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Abstract
This paper explores the influence of two competing stubborn agent groups on the 
opinion dynamics of normal agents. Computer simulations are used to investigate 
the parameter space systematically in order to determine the impact of group size 
and extremeness on the dynamics and identify optimal strategies for maximizing 
numbers of followers and social influence. Results show that (a) there are many 
cases where a group that is neither too large nor too small and neither too extreme 
nor too central achieves the best outcome, (b) stubborn groups can have a moderat-
ing, rather than polarizing, effect on the society in a range of circumstances, and (c) 
small changes in parameters can lead to transitions from a state where one stubborn 
group attracts all the normal agents to a state where the other group does so. We also 
explore how these findings can be interpreted in terms of opinion leaders, truth, and 
campaigns.
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1 Introduction

Opinions and beliefs are important as they impact our behaviour and choices, and 
are acquired to a great extent through social interaction. Opinion dynamics is a 
field of study that explores how a host of pertinent factors effect changes in opin-
ions or beliefs. The first mathematical models of opinion dynamics can be traced 
back to French (1956), Harary (1959) and DeGroot (1974). French’s theory of 
social power explored the impact of interpersonal interactions on opinion forma-
tion and Harary extended this work to further explore conditions leading to una-
nimity. DeGroot described a model in which the opinions of an agent (individual) 
are updated by taking an average of an agent’s opinion and those in his group 
(now called the DeGroot model). Since then, opinion dynamics has attracted 
growing attention from researchers across a number of disciplines.

In economics, opinion dynamics is explored in the context of social learning, 
which has been the subject of much investigation in the literature (Banerjee 1992; 
Bikhchandani et  al. 1992; Smith and Sørensen 2000; Acemoglu and Ozdaglar 
2011; Jadbabaie et  al. 2012; Mobius and Rosenblat 2014; Molavi et  al. 2018). 
Social learning has been described as “the social aspect of belief and opinion 
formation” (Acemoglu and Ozdaglar 2011) and as such is highly relevant to many 
important economic phenomena including the adoption of new products and ser-
vices, spread of new technologies or innovations, financial contagion on stock 
markets and word-of-mouth job search. Social learning models have been used to 
explore diffusion of innovations (Martins et al. 2009), product adoption (Ruf et al. 
2017), the emergence of fads and fashions through herding of beliefs and infor-
mation cascades (Banerjee 1992), word of mouth learning (Banerjee and Fuden-
berg 2004; Ellison and Fudenberg 1995), advertising and marketing (Schulze 
2003; Sznajd-Weron and Weron 2003) and movie reviews (Barriere et al. 2017).

Opinion dynamics has also been investigated at length in the physics literature, 
particularly from the 1970s and 80s when sociophysics began to emerge (Wei-
dlich 1972, 1971; Callen and Shapero 1974; Galam et al. 1982) as a new field of 
study. Techniques used in statistical physics were adapted to explore social phe-
nomena such as cultural dissemination, evolution of language, population dynam-
ics, social contagion, epidemic spreading, and opinion dynamics (Castellano 
et  al. 2009). One such technique was the Ising model, a model used to explain 
critical phase transitions where very simple interactions can lead to qualitative 
changes on a macroscopic scale (Sznajd-Weron 2005). Models have explored 
group decision making in various contexts including firms and small committees 
(Galam 1997), voting behaviour (González et  al. 2004; Bernardes et  al. 2002), 
how to convince others (Stauffer 2003), making political predictions (Galam 
2017), modelling the impact of social influence on the prices of options (Oster 
and Feigel 2015) and the modelling of industrial strikes in big companies (Galam 
et al. 1982). Across sociology, psychology, politics, public policy and business, 
there have been a number of relevant studies including: experiments to explore 
the effect of social influence on judgment shifts (Moussaïd et  al. 2013), under-
standing the psychological factors affecting opinion formation with an application 
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to American politics (Duggins 2017), the initiation of smoking amongst adoles-
cents (Sun and Mendez 2017) and consensus reaching in social network group 
decision making (Dong et al. 2018, 2017).

Models of opinion dynamics/social learning fall into two broad groups—Bayes-
ian and non-Bayesian. Both Bayesian (Banerjee 1992; Bikhchandani et  al. 1992; 
Smith and Sørensen 2000; Acemoglu and Ozdaglar 2011) and non-Bayesian (Jad-
babaie et al. 2012; Molavi et al. 2018; Bala and Goyal 1998; DeMarzo et al. 2003) 
approaches are common in the economics literature while non-Bayesian approaches 
are more popular with sociophysicists and other researchers in opinion dynamics. 
Bayesian approaches use Bayes’ rule to combine an agent’s prior opinion with new 
evidence and information that becomes available to it. This becomes its posterior 
probability and provides a prior distribution for future updating cycles. A shortcom-
ing of this approach, however, is the selection of an initial prior, a process requir-
ing complex reasoning on the part of the agent. Non-Bayesian approaches to social 
learning involve so called “rules or thumb” (a classic example being the DeGroot 
model) in which agents modify their beliefs based on simple updating rules. For 
example, an agent could use a simple updating rule in which it combines its prior 
opinion with those of its friends and neighbours, giving greater weight to those 
closer to it.

Models of opinion dynamics / social learning can also be distinguished in terms 
of whether they use discrete opinions, continuous opinions or a combination of the 
two. Examples of models with a discrete opinion format include the voter model 
(Holley and Liggett 1975), the majority rule model (Galam 2002) and the Sznajd 
model (Sznajd-Weron and Sznajd 2000). In these models agents have a simple yes 
or no, 1 or 0, agree or disagree choice. All of these were inspired by the Ising model 
discussed above. Models with a continuous opinion format include the Deffuant-
Weisbuch (DW) model in which each agent can take on an opinion value anywhere 
in the interval from 0 to 1. Two agents interact only if their opinions lie within a 
specified distance of each other and so this model is referred to as a bounded con-
fidence model. A second model of this type is the Hegselmann and Krause (HK) 
model (Krause 2000; Hegselmann and Krause 2002, 2005) which is used in this 
paper. As with the DW model, opinions can take on any value between 0 and 1 
and again agents are influenced only by those within their bound of confidence or 
neighbourhood. However, with the HK model, a given agent interacts with all agents 
within its neighbourhood at the same time.

An alternative model developed by Martins (2008a) and Martins (2008b) com-
bines continuous opinions with discrete actions (CODA). Discrete actions are 
observed publicly but internal opinions are represented on a continuous scale and 
are updated using a Bayesian approach. Martins (2008a) applies CODA to both the 
voter model and the Sznajd model.

The standard Bayesian approach can be formulated in terms of identifying the 
equilibria of a dynamic game with incomplete information (see for example Ace-
moglu and Ozdaglar 2011). There are also game-theoretic connections with non-
Bayesian approaches. For example, Bindel et  al. (2015) showed that the repeated 
averaging process of a variant of the DeGroot model can be interpreted as the best-
response dynamics in a complete information game that converges to the unique 
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Nash equilibrium. In terms of bounded confidence models, Di Mare and Latora 
(2007) have similarly presented a game theoretic formulation of the DW model, 
while Etesami and Başar (2015) have shown how an asynchronous version of the 
HK model (i.e. only one agent updates its opinion at a given time rather than all the 
agents doing so simultaneously) can be formulated in terms of a sequence of best 
response updates in a potential game. In both of these cases the steady state of the 
bounded confidence model is again equated with a Nash equilibrium.

Of interest in opinion dynamics is the study of individuals or groups exerting 
greater influence on agents’ opinions than the normal agent. These include opin-
ion leaders, stubborn agents/zealots and radical (extreme) agents. The opinion leader 
is an individual or group, who because of their expertise or prominence is able to 
stimulate change in public opinion, for example, mass media, political parties, com-
munity leaders, celebrities and bloggers. Studies have shown that agents may fil-
ter information received from mass media (including social media) through opin-
ion leaders as they help normal agents to interpret and process it (Katz 1957; Roch 
2005; Choi 2015). Stubborn agents or zealots are agents whose views are fixed. 
They can influence others more than normal agents because they will influence oth-
ers, but are not influenced by others. In reality, of course, just how fixed opinions 
are will depend on the context. A local politician may bend somewhat to the will of 
their constituents while an extreme political group may remain fully inflexible. See 
Chen et al. (2016) for a study of the impact of varying degrees of stubbornness of 
opinion leaders on the group dynamics.

Radical agents are stubborn individuals or groups holding extreme views. 
There are a number of papers relevant to these groups in the opinion dynamics lit-
erature. The effect of zealotry was explored using the voter model (Mobilia et  al. 
2007; Yildiz et al. 2013; Acemoglu et al. 2013), the adaptive voter model (Klamser 
et al. 2017) and the naming game model (Verma et al. 2014; Waagen et al. 2015). 
Extremeness using the DW model has been explored in Deffuant et al. (2000), Def-
fuant (2006) and Gargiulo and Mazzoni (2008), and using the CODA model in 
Martins and Kuba (2010). Hegselmann and Krause (2015) used a variant of their 
HK model to represent radical groups and opinion leaders in a unified way and 
then investigated the influence of a single radical group / opinion leader. Chen et al. 
(2016) used the HK model to study four characteristics of successful opinion lead-
ers by comparing competing opinion leaders. By keeping three characteristics fixed 
while varying the fourth, they reported that greater success in attracting followers is 
achieved in general by opinion leaders who are less stubborn (i.e. their opinions can 
change to some extent), have greater appeal and are less extreme. They also reported 
that higher reputation (the weight of influence on normal agents, see Sect. 2 below) 
helps the leader to attract more followers when the confidence is high, but can hin-
der the leader from attracting followers when the confidence is low.

In this paper, we adopt the common framework of Hegselmann and Krause 
(2015) and Chen et al. (2016) to examine the impact of competing stubborn agent 
groups on normal agents, though this can also be interpreted in terms of competing 
opinion leaders. We present a systematic study using computer simulations to inves-
tigate how varying the extremeness and size of stubborn agent groups, which cor-
responds to the reputation in Chen et al. (2016), affects the behaviour of the normal 
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agents. Unlike Chen et al. (2016), we do not vary stubbornness or appeal, but instead 
we explore the parameter space in much more detail and so are able to investigate 
the effects of varying both the extremeness and size of the stubborn agent group 
over the relevant space. This enables us to investigate how increasing or decreasing 
one of these features can compensate for changes in the other. It also allows us to 
explore how groups can optimize their approach to achieve key objectives such as 
maximizing follower numbers and maximizing societal influence. Overall, this leads 
to a more complex picture of the influence of these features. For example, our results 
show that there are many cases where a stubborn group of intermediate extremeness 
and size achieves the best outcome.

In the rest of the paper, Sect. 2 lays the theoretical foundations of the HK model 
in the presence of competing groups. Section 3 examines the impact of varying the 
number of agents in a stubborn group and the extremeness of the group. Section 4 
explores in-depth the optimal strategies to play for success in the context of compet-
ing groups. Section 5 provides a wider discussion of the work, while Sect. 6 presents 
conclusions.

2  HK Model with Competing Groups

The standard HK model consists of n agents who update their opinions about a given 
topic at each time step by taking the average belief of their neighbours (Hegselmann 
and Krause 2002). Let agent i have belief xi(t) lying in the interval [0, 1] at time t. 
Agent j will be a neighbour of agent i at t if the belief of agent j lies within a certain 
bound of confidence of agent i, that is |xi(t) − xj(t)| ≤ �i , where �i is the confidence 
of agent i. Each agent’s belief is then updated as follows:

where I(i, t) = {j ∶ |xi(t) − xj(t)| ≤ �i} , i.e. the set of agents who are in the neigh-
bourhood of agent i.

Following recent work by Hegselmann and Krause (2015), we represent both 
groups and opinion leaders by means of the influence of a constant signal. To do this 
we include a group of agents, who all have the same opinion, R1 , in addition to the 
normal agents described above. These are stubborn agents who do not change their 
opinion at all, but they influence the normal agents in the usual way via Eq. (1) if 
they are within their neighbourhood. As in Hegselmann and Krause’s approach, we 
consider the influence of this group of agents for different values of R1 and for dif-
ferent numbers of agents within it, denoted #R1 . We also follow their proposal that 
this group of stubborn agents can be interpreted in different ways. First, they can be 
interpreted straightforwardly as a group of radical agents, especially in cases where 
their views are extreme, i.e. R1 is close to 0 or 1. In general, however, we will refer 
to them as a group of stubborn agents since we will consider non-extreme groups. 
Second, they can be interpreted as a single opinion, or charismatic, leader in which 
case #R1 represents the weighting given to the leader in comparison to normal agents 

(1)xi(t + 1) =
1

|I(i, t)|
∑

j∈I(i,t)

xj(t),
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in the opinion updating process. This weighting is referred to as the reputation of 
the opinion leader by Douven and Riegler (2010) and Chen et al. (2016), who inves-
tigated an equivalent model where the opinion leader was given a weighting directly 
rather than being modelled by a number of separate agents.1

A third interpretation that is mentioned briefly by Hegselmann and Krause (2015) 
is that the group of stubborn agents represents the truth about some topic and the 
number of such agents determines the influence of the truth on normal agents in 
the updating process. Note that in this interpretation, it is only agents who are close 
enough to the truth (i.e. the truth lies within their confidence interval) that are influ-
enced by it. This is in contrast to distance independent representations of truth in 
the HK model where all agents are influenced by the truth (Hegselmann and Krause 
2006; Douven and Riegler 2010). Given this interpretation, our results indicate the 
number of agents who find the truth. This interpretation is particularly relevant in 
the context of social learning. Hegselmann and Krause (2015) also suggest other 
interpretations such as dogmatists, since the opinion of the group need not be 
extreme, and a campaign, where a message is communicated with a given intensity. 
For ease of exposition, we will frame the discussion mostly in terms of stubborn 
groups, while drawing attention to other interpretations in Sect. 5.

The current work differs from Hegselmann and Krause (2015) in two respects. 
First, they adopted a deterministic approach by fixing the initial opinions of the nor-
mal agents so that they are evenly distributed between 0 and 1 for all simulations. 
The initial opinion of agent i was set to i∕(n + 1) for i = 1,… , n . By contrast, we 
will adopt the strategy typically used in the opinion dynamics literature (including 
in Hegselmann and Krause 2002) of assigning initial opinions of normal agents ran-
domly and then averaging over repeated simulations.

Second, instead of considering the influence of a single radical group on the nor-
mal agents, we follow Chen et al. (2016) by investigating the dynamics of the nor-
mal agents when there are two competing groups. By competing we mean that one 
group has a fixed opinion greater than 0.5 and the other less than 0.5. This raises a 
further set of questions about the relative influence of the groups depending on their 
respective fixed opinions and size of membership. For example, does a group that 
is less extreme in opinion generally acquire more followers? Or how does the size 
of a group affect the number of followers? The model is therefore a straightforward 
modification of Eq. (1) as follows:

1 In fact, the model of Chen et al. 2016 can be seen as a generalization of the Hegselmann and Krause 
(2015) model since it does not require the opinion leader to have a fixed opinion and allows other agents 
to have greater confidence towards the opinion leader than they do towards other agents. For reasons of 
efficiency, we have obtained our results by implementing the model of Chen et al. 2016 since it replaces 
many stubborn agents with a weighting of one by a single agent with a greater weighting.
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where the set I(i, t) is defined as before and includes all agents, whether normal or 
otherwise, who are within the confidence of agent i at time t.

Results are presented in the next section as various parameters are varied. In par-
ticular, we vary the confidence, � , the number of agents in each stubborn group, #R1 
and #R2 , and the opinions of these groups, R1 and R2 . Note that we assume homo-
geneous confidence levels such that �i = � for all agents, though heterogeneous con-
fidence levels could also be explored (Chen et al. 2017; Pineda and Buendía 2015; 
Liang et al. 2013; Lorenz 2010).

The results are obtained by simulations where we iterate Eq.  (2) until a steady 
state is reached, which we implement by ensuring that |xi(t + 1) − xi(t)| ≤ 10−5 for 
all agents i. We focus on the number of agents who end up with the same opinion as a 
given stubborn group or, to be precise, we consider an agent i to have the same opin-
ion as that of the stubborn group R1 at the end of the simulation if |x∗

i
− R1| < 10−3 , 

where x∗
i
 is the opinion of agent i at the end of the simulation. Additionally, we also 

present some results for the root mean square deviation (RMSD) of the final opin-
ions of normal agents from a radical group. For a stubborn group with opinion R1 , 
this is given by:

where n is the number of normal agents, which is set to 200 in all cases. For each 
result, we ran the simulation 200 times using MATLAB and obtained average values 
for the number of followers and RMSD.

3  Results for Competing Groups

3.1  Varying the Number of Agents

First, we consider how the results depend on the number of stubborn agents, #R1 and 
#R2 , in groups one and two, or equivalently, the reputation of two opinion leaders. 
In this case we set the opinion of agents in group one to be R1 = 1 and the opin-
ion for group two to be R2 = 0 . Figure 1 presents results for the number of normal 
agents who end up with the same opinion as group one, i.e. R1 = 1 . The results are 
presented as a function of #R1 and #R2 for four different values of the confidence, � . 
Figure 1a shows that for � = 0.2 , group one attracts (1) very few followers close to 
the y-axis where #R1 is very low (less than 15), (2) many more followers (70–80) for 
slightly higher values of #R1 (about 40), and (3) intermediate numbers of followers 
(40–50) for higher values of #R1.

(2)

xi(t + 1) =
1

|I(i, t)|
∑

j∈I(i,t)

xj(t), if i is a normal agent

= xi(0) = R1, if i contributes to first group/opinion leader

= xi(0) = R2, if i contributes to second group/opinion leader

(3)RMSD =

�∑n

i=1
(x∗

i
− R1)

2

n
,
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Intuitively, two features of these results might seem surprising. First, the num-
ber of agents in group two, #R2 , has little effect on these results. However, recall 
that the confidence is 0.2 in this case and so there is a lot of separation between 
normal agents who are directly influenced by group one (those with opinions of 
0.8 or higher) and those directly influenced by group two (those with opinions of 
0.2 or lower). Second, one might have expected group one to attract more follow-
ers when its numbers are larger (high #R1 ), but instead it attracts more followers 
when its numbers are lower (but not too low). This can be explained by a well-
known feature of the HK model. When the group size, #R1 , is too big it exerts a 
large influence on normal agents within its neighbourhood, drawing them in too 
quickly for them to have much influence on other normal agents. However, when 
#R1 is lower it does not draw followers in so quickly and in the meantime they can 
influence other agents, so that in the end the group can acquire more followers.

We see in Fig. 1b that the results are quite different when � = 0.3 compared to 
� = 0.2 . As in (a), group one still attracts very few followers when #R1 is very low 
and intermediate numbers of followers for higher values of #R1 . It also attracts 
more followers for values of #R1 around 40–50, but this is now more dependent 
on the value of #R2 , with the number of followers being much greater when #R2 

Fig. 1  The average number of normal agents who go to R
1
 as a function of the number of agents # R

1
 in 

group one and the number of agents #R
2
 in group two. Note that the results are not all on the same scale
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is high. This can be explained by the same mechanism as discussed above. Since 
group two is large it has a lot of influence on its neighbours, and so it draws in its 
neighbours quickly meaning they have little influence on other normal agents. By 
contrast, group one is smaller and so influences its neighbouring normal agents 
more slowly meaning they can have a larger influence on other normal agents, 
resulting in more followers in the long run. This is illustrated by means of a typi-
cal individual run in figure S1 of the supplementary material.

We see that the results change again as the confidence increases to � = 0.4 in 
Fig. 1c. Group one still attracts very few followers when #R1 is very low, but now 
it attracts most followers in a region close to the x-axis (low #R2 ). In fact, in this 
region it attracts all or almost all the normal agents. The low value of #R2 means 
that group two exerts little influence on its neighbours, while the high value of con-
fidence means that group one can exert a lot of influence both directly and indirectly. 
Note, however, that if #R1 is too high, group one is no longer able to attract so many 
followers because it draws its neighbours in too quickly.

In Fig.  1d, where � = 0.5 , the trend from (c) continues and now we see three 
distinct areas. One of these is the region close to the x-axis (low #R2 ) where group 
one attracts all the normal agents, though this region has expanded in comparison to 
figure (c). A second region is at low values of #R1 where group one attracts no fol-
lowers. This region has expanded considerably compared to the previous figures and 
is mostly due to the growing influence of group two, although some of it is due to 
neither group attracting any followers. (Note that the number of followers for group 
two is obtained just by swapping the axes.) In the third region, where neither #R1 nor 
#R2 are low, group one attracts half of the normal agents (with group two attract-
ing the other half). It is worth noting that for � = 0.5 (and also � = 0.4 ), the normal 
agents would form a central consensus in the absence of stubborn groups. Hence, 
the stubborn groups lead to a polarization of the society in this case.

Figure 2 shows results that are closely related to Fig. 1, but instead of giving the 
number of followers of group one, it gives the difference between the number of fol-
lowers of group one and the number of followers of group two. This enables us to 
identify when one group has an advantage over the other. For lower values of confi-
dence (Fig. 2a and b), group one does better than group two when the size of group 
two is very small (less than 20), but this is only because group two attracts virtually 
no followers in this region. If group two is larger, group one can gain the advantage 
by having a relatively small group (around 40). So having a large group size is not 
the best strategy for gaining followers.

This pattern continues at � = 0.4 in Fig. 2c, but now when the size of group two 
is large, group one is only able to gain a very small advantage over group two when 
the size of group one is around 40. At � = 0.5 in Fig. 2d the only region where group 
one does better than group two is when group two is small and group one is larger. 
If group two is large, group one cannot acquire more followers than group two irre-
spective of the size of group one. The best outcome one can aim for in such a con-
text is parity, which is achieved by just ensuring that its group size is above some 
threshold; no advantage is gained by increasing the group size further.

In Fig.  2d, it is clear that when #R1 and #R2 are small, a small change in #R1 
or #R2 can result in a dramatic change in the number of followers acquired by the 
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Fig. 2  The difference between the average number of normal agents who go to R
1
= 1 and the average 

number who go to R
2
= 0 as a function of the number of agents #R

1
 in group one and the number of 

agents #R
2
 in group two. Note that the results are not on the same scale

Fig. 3  The difference between the average number of normal agents who go to R
1
= 1 and the average 

number who go to R
2
= 0 along lines where #R

1
 and #R

2
 are both varied. In (a) #R

1
 and #R

2
 vary along 

the line from #R
1
= 20 , #R

2
= 60 to #R

1
= 60 , #R

2
= 20 , while in (b) they vary along the line from 

#R
1
= 4 , #R

2
= 20 to #R

1
= 20 , #R

2
= 4
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groups. This is explored in detail in Fig. 3. In Fig. 3a the difference in the number of 
followers between the groups is investigated as #R1 and #R2 are varied along a diag-
onal line from #R1 = 20 , #R2 = 60 to #R1 = 60 , #R2 = 20 . These results have been 
averaged over 1000 runs to obtain more accurate values. At #R1 = 20 , #R2 = 60 
all the normal agents go to R2 = 0 . However, as #R1 increases and #R2 decreases, 
there is a transition to a state where neither group acquires any followers for values 
around #R1 = #R2 = 40 , and then as they change further, another transition occurs 
to a state where all the normal agents go to R1 = 1 . Figure 3b shows corresponding 
results along a diagonal line from #R1 = 4 , #R2 = 20 to #R1 = 20 , #R2 = 4 . In this 
case, the two transitions appear to have merged into one larger transition from a 
state where all the normal agents go to R2 = 0 to another state where they all go to 
R1 = 1 . When #R1 = #R2 = 12 neither group acquires any followers, but there does 
not appear to be an intermediate state around this point; it just appears to be the mid-
point of the larger transition. Figures 1 and 2 have already provided complementary 
perspectives on the results. Figure S2 in the supplementary material gives a third 
perspective, presenting the total number of normal agents who go to either group 
one or group two.

3.2  Varying the Extremeness of Groups

We now consider how the results depend on the extremeness of the stubborn agents 
in groups one and two. Recall that the opinion of groups one and two were set to 
R1 = 1 and R2 = 0 in the previous section. This scenario, where 1 − R1 = R2 = 0 , 
represents the most extreme case, but more generally we can represent the extreme-
ness of groups one and two by 1 − R1 and R2 respectively. We can vary the extreme-
ness for each group from 0 to 0.5. Figure 4 shows the average number of normal 
agents who go to R1 as the extremeness of R1 and R2 varies, while the number of 
stubborn agents in each group is kept fixed at #R1 = #R2 = 40 . By symmetry all 
results for R1 apply equally to R2 . The results are presented for four different values 
of confidence, �.

Figure 4a shows the numbers of followers won over to R1 at � = 0.2 . When R1 is 
quite extreme, i.e. R1 is greater than 0.85 (or equivalently in the figure when 1 − R1 is 
less than 0.15), the number of followers gained by R1 is around 60–90 with the great-
est gains being made by R1 when R2 is neither too extreme ( R2 = 0 ) nor too central 
( R2 = 0.5 ) but when it has a value around 0.2. As R1 moves further away from the 
extremes and towards the centre, the gains made by R1 increase to around 90–120 
normal agents as it expands its influence, though this depends on R2 not moving too 
close to the centre. For example, at R1 = 0.7 and R2 = 0.2 , R1 gains around 110 fol-
lowers but at R2 = 0.5 , it gains none. The highest gains of 120+ followers are made 
by R1 as it approaches 0.5, as long as R2 is less than around 0.15.

The triangular shaded area arises in the top right as the zones of influence of 
R1 and R2 overlap resulting in neither group gaining any followers. For example, 
at � = 0.2 , R1 = 0.6 and R2 = 0.4 , R1 has a direct influence on all normal agents 
with opinions from 0.4 to 0.8 and R2 ’s direct influence is from 0.2 to 0.6. In the 
overlapping range (0.4–0.6), all the normal agents are influenced by both R1 and R2 
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simultaneously and the end result is that these agents converge to the midpoint of R1 
and R2 resulting in neither group attracting any followers. Convergence to the mid-
point assumes #R1 = #R2 , but it is easy to show that in general they will converge to 
a point, x∗ , that is a weighted combination of R1 and R2 , with the weighting depend-
ent on the respective sizes of the stubborn groups, #R1 and #R2 , as follows

From this line of reasoning, it follows that neither group will attract any follow-
ers when R1 − R2 < 𝜀 (where we assume that R1 > R2 ) or equivalently when 
1 − R1 + R2 > 1 − 𝜀 . Hence, when � = 0.2 we would expect no followers for either 
group above a line running from 1 − R1 = 0.3 , R2 = 0.5 to 1 − R1 = 0.5 , R2 = 0.3 
in Fig. 4a, which roughly corresponds to the triangular area. In actual fact, the tri-
angular area extends slightly below this line, indicating that even if the distance 
between the two stubborn groups is slightly greater than � , the normal agents lying 
in between them are still able to form a central group. This behaviour is illustrated 
in figure S3 in the supplementary material, where the results of two individual runs 
are presented.

(4)x∗ =
#R1 × R1 + #R2 × R2

#R1 + #R2

.

Fig. 4  The average number of normal agents who go to R
1
 as a function of 1 − R

1
 and R

2
 . As 1 − R

1
 and 

R
2
 increase the two groups become less extreme. Note that the results are not all on the same scale
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Note that there is quite a sharp transition in Fig. 4a between the region where 
group one attracts a lot of followers and the region in the top right corner where 
it attracts none. This is very relevant to group one’s strategy in terms of attracting 
followers. If R2 is low (below about 0.15), the best strategy for group one is to 
become less extreme since as 1 − R1 increases group one attracts more followers. 
However, if R2 is greater, this strategy is no longer valid in general, and if R2 is 
greater than 0.25 it can go seriously wrong. Although, group one can attract more 
followers by becoming slightly less extreme, if it moves too close to the centre, it 
can quickly move from maximizing its number of followers to gaining none at all.

Figure 4b shows the numbers of followers won over to R1 at � = 0.3 . At R2 = 0 , 
R1 steadily increases its followers from 100 at R1 = 1 to around 120 at R1 = 0.8 
and right up to around 180 followers at R1 = 0.5 . However, as R2 rises above 0.1, 
R1 is forced to move away from 0.5 to maximize follower numbers. Indeed, there 
is a much bigger area in which R1 fails to attract any followers at � = 0.3 compared 
to � = 0.2 because there are more scenarios in which the zones of influence of R1 
and R2 overlap. Following our earlier discussion, we would expect neither group 
to attract followers when 1 − R1 + R2 > 1 − 𝜀 = 0.7 . Hence we would expect no 
followers for either group above a line running from 1 − R1 = 0.2 , R2 = 0.5 to 

Fig. 5  The difference between the average number of normal agents who go to R
1
 and the average num-

ber who go to R
2
 as a function of 1 − R

1
 and R

2
 . Note that the results are not all on the same scale
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1 − R1 = 0.5 , R2 = 0.2 in Fig.  4b (see also Fig.  5b), which roughly corresponds 
to the triangular area, though as in Fig. 4a the actual area is slightly bigger than 
that. We also note that in the absence of stubborn groups, the standard HK model 
almost always gives consensus when � = 0.3 . Hence, there is a substantial area 
where the presence of the two groups prevents consensus from occurring.

Figure 4c and d show the numbers of followers won over to R1 at � = 0.4 and 
� = 0.5 respectively. At these confidence levels most strategies of R1 will fail to 
attract any followers, which can again be partly attributed to overlapping zones 
of influence. However, even in the absence of stubborn groups, the standard HK 
model always gives consensus when � = 0.4 and 0.5, with a single central group 
merging at a value close to 0.5. In most cases, the two stubborn groups are unable 
to prevent this from happening, except in confined regions where one of the stub-
born groups can attract most or all of the normal agents. However, typically if 
only one stubborn group had been present, it would have acquired all the normal 
agents as followers, so the presence of the second stubborn group helps restore 
the central consensus and so has a moderating effect on the society. Furthermore, 
although not shown here, there are some cases where neither stubborn group 
attracts followers, but they prevent a single central consensus from forming by 
causing it to be fragmented into several central groups which are close together. 
For example, this typically occurs when both R1 and R2 have extreme values ( R1 
close to 1 and R2 close to 0).

Figure 5 shows the difference between the average number of agents who go 
to R1 and the average number who go to R2 as a function of 1 “ R1 and R2 . These 
results correspond directly to those presented in Fig. 4 and enable us to identify 
when one group does better than the other in attracting followers. Note that all of 
the results presented are anti-symmetric: if R1 attracts more followers than R2 for 
a particular pair of values of 1 − R1 and R2 , then the result will be reversed if we 
swap the values of 1 − R1 and R2 . So far we have considered the number of fol-
lowers acquired by group one and the difference between the number acquired by 
group one and group two. However, rather than trying to maximize its number of 
followers, we could also think of group one trying to minimize its RMSD (figure 
S4, supplementary material).

In summary, we see from Figs.  4 and  5 that overall, high confidence does 
not help either stubborn agent group in the current case where #R1 = #R2 = 40 . 
As � increases from 0.2 to 0.5, the stubborn groups’ scope to attract followers 
is reduced considerably, with neither group acquiring any followers for most of 
the space when � = 0.5 . However, where they do acquire followers, one group 
typically acquires all of them. When � = 0.2 or 0.3, group one’s best strategy for 
attracting followers will be to become less extreme provided group two is suf-
ficiently extreme. However, if group two is less extreme, group one will gain no 
followers if it moves too close to the centre. When � = 0.4 or 0.5, group one’s 
best option is to move away from the extreme position at 1 and position itself 
between 0.6 and 0.7 when � = 0.4 or between 0.8 and 0.9 when � = 0.5 . However, 
its success depends critically on R2 being below about 0.15 when � = 0.4 or about 
0.05 when � = 0.5.
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4  Selecting Optimal Strategies

In the previous section, we changed the size of the stubborn groups for particu-
lar opinions of the two groups (i.e. the extreme values of zero and one) and then 
changed their extremeness for particular sizes of the two groups (40 stubborn 
agents). This enabled us to identify the optimal strategy for a group by changing 
either its size or its extremeness, but here we investigate how to select the optimal 
strategy when it has the flexibility to vary both parameters. In particular, we con-
sider fixed values for the size of group two, #R2 , and the opinion of group two, R2 , 
and then obtain results for different values of #R1 and R1 to determine group one’s 
optimal strategy.

We consider four pairs of values for ( #R2 , R2 ): (40,0.1), (160,0.1), (40,0.4) and 
(160,0.4). Figure 6 presents results for the number of followers acquired by group 
one as #R1 and R1 are varied for each of these four pairs in (a), (b), (c) and (d) 
respectively. When R2 = 0.1 in (a) and (b) we find that the optimal strategy for group 
one is to have a small group size (15–20) and be non-extreme (close to the most cen-
tral value of 1 − R1 = 0.49 ). This is true irrespective of whether group two is small 

Fig. 6  The average number of normal agents who go to R
1
 as a function of the number of agents #R

1
 in 

group one and the opinion R
1
 of group one for the different values of R

2
 and #R

2
 specified. Note that the 

results are not all on the same scale
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( #R2 = 40 ) or large ( #R2 = 160 ) and in both cases group one is able to attract about 
135–140 followers. Hence when R2 = 0.1 , group one’s strategy does not appear 
to depend on the size of group two. The reason for the small group size is based 
on a point noted earlier that if group one is too large it can draw in its immediate 
neighbours too quickly, so that they fail to bring other normal agents along with 
them. This is particularly relevant when group one is close to the centre because 
it allows normal agents with opinions above 0.7 or so to form their own separate 
group. However, if group one is too small it can result in group two attracting some 
more followers.

Now consider Fig. 6c where R2 = 0.4 and #R2 = 40 . Here group one’s optimal 
strategy is to have a large group size (close to the largest value of 200) and be rel-
atively non-extreme ( 1 − R1 around 0.35). Notice, however, that this point is very 
close to a boundary so that if group one gets too close to the centre ( 1 − R1 ≥ 0.39 ) 
then it will attract no followers. This is due to the phenomenon we discussed in the 
context of Fig. 4a whereby if the difference between the two stubborn groups is very 
similar to the confidence level, then a group of normal agents will converge to their 
midpoint. Suppose that group one had a fixed size of 40 (as was the case in Fig. 4a) 
so that it could only improve its performance by selecting its opinion. In that case it 
could only attract a maximum of about 90 followers. However, by also adjusting its 
group size to around 200 as is the case here, it can attract around 110 followers.

When we consider Fig. 6d where R2 = 0.4 and #R2 = 160 , group one’s optimal 
strategy is again to have a large size (200), but this time it needs to be a bit more 
extreme (around 1 − R1 = 0.24 ). As in (c), this point is close to a boundary. So when 
R2 = 0.4 , group one’s optimal strategy is to increase its group size to around 200 
irrespective of the size of group two and to adjust its opinion to be close to the rel-
evant boundary.

Why are the optimal strategies so different for R2 = 0.1 in (a) and (b), where 
group one should have a small group size and non-extreme opinion (close to 0.5), 
in comparison to those for R2 = 0.4 in (c) and (d), where it should have large group 
size and somewhat more extreme value? In effect, we have already addressed the 
extremeness question. When R2 = 0.4 neither group will acquire any followers if 
group one moves too close to 0.5. So it is beneficial for group one not to be too 
extreme, but it must not get too close to the centre either. What about the large 
group size? When R2 = 0.1 this is a disadvantage, so why is it an advantage when 
R2 = 0.4 ? Because the neighbourhoods of group one and group two overlap, there 
will be normal agents who are directly influenced by both groups. Hence, if group 
one is larger it will exert greater influence on these normal agents. Furthermore, 
because group one is not too close to the centre (unlike the case where R2 = 0.1 ) it 
can still draw in normal agents who have high opinion values. This combination of 
factors favours a large group size when R2 = 0.4.

So far we have assumed that group one’s goal is to maximize the number of fol-
lowers it acquires, but Fig. 7 presents corresponding results if group one is trying to 
maximize the difference between its followers and the followers of group two. From 
(a) and (b), we can see that when R2 = 0.1 , group one’s strategy remains unchanged: 
small group size and non-extreme. In (c) where R2 = 0.4 and #R2 = 40 , the optimal 
strategy is again very close to its position in Fig. 6c. However, in (d) where R2 = 0.4 



1 3

Social Influence of Competing Groups and Leaders in Opinion…

and #R2 = 160 , things are very different. Now group one’s optimal strategy is to 
select any point above a boundary, which corresponds to the region where group 
one attracts no followers. The reason for this surprising result is that by adjusting its 
size and opinion, group one is unable to attract more followers than group two so all 
it can do is aim for parity, which is achieved by ensuring that neither group attracts 
any followers.

Figure  8 presents corresponding results for a third optimization strategy for 
group one. This time the goal is to optimize the extent to which normal agents 
converge to positions closer to group one than to group two as measured by the 
difference between the RMSD for the two groups. We will refer to this goal as 
maximizing the group’s social influence since it is concerned with the influence 
on the opinions within the society irrespective of whether the group acquires any 
followers as defined in Sect. 2. Given this goal, the optimal strategy for group one 
when R2 = 0.4 in figures (a) and (b) is to have a large group size (close to 200) 
and be non-extreme ( R1 = 0.51 ). Note the contrast in terms of group size with the 
previous two optimization goals. How can this difference be explained? Recall 
that the reason why a large group size for group one did not enable it to attract a 
lot of followers was because it drew in followers too quickly allowing a separate 

Fig. 7  As for Fig. 6, but now the results are for the difference between the average number of normal 
agents who go to R

1
 and the average number who go to R

2
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group of normal agents to form with an opinion greater than 0.7. However, now 
this third group becomes an advantage for group one because although they 
reduce its RMSD score since they are some distance away from it ( R1 = 0.51 ), 
they are even further away from group two ( R2 = 0.4 ) and so reduce its RMSD 
score even further.

In Fig. 8c where R2 = 0.4 and #R2 = 40 , the optimal strategy is to have a large 
group size (200) and a relatively non-extreme opinion (around 1 − R1 = 0.38 ), 
which is just above the boundary mentioned earlier and would result in group 
one acquiring very few followers. It might seem surprising that group one has 
no followers in the optimal case but results from individual runs (supplementary 
figure S5) show that all of the normal agents form a consensus group very close 
to group one, although not close enough to be counted as followers. In (d) where 
R2 = 0.4 and #R2 = 160 , the optimal strategy is also to have a large group size 
(200), but the opinion should be closer to the centre (around 1 − R1 = 0.46).

These results are summarized qualitatively in Table 1 along with correspond-
ing results for R1 = 0.25 and all of the results repeated again but with � = 0.4 . 
Results for the optimal values of R1 are characterized as follows: Central (C) if 
R1 ≤ 0.6 , Moderate (M) if 0.6 < R1 < 0.9 , and Extreme (E) if R1 ≥ 0.9 . Similarly, 

Fig. 8  As for Fig. 6, but now the results are for the difference between the RMSD for group one and the 
RMSD for group two
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optimal values of #R1 are characterized as: Small (S) if #R1 ≤ 40 , Medium (M) if 
40 < #R1 < 160 , and Large (L) if #R1 ≥ 160 . If there is a range of optimal values 
spanning different regions, all relevant regions are noted. For example, we saw 
in Fig. 7d that if � = 0.2 , R2 = 0.4 and #R2 = 160 , then R1 has optimal values of 
R1 for Goal 2 (maximizing the difference between the followers of group one and 
group two) in both the Central and Moderate regions, while #R1 has optimal val-
ues in the Small, Medium and Large group sizes, so all of these are specified in 
the relevant line in Table 1.

These results show that the optimal strategy varies a lot depending on the con-
fidence, characteristics of group two, and the goal. We note several general points. 
While it might be expected that having a central rather than extreme opinion would 
be most beneficial (see Chen et al. 2016), it turns out that this is only true in certain 
cases. In particular, it applies in almost all cases when confidence is low ( � = 0.2 ), 
and group two is either extreme ( R2 = 0.1 ) or R2 = 0.25 . In other cases group one’s 
optimal strategy is usually to be neither too extreme nor too central, but have a mod-
erate opinion. In our earlier discussion, we saw that a reason for this is that if group 
one is too central this can result in its acquiring no followers. However, in some 
cases, having an extreme opinion can be the optimal strategy. For example, when 
confidence is high ( � = 0.4 ) and group two is central R2 = 0.4 , having an extreme 
opinion can be to group one’s advantage. Given the central position of group two 
and the high confidence value, the only way for group one to attract followers is to 
move to an extreme opinion.

We have already seen that a small group size can be the optimal strategy in some 
cases, but in the case of Goal 1 (maximizing followers), this only applies when con-
fidence is low ( � = 0.2 and group two is extreme ( R2 = 0.1 ). Small group size is not 
optimal for Goal 3 (maximizing social influence) in any of the cases considered. Our 
discussion of Fig. 8 explains why this is the case. Note also from Table 1 that for 

Table 1  Optimal strategies for 
group one’s opinion, R

1
 , and 

size, #R
1
 , for various values 

of � , R
2
 and #R

2
 given three 

distinct goals: maximizing 
the number of followers 
(Goal 1); maximizing the 
difference between the number 
of followers of group one and 
group two (Goal 2); maximum 
social influence—the difference 
between the RMSD score of 
group one and group two (Goal 
3)

Values for R
1
 are Extreme (E), Moderate (M) or Central (C), while 

#R
1
 has values Small (S), Medium (M) or Large (L)

� R
2

#R
2

Goal 1 Goal 2 Goal 3

R
1

#R
1

R
1

#R
1

R
1

#R
1

0.2 0.1 40 C S C S C L
0.2 0.1 160 C S C S C L
0.2 0.25 40 C M C M C M
0.2 0.25 160 M L C L C L
0.2 0.4 40 M L M L M L
0.2 0.4 160 M L C, M S, M, L C L
0.4 0.1 40 M, C M, L M, C M, L M M
0.4 0.1 160 M L M L C L
0.4 0.25 40 M M, L M M, L M M
0.4 0.25 160 E M E, M, C S, M, L M L
0.4 0.4 40 E, M M, L E, M M, L E M
0.4 0.4 160 E M E, M, C S, M, L M L
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Goal 3 the optimal strategy for group one is always to have a large group size when-
ever group two is large. As we have already noted, a possible disadvantage of having 
a large group size is that it can draw in followers too quickly, but this need not be a 
problem when Goal 3 is in mind as discussed in the context of Fig. 8c. However, in 
cases where the two stubborn groups have overlapping neighbourhoods so that both 
have the same direct influence over some normal agents, it is important to have a 
larger group size to exert a greater influence.

5  Discussion

We have explored opinion dynamics mainly in the context of competing stubborn 
agent groups. However, our results may be interpreted in a number of different ways. 
We will briefly consider our results in terms of opinion leaders, truth and campaigns.

It is not surprising that stubborn opinion leaders or groups can lead to polariza-
tion of the society. However, our findings also show the potential power of opin-
ion leaders who are fixed in their views to moderate extremism. For example, two 
opposing opinion leaders can bring about a central consensus that would have been 
unlikely to occur if neither had been present. Also, even in cases where a central 
consensus would have occurred in the absence of any stubborn opinion leaders or 
groups, suppose that in fact there is a single stubborn group that acquires all the nor-
mal agents as followers. We find cases of this kind where a suitable opinion leader 
would bring about a central consensus. In these types of scenarios, opinion leaders 
who are not too extreme help moderate extremists. Interestingly, we have even found 
cases where an opinion leader with extreme views could also have a moderating 
effect. All of the cases just noted occur in scenarios where the opinion leader gains 
no followers, but nevertheless exerts a powerful social influence.

Our findings have shown that increasing the size of a stubborn group, especially 
where there is a desire to maintain a certain level of extremeness, may lead to a 
worse outcome for the group. This carries over straightforwardly to opinion leaders: 
a greater reputation, so that more influence is exerted on those who are close to the 
leader’s opinion, can result in fewer followers.

As noted in Sect. 2, Hegselmann and Krause (2015) discuss an interpretation of 
their model in terms of truth. Given this interpretation, our simulations can be seen 
as modelling a scenario where group one represents the truth and group two repre-
sents an opposing opinion, which could be a social media source of fake news, for 
example. As such, our simulations enable us to determine the extent to which social 
learning would be affected by this alternative source. Our results show that if the 
confidence of the society is high, then successful social learning could take place 
with everyone in society ending up finding the truth provided the source of fake 
news does not have too much influence. Alternatively, everyone could end up with 
the false belief of the fake news source, but this can be avoided provided the truth 
has sufficient influence.

The results in Sect. 3.2 can be interpreted as exploring scenarios where the truth 
does not lie at the edge of the opinion space. The results again suggest that success-
ful social learning could take place provided the source of fake news is extreme and 
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the value of truth itself is neither too extreme nor too central. Otherwise no-one will 
end up finding the truth and in most cases they will end up at a position intermediate 
between truth and fake news. For lower values of confidence, some people can find 
the truth even if the fake news is not so extreme, though there can also be a danger 
of no-one finding the truth.

The handling of a public health campaign is another possible interpretation of our 
model. In this interpretation, the size of the group could represent the intensity of 
the campaign, while the opinion of the stubborn group would now represent where 
the campaign positions itself on the spectrum of opinion. Our findings could be use-
ful to help identify strategies for campaign organizers to achieve maximum social 
influence. For example, if the confidence of a society is low (people are resistant to 
change) on a given issue, and the campaign is opposing an extreme position that has 
a lot of influence, our results suggest that the campaign organizers should position 
themselves in the centre of the spectrum of opinion and organize a high-intensity 
campaign. On the other hand, if the society is more open to persuasion on an issue 
and the opposing message is not a dominant one, the campaign organizers will max-
imise influence by delivering a lower-profile but more extreme message.

6  Conclusions

We have investigated the influence of competing stubborn agent groups on the opin-
ion dynamics of normal agents through the use of computer simulations based on 
the HK model. We explore the parameter space in considerable detail to investigate 
the impact of varying both the extremeness and size of competing stubborn agent 
groups, identifying optimal strategies for maximising follower numbers and social 
influence.

Intuitively, it might be expected that groups which are large and central would be 
more successful, but our results show that this is often not the case. We find some 
scenarios where a small group size or extreme opinion can be part of the optimal 
strategy for a stubborn group. There are many cases where having neither too small 
nor too large a group size can lead to the best outcome for a group. Similarly, there 
are many cases where having an opinion that is neither too central nor too extreme 
can lead to the best outcome for a group. It might also be thought that compet-
ing stubborn groups would lead to a more polarized society, but that is not always 
the case. We have seen that competing groups can bring about a central consen-
sus among the normal agents (with neither stubborn group acquiring any followers) 
that would be unlikely to occur in the absence of the stubborn groups. We also find 
cases where neither stubborn group acquires any followers, but if only one of them 
had been present, it would have acquired all the normal agents. In such cases, the 
introduction of the second stubborn group has a moderating influence on the society. 
We have also identified cases where small changes in the sizes of the two stubborn 
groups can bring about a sharp transition from one group acquiring all the followers 
to the other group’s doing so.

We acknowledge that any conclusions are tentative. Our model depends on a 
number of simplifying assumptions and so there is scope for further developments in 
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several respects. For example, as mentioned earlier, heterogeneous confidence levels 
and degrees of stubbornness could be introduced, though this would make it more 
difficult to explore the full parameter space. It is clear that future research in this 
area would also benefit from connections with other disciplines such as psychology 
and political science as well as from further empirical studies to establish more fully 
which models/model features are most appropriate for a given context (Sobkowicz 
2009; Takács et al. 2016). In addition to these suggestions for extending the work, 
we hope that the framework adopted here, which involves systematic investigation 
of the parameter space to identify non-trivial dynamics, will prove useful in other 
studies of the social influence of groups and opinion leaders.
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