (Meta Path). A meta path P is a path defined
on the gene information network and is denoted in the
form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1, where A ∈ A and

R ∈ R. And R = R1◦R2◦· · ·◦Rl is a composite relation
between object type A1 and Al+1, where ◦ denotes the
composition operator on relations.

The length of the path is the number of objects contained in
it, denoted by |P |.

A meta path P is a gene meta path if the two end nodes
of P are two genes.

Example 1. An example of gene information network is illus-
trated in Figure 1. There are seven gene-related biolog-
ical object types, i.e., {G,Pro,Dg, T,M,Dis, Phe} and
multiple gene meta paths. For example, the gene meta
path “G− T −G” indicates two genes sharing the same
GO terms, with gene path instances such as “g1−t2−g2”
and “g1−t3−g3”. And the gene meta path “G−M −G”
indicates two genes are targeted by the same miRNAs,
with gene path instances such as “g2 − m2 − g4” and
“g3 − m3 − g4”. The number of objects contained in
“G− T −G” is 3, and so is “G−M −G”. The gene
meta path length of “G− T −G” and “G−M −G” are
both 3.

In a GIN, for a gene meta path P , the gene path instance
set between two genes g and g′, denoted by Ins(Pg→g′), is
the set of paths which go from g to g′ following P .
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Fig. 1. An example of gene information network

As stated in [26], the similarity between any two peer
nodes in a heterogeneous information network can be mea-
sured by the instances of a symmetric meta path. Correspond-
ingly, given a GIN, for two genes g1 and g2, their similarity
based on a symmetric gene meta path P can be defined as:

SimP (g1, g2) =
2× |Ins(Pg1→g2)|

|Ins(Pg1→g1)|+ |Ins(Pg2→g2)|
(1)

Equation 1 is effective in computing the similarity based
on a single gene meta path. However, please note that for
two genes there may exist multiple gene meta paths. For
example, the gene meta paths between g3 and g4 in the GIN
shown in Figure 1 include: “G−Dis−G” and “G−Pro−
Dg − Pro−G”.

For a pair of genes g and g′, we denote by

PS(g, g′) = {P | Ins(Pg→g′) ̸= ∅}

the set of gene meta paths between g and g′.
We consider a more general case in this study. For a pair

of genes g1 and g2, let P be a subset of all gene meta paths
between g1 and g2, i.e., P ⊆ PS(g1, g2). Then, the similarity
between g1 and g2 on the gene meta path set P , denoted by
pSimP(g1, g2), is

pSimP(g1, g2) =

2×
∏

P∈P
|Ins(Pg1→g2)|∏

P∈P
|Ins(Pg1→g1)|+

∏
P∈P
|Ins(Pg2→g2)|

(2)
Clearly, we have 0.0 ≤ pSimP(g1, g2) ≤ 1.0.

Observation 1. In a gene information network, two genes
are considered to be more similar if they are connected
via shorter gene meta paths.

Example 2. In Figure 1, for gene pair (g1, g5), the instance of
gene meta path “G− T −G− T −G” is “g1 − t3 − g3 −
t5 − g5” with the length of 5. For gene pair (g1, g3), the
instances of gene meta path “G−T−G” are “g1−t3−g3”
and “g1 − t4 − g3” with the length of 3. It is easy to find
that the gene meta path instance “g1− t3− g3− t5− g5”

is an extension of instance “g1−t3−g3”, which indicates
that the relationship between g1 and g5 is not as strong
as the relationship between g1 and g3. In other words, g1
is more similar to g3 than to g5.

Definition 3 (Gene Neighborhood). For a gene g, its neigh-
borhood, denoted by N (g), is the set of all genes such
that each gene is connected with g via at least one gene
meta path, i.e.,

N (g) = {g′ | PS(g, g′) ̸= ∅}

Please note that the genes in the group of gene pairs
for similarity analysis is a subset of all genes in the GIN.
Due to the huge number of genes in a typical GIN, it
is unreasonable to consider all genes, since the semantic
meaning between the genes with long path is insignificant.
Definition 4 (Gene Pair Neighborhood). For a pair of

genes (g1, g2), their gene pair neighborhood, denoted by
N (g1, g2), is the set of gene pairs generated by a query
gene and one of its neighbor genes on gene meta path
set PS(g1, g2), i.e.,

N (g1, g2) ={gi ∈ N (g1) ∪N (g2) | ∃P ∈ PS(g1, g2),
P ∈ PS(g1, gi) ∨ P ∈ PS(g2, gi)}

Example 3. As shown in Figure 1, the gene meta path set
between g1 and g2 is PS(g1, g2) = {“G− T −G”, “G−
Dis −M − Dis − G”, “G − Dis − Phe − Dis − G”}.
So the gene pair neighborhood of (g1, g2) is N (g1, g2) =
{g1, g2, g3}. This is because g1 and g3 share gene meta
path “G− T −G” with two gene path instances; g2 and
g3 share gene meta path “G−T −G” with one gene path
instance. Noting that g4 does not belong to N (g1, g2),
because none of the gene meta paths between g2 and g4
or between g1 and g4 exists in PS(g1, g2).

However, to answer the question “Is gene g1 more
similar to gene g2 than to gene g3?”, it is unreasonable
to compare pSimP(g1, g2) and pSimP(g1, g3) directly. The
reason is that the gene meta paths connecting g1 to g2 may
be different from those between g1 and g3.

To tackle this issue, we propose the solution of using
rank statistics. Specifically, given a query pair of genes
(g1, g2), and a gene meta path set P , we rank the gene pairs
generated from N (g1, g2) in their similarity descending
order. The similarity rank of (g1, g2) on gene meta path set
P , denoted by rankP(g1, g2), is

rankP(g1, g2) = |{(gi, gj) | pSimP(gi, gj) > pSimP(g1, g2),

gi ∈ {g1, g2}, gj ∈ N (g1, g2)}|+ 1
(3)

The smaller the rank value is, the more significant of the
similarity between g1 and g2 is comparing to the other gene
pairs generated from N (g1, g2) on gene meta path set P .
Definition 5 (Similar Aspect). Given two query genes, g1

and g2, gene meta path set P is a similar aspect for g1
and g2 returned by

argmin
P⊆PS(g1,g2)

rankP(g1, g2)

P is minimal if there does not exist another similar aspect
P ′ ⊂ P such that rankP′(g1, g2) ≤ rankP(g1, g2).
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Given a pair of query genes (g1, g2), the problem of
mining similar aspects is to find all minimal similar aspects
between g1 and g2.

4 THE PROPOSED SCENARIO APPROACH

To address the limitation in lack of explanations in the exist-
ing gene similarity analysis, we proposed a novel approach,
SCENARIO, to mine the similar aspect between gene pair,
which can provide the explanation for gene similarity. In this
section, we introduce the framework of SCENARIO, which
consists of four main parts:

• Gene Information Network Construction: Multiple
gene-related data sources are fused to construct a
gene information network, where the similarity anal-
ysis is performed. (Section 4.1)

• Candidate Similar Aspect Generation: The gene
meta paths between query gene pair are searched
to generate the candidate similar aspects on the
constructed gene information network. (Section 4.2)

• Mining Similar Aspects: The rank statistics is used
to mine the similar aspects between the query gene
pairs (Section 4.3) and among multiple genes (Sec-
tion 4.4).

4.1 Gene Information Network Construction

To address the problem of mining similar aspects between
query genes, the key precondition of SCENARIO is the
construction of the gene information network.

In this paper, we use data from six databases to con-
struct the GIN, which are listed in Table 1. These six gene
databases provide the associations between seven types of
biomedical entities. We construct the GIN by connecting all
seven relations via shared nodes.

• Gene-Protein relation: The protein is extracted from
DrugBank [32], and the according gene-protein asso-
ciation is further obtained from HGNC [33]. The link
between gene and protein denotes the “encoding” or
“encoded-by” relations.

• Drug-Protein relation: The drug-protein relationship
is obtained from DrugBank database. The link be-
tween drug and protein denotes the “targeting” or
“targeted-by” relations.

• GO term-Gene relation: The GO term-gene relation-
ship is obtained from GOA [34] and NCBI Gene [35].
The link between GO term and gene denotes the
“annotating” or “annotated-by” relations.

• Gene-Disease relation: The gene-disease relationship is
extracted from OMIM [36]. The link between gene
and diseased denotes the “causing” or “caused-by”
relations.

• miRNA-Gene relation: The miRNA-gene relationship
is obtained from miRNet [37]. The link between miR-
NA and gene denotes the “targeting” or “Targeted-
by” relations.

• miRNA-Disease relation: The miRNA-disease relation-
ship is obtained from miRNet. The link between miR-
NA and disease denotes the “causing” or “caused-
by” relations.

TABLE 1
Gene Database

Date Source URL

DrugBank [32] https://www.drugbank.ca/releases/latest

HGNC [33] https://www.genenames.org/download/statistics-and-files

GOA [34] http://geneontology.org/docs/downloads

NCBI Gene [35] ftp://ftp.ncbi.nih.gov/gene/DATA

OMIM [36] https://omim.org/downloads

miRNet [37] https://www.mirnet.ca/miRNet/docs/Resources.xhtml

• Disease-Phenotype relation: The disease-phenotype re-
lationship is extracted from OMIM. The link between
disease and phenotype denotes the “including” or
“included-by” relations.

4.2 Candidate Similar Aspect Generation
As stated in Definition 5, a similar aspect is a set of gene
meta paths. Therefore, given a pair of query genes, before
mining the similar aspect between them, it is necessary
to find all gene meta paths between them. According to
Section 3, the gene meta path which is used to measure the
similarity between peer genes is symmetric.

Firstly, in order to accelerate the search for all gene meta
paths between the query gene pair, the maximum gene
meta path length needs to be given. Different from [30] that
directly gives a certain maximum gene meta path, we use a
flexible way to automatically determine the maximum gene
meta path length between the given genes, which reduces
unnecessary redundancy. For the sake of clarity, we denote
by ℓ the maximum length of gene meta paths in PS(g, g′).
i.e.,

ℓ = max{|P | | P ∈ PS(g, g′)}

In order to optimize the maximum gene meta path
length detection process, the tree structure is introduced.
SCENARIO constructs two trees with two query genes as
root nodes by scanning the GIN. Specifically, for two genes
g1 and g2 taken as roots, by traversing the GIN, the adjacent
nodes of g1 and g2 are gotten and added to the children
nodes of g1 and g2, respectively. Then the adjacent nodes of
these children nodes in the GIN, are added to their children
nodes, and the added children nodes must satisfy that they
are different from the previous nodes and are non-gene type
nodes. Repeat the above steps until no children nodes can
be added. The maximum length of the gene meta path is
obtained by comparing whether the children nodes of the
two trees have the same nodes. The depth of the deepest
layer, which concludes the common children nodes of both
trees, equals to (ℓ− 1)/2.

For g1 and g2 in Figure 1, an example of the maximum
gene meta path length detection is given in Figure 2, which
is based on the tree structure.
Example 4. As shown in Figure 2, for g1 and g2, they are tak-

en as roots to construct two trees by traversing the GIN
shown in Figure 1. The adjacent nodes of g1 and g2 are
added in these two trees as children nodes, respectively.
In these two trees, the previous two layers of children



IEEE TCBB 6

phe2 phe4phe3

g2

dg1

g1

phe1
dg2phe5phe6

m1 dis1 dis2 t1pro2t2 t4t3 m2
t2 t4

phe4phe3m1

pro4
pro3phe5phe6

phe2phe1

dis1

pro1

dis2

Same children nodes between 

two trees of g1 and g2

Fig. 2. An example of the maximum gene meta path length detection
based on a tree structure.

nodes have the same nodes, which are {t2, t4} in the first
layer and {phe3, phe4} in the second layer, and there is
no same node in latter layers. So the maximum depth is
2, then we can get the maximum length of the gene meta
path between g1 and g2 is ℓ = 5, where ℓ = (2× 2) + 1.

After obtaining the maximum gene meta path length ℓ,
SCENARIO searches for the gene path instance set between
g1 and g2 starting from themselves, respectively, by travers-
ing the GIN in a breadth-first manner under the constraint
of ℓ, the gene meta paths and the corresponding gene
path instances are obtained at the same time. During the
traversal process, for each gene meta path P ∈ PS(g1, g2),
the gene path instance sets Ins(Pg1→g1), Ins(Pg2→g2), and
Ins(Pg1→g2) will be found.

For the obtained PS(g1, g2), a large number of subsets
that are combined by various gene meta paths between g1
and g2 can be generated. In order to ensure all gene meta
path sets between them can be found, SCENARIO adopts
the set enumeration tree approach [38], which has been
widely used in many data mining methods, to enumerate
all gene meta path sets systematically. By doing so, all
gene meta path sets between g1 and g2, i.e., their candidate
similar aspects, can be obtained. According to Equation 2,
the similarity between g1 and g2 in each candidate similar
aspect will be calculated.

4.3 Mining Similar Aspects between Pairwise Genes
SCENARIO discovers similar aspects by comparing the sim-
ilarity between the query gene pairs and their related gene
pairs in their neighborhood. So, SCENARIO first finds the
comparable gene pairs in the gene neighborhood for the
query genes.

Specifically, given a pair of query genes (g1, g2), SCE-
NARIO firstly travels all gene nodes to find their gene pair
neighborhood according to Definition 4. Then, the genes in
N (g1, g2) are paired with either one of the query genes to
generate gene pairs, which are regarded as the comparable
gene pairs.

Then, SCENARIO calculates the similarity of each gene
pair on each candidate similar aspect by Equation 2. To
improve the efficiency, the parallel strategy is adopted,
where SCENARIO introduces the thread pool to accelerate
the calculation speed.

Algorithm 1 SCENARIO(g1, g2, geneDB)
Require: g1, g2: two query genes, geneDB: the gene-related

data sources
Ensure: P : minimal similar aspect between g1 and g2

1: G ← the gene information network constructed by
geneDB;

2: PS(g1, g2)← the set of gene meta paths between g1 and
g2 on G;

3: N (g1, g2)← the gene pair neighborhood of g1 and g2;
4: pairSet← {(gi, gj) | gi ∈ {g1, g2}, gj ∈ N (g1, g2)};
5: minRank ← |pairSet|;
6: for each candidate similar aspect P ′ ⊆ PS(g1, g2)

searched by traversing the set enumeration tree do
7: for each gene pair (gi, gj) in pairSet do
8: compute pSimP′(gi, gj);
9: end for

10: if rankP′(g1, g2) < minRank then
11: minRank ← rankP′(g1, g2);
12: P ← P ′;
13: end if
14: if rankP′(g1, g2) = minRank and P ′ ⊂ P then
15: P ← P ′;
16: end if
17: end for
18: return P

Since the similarity of each candidate similar aspect
obtained is a score, it is not reasonable to compare gene
pairs directly by their similarity scores, so we introduce the
rank statistics. Then, SCENARIO compares the similarities
of these gene pairs under the rank statistics, and for the
candidate similar aspect P , if the similarity rank of g1 and
g2 on P is minimum and there is no subset of P in which
the similarity rank is less than or equal to P , then P is the
similar aspect.

The details of SCENARIO are described in Algorithm 1.

4.4 Mining Similar Aspects among Multiple Genes
SCENARIO can be flexibly used to mine similar aspects
among multiple genes. For a set of query genes, denoted
by G, SCENARIO mines the similar aspect of G based on the
aspect similarity of its paired genes.

For a query gene set G, any two genes in G are paired
firstly. Then, SCENARIO searches all gene meta paths be-
tween each gene pair (gi, gj), where gi, gj ∈ G, respectively.
The set of all gene meta paths of G is

PS(G) =
∩

gi,gj∈G
PS(gi, gj)

It is worth noting that if PS(G) is empty, SCENARIO
will stop and indicate that there is no common gene meta
path among G.

And the gene pair neighborhood of G under the gene
meta path set PS(G) is denoted as:

N (G) =
∪

gi,gj∈G
N (gi, gj)

Example 5. As shown in Figure 1, for a set of query genes
G = {g1, g2, g3}, the set of gene pairs generated from G is
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TABLE 2
Characteristics of the Gene Information Network

Relation Type of Nodes # Nodes # Edges Source

Gene−Protein
genes 20209

20209 HGNC [33]
relation proteins 20075

Drug−Protein
drugs 5592

15567 DrugBank [32]
relation proteins 2796

GO term−Gene
genes 20629

287460
GOA [34] and

relation GO terms 18265 NCBI Gene [35]

Gene−Disease
genes 3380

4627 OMIM [36]
relation diseases 4284

miRNA−Gene
miRNAs 2596

320372 miRNet [37]
relation genes 14736

miRNA−Disease
miRNAs 684

5550 miRNet [37]
relation diseases 98

Disease−Phenotype
diseases 4353

92153 OMIM [36]
relation phenotypes 44362

{(g1, g2), (g1, g3), (g2, g3)}. AndPS(G) = {“G−T−G”},
N (G) = {g1, g2, g3, g5}.

Secondly, SCENARIO generates all candidate similar
aspects from PS(G) by using the set enumeration tree
approach. After that, SCENARIO computes the similarity of
these gene pairs, which are generated from N (G), on each
candidate similar aspect P ⊆ PS(G). For each candidate
similar aspect P , the similarity ranks of G on it is

rankP(G) = max{rankP(gi, gj)} (4)

where gi, gj ∈ G. Here, the highest rank is taken because
by doing so, any two genes in G can surely share some
similarities on P .

Finally, the similar aspect for a query gene set G is
returned by

argmin
P

rankP(G). (5)

where P is minimal if there does not exist another similar
aspect P ′ ⊂ P such that rankP′(G) ≤ rankP(G).

5 EXPERIMENTS, RESULTS AND DISCUSSION

In this section, we evaluate the ability and performance of
SCENARIO in answering the similar aspect between query
genes in the complicated gene information network.

5.1 Experimental Setup

We constructed the gene information network based on
seven relations from six gene databases. Table 2 lists the
characteristics of the seven relations that were used to
compose the gene information network. In summary, there
are 135,716 nodes (including 21,726 gene nodes) and 745,875
edges.

All experiments were conducted on a PC with an Intel
Xeon E5-2678 v3 2.50 GHz CPU and 64 GB main memory,
running the Ubuntu 19.04. All algorithms were implement-
ed in Python and compiled by Python 3.7.

Fig. 3. The distribution of the degrees of all gene nodes.

5.2 Network Quality Analysis

To evaluate the quality of the gene information network, we
used the following two measures.

• Distribution of gene node degrees : the degree of a
node in a gene information network represents the
information content. The larger the degree of a gene
node, the more informative the network is.

• Number of gene meta paths: the number of gene meta
paths in a gene information network evaluates the
richness of semantic information contained in the
gene information network. The larger number of
gene meta paths in a gene information network is,
the more informative the network is.

Figure 3 shows the distribution of the degrees of all gene
nodes in the network. We can see that the degrees of 29.7%
gene nodes are less than 10 and the degrees of 25.4% gene
nodes are larger than 50. In other words, most gene nodes
have at least one edge connecting other nodes.

Table 3 lists the gene meta paths found by SCENARIO
from the gene information network. There are 10 gene
meta paths in total. We can see that the number of gene
pairs and the number of meta path instances change a
lot. For “Gene-Disease-Gene”, there are only 18 gene pairs
and 20 path instances. However, for “Gene-miRNA-Disease-
Phenotype-Disease-miRNA-Gene”, there are 300,333 gene pairs
and 67,060,250 path instances. From Table 3, we can also
see that it is unfair to compare the similarities of gene
pairs based on different meta paths. Thus, as introduced
in Section 3, SCENARIO used similarity rank to find similar
aspects for the query gene pair.

5.3 Effectiveness

As stated in [39], using EC (Enzyme Commission) number
to evaluate the gene similarity is a fast and effective way,
as genes annotated by the same EC number are functionally
similar. In this study, the EC number was used as the label
of genes, and from those with the same EC number, 400
gene pairs were randomly selected as the positive samples,
i.e., similar gene pairs. And by randomly sampling from
the whole gene set excluding nodes annotated by the EC
number, a random gene set containing 800 gene pairs was
produced, regarded as the negative samples, i.e., dissimilar
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(a) SCENARIO compared with Resnik (b) SCENARIO compared with Lin (c) SCENARIO compared with Wang

Fig. 4. Performance analysis of SCENARIO compared with Resnik, Lin and Wang on three Gene Ontologies.

(a) SCENARIO compared with Resnik (b) SCENARIO compared with Lin (c) SCENARIO compared with Wang

Fig. 5. Performance analysis of SCENARIO compared with Resnik, Lin and Wang on different sizes of validation data set.

TABLE 3
The statistics of meta paths found from SCENARIO

Gene Meta Path # Pairs # Instances

“Gene-GO Term-Gene” 250845 762948

“Gene-miRNA-Gene” 272767 2248693

“Gene-Disease-Gene” 18 20

“Gene-Protein-Drug-Protein-Gene” 1919 2477

“Gene-miRNA-Disease-miRNA-Gene” 308640 45477398

“Gene-Disease-miRNA-Disease-Gene” 67 5986

“Gene-Disease-Phenotype-Disease-Gene” 6627 17662

“Gene-miRNA-Disease-Phenotype-Disease-miRNA-Gene” 300333 67060250

gene pairs, since the coincidence that two genes sampled
randomly just happen to be similar is at a very low prob-
ability. Throughout all the experiments, SCENARIO was
applied on the complete gene information network of all the
21,726 gene nodes, and we used the validation data set of
1,200 gene pairs containing the aforementioned 400 positive
samples and 800 negative samples to verify the effectiveness
of SCENARIO.

As GO provides the precise and informative descrip-
tion of gene terms, SCENARIO was further compared with
three ontology-based methods on the same dataset GO,
including two information content-based methods, i.e., Lin’s
method [23] and Resnik’s method [22], and one graph-based

method, i.e., Wang’s method [25]. It should be noted that
GO consists of three orthogonal ontologies, i.e., the cellular
component (CC), biological process (BP), and molecular
function (MF), each containing an independent system of
ontological terms. These three methods under comparison
are all based on the relationships among GO terms, and
terms in different ontologies are not comparable. Thus,
the experiments were carried out on the three ontologies,
respectively, when compared with these methods. All the
comparison experiments were conducted on the same 1200
gene pairs, and the similarity scores of the three methods
were obtained by the tool GOSemSim [40].

Figure 4 shows the ROC (Receiver Operating Character-
istic) curves drawn for SCENARIO and the other three meth-
ods. For the results produced by Lin’s method, we referred
“Lin CC” to the result from the “cellular component” on-
tology, “Lin BP” to the result from the “biological process”
ontology and “Lin MF” to the result from the “molecular
function” ontology, and the same was to Resnik’s method
and Wang’s method. As shown in Figure 4, SCENARIO
achieved the best performance among all methods with the
AUC (Area Under roc Curve) score of 0.933.

To assess the influence of random sampling and the
size of validation set, we further generated three validation
sets in different sizes as of 150 gene pairs, 300 gene pairs
and 600 gene pairs, respectively, by the same sampling
strategy as mentioned in the previous context, while the
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(a) Runtime w.r.t. the number of genes (b) Runtime w.r.t. the number of links (c) Runtime w.r.t. the number of object types

Fig. 6. The efficiency of SCENARIO w.r.t. the parallel strategy.

other procedure remained the same. Figure 5 illustrates
that with the increase of the validation data set size, the
performance of every method tends to be stable. We can see
that the fluctuation brought by random sampling is decayed
when the size of the validation set is larger than 600. It is
worth noting that SCENARIO achieves the best AUC scores
compared with other methods.

5.4 Efficiency

As stated in Section 4.3, to improve the efficiency of SCE-
NARIO, we adopted the parallel strategy. Specifically, we
set the number of threads as 16 to run SCENARIO. Then,
we compared the runtime of SCENARIO with the runtime
of SCENARIO without the parallel strategy, which is called
as SCENARIO-single.

First, we evaluated how the runtime changes with the
number of genes in GIN. We randomly chose 25%, 50%,
75% and 100% genes to construct GIN, respectively. For
each GIN, we randomly chose 50 pairs of genes as query
gene pairs, and reported average runtime for all results.
As shown in Figure 6(a), as the number of genes increases,
the scale of GIN grows, so the runtime of SCENARIO and
SCENARIO-single both increases. However, SCENARIO is
substantially faster than SCENARIO-single.

Second, we evaluated how the runtime changes with
the number of links in GIN. For GIN constructed in Sec-
tion 4.1, we randomly removed 75%, 50%, 20% and 0% of
all links (reserved 25%, 50%, 75% and 100% of all links).
Similarly, we randomly chose 50 pairs of genes as query
gene pairs, and reported average runtime for all results.
As shown in Figure 6(b), as the number of removed genes
increases, the number of gene meta path instances decreases,
thus the runtime of SCENARIO and SCENARIO-single both
decreases. However, SCENARIO is substantially faster than
SCENARIO-single.

Third, we evaluated how the runtime changes with the
number of object types in GIN. For GIN constructed in
Section 4.1, we deleted drug-type, GO term-type, miRNA-
type and phenotype-type nodes, respectively. Once again,
we randomly chose 50 pairs of genes as query gene pairs,
and reported average runtime for all results. As shown
in Figure 6(c), compared to GIN with all object types,
due to the decrease of gene meta paths, SCENARIO and

SCENARIO-single both run faster on GIN without a ob-
ject type. However, SCENARIO is substantially faster than
SCENARIO-single. It is worth noting that when miRNA
objects are deleted, SCENARIO has no obvious advantage
over SCENARIO-single. The main reason is that the gene
pairs associated with miRNA objects account for the ma-
jority on the GIN, which can be found in Table 3. So when
miRNA objects are removed, the search space will be greatly
reduced, thus the runtime will also be greatly decreased,
but SCENARIO needs thread scheduling time compared to
SCENARIO-single, which causes SCENARIO to spend more
time in thread scheduling than the reduced search time by
using multi-thread.

5.5 Case Study

Three genes GFER, QSOX2, QSOX1 were selected as the
query genes for evaluating the usefulness of similarity
aspect mining. Table 4 presents the candidate similarity
aspects as well as the similarity ranks for the three query
genes.

For GFER and QSOX2, the minimal similar aspect is
{“G − T − G”, “G − M − G”} with similarity rank = 8.
It indicates that the similarity between GFER and QSOX2 is
the most significant in both “G−T −G” and “G−M −G”.
The reason is that they are targeted by the same miRNA,
and they are annotated by the same GO term at the same
time. It is interesting to see that the similarity ranks are 41
and 57 when the similarity between GFER and QSOX2 are
evaluated by “G− T −G” and “G−M −G”, respectively.
Thus, similarity aspect discovery can give more insights into
the gene relations compared with similarity comparison on
a single meta path.

For QSOX1 and QSOX2, the minimal similar aspect is
“G − T − G” with similarity rank = 2. They are similar
because that they are annotated by the same GO term. As
stated in GeneCards [41], QSOX2 is an important paralog
of QSOX1, and vice verse. We can see that for similar gene
pairs, SCENARIO can easily capture their similarity.

For GFER and QSOX1, the minimal similar aspect is
“G− T −G” with similarity rank = 85. Clearly, 85 is a con-
siderably large similarity rank, which means that many gene
pairs are more similar than the query genes in this aspect.
However, SCENARIO still finds the aspect in which GFER
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TABLE 4
Statistics on the similarity ranks w.r.t. genes GFER, QSOX2 and

QSOX1

Query
Candidate Similar Aspects

Similarity
Size of

Genes Rank
Gene Pair

Neighborhood
{G-T-G} 41

17672

{G-M-G} 57
{G-M-Dis-M-G} 2905

(GFER, {G-T-G, G-M-G} 8
QSOX2) {G-T-G, G-M-Dis-M-G} 3844

{G-M-G, G-M-Dis-M-G} 2314
{G-T-G, G-M-G,

580
G-M-Dis-M-G}
{G-T-G} 2

16312

{G-M-G} 1097
{G-M-Dis-M-G} 581
{G-M-Dis-Phe-Dis-M-G} 548
{G-T-G, G-M-G} 320
{G-T-G, G-M-Dis-M-G} 157
{G-M-G, G-M-Dis-M-G} 1837
{G-T-G, 163
G-M-Dis-Phe-Dis-M-G}
{G-M-G, 815
G-M-Dis-Phe-Dis-M-G}

(QSOX2, {G-M-Dis-M-G,
432

QSOX1) G-M-Dis-Phe-Dis-M-G}
{G-T-G, G-M-G,

589
G-M-Dis-M-G}
{G-T-G, G-M-G,

232
G-M-Dis-Phe-Dis-M-G
{G-T-G, G-M-Dis-M-G,

129
G-M-Dis-Phe-Dis-M-G}
{G-M-G, G-M-Dis-M-G,

741
G-M-Dis-Phe-Dis-M-G}
{G-T-G, G-M-G,

215
G-M-Dis-M-G,
G-M-Dis-Phe-Dis-M-G}

(GFER,
{G-T-G} 85

16757
QSOX1)

{G-M-Dis-M-G} 2962
{G-T-G, G-M-Dis-M-G} 2047

{GFER, {G-T-G} 85
17903QSOX1, {G-M-Dis-M-G} 2962

QSOX2} {G-T-G, G-M-Dis-M-G} 3844

and QSOX1 are similar to each other. Thus, SCENARIO is
flexible to find the similarity between somehow dissimilar
gene pairs.

For the gene set consists of GFER, QSOX1 and QSOX2,
the similar aspect among them is {“G − T − G”} with
similarity rank = 85, which is a considerably large similarity
rank. This is because the similarity between GFER and
QSOX1 is not significant, which affects the similarity be-
tween the three genes. It indicates that SCENARIO does not
ignore the influence of the dissimilar aspects between query
genes. However, the mined similar aspect {“G − T − G”}
also indicates that there are a certain of same GO terms
annotating GFER, QSOX1 and QSOX2 at the same time.
Thus, SCENARIO is flexible to make some slight adjustment
to itself regarding to different query genes by their charac-
teristics.

TABLE 5
The similar aspects w.r.t. gene pair (ABCC8, KCNJ11) and

gene set {ABCC8, KCNJ11, GCK}

Query
Similar Aspects

Similarity
Size of

Genes Rank
Gene Pair

Neighborhood
{G-Dis-G, G-Pro-Dg-Pro-G} 1

15003

{G-Dis-G, G-T-G} 1

(ABCC8,
{G-Dis-Phe-Dis-G,

1
KCNJ11)

G-Pro-Dg-Pro-G}
{G-Dis-Phe-Dis-G, G-T-G} 1
{G-Dis-G, G-T-G

1
G-Dis-Phe-Dis-Phe-Dis-G}

{ABCC8, {G-Dis-G} 3
17503KCNJ11,

GCK} {G-Dis-Phe-Dis-G} 3

Based on above, we can see that similar aspect mining is
useful to capture and explain the similarities among genes,
and the proposed method, SCENARIO, is effective.

5.6 Pathway Enrichment Analysis

We also used pathway enrichment analysis as part of our
evaluation of the meaningfulness of our method. Known
pathways from KEGG [42] were used. We performed path-
way enrichment analysis at KOBAS 3.01 [43], which is a
widely used gene set enrichment analysis tool.

A NIDDM-related gene set, consists of ABCC8, GCK,
IRS1, IRS2, INSR, PDX1, KCNJ11, SLC2A2, SLC2A4 and
SOCS1, was selected to perform SCENARIO and pathway
enrichment analysis. Please note that the whole genome of
human was used as background genes in pathway enrich-
ment analysis.

From the results of SCENARIO, there are some gene
pairs with rank-1 similar aspects in the NIDDM-related gene
set, such as gene pair (ABCC8, KCNJ11). These discovered
strong relationships can be their similarity explanation.
As listed in Table 5, the gene pair (ABCC8, KCNJ11) has
five rank-1 similar aspects. This shows that the similari-
ty between genes ABCC8 and KCNJ11 can be explained
from five perspectives. For example, the similar aspect
{“G − Dis − G”, “G − Pro − Dg − Pro − G”} indicates
one of the most significant relationships between ABCC8
and KCNJ11. That is, they not only cause the same disease,
e.g, NIDDM, but also have the same targeted drug, e.g.,
glimepiride. And this relationship can be used to explain
the similarity between ABCC8 and KCNJ11.

By searching the GIN, we found that there is a common
disease caused by ABCC8 and KCNJ11, which is PDMI
(permanent neonatal diabetes mellitus). And we also found
three common targeted drugs between ABCC8 and KCNJ11,
i.e., glimepiride, glyburide and tolazamide. According to
DrugBank [32], all of these three drugs are used for the
management of type 2 diabetes mellitus.

In addition, Table 6 lists the results of pathway enrich-
ment analysis on the NIDDM-related gene set. We can see

1. http://kobas.cbi.pku.edu.cn/kobas3
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TABLE 6
Pathways significantly enriched in NIDDM pathogenic genes

Pathway Genes p-value

Type II diabetes mellitus

KCNJ11, IRS1, IRS2,

4.03E-27
SOCS1, PDX1
INSR, ABCC8,
SLC2A4, SLC2A2

Insulin resistance
INSR, SLC2A4, IRS1,

7.41E-12
IRS2, SLC2A2

Insulin signaling pathway
INSR, IRS1, IRS2,

2.36E-11
SLC2A4, SOCS1

Insulin secretion
PDX1, KCNJ11,

1.27E-9
ABCC8, SLC2A2

AMPK signaling pathway
INSR, SLC2A4,

4.64E-9
IRS1, IRS2

FoxO signaling pathway
INSR, SLC2A4,

6.74E-9
IRS1, IRS2

Regulation of lipolysis
INSR, IRS1, IRS2 1.24E-7

in adipocytes
Longevity regulating pathway

INSR, IRS1, IRS2 1.75E-7
- multiple species
Adipocytokine signaling pathway SLC2A4, IRS1, IRS2 2.38E-7
Longevity regulating pathway INSR, IRS1, IRS2 5.01E-7
Non-alcoholic fatty liver disease

INSR, IRS1, IRS2 2.28E-6
(NAFLD)
cGMP-PKG signaling pathway INSR, IRS1, IRS2 3.19E-6
Maturity onset diabetes

PDX1, SLC2A2 2.88E-5
of the young
MicroRNAs in cancer SOCS1, IRS1, IRS2 1.78E-5
Aldosterone

INSR, IRS1 2.09E-5
- regulated sodium reabsorption
Prolactin signaling pathway SOCS1, SLC2A2 7.20E-5
Autophagy - animal IRS1, IRS2 2.35E-4
mTOR signaling pathway INSR, IRS1 3.33E-4
MAPK signaling pathway INSR, GCK 1.21E-3
PI3K-Akt signaling pathway INSR, IRS1 1.73E-3
Carbohydrate digestion

SLC2A2 7.96E-3
and absorption
ABC transporters ABCC8 8.13E-3
Ovarian steroidogenesis INSR 8.84E-3
Central carbon metabolism

SLC2A2 1.24E-2
in cancer
Adherens junction INSR 1.29E-2
Glucagon signaling pathway SLC2A2 1.88E-2
HIF-1 signaling pathway INSR 1.94E-2
Toxoplasmosis SOCS1 2.00E-2
Neurotrophin signaling pathway IRS1 2.11E-2
Osteoclast differentiation SOCS1 2.27E-2
Ubiquitin mediated proteolysis SOCS1 2.42E-2
Phospholipase D signaling pathway INSR 2.61E-2
Jak-STAT signaling pathway SOCS1 2.86E-2
Rap1 signaling pathway INSR 3.68E-2
Ras signaling pathway INSR 4.06E-2

that the pathway contains genes ABCC8 and KCNJ11, called
type II diabetes mellitus, has the lowest p-value. According to
KEGG [42], type 2 diabetes mellitus is a related disease of
type II diabetes mellitus pathway. This indicates that ABCC8
and KCNJ11 are strongly associated with type 2 diabetes
mellitus.

Based on the above observations, the results of SCE-

NARIO are meaningful in similar aspects mining for gene
similarity explanation.

Moreover, from Table 5, it is interesting to see that there
are two similar aspects among genes ABCC8, KCNJ11, and
GCK with high similarity rank i.e., {“G − Dis − G”} and
{“G − Dis − Phe − Dis − G”}. This shows that there are
two relationships that can be used to explain the similarity
among genes ABCC8, KCNJ11, and GCK, which are causing
the same disease and the same phenotype. However, it is
difficult to find the similarity among genes ABCC8, KCNJ11,
and GCK in causing the same phenotype from the result of
pathway enrichment analysis, since GCK is not included in
any pathway containing either ABCC8 or KCNJ11 in Table 6.

It is worth noting that the disease PDMI, mentioned
above as the common disease caused by genes ABCC8 and
KCNJ11, has material basis in homozygous mutation in
the glucokinase gene (GCK), heterozygous mutation in the
KCNJ11 and INS genes, or by heterozygous or homozygous
mutation in the ABCC8 gene [36]. This verifies the effective-
ness of SCENARIO.

6 CONCLUSION

In recent years, gene similarity has become a hotspot in
biology research, and it is informative for understanding the
biological roles and functions of genes. However, most of
the current methods searching similar genes lack an expla-
nation for gene similarity. Besides, many of them evaluate
gene similarity only under a single metric and only from a
single data source, which lack full consideration of multiple
aspects.

Here, we proposed SCENARIO, a general similar frame-
work for calculating aspect similarity for a set of genes to
detect their similar aspect, which can be used to explain the
similarity between them. SCENARIO computes gene aspect
similarity under the meta path-based measure, and it is nov-
el in providing reasonable explanation of similarity between
genes by exploiting the associations among multiple gene-
related data.

The performance of SCENARIO was evaluated by the
EC number metric. The high AUC suggested that SCE-
NARIO is effective in discovering similar genes and the
efficiency test showed that the parallel strategy employed
in SCENARIO significantly improves the efficiency. SCE-
NARIO also had good extensibility, not only can detect
the similar aspect of two genes, but also mine similar as-
pects among multiple genes. The details of our experiment
study and source codes of SCENARIO are available on
https://github.com/ZhangYid/SCENARIO.

As for future work, we intend to focus on the following
tasks. First, SCENARIO will be applied to other problems to
further test its performance. The scalability of SCENARIO
should be further improved so that more data sources can
be integrated to promote the precision in gene similarity
explanation on large-scale datasets. Second, novel similarity
measures can be designed to better balance the importance
of metrics and to better utilize rich multi-source informa-
tion. Third, we will improve the gene information network
to incorporate the heterogeneity of relationships between
different biological entities into the gene similarity measure.
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