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Accessibility is an important area of Human Computer Interaction (HCI) and regulations within many 
countries mandate that broadcast media content be accessible to all. Currently, most subtitles for 
offline and live broadcasts are produced by people. However, subtitling methods employing re-
speaking with Automatic Speech Recognition (ASR) technology are increasingly replacing manual 
methods. We discuss here the subtitling component of BLISS (Broadcast Language Identification & 
Subtitling System), an ASR system for automated subtitling and broadcast monitoring built using the 
Kaldi ASR Toolkit. The BLISS Gaussian Mixture Model (GMM)/Hidden Markov Model (HMM) acoustic 
model has been trained with ~960 hours of  read speech, and language model with ~900k words 
combined with a pronunciation dictionary of 200k words from the LibriSpeech corpus. In tests with 
~5 hours of unseen clean speech test data with little background noise and seen accents BLISS gives 
recognition accuracy of 91.87% based on the WER (Word Error Rate) metric.  For ~5 hours of unseen 
challenge speech test data, with higher-WER speakers, BLISS’s accuracy reduces to 75.91%.  A 
BLISS Deep Learning Neural Network (DNN) acoustic model has also been trained with ~100 hours of 
read speech data.  It’s accuracy for ~5 hours of unseen clean and unseen challenge speech test data 
is 92.88% and 77.27% respectively based on WER.  Future work includes training the DNN model with 
~960 hours of read speech data using CUDA GPUs and also incorporating algorithms for background 
noise reduction. The BLISS core engine is also intended as a Language Identification system for 
broadcast monitoring (BLIS).  This paper focuses on its Subtitling application (BLSS).        

Automatic Speech Recognition (ASR), Accent, Automated Subtitling, Background Noise, BLISS, Human-Computer 
Interaction, Kaldi, LibriSpeech 

1. INTRODUCTION 

An important aspect of Human Computer Interaction 
(HCI) is accessibility, involving production of text 
from speech (Subtitles/Captions) (Romero-Fresco, 
2014) for those who cannot hear and audio from 
video (Audio Description) (Fryer, 2016) for those 
who cannot see.  Manual production of time-aligned 
transcriptions of audio-visual content requires 
considerable effort. It is prone to manual typing 
errors, slow for real-time delivery and human 
subtitlers can be costly (Alvarez et al., 2016).  For 
live subtitles, re-speaking techniques are combined 
with off-the-shelf Automatic Speech Recognition 
(ASR) engines to produce subtitles.  With re-
speaking, the audio content is re-spoken by a 
professional speaker. This results in speech with 
reduced accents and noise which can be processed 
by ASR engines with an acceptable accuracy for live 
subtitling.  However, re-speaking causes delays in 
real-time subtitling tasks and requires the re-speaker 

to dictate the audio content in a speaker 
independent manner.  

Improving the quality of subtitles for people with 
audio and visual impairments is an important focus 
for the UK's communications regulator, Ofcom 
(Ofcom, 2013). Broadcasters are required to 
measure and improve the quality of live broadcasts 
so that subtitles are synchronised with video and 
speech in addition to achieving high accuracy rates. 
In terms of broadcast monitoring, broadcasters must 
also ensure that correct language playout occurs in 
different geographic regions.  

Advanced ASR technology can help solve the 
problems of subtitle delay during live broadcasts in 
addition to improving the accuracy obtained. We 
discuss here a platform called BLISS (Broadcast 
Language Identification & Subtitling System) for 
performing language identification and subtitling.  
The core BLISS technology is based on advanced 
ASR with the use of Gaussian Mixture Models 
(GMMs), Hidden Markov Models (HMMs), and Deep 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/355025863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.wang@ulster.ac.uk
mailto:j.wang@ulster.ac.uk
mailto:James.Connolly@lyit.ie
mailto:p.mckevitt@ulster.ac.uk


Broadcast Language Identification & Subtitling System (BLISS) 
Wang ● Muñoz Esquivel ● Connolly ● Curran ● Mc Kevitt  

2 

Neural Networks (DNNs) implemented within the 
Kaldi Toolkit platform (Kaldi, 2018). BLISS is tailored 
to the traditional and online broadcast media and 
video production industries.  The BLISS core engine 
is also intended as a Language Identification system 
for broadcast monitoring (BLIS) (Connolly et al., 
2014), a software application which identifies the 
language of the broadcast and alerts and even 
corrects if it is the wrong language for a particular 
region.  In this paper we focus on its Subtitling 
application (BLSS).   

Key problems BLISS addresses include: 

a) Latency and hence speed of transcription 
from spoken word to text output.  

b) Accuracy and compliance performance to 
mitigate reputation damage and financial 
penalties. 

c) Reduction of costs through automation of 
human-based manual transcription. 

In this paper section 2 gives a brief review of 
recently developed ASR technology.  In Section 3, 
the design, architecture and implementation of 
BLISS is discussed.  Section 4 discusses 
experimental results from testing BLISS and the 
impact of new unseen accents and noise. Section 5 
concludes and discusses future work. 

2. BACKGROUND & RELATED WORK  

ASR is concerned with developing technologies that 
enable the recognition and translation of spoken 
language into text by computerised systems.  ASR is 
also referred to as automatic Speech-To-Text (STT).  
In recent years, ASR technology has made 
remarkable progress, but the design of ASR 
systems still needs to pay careful attention to 
problems such as accents and noise. 

Most ASR systems rely on phoneme recognition and 
word decoding.  Classification algorithms (e.g., 
GMMs) are used on highly specialised features such 
as Mel Frequency Cepstral Coefficients (MFCCs) or 
Perceptual Linear Predictive coefficients (PLPs) so 
that a distribution of possible phonemes for each 
frame can be obtained (Kaur et al., 2016; 
Karpagavalli & Chandra, 2016). A HMM with a pre-
trained language model is used to find the most 
likely sequence of phonemes that can be mapped to 
the output words during the decoding phase. HMMs 
are often utilised to handle the temporal variability of 
speech, and have been popular because they are 
flexible, versatile, and have a consistent statistical 
framework (Mohamed et al., 2009, 2012; Stevenson, 
2016). 

An alternative to GMMs evaluating performance is a 
feed-forward neural network, which takes several 
frames of coefficients as input and produces 
posterior probabilities over HMM states as output.  

DNNs have proven successful for acoustic modelling 
in speech recognition especially for large-scale tasks 
with examples being DNN-HMM hybrid systems 
(Hinton et al., 2006, 2012; Hinton & Salakhutdinov, 
2006; Woodland et al., 2015), CNN-HMM hybrid 
systems (Sercu & Goel, 2016) and end-to-end ASR 
systems (Song & Cai, 2015; Collobert et al., 2016; 
Liptchinsky et al., 2017). 

2.1 DNN-HMM hybrid systems  

By taking advantage of DNN discriminative power, 
several successful hybrid DNN-HMM ASR systems 
have been developed for phoneme recognition 
(Hinton et al., 2012, Pan et al., 2012).  DNNs have 
been used for acoustic model likelihood 
computation. Here DNNs outperformed traditional 
GMMs in predicting emission probabilities of HMM 
states representing phonemes in a hybrid model 
setup. DNNs have given promising results for large 
vocabulary continuous speech recognition (LVCSR) 
tasks, showing significant gains over GMM/HMM 
systems on a wide variety of small and large 
vocabulary tasks (Seide et al., 2011; Dahl et al., 
2011, 2012, 2013; Li et al., 2013; Jaitly et al., 2012; 
Sainath et al., 2013; Zhang & Woodland, 2015).  

A trained DNN output is not the end result of an ASR 
system, but instead supplies a HMM with the best 
acoustic modelling information to predict the target 
HMM states. The advantage of DNNs over GMMs in 
ASR is their ability to predict many thousands of tied 
triphone HMM states.  This creates a large number 
of HMM classes and also inherently adds to the 
amount of training data and time needed to initialise 
a DNN­HMM system. For the 2015 Multi-Genre 
Broadcast (MGB) challenge, Woodland et al. (2015) 
outline a speech to text model containing a 
segmentation system based on DNNs. The model 
uses HTK 3.5 for building the DNN-based hybrid and 
tandem acoustic model in a joint decoding 
framework. The final system had the lowest (23.7%) 
Word Error Rate (WER) metric error rate for speech-
to-text transcription on the MGB evaluation data 
(Bell et al., 2015).   

2.2 CNN-HMM hybrid systems   

Convolutional Neural Networks (CNNs) can be used 
to model correlation between spatial and temporal 
signals, and reduce spectral variance in acoustic 
features for ASR. Hybrid ASR systems incorporating 
CNNs with HMMs/GMMs have achieved promising 
results with various benchmarks (Abdel-Hamid et al., 
2013; Sainath et al., 2013). CNNs are a more 
effective model for speech compared to extensively 
used fully-connected acoustic DNN models.  The 
number of convolutional layers, the optimal number 
of hidden units along with the best pooling strategy, 
and the best input feature type for CNNs should all 
be considered.  Comparing  CNNs to DNNs and 
GMMs show that CNNs can have a 13-30%  
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Figure 1: Architecture of BLISS  

improvement over GMMs, and a 4-12% 
improvement over DNNs, on a variety of LVCSR 
tasks such as the 400 hours Broadcast News and 
300 hours Switchboard tasks (Sercu & Goel, 2016). 

2.3 End-to-End systems 

Hybrid systems have been developed for phoneme 
recognition and decoding by HMMs.  Recurrent 
neural networks (RNNs) can handle recognition and 
decoding simultaneously.  Connectionist Temporal 
Classification (CTC) with RNNs (Zhang & Pezeshki, 
2016) for labelling unsegmented sequences makes 
it feasible to train an 'end-to-end' ASR system 
instead of using hybrid settings. However, RNNs are 
computationally expensive and sometimes difficult to 
train. Inspired by the advantages of both CNNs and 
the CTC approach, an end-to-end ASR model was 
developed for sequence labelling, by combining 
hierarchical CNNs with CTC directly without 
recurrent connections.  In evaluating the approach in 
the TIMIT phoneme recognition task, this model is 
not only computationally efficient, but also 
competitive with existing baseline systems. 
Moreover, CNNs have the capability to model 
temporal correlations with appropriate context 
information.  LVCSR systems perform differently in 
terms of accuracy depending on the ASR task.   

Clean read speech data gives better results than 
broadcast speech data.  There are several subtitling 
tools on the market that enable the conversion of 
audio into text, e.g., the SAVAS project automatic 
live and batch subtitling application for several 
European languages such as Basque & Portugese 
(Alvarez et al., 2016).  However, we still do not have 
human-level ASR systems for the automated 
subtitling task (Maxwell, 2018).   

3. BLISS DESIGN & IMPLEMENTATION  

Here we discuss the Design and Implementation of 
BLISS in terms of requirements analysis, 

architecture, and implementation with the Kaldi 
Toolkit and LibriSpeech dataset for model training 
and testing. 

3.1 Customer requirements analysis 

We have conducted requirements analysis and 
customer conversations with 25 Vendors and End 
Users within the 2017 ICURe NI LIC Lean Launch 
programme hosted by the SETsquared Partnership, 
Ulster University and Queen’s University Belfast.  
Benchmarking of subtitle quality requires at least 
95% accuracy in terms of WER or NER (Number 
Edition Recognition) metrics (Alvarez et al., 2016), 
with some customers requiring 100%. Vendors and 
End Users quote subtitler charging costs of e.g. 
~£3.50/min., and sales pricing of e.g. ~£550/hr. with 
differences depending on nature of media content.   
Most Vendors access an external bank of 
outsourced subtitlers with internal staff quality 
checking and packaging.  Vendors are currently 
investigating solutions that use cutting-edge ASR 
technology to automatically transcribe speech and 
format it for subtitling and captioning purposes, e.g. 
Red Bee Media (Maxwell, 2018).  Any ASR system 
that reduces the cost, time and penalties for 
subtitling (Ofcom, 2013) would be of huge benefit to 
the subtitling industry. 

3.2 BLISS architecture design 

Figure 1 illustrates the modules in BLISS.  Raw 
speech is converted to sequences of feature vectors 
using classical signal processing methods, e.g. 
MFCCs.  The data X is a sequence of frames of 
audio features x1, x2…xt. Y represents text 
sequences.  Using the language models, a 
sequence of words is produced.  In the 
pronunciation dictionary for each word there is a 
pronunciation model for how this word is spoken.  
The pronunciation model with associated 
probabilities is written as a sequence of phonemes 
(or pronunciation tokens) which are basic unit of 

Pronunciation 
models 

(Dictionary) 

Speech  
Pre-processing 

Acoustic 
models 

Sequences of 
features 
vectors 

n 

X=x1 x2…xt 

The: dh iy 

Dog: d oh g 

Sits: s i t s 

In: ih n 

A: ah 

Car: k aa r  

DNN-HMMs 

Gaussian Mixture Models 

Y=“the dog sits in a car” 

Y*=arg max(p(X|Y)p(X) 
           

Classical signal processing e.g. Mel 
Frequency Cepstral Coefficient (MFCC) 

Language 
models 

(Grammar) 



Broadcast Language Identification & Subtitling System (BLISS) 
Wang ● Muñoz Esquivel ● Connolly ● Curran ● Mc Kevitt  

4 

sound, and then converted into sequences of text 
with corresponding pronunciation tokens.  The 
models are fed into an acoustic model to test token 
sounds.  Acoustic models are typically built using 
three state left-to-right GMMs which output frames of 
data.  When the acoustic model is built, recognition 
can be performed by conducting inference on data 
received. For example, when some waveforms are 
received and their features (X) are extracted, the 
acoustic model deciphers the sequence of Y’s that 
would cause this sequence of X with the highest 
probability. Traditionally, each of the components 
shown in Figure 1 were completed with traditional 
statistical methods (e.g., HMMs) but neural networks 
have recently proven superior. 

3.3 Implementation of BLISS  

Here we discuss the implementation of BLISS in 
terms of LibriSpeech datasets for training and 
testing, Language Model (LM) and Acoustic Model. 

3.3.1. Training and testing datasets  
BLISS was trained and tested on the LibriSpeech

1
 

dataset, and in addition a USA Alabama broadcast 
News dataset was used for testing. Table 1 gives 
details on the LibriSpeech datasets.  

   Table 1: LibriSpeech dataset (Panayotov et al., 2015) 

Data Subset Hours Mins./ 
Spkr. 

Gender 

F M 

 train_100c 100.6 25 125 126 
Train train_360c 363.6 25 439 482 

 train_500h 496.7 30 564 602 

Test 
test_c 5.4 8 20 20 

test_h 5.1 10 17 16 

 

For example, the train_100c dataset includes ~100 
hours of clean speech data, 28,539 utterances with 
990,101 words that are spoken by 125 female and 
126 male speakers. Each speaker spoke for 25 
minutes.  Speakers in the LibriSpeech corpus were 
ranked according to transcript WER and were 
divided roughly in the middle.  The lower-WER 
speakers were designated as, clean (c), and the 
higher-WER speakers were designated as, 
challenge (h).  The test_c dataset includes ~5.4 
hours of unseen clean test data, 2,620 utterances 
with 52,576 words that are spoken by 20 females 
and 20 males. Each speaker spoke for 8 minutes. 
The test_h dataset includes ~5.1 hours of unseen 
challenge test data, 2,939 utterances with 52,343 
words that are spoken by 17 females and 16 
males. Each speaker spoke for 10 minutes.   

 

                                                           
1 The LibriSpeech American accent English dataset can 

be downloaded from: http://www.openslr.org/12/. 

3.3.2. BLISS Language Model  (LM)
2
  

The full, non-pruned 3-gram LM was trained using 
the most frequent 200k word vocabulary from 
14,500 public domain books in which about 803 
million tokens and 900k unique words were 
selected (Panayotov et al., 2015). The 
pronunciation lexicon includes a 206,510 word 
pronunciation dictionary as some words have more 
than one pronunciation.   

3.3.3. BLISS Acoustic Models   
train_100c (~29k utterances) and data subsets (2k, 
5k and 10k) were used to train BLISS early-stage 
acoustic models.  For the monophone stages of 
acoustic model development the shortest utterances 
were selected to facilitate data alignment from a flat 
start.  The 5k, 10k, train_100c and the entire about 
960 hours training subset utterances were 
incrementally aligned using preceding built models.  
Model tri5b is a Speaker Adapted Training (SAT) 
model that was built on Feature space Maximum 
Likelihood Linear Regression (FMLLR)-adapted 
features on the ~960 hours mixed data. 

4. EXPERIMENTAL RESULTS 

The BLISS tri5b model was tested on both the 
unseen clean (test_c) and challenge (test_h) test 
datasets listed in Table 1 and it gave WER results 
of 8.13% and 24.09% respectively. The USA 
Alabama News data was used to test background 
noise and accent effects, e.g. AN2088: “there was 
that survey which said that the united states wasn't 
going to use nukes to help south korea”, with all 
words in the pronunciation dictionary except 
“nukes”.     

Figure 2 shows the performance of tri5b in terms of 
WER results without and with unseen accent, noise 
and music on the unseen USA Alabama News 
audio utterance AN2088 using the full, non-pruned 
3-gram BLISS LM.  test_c, test_h and AN2088 are 
all unseen during training.  However, although the 
training data has audio data with accents found in 
test_c and test_h, accents from the USA Alabama 
news English audio data are unseen during tri5b 
model training. BLISS performance on USA 
Alabama News data with new unseen accents, 
without  or with white noise and music gives WER 
results of 52.63%, 57.89% and 94.74% 
respectively.   Figure 2 shows background noise 
and music affect performance, with music having a 
greater effect than noise.  

A BLISS DNN model trained with the BLISS 
train_100c acoustic model using the setup 
discussed in Povey et al. (2015) was compared to 
the BLISS tri4b model also built using train_100c. 
Results show the BLISS DNN model achieves better 

                                                           
2 The LibriSpeech LM can be downloaded from: 

http://www.openslr.org/11/. 

http://www.openslr.org/12/
http://www.openslr.org/11/
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performance than the BLISS tri4b model using the 
same volume of acoustic training data (100 hours) 
with the full, non-pruned 3-gram LM.  WER for the 
BLISS DNN model decreases to 7.12% from that 
using the BLISS tri4b model (9.74%) for test_c clean 
audio data.  WER for the DNN model decreases to  
22.73% from that using BLISS  tri4b model (32.93%) 
for test_h challenge audio data. 

 

Figure 2: Effect of unseen accents, white noise and 
background music on WER 

5. CONCLUSION & FUTURE WORK  

In this paper we discussed the design and 
implementation of a software platform  called BLISS 
(Broadcast Language Identification & Subtitling 
System) for performing subtitling (BLSS) and 
language identification (BLIS) within the broadcast 
entertainment industry, with a focus on subtitling.   
BLISS is based on customer requirements analysis 
conducted with more than 25 Vendors and End 
Users. The LibriSpeech USA English audio book 
read speech and USA Alabama broadcast News 
datasets were used to build and test the BLISS 
acoustic models using the Kaldi ASR Toolkit.  BLISS 
gives promising WER metric results of 8.13% and 
24.09% respectively on ~5 hours of unseen test 
clean (test_c) and unseen test challenge (test_h) 
audio data subsets from the LibriSpeech corpus.  
BLISS performance on USA Alabama broadcast 
News data with new unseen accents gives 
WER results of 52.63%.  Our experiments 
demonstrate that speech with new unseen accents, 
background noise and music degrade BLISS model 
performance, with music degrading more than white 
noise. The BLISS DNN model performs better than 
the BLISS GMM/HMM tri4b model giving 
WER results of 7.12% (over 9.74%) with test_c, and 
22.73% (over 32.93%) with test_h. Future work 
includes developing further BLISS DNNs models 
and methods for noise removal. 

6. ACKNOWLEDGEMENTS   

BLISS R&D has been funded by Invest NI Proof of 
Concept (PoC) awards PoC-607 (BLISS) & PoC-
318 (Song Form Intelligence) & NI LIC ICURe 
travel funds. We would like to thank Paul 

Malcolmson of Invest NI; Fergus Begley & Dr. John 
Macrae of Ulster University Office of Innovation; 
Alan Scrase & Don Spalinger  from SETsquared; 
BLISS Mentors Stephen Craig, Ben Dair, Andrew 
Lambourne, Dr. Pablo Romero-Fresco & Mark 
Caldwell; MC+P Consulting, Prof. Mike McTear & 
Dr. Arantza del Pozo for Market Assessment & Dr. 
Junxiu Liu & Mike McCool for technical support.   

7. REFERENCES 

 Abdel-Hamid, O., Deng, L. & Yu, D. (2013).  Exploring 
convolutional neural network structures and optimization for 
speech recognition.  Interspeech, ISCA, Lyon, France, 3366-
3370. 

Alvarez, A., Mendes, C., Raffaelli, M., Luıs, T., Paulo, S., 
Piccinini, N., Arzelus, H., Neto, J., Aliprandi, C. & del Pozo, 
A. (2016).  Automating live and batch subtitling of multimedia 
contents for several European languages.  Multimed. Tools 
Appl., Vol. 75, 10823–10853. 

Bell, P., Gales, MJF., Hain, T., Kilgour, J., Lanchantin, P., Liu, 
X., McParland, A., Renals, S., Saz, O., Wester, M. & 
Woodland, PC. (2015).  The MGB challenge: Evaluating 
multi-genre broadcast media recognition.  In Proc. of IEEE 
Workshop on Automatic Speech Recognition and 
Understanding (ASRU2015), Scottsdale, Arizona, USA, 687-
693. 

Collobert, R., Puhrsch, C. & Synnaeve, G. (2016).  Wav2letter: 
an end-to-end convnet-based speech recognition system. 
CoRR, Vol. abs/1609.03193. 

Connolly, J., Curran, K., McKevitt, P., Macrae, J. & Craig, 
S. (2014).  Broadcast Language Identification System 
(BLIS). In: Proc. of the 16th Irish Machine Vision and Image 
Processing Conference (IMVIP-14), Ulster University, UK. 

Dahl, G., Yu, D., Deng, L. & Acero, A. (2011).  Large vocabulary 
continuous speech recognition with context-dependent DBN-
HMMs.  IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), Prague, Czech Republic, 
4688-4691.   

Dahl, G., Yu, D.,  Deng, L. & Acero, A. (2012).  Context 
Dependent Pre-trained Deep Neural Networks for Large 
Vocabulary Speech Recognition, Vol. 20, No.1, 30–42. 

Dahl, G., Sainath, T. & Hinton, G. (2013).  Improving DNNs for 
LVCSR using rectified linear units and dropout.  IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), Vancouver, ca8609-8613.  

Fryer, L. (2018).  An introduction to Audio Description: a 
practical guide.  New York, USA: Routledge. 

Hinton, G., Osindero, S. & The, Y. (2006).  A fast learning 
algorithm for deep belief nets. Neural Computation, Vol. 18, 
1527-1554.  

Hinton, G. & Salakhutdinov, R. (2006). Reducing the 
dimensionality of data with neural networks, Science.  Vol. 
313, No. 5786, 504-507. 

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.,  Jaitly, N., 
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N. & 
Kingsbury, B. (2012). Deep Neural Networks for Acoustic 
Modelling in Speech Recognition.  IEEE Signal Processing 
Magazine, Vol. 29, No. 6, 82–97. 

Jaitly, N., Nguyen, P., Senior, A. W. & Vanhoucke, V. (2012).  
Application of Pretrained Deep Neural Networks to Large 
Vocabulary Speech Recognition. The 13

th
 International 

Speech Communication Association, in Proc. Interspeech, 
New York, USA, 2578-2581.  



Broadcast Language Identification & Subtitling System (BLISS) 
Wang ● Muñoz Esquivel ● Connolly ● Curran ● Mc Kevitt  

6 

Jaitly, N., (2017).  Lecture 12: End-to-End Models for Speech 
Processing, Stanford University School of Engineering,  
https://www.youtube.com/watch?v=3MjIkWxXigM&app=deskt
op. 

Kaldi (2018).  http://kaldi-asr.org/doc/index.html. 

Karpagavalli,  S. & Chandra, E. (2016).  A Review on Automatic 
Speech Recognition Architecture and Approaches, 
International Journal of Signal Processing, Image Processing 
and Pattern Recognition.  Vol. 9, No. 4, 393-404.   

Kaur, I., Kaur, N., Ummat, A., Kaur, J., Navjot, K. (2016).  
Automatic Speech Recognition: A Review. InternatIonal 
Journal of Computer ScIence and Technology   (IJCST), Vol. 
7, Issue 4, Oct.-Dec. 

Li, D., Hinton, G. & Kingsbury, B. (2013).  New Types of Deep 
Neural Network  Learning for Speech Recognition and 
Related Applications: An Overview.  IEEE  International 
Conference on Acoustics, Speech and Signal Processing, 
Vancouver, BC, Canada, 8599-8603.      

 Li, D., Li, J., Huang, J., Yao, K., Yu, D., Seide, F., Seltzer, M., 
Zweig, G.,  He, X., Williams, J., Gong, Y. & Acero, A. (2013). 
Recent Advances in  Deep Learning for Speech Research at 
Microsoft.  IEEE International Conference on  Acoustics, 
Speech and Signal Processing,  Vancouver, B.C., Canada, 
8604-8608.   

Liptchinsky, V., Synnaeve, G. & Collobert, R. (2017).  Letter-
Based Speech Recognition with Gated ConvNets. CoRR, 
Vol. abs/1712.09444.  

Maxwell, H. (2018). Can we talk about the other 7%?  
https://www.redbeemedia.com/blog/can-talk-7/, Red Bee 
Media Blog. 

Mohamed, A., Dahl, G. & Hinton, G. (2009).  Deep belief 
networks for phone recognition.  In Proc. NIPS Workshop on 
Deep Learning for Speech Recognition and Related 
Applications.  Vancouver, B. C., Canada, 1-9.   

Mohamed, A., Dahl, G. & Hinton, G. (2012).  Acoustic modeling 
using deep belief networks.  IEEE Trans. on Audio, Speech, 
and Language Processing, Vol. 20, No. 1, 14–22.   

Ofcom (2013). Measuring the quality of live subtitling, 
https://www.ofcom.org.uk/__data/assets/pdf_file/0017/51731/
qos-statement.pdf.  

Panayotov, V., Chen, G., Povey, D. & Khudanpur, S. (2015). 
Librispeech: an ASR corpus based on public domain audio 
books. In International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), Queensland, Australia, 5206–
5210.  

Pan, J., Liu, C., Wang, Z., Hu, Y. & Jiang, H. (2012).   
Investigation of Deep Neural  Networks (DNN) for Large 
Vocabulary Continuous Speech Recognition: Why DNN 
Surpasses  GMMS in Acoustic Modelling.  In Proc. of 8th 
International Symposium on Chinese Spoken Language 
Processing (ISCSLP'2012), Hong Kong, 301-305. 

Povey, D., Zhang, X. & Khudanpur, S. (2015).  Parallel Training 
of Deep Neural Networks with Natural Gradient and 
Parameter Averaging.  In Proc. of 3rd International 
Conference on Learning Representations (ICLR2015), San 
Diego, USA. 

Romero-Fresco, P. (2014).  Subtitling through speech 
recognition: respeaking.  Manchester, UK: St. Jerome 
Publishing. 

Sainath, T., Mohamed, A., Kingsbury, B. & Ramabhadran, B. 
(2013) Deep convolutional neural networks for lvcsr.  In Proc. 
IEEE  International Conference on Acoustics, Speech and 
Signal Processing, Vancouver, BC, Canada, 8614-8618. 

Seide, F., Li, G. & Yu, D. (2011). Conversational Speech 
Transcription Using Context-Dependent Deep Neural 
Networks.  In Proc. Interspeech, Florence, Italy, 444-447. 

Sercu, T. & Goel, V. (2016). Advances in Very Deep 
Convolutional Neural Networks for LVCSR.  Multimodal 
Algorithms and Engines Group, IBM, T.J. Watson Research 
Center, USA.  

Song, W. & Cai, J. (2015).  End-to-End Deep Neural Network for 
Automatic Speech Recognition.  Technical Report, 
Department of Computer Science, Stanford University. 

Stevenson, G. A. (2016). Aalysis of Pre­Trained Deep Neural 
Networks for Large­Vocabulary Automatic Speech 
Recognition.  LLNL-TH-698797 July 28, Lawrence Livermore 
National Laboratory. 

Woodland, P. C., Liu, X., Qian, Y., Zhang, C., Gales, M., 
Karanasou, P., Lanchantin, P., Wang, L. (2015).  Cambridge 
University Transcription Systems for the Multi-Genre 
Broadcast Challenge, Automatic Speech Recognition and 
Understanding (ASRU), IEEE Automatic Speech Recognition 
and Understanding Workshop, Scottsdale, Arizona, USA, 
639-646. 

Zhang, C. & Woodland, P. C. (2015).  A general artificial neural 
network extension for HTK. In Proc. Interspeech, Dresden, 
Germany, 3581-3585.  

Zhang, Y. & Pezeshki, M. (2016).  Towards End-to-End Speech 
Recognition with Deep Convolutional Neural Networks.  In 
Proc. Interspeech, San Francisco, USA, 410-414.  

https://www.youtube.com/watch?v=3MjIkWxXigM&app=desktop
https://www.youtube.com/watch?v=3MjIkWxXigM&app=desktop
https://www.redbeemedia.com/blog/can-talk-7/

