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ABSTRACT Smartphone-based approaches for Human Activity Recognition have become prevalent in
recent years. Despite the amount of research undertaken in the field, issues such as cross-subject variability
are still posing an obstacle to the deployment of solutions in large scale, free-living settings. Personalized
methods (i.e. aiming to adapt a generic classifier to a specific target user) attempt to solve this problem. The
lack of labeled data for training purposes, however, represents a major barrier. This is especially the case when
taking into consideration that personalization generally requires labeled data to be user-specific. This paper
presents a novel personalization method combining a semi-population based approach with user adaptation.
Personalization is achieved through the following. Firstly, the proposed method identifies a subset of users
from the available population as best candidates for initializing the classifier to the target user. Subsequently,
a semi-population Neural Network classifier is trained using data from this subset of users. The classifier’s
network weights are then updated using a small amount of labeled data from the target user subsequently
implementing personalization. This approach was validated on a large publicly available dataset collected
in a free-living scenario. The personalized approach using the proposed method has shown to improve the
overall F-score to 74.4% compared to 70.9% when using a generic non-personalized approach. Results
obtained, with statistical significance being confirmed on a set of 57 users, indicate that model initialization
using the semi-population approach can reduce the amount of labeled data required for personalization.
As such, the proposed method for model initialization could facilitate the real-world deployment of systems
implementing personalization by reducing the amount of data needed for personalization.

INDEX TERMS Free-living, human activity recognition, neural networks, personalized machine learning,
smartphones.

I. INTRODUCTION

Human Activity Recognition (HAR) finds several potential
applications in pervasive systems, varying from Ambient
Assisted Living (AAL) to generic home automation sce-
narios. Recently, smartphone-based solutions for HAR have
become prevalent [1]-[5]. Smartphones are perceived as
unobtrusive from the user perspective, facilitating activity
monitoring in free-living contexts, avoiding the use of more
invasive devices [6]. Moreover, they provide a convenient
source, both generating and logging data since most users
will keep the phone with them almost all day. Despite recent

The associate editor coordinating the review of this manuscript and

approving it for publication was Macarena Espinilla

VOLUME 8, 2020

progress in HAR, there are still important challenges hinder-
ing the deployment of solutions in a free-living context [7]—
[9]. Among these, inter-person (or cross-subject) variability
represents a major hurdle for current solutions [7]. This issue
is further compounded by the fact that experiments are pri-
marily conducted using data collected, on a relatively small
scale, and in controlled environments [1], [10]. To date, accu-
racy of smartphone-based HAR solutions, has been reported
as ranging between 85% and 95% for detection of simple
activities (such as sitting, walking, running and cycling),
whereas lower accuracies have been reported for more com-
plex activities (e.g. Activities of Daily Living (ADL)) [2],
[10]. Moving solutions to a free-living context has shown
to result in accuracy rates decreasing by up to 17% [11].
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Consequently, researchers have been highlighting the impor-
tance of validating solutions with larger datasets collected in
free living scenarios, rather than controlled environments [6],
[10]. Furthermore, the conventional approach, has so far been
to adopt the ‘one-size-fits-all’ concept: also known as pop-
ulation based approach [12]. A generic classifier is trained
offline on the data from the available population, and then
used to perform real-time detection on new, unseen subjects.
Accuracy for unseen subjects (i.e. not used for training),
however, has been observed to decrease to between 63%
and 86% [10]. Consequently, in recent years, more effort
has been targeted towards methods attempting to personalize
classifiers (i.e. adapting a generic classifier to a specific user).
Personalized solutions (i.e. trained on data belonging to the
specific user) have shown to improve performance for new
subjects [7]. Similarly, semi-population based approaches
have been proposed [12], aiming at personalizing models by
identifying a subset of users having characteristics that are
similar to the target user. Their deployment in a free-living
context, however, inherently requires methods to implement
online training. Approaching the problem using supervised
methods requires availability of a large amount of high-
quality labeled data, that must also be user specific. Availabil-
ity of such datasets therefore represents a significant obstacle.
In particular, the annotation phase is a burden that cannot be
easily automated. While recent automated Machine Learning
(ML) approaches have been proposed (automating part of
training process in presence of labeled data) [1], [13], human
supervision/intervention is still required to generate reliable
labeled datasets [8], [14]-[16]. In the case of smartphone-
based solutions, crowd labeling approaches based on expe-
rience sampling have been proposed; where the target user
directly annotates data points by means of prompts delivered
through a mobile app [6], [17], [18]. This approach, how-
ever, introduces the problem of reliability of such datasets in
terms of label noise [14]. Uncontrolled labeling can introduce
label noise (for instance users misinterpreting the meaning
of labels or simply as a consequence of distraction) [14],
[15]. In this scenario, our approach to personalization is based
on a semi-population method identifying similar users in the
population dataset. Similarity is measured on a small amount
of labeled data from the target user. The same labeled data
are then used to complete the model training, performing
further adaptation of the semi-population model. This work
presents the following contributions: (i) a semi-population
based method is proposed to identify a subset of users (from
the available training population) as good candidates to ini-
tialize the parameters of a personalized model, (ii) an online
training mechanism is then proposed to further adapt the
model to the target user, and (iii) the results are evaluated
using Vaizman’s publicly available dataset [6] which provides
data collected in free-living and unconstrained conditions
using a smartphone.

The remainder of the paper is structured as follows.
Section II describes related works and current limitations.
Section III describes the proposed approach. Section IV and
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V describes the experiment and the evaluation methodology.
Sections VI and VII report results and discussion, respec-
tively. Finally, Conclusions are drawn in Section VIII.

Il. BACKGROUND

Since the early attempts of sensor-based HAR, the most
common approach has been the ‘one-size-fits-all’ or ‘popu-
lation’ based approach; i.e., a method aiming at building a
generic model trained on the available population data [12].
The need of personalization has long been debated in the
research community, with supporters of generic approaches
believing that models should be able to generalize, and
therefore also to make good predictions on new users [19].
Nonetheless, several studies have highlighted how a pop-
ulation based approach can lower the accuracy rate by a
substantial amount, when dealing with unknown users (i.e.
not used for training) [9], [12]. Consequently, several studies
explored possible solutions to adapt a generic classifier to
a new user (a process also referred to as calibration [12]).
Three main macro categories addressing personalization can
be distinguished. The first consists in training a fully per-
sonalized model. This method, however, is limited in terms
of scalability and therefore is not applicable to a real-world
scenario, since it relies on the presence of a substantial
amount of labeled data belonging to each target user [12],
[16]. An alternative approach is the calibration (or adaptation)
of a generic classifier, performed by updating the parameters
of a pre-trained model, using a portion of data belonging
to the new target user [20], [21]. This approach reduces,
at least partially, the amount of labeled data required from
the target user for adaptation. Alternatively, semi-population
approaches attempt to build a model using the available
pre-existing population, however, restricting it to users that
present similar characteristics to the target users, as presented
in [12]. This Section initially provides an overview of relevant
work on personalization, which is followed by a discussion on
main common limitations of such an approach.

A. OVERVIEW OF RELATED WORK

Among early personalization attempts, in [20] Zhao et al. pro-
posed a transfer learning approach to adapt a Decision Tree
(DT) classifier by updating its parameters. In their approach,
a DT trained on subject A is adapted to subject B using
unlabeled data belonging to this new user. The update of
parameters is realized through an iterative algorithm using
k-means clustering [22]. The original DT of subject A is
used to make predictions. K-means clustering is used to
identify the centroids for each class on the new data. Finally,
selected samples corresponding to high confidence predic-
tions are used to update the parameters of the DT. High
confidence samples are selected as the k-nearest samples to
the centroid. The process is repeated until convergence is
obtained. The approach targeted simple activities (‘station-
ary’, ‘walking’, ‘downstairs’, ‘upstairs’ and ‘running’) using
12 features extracted from accelerometry data. Evaluation
was performed on an ad-hoc collected dataset consisting
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of 10 users. In [23], classification was performed through
a weighted majority voting process, combining predictions
produced by a set of expert classifiers. The approach, in this
case, requires presence of labeled data belonging to the target
user in order to identify the optimal weights that will be
used to perform the calibration. On average, results obtained
were 89.4% F-score for simple activities and 74.4% for an
extended set including a number of complex activities. The
approach outperformed the accuracy obtained when using the
population based approach. For the worst subject, however,
results scored 76.9% and 56.1% F-score, respectively for
simple and complex activities sets, indicating that the set of
expert classifiers may not be representative for all users.

In [21], a transfer learning algorithm was proposed for
adaptation of models based on Reduced Kernel Extreme
Learning Machine (RKELM). Similar to [20], the generic
model is used to make predictions on new user’s unlabeled
data. Data points corresponding to predictions with higher
confidence are then used to update the model. The approach
was evaluated on the UCI-HAR [24], a dataset consisting
of 30 users targeting simple activities. In [12], a semi-
population approach was proposed. This approach relies on
the existence of a set of personalized models, and aims at
reusing those models rather than adapting them. Models
belonging to users that are similar to the new one, will
be re-used to make predictions on the new user. Similarity
between users is based on the fitness score of the model itself,
measured on accuracy of predictions for new labeled data
belonging to the final user. In [7], an online active learning
solution based on Random Forests (RF) was proposed for
adaptation. The solution allowed to update an RF model
based upon availability of new labeled data-points. In this
case, when new data points were acquired, the system asks
for user-feedback to obtain new labels for the ones classified
with lower confidence. User-labeled data points are then used
to update the model. The approach has been evaluated over
a dataset with 15 participants in realistic contexts, however,
controlled conditions (e.g. users were asked to stand still for a
few seconds between activities). In [25], k-means algorithm
was used to label new data points, then samples with high
confidence were used to train a classifier based on Mul-
tivariate Gaussian Distribution (MGD). Compared to other
studies, the set of targeted activities was rather limited in this
case, aiming only at distinguishing between light, moderate
and vigorous intensity activity, plus fall detection. Results
obtained scored 97.9% F-score for the personalized approach
vs 95.4% of the generic approach, although evaluation was
performed on a rather limited dataset (10 users) and with
the sensor’s location constrained to the user’s waist. In [26],
incremental learning was used to perform adaptation of a
generic model when new labeled data became available. User
adapted models lead to a 4.6% increase in accuracy compared
to the conventional generic approach. Results have been eval-
uated over a dataset limited to 10 subjects. In [27], similar
to [21], the authors used an online learning approach based
on RKELM. Adaptation of the models was performed using
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TABLE 1. Overview of studies on personalisation: Adaptation method
and dataset used for evaluation.

Method Dataset
Ref. Approach™ | Num. of Data
Subjects Acquired*
Zhao et al. 2011 [20] A 10 C
Reiss et al. 2013 [23] SP 9 C
Deng et al. 2014 [21] A 30 C
Hong et al. 2016 [12] SP 28 18]
Sztyler et al. 2017 [7] A 15 S
Zhao et al. 2018 [25] P 10 C
Siirtola et al. 2018 [26] A 9 C
Hu et al. 2018 [27] A 8 C
Mannini et al. 2018 [28] A 33+22 C
Our experiment SP/A 57 U

*Data Acquisition: (C) Controlled, (U) Uncontrolled, (S) Simulated Naturalistic.
+Approach: (P) Personalized, (A) Adapted or (SP) Semi-Population.

newly available labeled data belonging to the target user. Data
points corresponding to misclassified predictions are used to
update the model. Evaluation was performed on a dataset of 8
subjects, including 19 daily and sport activities with 5 min-
utes of accelerometer and gyroscope data for each activity. In
[28], an online personalization strategy was proposed based
on a Support Vector Machines (SVM) model. Similar to [7],
predictions with high uncertainty are used to solicit users
requesting them to provide new labels. The approach was
evaluated using two datasets with characteristics: 33 adults
in the first, and 22 youths in the second.

Table 1 provides an overview of these studies, and the
nature of the datasets used for evaluation. More recently,
in [29], the authors tested a personalization approach, com-
paring its results with a subject independent model. The
experiment also analysed results of an adapted version of the
model obtained considering physical and sensor similarities
with other users. The approach was tested on three datasets,
however, mostly on data collected under controlled condi-
tions.

B. COMMON LIMITATIONS

No matter what strategy is used for adaptation, a common
method to evaluate performance of personalized approaches
is to compare obtained results with the Leave-One-Subject-
Out (LOSO) validation [12]. It must be observed, however,
that in many cases the sample size of datasets used for
evaluation is rather limited (10 subjects or less) [7], [20],
[23], [26], and/or data have been collected under controlled
conditions [7], [20], [21], [23], [25]-[27].

In some cases, user interaction is not required, since adap-
tation is performed using samples whose prediction corre-
spond to high confidence [20], [21], [25], this approach
however, assumes the initial model is able to produce rea-
sonably good predictions for all target classes. This problem
was addressed in [7] by asking user feedback for low con-
fidence samples. On the other hand, this approach assumes
that high confidence predictions are mostly correct. In [12],
[23], the semi-population approach presents the advantage
of not requiring a second (personalized) training phase,
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FIGURE 1. Online personalization framework: A subset of the population
is identified to generate the training data that are used to initialize the
classifier model, the model is then updated using user specific data,
finally classification is performed online and locally on the smartphone.

since available models are reused. This approach, however,
assumes that available population is universally representa-
tive for any user. This limitation can be observed for instance
in [23], where for the worst subject, obtained results are
significantly lower, indicating that some new users may not
be well represented by the available population only. Adap-
tation using final user labeled data addresses this limitation,
introducing, however, at the same time, the problem of relia-
bility of newly obtained labels. Comparison of performances
between studies is not an easy task, since dataset nature, sam-
ple size and target activities vary significantly. For instance,
in many studies the cycling class was not targeted, although it
represents a challenging example that has often been reported
as conflicting class, e.g. with the walking class [10].

In this work, a novel approach is presented, aiming at
combining advantages of the semi-population approach, with
the adaptation to the target user. Initialization of the model
based on the semi-population approach aims at obtaining a
faster convergence on the adaptation phase, thus reducing the
amount of labelled data required for adaptation. Results are
evaluated over a publicly available dataset of 57 users [6]
collected in free-living and uncontrolled conditions.

Ill. IMPLEMENTATION

Personalization of classifiers requires a framework support-
ing online training. As in [16], we propose an architecture
where the training/adaptation phase is performed remotely
on a server. Final classification is performed in real-time and
locally on the smartphone, using features extracted from the
on-board accelerometer and gyroscope sensors.
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Fig. 1 depicts the initial training phase (where a semi-
population model is trained using a subset of users from the
available population); the personalization phase (in which
model parameters are updated using data belonging to the
target user); and finally real-time classification of activities
on the smartphone using the personalized model. The semi-
population model initialization aims at reducing the amount
of data required for the latter personalization phase. Person-
alization aims over time to reduce classification errors due
to cross-subject variability, for which the semi-population
approach is not able to generalize to properly. The process
relies on collecting new labeled data points. Labeling can be
performed directly by the target user by means of prompts.
Raw-data fragments from the smartphone accelerometer and
gyroscope are sent to the server, together with user-provided
labels. These new data points belonging to the final user are
firstly used to identify similar users from the available pop-
ulation dataset, allowing training the semi-population model.
The same data points are then used to update the classifier’s
parameters (e.g. updating network weights of the Neural Net-
work (NN)) finalizing the model’s personalization. A generic
model can be used at the outset, when no target user data are
available. Parameters of the personalized classifier can then
be passed onto a user’s mobile app, deploying an adapted and
personalized classifier for each user.

Personalization of the model is realized by performing
online learning on the server side. Labeled data points
(belonging to the specific target user) are then used to update
the network’s weights. Summarizing, the proposed online
architecture is implemented as two steps procedure. First,
the semi-population approach is used to initialize the the pro-
posed classifier. The second step consists in further adapting
the model, updating its weights using data from the target
user. The following Section provides a detailed description
of the proposed semi-population based method.

A. SEMI-POPULATION BASED APPROACH

This method aims at identifying a subset of users, out of
the available population, exhibiting characteristics similar to
the target user. This subset is identified based on similarity
between users, which is measured on the feature space, using
a clustering procedure.

As presented in Fig. 2, for each user and for each activity,
data points labeled with the same class are clustered. Mean
shift clustering [30] was used to identify clusters within the
set of data points of each activity. Mean shift was chosen con-
sidering the algorithm’s flexibility, being a non-parametric
cluster selecting procedure. It does not require the number of
expected clusters as input (compared to other algorithms such
as k-means), and the required bandwidth parameter can be
estimated automatically. Clusters obtained are ordered based
on the number of samples they contain. The majority cluster
(i.e. containing the largest number of points) is used as a
reference, and its centroid defines a user’s activity vector.
This is used to measure similarity between users. In this
approach, a user is represented by a set of vectors (one for
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FIGURE 2. Data points are partitioned according to their label. Mean shift
is used to cluster data points belonging to the same activity (in the
feature space domain). Finally, the centroid of the majority cluster is used
as reference to measure similarity between users.

each activity) where each vector corresponds to the main
cluster centroid. Let A = [a;y---apy] be the set of target
activities, and N the number of features; all users are rep-
resented by M activity vectors uvy, € R, where i identifies
i-th user and k € [1, 2.--- M] the target activity class. Best
candidates to define the training set are therefore identified
as the ones minimizing the Euclidean distance computed on
activity vectors dist(uvix, uvj) i.e. the distance between users
i and j, on activity k. The procedure (refer to Algorithm 1)
includes the following three steps:
1) For each activity label the set data points with same
label are clustered.
2) The centroid of the majority cluster is detected.
3) Finally, the centroids identified are stored as the set of
user’s activity vectors.
Offline, all activity vectors for the available training popu-
lation are computed and stored server side.

Algorithm 1 Compute User Vector
1: Input: target activity labels: A = [a1, a2 - - - ay]

2: user data: user_data;

3: Qutput: user vectors: uv;

4: procedure COMPUTEUSERVECTOR(A, USER_DATA)
5: for all g, € A do

6: data = {Vp € user_data|label(p) = ay }
7: clusters = [clj - - - clg] = meanShift(data)
8: max_cluster = mfax(|cl,-|)

9: uvjy = centroid (Zzlzx_cluster)

10: return uv; = [uv;;, uvyp, - - - uvip|

As presented in Fig. 3, when data from a new user have
been collected, user provided labels are used to make the
partition of data points into the set of target activities. The
clustering process is repeated to calculate the activity vectors
describing the new target user. Then the n users (for each
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becomes available, the clustering procedure allows the vector locating
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are used to initialize training weights of the generic model.
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activity class) with the closest activity vector are consid-
ered as the candidate population to train the initial classifier.
Considering that for each activity n users will be identified,
in total the training dataset will include data from a number
n’ of distinct users, with n < n’ < M x n. The rationale
of this approach, is that initializing weights on a training
dataset (composed of data belonging to users having similar
characteristics) can potentially help to converge more rapidly
towards an improved personalized solution. The classifier
trained on this subset of the population is then adapted for
personalization using available data points belonging to the
target user.

In principle, the approach can be applied to any supervised
learning scenario. Nonetheless, it is important to consider the
number of dimensions of the examined feature space. When
using Euclidean distance in high dimensional spaces, the rel-
ative minimum and maximum distances will tend to converge
with the increase of space dimensions [31], [32]. This effect,
however, also depends on the nature of the distribution and the
number of available samples. Normally distributed datasets
for instance are more subject to this phenomenon [32]. On the
other hand, the availability of a large number of samples
alleviates the effect [32]. Considering our dataset and target
activities such as cycling, we want the method to be able to
identify macro-cross-subject variabilities, for instance users
cycling with their phone in the pockets, as opposed to subjects
carrying it on their bag.

Another factor to consider is the number n, defining how
many of the nearest subjects will be considered. High values
of n in high dimensional spaces will tend to include subjects
with much more diverse characteristics. Techniques to reduce
the number of dimensions such as Principal Component
Analysis (PCA) can also be considered, allowing to compute
user vectors in a reduced dimension space.

IV. EXPERIMENT

This Section presents the publicly available dataset used to
evaluate the proposed method and the classification approach
used in the experiment.
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A. EVALUATION DATASET

Evaluation of the proposed approach was conducted using
the Extrasensory dataset [6]. The dataset contains data from
60 users (34 females and 26 males) and was collected in
free-living using the smartphone, with up to 28 days and
an average of 7 days of data collected per user. The dataset
includes activity labels provided through user prompts, and
includes raw data measurement from the smartphone inertial
sensors (accelerometer and gyroscope), watch accelerometer,
GPS and microphone. Raw-data from the smartphone iner-
tial sensors were sampled at 40 Hz and consist of a total
of 308,306 labeled fragments of recording of 1 minute (with
20 seconds of raw data collected in each fragment) [6] with
more than 200,000 labeled fragments for physical activities.
Annotations includes in some cases also the phone location
(e.g. ‘in pocket’, ‘on table’ or ‘in bag’). Participants used
their own smartphones for data collection, consequently the
dataset also covers various smartphone models and platforms
with 34 iPhone users and 26 Android users. For the experi-
ment, data from the smartphone accelerometer and gyroscope
were used. The set of users was therefore restricted to 57 out
of the 60 participants as some of the user’s gyroscope data
were not available. The dataset presents typical characteris-
tics of free-living scenarios, i.e. smartphone location is not
constrained to a specific consistent location, data samples
are not collected following a script and therefore are usually
highly imbalanced. The majority classes (lying and sitting)
provide on average up to 80% of the entire set of data points,
followed by the walking class (on average 10-15%), with
the cycling or running class normally being the minority
class. Class imbalance makes the problem more challenging,
an aspect that potentially affects both the training and the
evaluation process (implemented strategies to deal with class
imbalance will be described in Section V).

As data are collected under uncontrolled labeling,
the dataset may potentially include some label noise. Results
in [6] show better performance on the running and walking
class when using the smartphone and the watch accelerometer
(possibly due to situations in which the user labeled a frag-
ment as walking/running activity, however, was not carrying
the smartphone). For this reason, from the original datasets
some data points were excluded because of the inconsis-
tency between the user selected label and observed signal.
In particular, some fragments labeled as running or walking
corresponding to a flat signal with no variations measured on
the accelerometer signals were excluded, since they poten-
tially correspond to situations where the participants were
not carrying the device with them. Analysis of the data also
exhibits a significant cross-subject variability. Step cadence
for each fragment was calculated using a simple step detector
as in [16]. Typical walking pattern can be expected to be in
the order of 90-110 steps per minute (spm), whereas values
around 160-180 spm are expected for a running pace [16].
Fig. 4 illustrates an example of two users with a statistically
significant difference in the step cadence, particularly for the
running activity. The figure illustrates a gaussian distribution
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FIGURE 4. An example of cross-subject variability observable on the
dataset: a comparison of two users (a) and (b) exhibiting different
walking and running cadence.

obtained using the average cadence and standard deviation
observed for two different users.

B. CLASSIFICATION APPROACH
Similar to our previous study [16], a NN based on a Multi-
Layer Perceptron (MLP) was used, taking as input features
data extracted from the accelerometer and gyroscope. NNs
offer good support for online training, which is required
for personalization purposes. Adaptation of the model can
be performed by means of updating network weights on
newly available user specific data points. A set of time and
frequency domain features (as presented in Table 2) were
extracted using a windowing approach with a window size
of 3 seconds and a 25% overlap. The set includes features
commonly used for this type of classification problem using
inertial signals; similarly, a window size between 1-4 seconds
is commonly used for segmentation [2], [33]. Time domain
features included statistical moments of the magnitude of
the acceleration signal (mean, standard deviation, kurtosis,
skewness), min and max values, range (max-min) and sig-
nal energy. Frequency domain features (also extracted from
the 3D magnitude of acceleration) included the number of
peaks in the Power Spectral Density (PSD) and location of
the highest peak in the 0-20 Hz frequency band. The set
of features also included features at single channel level
(mean, standard deviation and range of the x, y and z axes).
Finally, additional features have been obtained measuring
cross-correlation between channels measured using the Pear-
son coefficient between the pair of axes XY, YZ and XZ.
The selected set of features is an extension of the feature set
used in our previous experiment [16], with the addition of the
cross-correlation features.

The resulting feature set consists of 44 features; 22 for the
accelerometer and 22 for the gyroscope signal.
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TABLE 2. The set of time and frequency domain features set used in
experiment.

Domain Signal Table Column Head
Time 3D magnitude mean, variance, min, max,
range, skewness, kurtosis, energy
Time X,Y,Z axes mean, variance, range, cross-corr(X,Y)
cross-corr(Y,Z),cross-corr(X,Z)*
Frequency | 3D magnitude number of peaks in PSD,
location of highest peak
across-correlation is measured using Pearson’s coefficient.

An initial partial optimization of hyper-parameters was
performed using the 5-fold partition provided with the dataset
(48 participants for training, and 12 for validation). The goal
was to identify a valid candidate topology and to estimate the
average number of epochs before the model’s performance
starts deteriorating due to overfitting phenomena. The iden-
tified NN model consisted of 4 dense hidden layers using
Rectified Linear Unit (ReLU) as activation function (128 x
256 x 128 x 64), with a dropout layer as the input layer
(dropout set to 0.2), using Adam optimizer [34], and softmax
as activation for the output layer.

Class imbalance was addressed using Balanced Batch
Learning (BBL), ensuring the model is trained on the same
number samples for each target activities. At each step,
the training samples are extracted taking one random frag-
ment for each target class from the available training data.
Training data can be obtained as a random selection of n users
from the available population, or using the n closest semi-
population approach. The number of steps per epoch was
identified based on average data availability (considering the
cardinality of minority classes), since days of recording per
user vary from 3-4 to 28 days. The approach allows to train
using all available training samples from minority classes,
preserving availability of larger number samples randomly
selected form the majority classes. The model was imple-
mented using Keras [35] with a TensorFlow back-end [36].
For the experiment the default learning rate (0.001) was used.

V. EVALUATION METHODOLOGY

Evaluation of the method was performed using LOSO pro-
cedure in two steps. For each user, the first step consisted in
training a semi-population model and its comparison with the
average of 4 random selections of users. In the second step,
some data belonging to the target user are used to update the
weights of the classifiers, both for the case of an n-random
initialized model, and the proposed n-closest.

Since the dataset is highly imbalanced, common evaluation
metrics such as simple accuracy (ratio between correct/wrong
predictions) can be misleading. A common metric for imbal-
anced datasets of this nature is balanced accuracy [6], [37].
Similarly, macro averages (average of precision, recall and
F-score for each individual class) can be used to deal with
imbalanced datasets, for instance macro-average recall is
used as balanced accuracy in [38]. Macro-averages were used
to evaluate the approach in the experiment.

The set of target activities was defined as lying, sitting,
walking, running and cycling. This set allows to compare
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results with a generic approach using the same input sensors
as in [6].

A. EVALUATION SEMI-POPULATION APPROACH

The first step aimed at evaluating the semi-population
approach described in Section III-A. The validation routine
iterates on the set of 57 users comparing the random selec-
tions of users (average of 4 random selections of n users out of
the remaining 56), with the semi-population based approach
(i.e. using data belonging to the n closest users as described
in Section III-A) to train a generic and a semi-population
model. Regarding the choice of n, it must be considered that
low values of n could result in the risk of generating small
training datasets. On the other hand, large values of n increase
probability of intersection between the two sets (n random
and n closest), thereby increasing the risk of making the
comparison inconclusive. Consequently, for the experiment
the values of n = 5 and n = 10 have been used.

In the Extrasensory dataset labels are provided per frag-
ment. At verification stage each fragment is segmented, and
features are extracted producing multiple samples. The aver-
age prediction on the overall fragment is taken as the predic-
tion of the fragment and is compared with the original label.

As aforementioned BBL was used for training. An ad-hoc
batch generator was implemented. Batch generators allow to
load training data on-the-fly, reducing the amount of memory
required during training, and therefore allowing to train mul-
tiple models in parallel. Feature extraction during training,
was performed starting from a random index (between 0 and
20) instead of a fixed start from position 0 inside the data frag-
ment. The random entry point was introduced since at each
epoch, fragments corresponding to minority classes will most
likely have already been examined, as opposed to the case of
majority classes for which a much larger number of samples is
available. The random entry point was introduced as an addi-
tional measure to deal with the class imbalance, allowing to
reproduce small variations of samples from minority classes.

B. EVALUATION OF ADAPTATION

The second step of evaluation aimed at measuring perfor-
mance of adapted models, obtained by updating weights of
the network using some data of the target user. For the adap-
tation step, samples of each class have been sorted based on
their timestamp. An increasing number of training samples
were provided taking the first 10, 20 and 30 fragments of
data for each class, and using the remaining fragments as
test data. This approach ensures there is no overlap between
training and test data during the adaptation, and also allows to
simulate a realistic scenario in which the model would evolve
in a real-world experiment over time.

VI. RESULTS

The experiment and produced results are divided in two
parts. The first part focused on evaluating the proposed
semi-population approach. The second focused on evaluat-
ing the performance of adaptation: comparing adaptation of
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TABLE 3. Precision, Recall and F1 score obtained with a generic model
trained on n random users (a), on n closest users (b), and the
personalized version of the classifiers initialized using n random users

(c), and using n closest (d). Values are reported for each target class and
as macro-average.

Activity | Precision Recall F-Score

n=5 n=10 n=5 n=10 n=5 n=10
Lying 0.6185 | 0.6375 | 0.5293 | 0.5749 | 0.5704 | 0.6046
Sitting 0.5280 | 0.5492 | 0.5819 | 0.5773 | 0.5536 | 0.5629
Walking | 0.7651 | 0.7921 | 0.7549 | 0.7872 | 0.7599 | 0.7896
Running | 0.1435 | 0.1905 | 0.6003 | 0.6511 | 0.2316 | 0.2947
Cycling 0.4083 | 0.4392 | 0.6176 | 0.6626 | 0.5214 | 0.5283
Average | 0.4927 | 0.5217 | 0.6168 | 0.6506 | 0.5214 | 0.5560
(a) generic model trained using n random users
Lying 0.6711 | 0.6802 | 0.6954 | 0.6946 | 0.6830 | 0.6874
Sitting 0.6298 | 0.6316 | 0.5718 | 0.5962 | 0.5994 | 0.6134
Walking | 0.8221 | 0.8320 | 0.8639 | 0.8449 | 0.8425 | 0.8384
Running | 0.2718 | 0.1993 | 0.6845 | 0.6524 | 0.3891 | 0.3054
Cycling 0.5164 | 0.5852 | 0.6900 | 0.6905 | 0.5907 | 0.6335
Average | 0.5822 | 0.5857 | 0.7011 | 0.6957 | 0.6209 | 0.6156
(b) generic model trained using n closest users
Lying 0.6215 | 0.6343 | 0.6998 | 0.7332 | 0.6583 | 0.6802
Sitting 0.5833 | 0.6157 | 0.4927 | 0.4967 | 0.5342 | 0.5499
Walking | 0.7452 | 0.7443 | 0.8955 | 0.9008 | 0.8135 | 0.8151
Running | 0.6840 | 0.7117 | 0.8249 | 0.8516 | 0.7479 | 0.7754
Cycling 0.8041 | 0.8081 | 0.6369 | 0.6535 | 0.7108 | 0.7226
Average | 0.6876 | 0.7028 | 0.7100 | 0.7272 | 0.6929 | 0.7086
(c) personalized with initialization on n random users
Lying 0.6368 | 0.6713 | 0.7765 | 0.7686 | 0.6998 | 0.7167
Sitting 0.6491 | 0.6710 | 0.4693 | 0.5486 | 0.5448 | 0.6037
Walking | 0.7561 | 0.7712 | 0.8973 | 0.9000 | 0.8207 | 0.8306
Running | 0.7294 | 0.8154 | 0.8503 | 0.8503 | 0.7852 | 0.8325
Cycling 0.7539 | 0.7823 | 0.7042 | 0.6994 | 0.7282 | 0.7386
Average | 0.7051 | 0.7422 | 0.7395 | 0.7534 | 0.7157 | 0.7444

(d) personalized with initialization on n closest users

models initialized using the semi-population approach, vs
models initialized on a random subset of users.

A. EVALUATION OF SEMI-POPULATION APPROACH

This part of the experiment compared different initialization
strategies of the classifier, comparing a random selection
of users from the population, with the proposed semi-
population approach. The random selection of n users was
repeated 4 times and the average result was compared
with the selection of the n closest users. Finally, the per-
sonalization phase was repeated on the models obtained
with these two approaches. Results obtained based on the
clustering approach to initialize the weights of a semi-
population based classifier are reported in Table 3. Specifi-
cally, Table 3-a reports macro-average values for precision,
recall and F-score; obtained initializing the weights of the
generic classifier using a random selection of users. Table 3-b
shows obtained values training the semi-population model
obtained using the n closest users criterion in the feature
space. Finally, Table 3-c and 3-d report metrics obtained per-
forming adaptation starting from random selection of users,
and the n closest approaches respectively.

B. EVALUATION OF ADAPTATION

Fig. 5 summarizes macro-average F-score values obtained
with an increasing number of fragments for adaptation; both
for the semi-population and the random selection approach.

F1-Scores increasing adaptation fragments

74.81

75- mmm Random selection 74.44
 Semi-Population

74.44

70.86
70 A

F1-Score %
o
w

60 4

55

10 20
Number of fragments used for adaptation

FIGURE 5. Macro-average F-score values obtained with an increasing
number of data fragments for adaptation.
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FIGURE 6. Confusion matrices for the target activities using: (a)
5-random, (b) 5-closest, (c) 5-random adapted (d) 5-closest adapted.

The average normalized confusion matrices were calcu-
lated on the set of users with the four approaches. Fig. 6
depicts normalized confusion matrices obtained with (a) 5-
random users, (b) 5-closest users, (c) 5S-random adapted, and
(d) 5-closest adapted.

Finally, statistical analysis was performed comparing bal-
anced accuracies obtained with semi-population (n-closest)
and random selection (n-random). Fig. 7 illustrates the box-
plot summarizing the analysis and provides a comparison
between the proposed semi-population and worst, average
and best case for random selection.

The significance of results was also tested by performing
a t-test analysis on the 57 subjects. The t-test compared
balanced accuracy obtained using the semi-population to the
worst, average, and best case of random selection using a
threshold of p = 0.05 for the null hypothesis. Results are
shown in Table 4 confirming that values for the n-closest
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FIGURE 7. Boxplot obtained with balanced accuracy measured on the
57 users comparing the n-closest with the worst, average and best case of

a random selection.

TABLE 4. Results of the t-test analysis performed using balanced
accuracies obtained in the 57 subjects population using the n-closest,
n-random worst, average and best case.

Comparison p-value NULL Hypothesis
5-worst vs. 5-closest 1.09731e-11 Rejected
S-average vs. 5-closest 0.000013 Rejected
5-best vs. 5-closest 0.39825 Fail to reject
10-worst vs. 10-closest 1.02969¢-9 Rejected
10-average vs. 10-closest 0.000156 Rejected
10-best vs. 10-closest 0.38411 Fail to reject

semi-population method are comparable to the best case of
random selection, outperforming the worst and average ran-
dom choice for bothn = 5 and n = 10.

VII. DISCUSSION
Results in Table 3 show how the semi-population model
trained on n = 5 and n = 10 nearest users scored similar
results, both in terms of macro-average precision and recall.
After the adaptation step, however, the model initialized on
10 users scored better results, indicating that on average
a dataset including more diverse data could be beneficial.
For the adapted model obtained from random initialization
instead, similar performances were observed for the cases of
n = 5 and n = 10. Adaptation reduces the gap between
random selection and proposed semi-population from 7-10%
to 2-4% F-score following adaptation. We can expect the two
initialization strategies (semi-population and random selec-
tion) to converge by increasing the number of new sam-
ples provided for adaptation. The semi-population approach,
however, exhibits a faster growing learning curve. This gap
is particularly relevant, since adaptation requires new user-
specific labeled data, and the semi-population approach can
reduce the amount of data required for adaptation.

The confusion matrices in Fig. 6 show how error rates
are distributed across classes. In particular, walking, running
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and cycling classes show a significant gap between the
semi-population and the random approach. The gap slightly
decreases after adaptation.

We can distinguish two parts of the matrix concerning
static classes (sitting, lying) and active classes (walking, run-
ning and cycling).

A high conflict was observed between the sitting and lying
class. This phenomenon could be related with a phone-off
scenario that could happen when leaving the phone on the
desk while sitting or lying. This situation is often addressed
by considering a combined ‘idle’ class including lying and
sitting, however, in the experiment we kept the classes sepa-
rated to allow comparison of results in [6]. The cycling class
is a problematic class since it can be conflicting with either
the sitting or walking class depending on the smartphone
location (e.g. in trouser pocket vs. in the bag). The dataset
contains only a few labels indicating smartphone location that
could help to investigate the confusion, however, the semi-
population strategy appears to reduce the conflict both in
the adapted and non-adapted case. Semi-population helps to
isolate users presumably having a similar consistent behavior
in terms of phone location.

Active classes (walking, running, and cycling) appear
to benefit more from both semi-population and adaptation,
as they could be expected also to be the classes with higher
cross-subject variability. For minority classes (running and
cycling), classification was more challenging. It must be
considered that there were less samples for these activities,
and only 25 and 26 users had samples for the running and
cycling classes respectively. Therefore these classes suffered
also the fact that they were statistically less represented in the
population.

Finally, Fig. 7 presents the statistical analysis of balanced
accuracy measured in the set of 57 users. The boxplot shows
how the semi-population method helps to improve balanced
accuracy with respect to the worst and average case of n-
random selection, confirming that the criterion helps to obtain
results in line with the best case.

A. LIMITATIONS

Despite the large size of the dataset there are some limita-
tions to consider. Of the 57 users only a subset had either
running or cycling samples. Meaning that cross-subject vari-
ability is potentially less represented for these two classes.
Nonetheless, this evaluation was performed in a significantly
larger dataset, compared to other studies, and in the challeng-
ing context of free-living naturalistic conditions. The set of
target activities allows to compare results with [6]. On the
other hand, a limitation of this target set is that there is no
null class considered in the experiment.

Performed hyperparameter optimization was not exhaus-
tive. For instance, learning rate was kept fixed to allow fair
comparison between the n-random and n-closest. Nonethe-
less, different strategies concerning the learning rate could
be investigated in the future. Similarly, the experiment
evaluated only the Adam optimizer. A comparison with
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Stochastic Gradient Descent (SGD) could be also considered
in the future, since in some cases SGD has been reported to
provide better generalization with respect to Adam [39].

VIil. CONCLUSION
As other studies have highlighted in the past, working with
a dataset collected in free-living is a necessary step before
deploying solutions in the wild. Working with such datasets,
however, introduces the challenge of dealing with the multi-
ple factors contributing to cross-subject variability. To date,
ability to deal with this challenge using a generic approach
(i.e. ‘one-size-fits-all’ approach) represents a severe obsta-
cle for real-world deployment of models. Personalization of
models aims at addressing this challenge adapting classifiers
to the target subject. Alas, adaptation usually requires large
amounts of user-specific labeled data to solve the problem.
In this work, a novel semi-population based method was
proposed. The conducted experiments suggest that a semi-
population approach for model initialization can reduce the
amount of data required for personalization. The experi-
ment evaluated the proposed method against a conventional
approach over a large real-world dataset, simulating the appli-
cation of an online personalization architecture on a real-
world case with 57 subjects. Results obtained confirm that
such a method can help reducing the amount data needed for
model adaptation, thus paving the way to the deployment of
systems implementing incremental personalisation, reducing
the time needed for adaptation, while minimizing the required
amount of interaction from the end user.
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