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Abstract—Falling is a common issue within the aging
population. The immediate detection of a fall is key to
guarantee early and immediate attention to avoid other
potential immobility risks and reduction in recovery
time. Video-based approaches for monitoring fall
detection, although being highly accurate, are largely
perceived as being intrusive if deployed within living
environments. As an alternative, thermal vision-based
methods can be deployed to offer a more acceptable
level of privacy. To date, thermal vision-based fall
detection methods have largely focused on
single-occupancy scenarios, which are not fully
representative of real living environments with
multi-occupancy. This work proposes a non-invasive thermal vision-based approach of multi-occupancy fall detection
(MoT-LoGNN) which discriminates between a fall or no-fall. The approach consists of four major components: i) a
multi-occupancy decomposer, ii) a sensitivity-based sample selector, iii) the T-LoGNN for single-occupancy fall
detection, and iv) a fine-tuning mechanism. The T-LoGNN consists of a robust neural network minimizing a Localized
Generalization Error (L-GEM) and thermal image features extracted by a Convolutional Neural Network (CNN).
Comparing to other methods, the MoT-LoGNN achieved the highest average accuracy of 98.39% within the context of a
multi-occupancy fall detection experiment.

Index Terms—Multi-occupancy Fall Detection, Thermal Vision Sensor, MoT-LoGNN, smart environments, Neural
Networks

I. INTRODUCTION

S the population continues to grow on a global scale [1],
increasing pressure is being placed on health and care

services to meet the demands of increased numbers of
persons requiring care provision. In such scenarios, those
suffering from long term chronic conditions [2] or the aging
population have the potential to benefit the most from the

This work was supported in part by 2020 R&D Program in Key
Areas of Guangdong Province (No. 2020B010166002), the National
Natural Science Foundation of China under Grant 61876066, and
Guangdong Province Science and Technology Plan Project
(Collaborative Innovation and Platform Environment Construction)
2019A050510006. In addition, this work was partially supported by
the REMIND project, which has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 734355.
Cankun Zhong and Wing W. Y. Ng (corresponding author) are with

the Guangdong Provincial Key Laboratory of Computational
Intelligence and Cyberspace Information, School of Computer
Science and Engineering, South China University of Technology,
Guangzhou 510006, China (e-mail: curran.z@qq.com and
wingng@ieee.org).
Shuai Zhang, Chris Nugent and Colin Shewell are with School of

Computing, Ulster University, Northern Ireland, UK (e-mail:
s.zhang@ulster.ac.uk, cd.nugent@ulster.ac.uk and cp.shewell
@ulster.ac.uk).
Javier Medina Quero is with Department of Computer Science,

University of Jaen, Jaen, Spain (e-mail: jmquero@ujaen.es).

introduction of a new health-care delivery paradigm [3].
Besides, low-cost sensing solutions, whose wireless services
coupled with rapid advances in data analysis, have provided
the next generation of products to be deployed within living
environments. These have the potential to improve the
manner where remote health-care support can be provided
and are slowly gaining increased acceptance by both users
and health-care professionals [4].
From the multitude of health scenarios to consider,

detecting falls within the living environment is a relevant
challenge with a high impact in terms of both security and
safety. Accidental falls can cause serious injury to at-risk
individuals, especially for the aging [5]. Within this cohort,
falls are the leading cause of hospitalization, injury-related
deaths and loss of independence. However, it has been
demonstrated that detecting and rapidly responding to falls
can reduce the long-term risks associated with falls.
Although efforts have been directed towards supporting

the detection and management of falls within living
environments, a range of issues still exist. From a usability
perspective, challenges are faced by the costs of the solution
and the perceived issue of intrusiveness when video based
cameras are used. From a technical perspective, challenges
are faced by levels of accuracy levels and a desire to reduce
the numbers of false positives given the implications that
these have from a health-care provision perspective.
In addition, the studies of fall detection are mainly
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focused on the single-occupancy scenario, because they
think that in the multi-occupancy scenario, standing
people can provide help for the fallen person. However,
they may not be able to provide timely help for the fallen
person. Alternatively, the machine actively detecting the
occurrence of falls can contact the most professional
medical staff in the vicinity at the first time. Besides,
when there is an accident, bystanders may hardly be able
to save themselves, not to mention that providing the help.
In this paper, we introduce a novel end to end solution for

the remote management of falls within a multi-occupancy
living environment. A low-cost sensing solution is presented,
which has been developed based on the use of low-resolution
thermal sensors. This configuration of sensors enables
capturing activity in an unobtrusive manner and integrating
data into a scalable sensor platform where an innovate
approach for thermal image processing is deployed. The
classification of fall or non-fall is computed in real-time
using image decomposition and classification with a neural
network (NN), which trained via minimization the Localized
Generalization Error with features extracted by
Convolutional Neural Networks (CNN). The developed
approach has been deployed within 2 smart lab environments
in the UK and Spain and has been evaluated by means of
collection and analysis of labeled data sets.
The remainder of this paper is organized as follows.

Section II provides a brief review of sensors which have
been used for fall detection and approaches which address
fall detection problems using thermal cameras. Section III
describes the thermal camera used in this work and the
proposed fall detection method. Section IV discusses the
experimental settings in the smart labs and experimental
results. Finally, conclusions are drawn and outlook for future
work is presented in Section IV.

II. RELATED WORK

A. Sensors for Fall Detection

A number of approaches have been implemented in an
attempt to improve the process of detecting falls. From a
sensing perspective, these have either been centered around
exploiting wearable sensors and environmental sensing
approaches [6].
From a wearable sensing perspective, efforts have been

directed towards the processing of data gleaned through
sensors such as accelerometers, gyroscopes, and barometers
[7]. To further improve the detection accuracy, multi-sensor
data can be utilized jointly as well [8]. More recently the
sensing platforms within smart phones [9] or within smart
shoes [10] have also been leveraged to detect falls. Although
accuracy levels of detecting a fall have been reported to be in
excess of 90% in some studies these solutions have a major
disadvantage that they must be worn to offer their
functionality. To a certain extent, this requirement can be
viewed as being both an inconvenience and intrusive for the
user and in some instances can be forgotten to be carried or
in the worst case not used at all.
Approaches based on environmental sensors rely on the

technology being deployed at mostly fixed locations. A wide

variety of sensors have been proposed to describe the fall of
a person, such as vibration detection sensors, video cameras,
pressure sensors, and thermal sensors [11]. All of these
approaches have their advantages and disadvantages.
Acoustic sensors can be used to detect a noise which is

atypical of a fall event. These are, however, comprised in
noisy environments where background noise interferes with
the underlying sound of the fall [12]. Vibration sensors can
be tuned to detect the measurement of a sudden impact
which can be representative of a fall. They are, however,
subject to false positives due to activities such as heavy
walking in the environment. Video cameras provide what
may be the only definitive solution to record what has
happened in an environment [13]. Nevertheless, they suffer
from the significant issue of perceived intrusiveness when
they are deployed to monitor the daily activities of users in
real homes. A potential alternative to video-based sensing is
the use of thermal cameras. Due to the low resolution of
thermal images the intrusiveness issue is overcome whilst at
the same time having the ability to collect sufficient
information from the heat of the human body to capture a fall
event.

B. Fall Detection Methods based on Thermal Cameras

Many methods have been applied in an attempt to improve
the performance of automated fall detection based on thermal
cameras. W. K. Wong, et al [14] utilized the width height
ratio of the rectangle bounding the human as the feature and
set up artificial rules to detect the falls. The x-, and y-axis
histograms were utilized as input features for the SVM
(Support Vector Machine) model to detect falls of patients
[15]. The FallSense method was proposed in [17] which
adopts fuzzy inference system based on the accleration,
infrared, and ultrasonic snesors to detect falls. Experimental
results show that the FallSense achieves overall 16%
improvement in comparison with comparative methods on an
average. P.Mazurek, et al [18] applied the traditional
machine learning classifiers (i.e. support vector machine,
artificial neural network, and naïve Bayes classifier) for fall
detection using the kinematic features and
mel-cepstrum-related features extracted from the thermal
images. Experimental results show that the accuracy of the
proposed method is more than 90% on two data sets.
A number of studies placed the thermal sensors on the
ceiling as an alternative to a wall mounted solution in an
effort to provide a broader view and to reduce occlusions. In
[18], the thermal pixels of occupants were identified through
a certain temperature range, and then the thermal pixel count
of the occupant was used to detect the fall. Only focusing on
the number of pixels made this method ignore the shape and
edge of a detected person, thus affecting the fall recognition
accuracy. In [19], the authors separated the foreground from
the background based on temperature values. Manually set
features based on temperature difference and temporal
information were proposed and evaluated by several
classifiers to detect falls. Experimental evaluation
demonstrated that the system achieved real-time operation
and over 94% fall recognition rate at room temperatures up
to 24ºC.
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As an alternative to feature extraction developed by
statistical and/or knowledge based approaches, more recent
approaches are focused on deep learning-based methods that
automatically extract features from thermal videos for
detecting falls. Studies [20]-[21] utilized the manually
designed CNNs and Study [22] chose one of the most used
Inception-v3 model which pre-trained on the ImageNet
database to detect falls from the thermal images, where the
classification accuracy were all higher than 80% in the
single-occupancy scenario. The fall detection problem was
treated as an anomaly detection problem in [23]-[24] where
the deep learning framework Autoencoders were proposed to
learn spatio-temporal features automatically from thermal
videos. A fall was identified as an anomaly based on the
reconstruction error.
The majority of the current studies have, however, focused

on single-occupancy scenarios. The presentation of fall
detection solutions in multi-occupancy scenarios has rarely
been mentioned except for the recently conducted work [20].
Given the prevalence of such an event occurring, this area
requires further attention. Fall detection solutions using
thermal sensors considering single-occupancy scenarios may
not only generate higher false alarm rates, however, may also
fail to detect falls precisely in the context of a
multi-occupancy scenario given that the feature distribution
of the training (single-occupancy) data is quite different from
the one of testing (multi-occupancy) data.
Thermal images collected from low-resolution thermal

sensors are usually noisy and blurred and multi-occupancy
thermal images are more difficult to recognize than
single-occupancy thermal images. This is largely related to
the additional people in the scene developing similar shapes
as the person who has actually fallen when they are in close
proximity of each other. In this research, we propose a
multi-occupancy fall detection method MoT-LoGNN using
thermal vision sensors. The major contributions of this work
are summarized as follows:
1) To support multi-occupancy scenarios, we propose a

robust fall detection method (MoT-LoGNN).
Experimental results have demonstrated that the
MoT-LoGNN yields the best performance in
comparison to benchmarking techniques.

2) A stochastic sensitivity measure (SSM) is applied to
both sample selection and validation for fine-tuning the
T-LoGNN where the T-LoGNN consists of a robust
neural network minimizing a Localized Generalization
Error (L-GEM) and thermal image features extracted by
a CNN. The SSM is a key component in the
aforementioned L-GEM which measures the classifier
sensitivities with respect to perturbations to input
features. The minimization of the SSM and the L-GEM
enhance the robustness of the MoT-LoGNN.

3) In this study, Radial Basis Function Neural Network
trained via minimization of L-GEM is proposed as the
classifier for fall detection to offer robust classification
within the context of noisy and blurred thermal images.

III. MOT-LOGNN

In this study, the proposed MoT-LoGNN consists of four
components: the T-LoGNN, a fine-tuning mechanism, a
multi-occupancy decomposer (MOD), and a
sensitivity-based sample selector (SSS). The combination of
the CNN and the LG-RBFNN is referred to as T-LoGNN,
where the CNN is used as a feature extractor and a robust
Radial Basis Function Neural Network trained via
minimization of the Localized Generalization Error
(LG-RBFNN) is used as a classifier. T-LoGNN is initially
trained using the labeled single occupancy training set. The
MOD decomposes multi-occupancy thermal images into one
or more thermal single-occupancy sub-images, each only
having a single person. Misclassified sub-images by
T-LoGNN are selected by the SSS based on the sample
sensitivity value to update the single-occupancy training set.
The updated single-occupancy training set is then used for
fine-tuning the T-LoGNN. It should be noted that if at least
one sub-image decomposed from a multi-occupancy image is
classified as fallen by the T-LoGNN, then this
multi-occupancy thermal image will be classified as fallen as
well.
The flow of process for the MoT-LoGNN training is

presented in Fig. 1. Further details will be provided in the
ensuing sub-sections.
For testing purposes, a multi-occupancy thermal image is

input to the MoT-LoGNN. Firstly, the thermal image is
decomposed into one or more (see further details in section
II-C) single-occupancy thermal sub-images by the MOD.
Following this, the T-LoGNN classifies all thermal
sub-images. A multi-occupancy thermal image is classified
as a fallen event in the instance that at least one of its thermal
sub-images is classified as fallen.

Fig. 1. Flow of processes for the MoT-LoGNN training
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In the following sub-sections, the thermal vision sensor
hardware is firstly introduced. Following this, four major
components of the MoT-LoGNN: the MOD, the
T-LoGNN, the fine-tuning mechanism, and the SSS are
presented in Sections II-B, II-C-1, II-C-2, II-D,
respectively. Finally, the time complexity analysis of the
MoT-LoGNN in the testing phase is presented in II-E.

A. Low Cost and Non-invasive Thermal Sensor

Between the range of thermal vision sensors [25], the high
resolution [26] and low resolution devices are used in smart
environments [27]. In the case of fall detection, a
comparative of thermal sensor devices [28] has shown that
non-invasive and low resolution thermal sensors have better
performance and reduction of learning time.
Based on the encouraging results on fall detection from

previous works, in this work we select the thermal sensor [20]
Heimann HTPA 32x31, a suitable device with an operating
temperature range of -20 to 85 oC and powered by a 3.3 Volt
supply. The thermal sensor generates a 32*31 matrix, where
each value defines a heat point of temperature. The data are
collected in real-time by means of a Ethernet crossover cable
which is connected to the local area network. The
middleware [29] collect and recover the data from the sensor
in real time within a Web Service in JSON format.
As suggested in [20][28], the thermal sensor was affixed to

the ceiling of the Smart Lab in the Ulster University to
provide a zenith view of the space to be monitored. It was
deployed at a height of 2.5 meters in a removable plaster
ceiling, where the Ethernet connection and power supply
keep hidden by the ceiling. It provides a viewable area of
approximately 6 meters by 5.6 meters which makes it
possible to monitor multiple individuals at the same time.
The field of view of the sensor is 86° by 83°. A picture of the
sensor deployed in the ceiling is provided in Figure 2(a)
together with the operating range in Figure 2 (b) and an
example of an actual recording in Figure 2 (c).

(a) (b) (c)

Fig. 2. (a) The sensor deployed in the ceiling. (b) The operating range
of the sensor. (c) An example of a thermal image presented in a web
interface.

Frames are sampled from the sensor through an I2C
interface at a rate of 6 Hz and processed by a listener which
communicates via wifi directly with endpoints on the
SensorCentral platform [30]. Once captured by
SensorCentral image processing techniques are invoked.
In this study, the aim is to identify whether a fall has

occurred in the thermal images rather than consider what has
happened to each individual in the thermal images. Therefore,
the fallen or not labels were applied to the thermal frame

images during the data collection, not a bounding-box label
for each individual of each thermal image.

B. Multi-occupancy Image Decomposer (MOD)

The MOD consists of three steps: 1) Image Binarization, 2)
Contour Detection, and 3) Single-occupancy Thermal
Sub-images Generation.

1) Image Binarization: The image binarization process
aims to distinguish the human heat points regarding the floor
heat points using two pixel values: 0 and 255, respectively
for floor and human shape. The determination of the
binarization threshold influences both the decomposition
result and the detection accuracy of the T-LoGNN. In this
study, the binarization threshold is set to be 201 which is
determined using a validation set. More details are presented
in Section IV.
2) Contours Detection: The border-following algorithm in

[31] is applied to find the contour of each person in the
binarized thermal images. Owing to noise and blur in thermal
images, very small contours are created which is likely to be
mistaken by the high-temperature floor and are subsequently
removed. For 28×28 thermal images that are cropped from
the center of the original 32×31 images to contain the most
relevant visual information, small contours whose areas are
less than 4 pixels are removed since these areas would be too
small to represent a human at the intended sensor
deployment height.
3) Single-occupancy Thermal Sub-images Generation:

For each multi-occupancy thermal image, k single-occupancy
sub-images are generated if k contours are found (k>1). If
there is either zero or one contour found, the entire thermal
image is treated as a thermal sub-image. For each contour,
pixels located outside it are set to 0 while others are set to
255. Such that, a single-occupancy thermal sub-image is
created and the detected person (i.e. contour) appears at the
original location of the entire multi-occupancy thermal image.
Besides, the fallen or not fallen class label of a thermal
sub-image is inherited from this original multi-occupancy
thermal image.

C. T-LoGNN

The T-LoGNN consists of a robust LG-RBFNN and
thermal image features extracted by a CNN. The
LG-RBFNN and the fine-tuning mechanism [32] for
T-LoGNN are introduced in II-B.1 and II-B.2, respectively.
The CNN is adopted in the T-LoGNN for feature

extraction from both binarized thermal sub-images and single
occupancy images. One of the major contributions of this
work is the use of the LG-RBFNN as the classifier with
features extracted from the CNN. In contrast to the Softmax
classifier, the LG-RBFNN is expected to yield higher
generalization capability to future unseen samples since it is
trained via minimizing the generalization error estimated by
the L-GEM. Furthermore, RBFNN is used here because it is
a nonlinear classifier [33] with fast convergence.
A class balanced weighting trick is utilized in the training

of the CNN when the model performance is hindered by the
class imbalance problem. The class weight of each class is
the reciprocal of its number of samples multiplied by a
constant.
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1) LG-RBFNN: The purpose of RBFNN training is to find
a network structure and connection weights to minimize the
generalization error, such that it will be more robust to the
effects of noise and blurred areas in thermal images. Once
the number of hidden neurons are determined, the centers
and widths of hidden neurons can be obtained by k-means
clustering. After fixing both the centers and widths,
connection weights can be calculated by a pseudo-inverse
technique. Therefore, the objective of RBFNN training can
be simplified to the finding of the optimal number of hidden
neurons which minimizes the generalization error. We cannot,
however, directly estimate the generalization error. In this
study, the L-GEM model proposed in [34] is used to find the
upper bound of generalization errors of the RBFNN.
The L-GEM defines the generalization error of unseen

samples located near training samples only, i.e. Q-union (SQ).
The concept is that generalization errors of unseen samples
with a large difference from the training samples are
expected to be large because we have no knowledge of such
unseen samples. Therefore, estimating generalization errors
for unseen samples far away from the training samples may
be counterproductive and misleading [35].
SQ is the union of Q-neighborhoods of all training samples

and a Q-neighborhood (SQ(xf)) of a training sample xf (feature
vector extracted by CNN) is a local input space which
includes all unseen samples located near xf. The SQ(xf) is
defined as follows:
SQ(xf) = {x|x = xf+ ∆x,|∆xi| ≤ Q,i = 1,2,...,d} (1)

where ∆x = (∆x1,...,∆xd)’, ∆xi, and i denote the stochastic
perturbation, the stochastic perturbation on the ith input
feature, and the number of input features, respectively.
According to [28], for a given Q value, the upper bound of
the LGEM (R*

SM (Q)) is estimated by using the Hoeffiding’s
inequality with a probability of 1−η. The definition of R*

SM

(Q) is as follows:
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the minimum value of training mean square error, the
training mean square error, and the SSM of output
differences, respectively.
Note that both  and A are constants for a given training

dataset. Let g(·) be the classifier and the definition of the
SSM is the expectation of squares of classifier output
perturbations (∆y = g(xf + ∆x) − g(xf)) between training
samples and unseen samples in SQ:
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In general, we do not have any prior knowledge about the
distribution of unseen samples in SQ, thus we adopt a
quasi-Monte Carlo (QMC) based method as in [35] to
estimate the SSM value as follows:
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where SSM(xf,g), H, ∆xh denotes the sensitivity measure of
the classifier g for training sample xf, the number of Halton
points, a Halton point where each coordinate ranges from
[−Q,Q], respectively.
By fixing Q, the optimal RBFNN is found by searching for

the optimal number of hidden neurons which yields the
minimum generalization error. Procedures for finding the
optimal RBFNN are presented in Algorithm 1.

Algorithm 1 Finding optimal RBFNN
Input: x, Q
Output: optimal RBFNN
1: forM ← number of classes to N − 1 do
2: Train an RBFNN withM hidden neurons using x.
3: Compute the R*

SM (Q) for the current RBFNN.
4: end for
5: return RBFNN yielding the minimum R*

SM (Q)

Given the fact that the temperature of the floor in the entire
monitoring area may not be uniform such that white (high
temperature) dots may be added to the background as noise
in cases. These perturbations (noises) introduced to the
region of interest (i.e. fallen person) may increase the
difficulty of fall detection since it will cause the activation
values of neurons in CNN to become larger or smaller and
thus affect the prediction result. In T-LoGNN, The SSM
measures fluctuations of classifier outputs with respect to
input (feature vector) perturbations. Therefore, the RBFNN
trained via minimizing both SSM value and training error
(T-LoGNN) is more robust to the noise present within the
thermal images.
2) Fine-tuning Mechanism of T-LoGNN: The T-LoGNN

is pre-trained using a set of binarized single-occupancy
thermal images for classifying whether or not the person in
the image has fallen. Prior to training the MoT-LoGNN, a set
of multi-occupancy thermal images for training is divided
into 80% for constituting a multi-occupancy training set and
the remaining 20% for forming a multi-occupancy validation
set. These thermal images for training are subsequently
decomposed into single-occupancy thermal sub-images by
the MOD. Training begins with the T-LoGNN classifying
each thermal sub-image generated from the training set.
Those misclassified or possibly misclassified thermal
sub-images are selected by the SSS and added to the
single-occupancy training set for fine-tuning of the
T-LoGNN. The process iterates until the limit of iterations (n)
is reached. In our experiments, it is found that when n is less
than or equal to 5, the classification accuracy of the thermal
images on the training set can be guaranteed to be 100%.
Therefore, in this experiment, n is set to 5.
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To prevent overfitting, the most robust T-LoGNN among n
iterations is selected as the final T-LoGNN to be used in the
MoT-LoGNN. A validation robustness measure (VRM) is
proposed to measure the robustness of the T-LoGNN as
follows:
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where F(·), f(·), V , W, Xv, yv, Xw denote the MoT-LoGNN,
the T-LoGNN, the number of samples in the multi-occupancy
validation set, the number of single-occupancy sub-images
generated from the multi-occupancy validation set, a
multi-occupancy image from the validation set, the label of
Xv, a single-occupancy sub-image generated from the
multi-occupancy validation set, respectively. The best
T-LoGNN yielding the minimum VRM needs to yield both
low classification error on the validation set and low
sensitivity to small perturbations to thermal sub-images. This
follows the idea of the minimization of the L-GEM in
[33]-[34] and aligns well with the multi-occupancy falling
classification problem in this work.

D. Sensitivity-based Samples Selector (SSS)

An SSS approach is proposed to select useful samples for
fine-tuning the T-LoGNN. The main difficulty is to identify
misclassified single-occupancy thermal sub-images since the
class label is assigned to the entire multi-occupancy thermal
image only and we do not have the real label of the
sub-images.
The three following possible cases are considered by SSS

to select useful sub-images for fine-tuning T-LoGNN, which
are presented in Fig. 3.
Both Cases 1 and 2 identify misclassified

single-occupancy scenarios whilst Case 3 provides additional
samples for people who have not fallen.

In Case 2, multiple sub-images are classified as non-fallen,
but at least one of the sub-images should be classified as
fallen. In Case 3, multiple sub-images are classified as fallen,
but the classification of multiple fallen sub-images from the
same multi-occupancy thermal image has a high chance to be
mistaken because both fallen events existing at the same time
is quite rare. However, we do not have a bounding-box label
for each participant in the dataset, therefore it is not possible
to know which sub-image is misclassified.

1) For non-fallen (i.e. all individuals in a multi-occupancy
thermal image are standing or no one in a thermal
image) multi-occupancy thermal images misclassified
as fallen. The sub-images which have been classified
as fallen are incorrect and are subsequently selected;

2) For fallen thermal images misclassified as non-fallen,
sub-images yielding the largest SSM value among
sub-images decomposed from the same
multi-occupancy thermal image are selected;

3) For correctly classified fallen multi-occupancy thermal
images with more than one sub-image being classified
as fallen, the thermal sub-image yielding the largest
stochastic sensitivity measure value among the
sub-images being classified as fallen and decomposed
from the same thermal image are selected.

In the L-GEM framework, a sample yielding a large SSM
value is informative to Neural Network training [36] because
it has a higher chance of being misclassified by the Neural
Network. Therefore, for Cases 2 and 3, the sub-image
yielding the largest SSM (SSM(xf, g) in Equation (4)) is
selected. Selected samples are labeled with the opposite
labels with respect to their corresponding classification
results from the T-LoGNN. Then, these samples are added to
the ensuing round of fine-tuning T-LoGNN.

Fig. 3. Informative sub-images selected by SSS.
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E. Time Complexity Analysis of MoT-LoGNN in testing
phase

In the testing phase, only two components (MOD and
T-LoGNN) of the MoT-LoGNN are involved. Their time
complexity is given as follows.
For the MOD consisting of three steps, time complexities

of all steps are all O(ij), where i and j denote the width and
the height of a thermal image, respectively. Therefore, the
total time complexity of MOD is TMOD =O(ij).
For the T-LoGNN, the total time complexity of all

convolutional layers in the CNN is

)(OT
1

1CNN 


L
l

lllll msscc Here L, l, sl, 𝑚𝑙 , cl-1 and cl

denote the number of convolutional layers, the index of a
convolutional layer, the size of the convolutional kernel, the
size of a feature map of single channel in the lth layer, the
number of input channels and the number of output channels
of the lth layer, respectively. As to the pooling layers and
fully connected layers of CNN, they often take 5% to10%
computational time [37]. Furthermore, the time complexity
of the LG-RBFNN is TLG-RBFNN = O(dMo), where d, M and o
denote the dimension of the feature vector extracted by CNN,
the number of hidden neurons, and the number of outputs,
respectively.
Therefore, the time complexity of the MoT-LoGNN for

classifying a thermal image is TMOD+TCNN+TLG-RBFNN.

IV. EXPERIMENTS AND RESULTS

The Experimental setup is given in Section III-A. The
MoT-LoGNN compared with other thermal fall detection
studies is conducted in Section III-B. Some discussions of the
details of MoT-LoGNN are presented in Section III-C.

A. Experimental Setup

1) Collected Data: The data for this experiment have been
collected from the Smart Lab in the Ulster University. The
thermal vision sensor was placed on the ceiling of the room
to collect a zenithal view of the occupants, which provided a
clear view of falls and also reduced the potential of occlusion
in instances of multi-occupancy, compared with if a camera
was installed in the vertical plane. Three participants aged
between 25 and 35 (including one woman and two men) with
heights 1.68, 1.72, and 1.83 meters, respectively assisted in
collecting the data. When collecting data, each participant
walked around the area within the field of view of the
thermal vision sensor for walking scenarios and laid on the
floor with changing the orientation, rotating, moving,
bending the joints to simulate different scenarios of people
who have fallen. An external observer collected frames from
the thermal sensor in real-time and labeled each frame (fallen
or non-fallen) manually during the development of scenes.
Each collected thermal image is pre-processed as a 28×28

matrix where each pixel defines a heat point with a value
between 0 and 255. There are two sets of experimental data:
single-occupancy and multi-occupancy. The single-
occupancy dataset consists of three categories: (i) empty
room, (ii) standing/walking alone, and (iii) fallen alone. For
the multi-occupancy dataset two further scenarios were
added: (iv) 2-3 people standing/walking, (v) one person

fallen and one standing/walking. In the experiments, thermal
images for both datasets in categories (iii) and (v) are labeled
to be fallen while the remainder is labeled to be non-fallen.
In experiments, for the collected single-occupancy dataset,
numbers of samples being labeled as fallen and non-fallen
are 186 and 159, respectively. For the collected
multi-occupancy dataset, numbers of samples being labeled
as fallen and non-fallen are 528 and 431, respectively.
Collecting data from different inhabitants and cases of fallen
take a great deal of efforts, so the data augmentation
techniques (i.e. translation, flipping, and rotation) are utilized
in this study to enlarge the number of samples by 100 times,
which also helps to overcome the overfitting problem to
some extent.
2) Implementation Details: In the experiments, a 3-layer

carefully designed CNN was employed for feature extraction
from the thermal images to provide 1024-dimensional feature
vectors. This CNN feature extractor is denoted by cnn and its
architecture is presented in Fig. 4. It is optimized using the
adaptive moment estimation method with learning rate =
0.001, β1 = 0.9, β2 = 0.999, and mini-batch = 32. Both
Softmax (softmax) and RBFNN trained without L-GEM
(rbfnn) are used in experiments for validating the robustness
of the LG-RBFNN. The number of hidden neurons of the
rbfnn was determined by minimizing the training
classification error instead of the localized generalization
error in LG-RBFNN. The learned features from the CNN
were in the range [0, 3.85]. Values of Q = 1 and H = 100
were selected by a trial-and-error method and were
determined by the trade-off between accurate estimation and
computational time, respectively.

Fig. 4. The architecture of the CNN. Conv-k@n*n means the number
of n*n convolution is k. All the kernel size of Max Pooling layer is 2*2.
FC-1024 refers to a fully connected layer with 1024 neurons.
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For both multi-occupancy and single-occupancy datasets,
ten independent runs were performed for all experiments
with 80% of thermal images being randomly selected for
training and the remaining 20% used for testing.
3) Evaluation metrics: The performance of different

models is validated on the single-occupancy dataset and the
multi-occupancy dataset. The mean and the standard
deviation values of different metrics for different models are
calculated and the symbol “*” denotes a statistically
significant difference between the MoT-LoGNN and the
corresponding method by Student’s t-test with 95%
confidence. We regard fallen as the positive class and
non-fallen as the negative class. Three performance metrics
are used. The Accuracy measures the overall performance of
different models. The False Rejection Rate (FRR) and the
False Acceptance Rate (FAR) measure the missing report rate
of fallen and the false alarm rate, respectively. These
performance metrics are defined as follows:

Accuracy =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝐹𝑁+ 𝑇𝑁+ 𝐹𝑃 (6)

FRR =
𝐹𝑁

𝐹𝑁+ 𝑇𝑃 (7)

FAR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 (8)

 2* Precision*Recall
F1

Precision Recall


 (9)

ySpecificit*RecallGmean  (10)

where TP, TN, FP, and FN denote the True Positive, the True
Negative, the False Positive, and the False Negative,
respectively. Precision=TP/(TP+FP), Recall=TP/(TP+FN),
and Specificity=TN/(TN+FP).

B. Comparison Test with Other Fall Detection Studies
using Thermal Sensor

In this section, the proposed MoT-LoGNN is compared
with two artificial feature extraction based methods (the
RectFall [14] using the width height ratio of the rectangle
bounding the human as the feature and the HistFall [15]
using the histogram of x-axis and y-axis as the feature) and
two deep learning based methods (the manually designed
CNN [21] and the popular Inception-v3 [22] model which
pre-trained on the ImageNet database).

1) Performance on single-occupancy dataset: It can be
seen from table I that in the single-occupancy scenario,
compared with other thermal sensor based fall detection
methods, the proposed MoT-LoGNN achieves the best
performance in terms of all metrics except the FRR. As tothe
FRR, the MoT-LoGNN reaches the second lowest, while the
RectFall with the lowest FRR has a high FAR of 40.62%,
which means that the system is easy to make error alarm,

resulting in waste of resources. Therefore, the MoT-LoGNN
is obviously superior to other comparison methods in the
single-occupancy scenario.

TABLE I
MEAN (± STDEV) OF PERFORMANCE METRICS OF DIFFERENT METHODS

ON THE SINGLE-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

RectFall[14] 86.43
(±3.69)

40.62
(±5.63)

0.00
(±0.00)

74.35
(±6.53)

76.97
(±3.81)

HistFall[15] 92.95
(±0.22)

6.27
(±1.46)

7.29
(±0.35)

89.45
(±1.76)

93.22
(±0.56)

CNN[21] 91.80
(±2.95)

13.15
(±4.31)

4.37
(±1.98)

87.53
(±3.09)

90.15
(±3.44)

Inception-v3
[22]

95.63
(±1.47)

5.45
(±2.23)

2.5
(±1.88)

94.26
(±2.15)

96.01
(±2.74)

MoT-LoGNN 97.31
(±1.33)

0.91
(±0.48)

3.50
(±2.00)

95.63
(±2.75)

97.93
(±0.79)

2) Performance on multi-occupancy dataset: Since the
RectFall and the HistFall methods are proposed for
single-occupancy scenarios, they cannot be directly applied
to the fall detection problems in multi-occupancy scenarios.
In this experiment, the proposed MOD proposed in this paper
is combined with these two methods, so that these two fall
detection methods can be applied to multi-occupancy
scenarios. As shown in Table II, in multi-occupancy
scenarios, the performance of deep learning based fall
detection methods are obviously better than the RectFall and
the HistFall. Moreover, the FARs of the RectFall and
HistFall methods are significantly higher than other methods.
This is mainly due to the characteristics of the MOD
framework. That is, as long as a thermal sub-image is
classified as fall, it is considered that there is a fall. Therefore,
the RectFall and the HistFall with high FAR in the
single-player scenario have their disadvantages further
expanded under the multi-occupancy scenario and the MOD.
Overall, MoT-LoGNN has the highest average classification
accuracy in multi-occupancy scenarios, the lowest average
FAR, and the second lowest average FRR, but its FAR is
dozens of times lower than the RectFall which has the lowest
FRR.

TABLE II
MEAN (± STDEV) OF PERFORMANCE METRICS OF DIFFERENT METHODS

ON THE MULTI-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

RectFall[14] 64.46
(±1.36)

79.38
(±1.47)

0.12
(±0.09)

34.13
(±2.04)

45.36
(±1.62)

HistFall[15] 75.72
(±2.32)

48.60
(±7.00)

4.56
(±1.91)

65.10
(±5.64)

69.84
(±4.50)

CNN[21] 85.46
(±0.77)

13.15
(±4.31)

15.42
(±4.53)

84.19
(±0.99)

85.60
(±4.48)

Inception-v3
[22]

92.12
(±0.69)

8.35
(±3.91)

7.33
(±3.65)

91.65
(±1.12)

92.16
(±3.88)

MoT-LoGNN 95.89
(±0.50)

4.12
(±1.32)

3.89
(±1.07)

95.42
(±0.55)

95.92
(±0.68)
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C. Discussions of MoT-LoGNN

1) Sensitivity Analysis of MoT-LoGNN with Different
Amount of Training Samples: The MoT-LoGNN extracts
features using the CNN model. It is well-known that the
amount of training data influences the performance of CNN.
In this section, 10% and 50% of training samples are
randomly selected to train the MoT-LoGNN to show the
sensitivity of MoT-LoGNN with respect to the number of
training samples. Tables III and IV show performances of the
MoT-LoGNN with different amount of training data under
the single-occupancy scenario and the multi-occupancy
scenario, respectively. When the number of training samples
increases, the performance of the MoT-LoGNN increases in
both single-occpancy and multi-occupancy scenarios. The
performance of models on the multi-occupancy dataset is of
significant interest because it covers more possible scenarios
than the single-occupancy dataset and is more representative
to real living environments with multi-occupancy. As seen
from Table IV, the performance of the MoT-LoGNN using all
(100%) training data is a little better than the one using 50%
number of training data on the multi-occupancy dataset in
terms of the comprehensive metrics (no more than 0.6%
improvement in terms of the Accuracy, F1, and Gmean
metrics). It shows that when the number of training samples
is large enough, the performance of the MoT-LoGNN is not
sensitive to the amount of the training samples.

TABLE III
SENSITIVITY ANALYSIS OF MOT-LOGNN TRAINING WITH DIFFERENT

AMOUNT OF TRAINING DATA ON SINGLE-OCCUPANCY SCENARIO
Amount of

Training Data
Accuracy (%) FAR

(%)
FRR
(%)

F1(%) Gmean
(%)

10% 91.72 (±2.44) 11.60
(±6.20)

6.00
(±2.41)

87.62
(±2.43)

91.09
(±3.27)

50% 96.40 (±1.51) 1.06
(±1.10)

4.63
(±1.92)

94.26
(±3.21)

97.14
(±1.02)

100% 97.31 (±1.33) 0.91
(±0.48)

3.50
(±2.00)

95.63
(±2.75)

97.93
(±0.79)

TABLE IV
SENSITIVITY ANALYSIS OF MOT-LOGNN TRAINING WITH DIFFERENT

AMOUNT OF TRAINING DATA ON MULTI-OCCUPANCY SCENARIO
Amount of

Training Data
Accuracy

(%)
FAR
(%)

FRR
(%)

F1(%) Gmean
(%)

10% 83.83
(±7.90)

24.04
(±20.53)

8.71
(±3.75)

79.49
(±12.01)

82.16
(±10.43)

50% 95.44
(±0.29)

4.26
(±1.19)

4.68
(±1.51)

94.92
(±3.21)

95.52
(±1.96)

100% 95.89
(±0.50)

4.12
(±1.32)

3.89
(±1.07)

95.42
(±0.55)

95.92
(±0.68)

2) Non-linearity of the Thermal Image Data: In this study,
the CNN is utilized to extract features of thermal images and
the LG-RBFNN serves as a non-linear classifier. To show the
non-linearity of thermal image data, the data is transformed
into a new feature space by a CNN and then it is reduced to a
two-dimensional space by using the t-Distributed Stochastic
Neighbor Embedding (tSNE), as shown in Fig. 5. Fig. 5
shows that the thermal image data in the feature space
constructed by the CNN is non-linear separable in both

single-occupancy and multi-occupancy scenarios. It is
difficult to find a linear decision plane that separate fallen
and non-fallen completely. The geometry of the optimal
decision function in this two-dimensional feature space
should be a curve instead of a straight line.

(a) Single-occupancy

(b) Multi-occupancy

Fig. 5. The data distribution of thermal images. The green points
denote the non-fallen class and the blue points denote the fallen
class.

Due to this non-linearity characteristic of the thermal
sensor data, a non-linear classifier is preferred. Tables V and
VI summarize the performance of different classifiers under
the single-occupancy and multi-occupancy scenarios,
respectively. Where the [cnn+softmax], [cnn+dt], and
[cnn+svm] denote the models using the softmax, decision
tree, and support vector machine as a classifier with the
features extracted by the CNN, respectively. In both cases,
the T-LoGNN yields the best performance which shows the
superiority of the LG-RBFNN for dealing with the thermal
sensor fall detection problem using the CNN features.
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TABLE V
COMPARISON OF DIFFERENT CLASSIFIERS USING CNN FEATURES ON

SINGLE-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

[cnn+softmax] 92.80
(±0.76)

10.72
(±5.90)

4.71
(±2.61)

88.91
(±0.65)

92.14
(±1.97)

[cnn+dt] 94.02
(±1.96)

11.63
(±4.86)

2.73
(±0.69)

90.88
(±1.91)

92.68
(±2.54)

[cnn+svm] 93.71
(±0.89)

12.04
(±5.15)

2.82
(±1.66)

90.12
(±0.08)

92.39
(±1.88)

T-LoGNN 95.10
(±1.88)

9.92
(±5.22)

1.91
(±0.41)

92.58
(±1.88)

93.95
(±2.57)

TABLE VI
COMPARISON OF DIFFERENT CLASSIFIERS USING CNN FEATURES ON

MULTI-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

[cnn+softmax] 88.77
(±1.49)

13.31
(±2.40)

9.42
(±1.65)

87.37
(±1.40)

88.60
(±1.48)

[cnn+dt] 90.16
(±0.83)

11.85
(±2.29)

8.09
(±0.98)

88.90
(±0.68)

90.00
(±0.90)

[cnn+svm] 89.98
(±1.42)

11.59
(±1.39)

8.59
(±2.82)

88.74
(±1.65)

89.88
(±1.33)

T-LoGNN 90.81
(±0.43)

11.55
(±2.21)

7.07
(±2.83)

89.57
(±0.62)

90.63
(±0.26)

3) Determination of the Binarization Threshold: As one
of the components of the MoT-LoGNN, MOD is responsible
for decomposing the multi-occupancy into single-occupancy
sub-images, where the determination of the binarization
threshold will influence the effect of the MOD directly.
Intuitively, the optimal binarization threshold should separate
the person and background clearly, which is helpful for the
model to distinguish the fallen and non-fallen samples. In
this study, a validation set (20% data randomly selected from
the single-occupancy training set) is utilized to determine the
binarization threshold. Furthermore, the T-LoGNN model is
used as the fall detection model. The optimal threshold is
determined once this threshold helps the T-LoGNN model
reach the best performance in terms of the Gmean metric.

Fig. 6. The performance of the T-LoGNN using different MODs with
different binarization thresholds.

In experiments, candidates of the binarization threshold
ranges from 195 to 210 according to the prior experience. Fig.
6 shows that 201 is the optimal binarization threshold

because it yields the highest Gmean. Therefore, the
binarization threshold for the MOD is set to be 201 in this
study.
4) Ablation Study: Major contributions (i.e. the robust

T-LoGNN for single-occupancy fall detection, the MOD for
simplifying the multi-occupancy fallen detection into the
simpler single-occupancy scenario, the SSS for enhancing
the performance of the proposed T-LoGNN) of this work
have been evaluated by experiments. Their results are shown
in Tables VII and VIII.

TABLE VII
MEAN (± STDEV) OF PERFORMANCE METRICS OF DIFFERENT METHODS

ON THE SINGLE-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

T-LoGNN 95.10
(±1.88)

9.92
(±5.22)

1.91
(±0.41)

92.58
(±1.88)

93.95
(±2.57)

MOD-LoGNN 97.09
(±0.28)

1.70
(±2.00)

3.66
(±2.08)

95.24
(±2.81)

97.50
(±0.63)

MoT-LoGNN 97.31
(±1.33)

0.91
(±0.48)

3.50
(±2.00)

95.63
(±2.75)

97.93
(±0.79)

TABLE VIII
MEAN (± STDEV) OF PERFORMANCE METRICS OF DIFFERENT METHODS

ON THE MULTI-OCCUPANCY DATA

Model Accuracy
(%)

FAR (%) FRR (%) F1(%) Gmean(%)

T-LoGNN 90.81
(±0.43)

11.55
(±2.21)

7.07
(±2.83)

89.57
(±0.62)

90.63
(±0.26)

MOD-LoGNN 92.57
(±1.10)

12.40
(±1.43)

0.85
(±0.62)

91.08
(±1.06)

91.57
(±1.06)

MoT-LoGNN 95.89
(±0.50)

4.12
(±1.32)

3.89
(±1.07)

95.42
(±0.55)

95.92
(±0.68)

From Tables VII and VIII, after combining the MOD with
the T-LoGNN, the overall performance (i.e. Accuracy, F1,
and Gmean) is improved compared with the T-LoGNN only.
The main reason is that the MOD performs an additional
preprocessing of image binarization which can be regarded
as a data denoising process. However, the FRR of
MOD-LoGNN is higher than the one of the T-LoGNN on the
single-occupancy data, which is mainly caused by the static
binarization setting in this study. Therefore, the edge details
of the fallen person with body curling may be filtered after
the image binarization. In contrast, the MOD-LoGNN yields
a higher FAR than the T-LoGNN on the multi-occupancy
dataset. This is one of the drawbacks of the proposed method
where a thermal image is claimed to be fallen as long as
either one of its sub-image being classified as fallen.
The proposed MoT-LoGNN yields the highest Accuracy,

F1, and Gmean on both single-occupancy and
multi-occupancy dataset, which confirms the effectiveness of
using SSS to select informative samples for fine-tuning the
T-LoGNN. However, after using the fine-tuning mechanism
(from MOD-LoGNN to MoT-LoGNN), the MoT-LoGNN
yields a higher FRR. It may be caused by too many
non-fallen samples are selected by the SSS to fine-tune the
T-LoGNN and the class balanced weight technique fail to
completely solve the data imbalanced problem, which
remains further research.
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5) Mis-classified Cases By MoT-LoGNN: The examples
shown in Fig.7. are representative misclassified samples by
the proposed MoT-LoGNN. The subtitle shows the actual
label of the samples. It can be seen that these samples are
extremely difficult to distinguish. Sample (a) is
mis-classified is mainly due to that the fallen person is not
completely in the monitoring area. As to sample (b), the
fallen person with body curling is easily mis-classified as the
standing person. Sample (c) shows a case where the
MoT-LoGNN mis-classifies a standing person as a fallen
person when the the background temperature is high enough.
When two standing person are closed enough, the
MoT-LoGNNmay wrongly judge them as a fallen person, as
shown in sample (d).

(a) fallen (b) fallen

(c) non-fallen (d) non-fallen

Fig. 7.Mis-calssified samples of the MoT-LoGNN.

V. CONCLUSIONS AND FUTURE WORKS

In this study, we use have proposed a robust approach that
distinguishes falls and non-fall shapes from low-resolution
images captured by low-cost and non-invasive thermal vision
sensors. The device provides a zenithal point of view from
the ceiling where it is located to detect falls in instances of
both single and multi-occupancy. We propose the use of
Convolutional Neural Networks to extract features from the
thermal images and then use a Radial Basis Function Neural
Network trained via the minimization of the Localized
Generalization Error Bound as the classifier (T-LoGNN) to
reduce the effects of thermal images with strong amounts of
noise and blurred areas on the classification results. In
addition, we propose a multi-occupancy fall detection
method MoT-LoGNN in response to the decrease of
classification accuracy caused by the increasing complexity
of thermal images in the multi-occupancy scenarios.
Experimental results demonstrated that the MoT-LoGNN
achieved the best performance on both single and
multi-occupancy scenarios.
However, the proposed MoT-LoGNN still have some

limitations. The binarization threshold is set for a given data
set in this work. Therefore, its fall detection performance
may decline if the MoT-LoGNN is directly applied to other
environments. Meanwhile, the proposed MoT-LoGNN

conducts fall detection only using a single thermal image,
where the decision making might be wrong owing to noise
and blur in a thermal image. Thus, decision made using a
sequence of successive thermal images rather than a single
one should be more preferrable.
In the future, we will verify the proposed MoT-LoGNN in

more real application scenarios. Research related to the
image decomposition algorithm adapted to different
environments is a meaningful research direction to optimize
MoT-LoGNN. In addition, due to the uncertainty of thermal
images acquired by this low-cost device, temporal
information will be added to improve the robustness of the
recognition system.
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