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Chapter

Phytoremediation Strategies of 
Some Plants under Heavy Metal 
Stress
Momezul Haque, Karabi Biswas and Sankar Narayan Sinha

Abstract

Environments are polluted with heavy metals across the world because of 
increase in industrial garbage and sewage. Plants which are grow in polluted 
areas shows a reduction in growth, performance, productivity. Heavy metals 
affect physiological and biological process of plants. Heavy metals show metallic 
properties which are very harmful to the plants. Accumulation of heavy metals in 
plants through root are caused root malformation reduction in biomass and seed 
production, decrease in chlorophyll-aand carotenoid content. Phytoremediation is 
a natural biological process through which plants remove, detoxify or immobilise 
environmental heavy metals in a growth matrix.

Keywords: phytoremediation, heavymetal, pollution, sewage and detoxify

1. Introduction

Heavy metals are those elements which have density greater than 5 g cm−3 [1]. 
Some heavy metals namely, cobalt (Co), copper (Cu), molybdenum (Mo), manga-
nese (Mn), nickel (Ni) iron (Fe), and zinc (Zn) are considered to be essential for 
plants. These heavy metal elements directly impact on plant growth, development, 
senescence and energy producing processes and other physiological process due 
to their high reactivity. The concentration of heavy metals in soil after the admis-
sible limits is toxic to plants either provoke oxidative stress through free radicals or 
crumbling up the functions of enzymes by replacing metals and nutrients which 
are essential [2, 3]. Cell metabolism changes by the affect of heavy metals at first 
reduce the plant growth. However, toxicity of metals depends on various stage of 
their growth stage [4]. Maksymiec and Baszynski [5] reported that dicotyledonous 
plants like various beans and Medicago sativa were more resistant to heavy metals 
at the early growth stage [6]. So, the heavy metals toxicity on the plant physiology 
and metabolism are much more noticeable. Among the heavy metals, chromium 
and cadmium are of special concern due to their potential toxicity on plants even 
at low concentrations [7–9]. The various types of chromium toxicity in plant 
had described by [10], and the inhibition of enzymatic activity by vaeious types 
mutagenesis had also be described. The visible symptoms are reduction in growth, 
leaf chlorosis, stunting, and yield reduction [7, 11]. [12] has explain that Cadmium 
(Cd) is particularly is one of the most dangerous pollutant due to its high level of 
toxicity and much solubility in water. [13, 14], have reported that in some plant 
species Cd interacts with the absorption of metal nutrients such as Fe, Zn, Cu and 
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Mn, in addition to inducing a process named as peroxidation and breakdown of 
chlorophyll in plants, resulting in an enhanced production of reactive oxygen spe-
cies (ROS) [15]. According to [16], Cadmium also inhibits the uptake of elements 
such as K, Ca, Mg, Fe because it uses the same transmembrane carriers. Cadmium 
acquisition in plants may also cause serious health hazard to human beings through 
food chain; however, it causes an extra risk to the children by direct ingestion of 
Cd-contaminated soil [17].

2. Origin and occurrence

Heavy metals remain in environment in various forms like colloidal, ionic, 
particulate and dissolved phases. The soluble forms of heavy metal elements are 
remain in environment as ionised or unionized organometallic chelates. According 
to [18], the metal concentrations of soil ranges from low to 100,000 mg kg−1 which 
depends on the location, area and the types of metals. [19], studied that among 
chemical elements, Cr is considered to be the seventh most abundant elements 
on earth and constitutes 0.1 to 0.3 mg kg − 1 of the crystal rocks. According to 
McGrath [20], In alloys and 15 percent in chemical industrial processes, mainly 
leather tanning, pigments, electroplating and wood preservation, about 60–70 
percent of the total world production of Cr is used. Chromium has many oxidation 
states ranging from Cr2− to Cr6 +; however, in a number of compounds, valences 
of I, II, IV and V have been shown to exist [21]. Cr (VI) is, however, considered 
the most toxic form of chromium and is also generally associated with oxygen as 
chromate (CrO4

2−) or dichromate (CrO4
2−) and dichromate (Cr2O7

2−) oxyanions. 
[22], observed that Cr (III) is less mobile and less toxic and is mainly bound to 
organic matter in soil and aquatic environments. According to [23], Cr present 
mostly in the form of Cr (III) in soil, and mineral environment. [24], has described 
that Cr and Fe (OH)3 is a solid phase of Cr(III) having even lower solubility than 
Cr(OH)3. Consequently, within the soil add up to solvent Cr(III) remains inside the 
allowable limits for drinking water for a wide extend of pH (4–12) due to precipita-
tion of Cr(OH)3, Fe(OH)3[25, 26], moreover, major source of Cd is the parental 
fabric. Anthropogenic exercises have too been improved the sum of Cd in soil [27]. 
Overwhelming metals are regularly show at exceptionally moo concentrations 
in freshwaters [28], but the release of fluid squander from a wide assortment of 
businesses such as electroplating, metal wrapping up, calfskin tanning, chrome 
planning, generation of batteries, phosphate fertilizers, shades, stabilizers, and 
amalgams has solid impact in sea-going situations [29–31]. Cadmium pollution is 
also happened from rubber when car tires run over streets, and after a rain, the Cd 
is washed into sewage disposal systems and collected in the slush.

3. Mobility of heavy metals

Heavy metals are enter in environment are transported by water and air, also 
deposited in soil and sediments where they could be immobilized [32]. However, 
the bonding process of metals may take considerably long time. At the starting of 
the official handle the bio accessible division of metal components in soil is tall, 
but diminishes continuously in due course of time [33]. Metal dissolvability and 
bioavailability to plant is basically affected by the chemical properties of soil such 
as, soil pH, stacking rate, cation trade capacity, soil surface, redox potential, clay 
substance and natural matter [34–36]. For the most part, higher the slime or natural 
matter and soil pH, the metals will be relentlessly bound to soil with longer time 
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and will be less organically accessible to the plants. Soil temperature is additionally 
an vital calculate for varieties in metal amassing by crops [37]. The bioavailability 
of metals is make greater in soil through several means, the secretion of phytosid-
erophores into the rhizosphere to chelate and solubilise metals that are soil bound 
[38]. Acidification of the rhizosphere and exudation of carboxylates are deliberated 
potential means to enhancing metal consumption.

4. Uptake of heavy metals

Heavy metals are taken through root cells of the vegetation after their mobiliza-
tion inside the soil, and their improvement inside the soil relies upon in the main 
upon: (i) dissemination of steel additives alongside the attention attitude which has 
formed because of take-up of factors and ultimately inanition of the aspect inside 
the root region; (ii) interferences through roots, in which soil extent is uprooted 
through root extent after developing (iii) move of steel additives from enormous 
soil association down the water capacity slope [39]. Cell divider acts as a particle 
exchanger of relatively moo partiality and moo selectivity in which metals are first 
of all bound. From the mobileular divider, the shipping frameworks and intracel-
lular high-affinity authoritative locations intercede and power the take-up of those 
metals over the plasma layer. A stable using power for the take-up of steel additives 
thru auxiliary transporters is made because of the layer capacity, that is bad at the 
indoors of the plasma movie and can exceed −200 mV in root epiderm. This is 
examined both in soil culture and in solution culture for Cd which might probably 
be due to low concentration of heavy metals per unit of absorption area [40, 41]. 
Both non-essential and essential metals are also preoccupied through leaves. Within 
the shape of gases, they input via thestomata withinside the leaves, while in ionic 
shape metals specifically input via theleaf cuticle [39, 42]. Hg in gaseous shape 
istaken up through stomata [43] and its uptake is recommended to bebetter in C3 
than C4 flora [44]. The uptake of metals takes place viaectodesmata, non-plasmatic 
“channels” at a excessive level whichare much less dense elements of the cuticular layer 
which are located fundamental withinside theepidermal mobileular wall or cuticular 
membrane machine among shield cells andsubsidiary cells. Furthermore, the cuticle 
overlaying shield cells are oftenspecific to it overlaying everyday epidermal mobileular 
[39]. Most of the metallic factors are insoluble that won’t capin an edge toflow freely 
withinside the vascular machine of flora and, as a result typically shapesulphate, phos-
phate or carbonate precipitates immobilizing them inextracellular booths i.e. apoplas-
tic and intracellular compartment i.e. symplastic [45]. In the apoplastic pathway solute 
and also the water debris diffuse via mobileular membrane, consequently the pathway 
stays unregulated. The mobileularwall of the endodermal mobileular layer acts as an 
impediment for apoplastic diffusioninto the vascular machine. Generally, prior to the 
access of metallic ions withinside thexylem, solutes must be haunted through root 
symplasm [46]. Ifmetals are obsessed through the premise symplasm, their similarly 
motion from root tothe xylem is specifically ruled through 3 processes, including: 
(i) metallicsequestration arise into the premise symplasm, (ii) symplastic shipping 
ariseinto the stele, and (iii) launch of metals arise into the xylem. The ionshipping into 
the xylem is often occured through membrane shipping proteins. Metal factors which 
are not wished through the flora successfully compete thecritical heavy metals for his 
or her shipping the usage of the equal transmembranecarriers. Cr(III) uptake through 
the plant is specifically a passive process, whilst Cr(VI) shipping is mediated through 
sulphate carrier [47]. Inhibitors like, sodium azide and di nitrophenol inhibits the 
uptake of Cr(VI) through barley seedlings however this is not happened just in case 
of Cr(III) [47]. In keeping with [48], Group VI anions like SO4

−2 additionally inhibit 
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the uptake of chromateswhile Ca2+ stimulates its shipping. This inhibition of chromate 
shipping is passed thanks to the aggressive inhibitiondue to the chemical similarity, 
whilst inspired shipping of Cr(VI) because of Ca is attributed to its critical position in 
flora for the receive and shipping of metallic factors [26, 49].

5. Accumulation of heavy metals

According to Kumar et al. [50], many plants species show an unusual capability 
to absorbe heavy metals through root system and accumulate of these heavy metals 
in their parts. Zayed and Terry [26] said that it seems a common tendency of all plant 
species to maintain Cr in their roots, but with quantitative differences. It is found 
that for the translocation of Cr to the plant tip, leafy vegetables such as spinach, 
turnip leaves that tend to acquire Fe appear to be the most effective [51]. While those 
leafy vegetables such as lettuce were considerably less effective for translocating Cr to 
their leaves, cabbage which accumulated relatively low Fe levels in their leaves. Zayed 
and Terry [26] have reported that some plant species attain substantially higher root 
or shoot concentration ratio than other species. However, a ‘Soil–Plant Barrier’ well 
protects the food chain from heavy metal toxicity, implying that, due to one or more 
of the following processes, heavy metal levels in edible plant tissues are reduced to 
safe levels for animals and humans: (i) prevention of metal element uptake due to 
soil insolubility, (ii) prevention of metal element translocation by making them 
immobile in roots, or (iii) prevention of metal element translocation for animals and 
humans to the permissible level [52]. Within plant tissues, some elements such as B, 
Mo, Cd, Mn, Se, and Zn are readily absorbed and translocated, while others such as 
Al, Ag, Cr, Fe, Hg, and Pb are less mobile because of their strong binding to soil com-
ponents or root cell walls. However, at certain concentrations, all of these elements 
are mobilised, even against a concentration gradient, within the transport system 
of the plant. Kinetic data show, for instance, that essential Cu2 +, Ni2 + and Zn2 + and 
non-essential Cd2 + compete for their transport with the same transmembrane carrier 
[53]. As is the case of phytosiderophore such as Fe-transport in graminaceous species, 
metal chelate complexes can be transported by plasma membrane [54]. Among the 
most important parameter the most influencing factor of heavy metal accumulation 
in plants is soil pH [55–58]. At higher soil pH, metal elements in soil solution decrease 
their bioavailability, and at lower soil pH metalelements in soil solution increase their 
bioavailability to plants [59].

6. Effect on growth and development

Heavy metals mitigate the growth and development of the plant [60, 61]. The 
plant parts which are associated with the heavy metals polluted soils normally the 
roots express rapid and sensorial changes in their growth and development [62]. 
It is well observed that the very significant effects of a number of metals (Cd, Al, 
Cu, Fe, Ni, Pb, Hg, Cr, Zn,) on the growth of above ground plant parts vary [63]. 
Through the formation of free radicals and reactive oxygen species (ROS), heavy 
metals mainly affect plant growth, which causes constant oxidative damage by 
decreasing important cellular components. [64, 65]. For example, rice seedlings 
irradiated to Cd or Ni [66] and runner bean plants treated with Cd and Cu have 
shown an increase in carbohydrate content and a decrease in photosynthesis pro-
cess, resulting in growth inhibition [67]. Similarly, in cucumber plants, Cu limits K 
uptake by leaf and inhibits the photosynthesis via sugar acquisition resulting into 
the inhibition of cell expansion [68]. Limped leaves, growth inhibition, progressive 
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chlorosis in certain leaves and leaf sheaths and browned root systems, especially 
the root tips, are the symptoms of Cd toxicity in rice plants [7, 69]. Moreover, plant 
growth has also been retarded in maize (Zea mays) Cd [70, 71]. Some phenotypic 
abnormalities such as stunted growth, less branching and less fruiting are also 
shown by tomato plants irrigated with polluted water. However, acquisition of 
heavy metals is much more appears in stems, roots, and leaves as compared to 
fruits [72].

6.1 Germination

Seed germination is the breaking of seed dormancy which is inhibited by heavy 
metals. Germination of seeds and growth of seedling may sensitive towards envi-
ronmental conditions [59]. So as per [73], the performance of germination, break-
ing of seed dormancy and seedlings growth rates are therefore often used to assess 
the abilities of plant tolerance to metal elementsIn comparison to control, higher 
concentrations such as 1 μM, 5 μM and 10 μM of heavy metals such as Cu, Zn, Mg 
and Na significantly inhibit seed germination and early growth of rice, barley, 
wheat and maize seedlings [74]. The ability of a seed to germinate in a moder-
ate containing any metal element like Cr would be a direct indication of its level 
of tolerance to this metal, but seed germination is the first physiological process 
affected by toxic elements [73]. At 200 μM of Cr treatment, the seed germination of 
Echinochloa colonais decreased to 25 percent [75], and high levels (500 ppm) of Cr 
(VI) in soil decreased Phaseolus vulgaris germination by up to 48 percent [76]. Jain 
et al. [77] observed reductions in sugarcane bud germination of up to 35 per cent 
and 60 per cent at 20 and 80 ppm Cr application, respectively. In another study by 
Peralta et al. [73], at 40 ppm Cr (VI) treatment, Medicago sativacv germination was 
reduced to 23 percent.

6.2 Root

Among the plant parts, roots are firstly come into contact with toxic elements 
and they usually absorbed more metals by root hair through absorbption process 
but shoots are not that [78–80]. The inhibition or retard of root elongation appears 
to be the first visible effect of metal toxicity. Elongations of root are reduced by the 
inhibition of cell division, the decrease of cell expansion, decrease of cell size in 
the elongation zone [81]. So the first visible effect of metal toxicity is the inhibition 
of root elongation, the root length can be used as most important tolerance index 
[82–85]. Medicago sativa plants grown in solid media watered with 20 mg L−1 of Cr 
(VI) in another [73] study, the ratio of Cr in shoots to Cr in roots was approximately 
43 percent. This is an indication that in the roots, 50 percent of the absorbed Cr is 
held. The response of roots to heavy metals in both herbaceous plant species and 
trees has been extensively studied. [86–89]. After the work of numerous researchers 
[86, 87, 89, 90]. The main morphological and structural effects of metal root toxic-
ity can be summarised as: (i) decrease in root elongation, (ii) decrease in biomass, 
(iii) decrease in vessel diameter, (iv) damage to tip, (v) collapse of root hair or 
decrease in number of roots, (vi) increase or decrease in lateral root formation, 
(vii) enhancement of suberification, (viii) enhancement of lignifications,  
(ix) translocation process become hampered. The research work of [91], revealed 
that Cr affects the root length than the other parts of plant as compared to other 
heavy metals. Mokgalaka-Matlala et al. [92], have observed that when increas-
ing concentrations of As (V) and As (III) in Prosopis juliflora, the root elongation 
decreased significantly. It is reported that when Cr has applied on Salix viminalisis 
then the root length is affected more than by Cd and Pb [91]. In fact, the inhibition 
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effect of Cr on the growth of the Salix alba root is similar to that of Hg and stron-
ger than that of Cd and Pb, whereas the root length of Ni decreased less than Cr 
[93, 94]. In Salix viminalisis, the order of metal toxicity to the new root rimordial 
was reported to be Cd > Cr > Pb [91].

6.3 Stem

The heavy metal elements highly affect the plant height as well as shoot growth 
[95]. Cr transport to the various part of the plant have a direct impact on cellular 
metabolism as a result shoots contributing affected so plant height ultimately 
reduces [61]. It is observed that reduction of 11, 22 and 41% respectively compared 
to control in oat plants at 2, 10 and 25 ppm of Cr content in nutrient solutions in 
sand cultures [96]. Joseph et al. [97] observed a similar reduction in the height of 
Curcumas sativus, Lactuca sativa and Panicum miliaceum due to Cr (VI). Shoot 
growth in Medicago sativa is inhibited by Cr (III) [98]. In a glasshouse experiment 
after 32 and 96 days, Sharma and Sharma [99] noted a significant decrease in the 
height of Triticum aestivum when sown in sand with 0.5 μM sodium dichromate. A 
significant reduction in height of Sinapsis albaat a level of 200 or 400 mg kg−1 of Cr 
in soil along with N, P, K and S fertilizers was reported by Hanus and Tomas [100]. 
Very recently, it is found that a reduction in stem height at various concentrations 
(10, 20, 40 and 80 ppm) of Cd and Cr have been reported in Dalbergia sisso seed-
lings compared to the control [101].

6.4 Leaf

The heavy metal elements severely affect the leaf height as well as leaf growth. 
Metal elements like Cd induce morphological changes such as drying of older leaves, 
wilt, and chlorosis and necrosis of younger leaves. Datura innoxia, D. metel, plants 
grown in a contaminated environment with Cr(VI) exhibited toxic symptoms at 
0.1 mM to 0.2 mM of Cr(VI) in the form of leaf fall and wilting of leaves at 0.4 
to 0.5 mM Cr(VI) in soil [97, 102]. A similar reduction in the height of Curcumas 
sativus, Lactuca sativa and Panicum miliaceum due to Cr(VI) was observed (1995). 
In Medicago sativa, shoot growth is inhibited by Cr(III) [98]. Sharma and Sharma 
[99] noted a significant drop in the height of Triticum aestivum when sown in sand 
with 0.5 μM sodium dichromate in a glasshouse experiment after 32 and 96 days 
[103]. In Zea mays, Acacia holosericeaOryza sativa, and Leucaena leucocephala 
plants treated with tannery effluent of varying concentrations, leaf dry weight and 
leaf area slowly decreases [104]. The effect of Cr(III) and Cr(VI) on the Spinacia 
oleracea plant was found in a study. Singh [105] reported that Cr applied to soil at 
a rate of 60 mg kg−1 and higher levels decreased the size of the leaves, causing leaf 
foliage, leaf tips or margins to burn, and slowed the rate of leaf growth.

7. Effect on physiological process of plant

The physiological process of the plant is severely affected by heavy metal 
elements. In reaction to heavy metal stress, plants show morphological, physi-
ological, biochemical and metabolic changes which are thought to be adaptive 
responses [106]. Cd not only inhibits growth, for example, but also changes differ-
ent physiological and biochemical features such as water balance, nutrient uptake, 
photosynthesis, breathing, mineral, nutrition and ion uptake, translocation, plant 
hormone [107–109] and Photosynthetic electron transport around PS I and PS 
II photosystems [110–112]. Likewise, Cr inhibits electron transport, decreases 
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CO2 fixation, malformation of chloroplast [113–115], decreases water potential, 
increases transpiration rate, decreases diffusive resistance, and causes a reduction 
intercalary meristem [116].

7.1 Photosynthesis

The photosynthetic mechanism is significantly impacted by the heavy metal 
elements. The photosynthetic apparatus tends to be very susceptible to the toxic-
ity of heavy metals, which directly or indirectly affect the photosynthetic process 
by inhibiting the enzyme activities of the Calvin cycle and CO2 deficiency in the 
plant body due to stomatal closure [59, 117, 118]. Cr has a well-cited detrimental 
effect on the photosynthic process in terrestrial plants. The influence of Cr on the 
PS I was more conspicuous than on the PS II operation in isolated chloroplasts of 
Pisumsativum plant [119] according to different reports. Photo inhibition in the 
leaves of Lolium perenne due to the influence of 250 μM Cr on the primary photo-
chemistry of PS II, according to the Vernay et al. [120] report and A decrease in the 
overall photochemical efficiency of plant PS II at 500 μM of Cr was noted. Shanker 
et al. [61] argued that Cr triggered oxidative stress in plants because, due to the loss 
of molecular oxygen, Cr improves alternate sinks for the electrons. The ultimate 
influence of Cr ions on photosynthesis and conversion of excitation energy will be 
attributed to Cr-induced anomalies such as thylakoid expansion and reduction in 
the amount of grana in the ultrastructure of the chloroplast [121]. The impact of Cr 
on photosynthesis in higher plants is widely known [122, 123], it is not well known 
to what degree Cr induces photosynthesis inhibition either because of ultra-struc-
ture chloroplast malformation and the influence of Cr on the Calvin cycle enzymes 
or because of electron transport inhibition [116]. Krupa and Baszynski explained 
in 1995 that some theories applied to all photosynthesis pathways of heavy metal 
toxicity and introduced a list of primary photosynthetic carbon reduction enzymes 
that inhibited mainly cereal and legume crops in heavy metal treated plants. The 
40 percent inhibition of whole plant photosynthesis in 52-day-old Pisum sativum 
seedlings at 0.1 mM Cr(VI) was further increased to 65 and 95 percent after 76 and 
89 days of growth respectively [119]. A potential explanation of Cr mediated reduc-
tion rate of photosynthetic is a malformation of the chloroplast ultra structure and 
inhibition or returdation of electron transport processes due to Cr and a diversion 
of electrons from the electron donation side of PS-I to Cr (VI). It is likely that, as 
demonstrated by the low photosynthetic rate of the Cr stressed plants, electrons 
generated by the photo chemical process are not generally used for carbon fixation. 
According to [124–126], bioaccumulation of Cr and its toxicity to photosynthetic 
pigments in various crops and trees has been investigated. [127]; has extensively 
studied the effect of Cr present in tannery effluent sludge which directly get into 
chloroplast pigment content in Vigna radiata and reported that irrespective of Cr 
concentration, chlorophyll a, chlorophyll b, chlorophyll d and total chlorophyll 
decreased in 6 days old seedlings as compared to control. Chatterjee and Chatterjee 
[128] have reported that a dramatic decrease in chlorophylls a, b and d in leaves was 
recorded in Brassica oleracea grown in distilled sand with full nutrition with control 
and Co, Cr and Cu at 0.5 mM each. The stress order was Co > Cu > Cr. Conversely, 
a broad analysis on the tolerance of Cr and Ni in Echinochloa colona found that in 
terms of survival under elevated Cr concentration, the chlorophyll content was high 
in resistant calluses [129]. Chromium (VI) at 1 and 2 mg L−1 significantly decreased 
chlorophylls a, b and d and carotenoid concentrations in Salvinia minima [130]. The 
decrease in the chlorophyll a/b ratio brought about by Cr indicates that Cr toxicity 
possibly reduces the size of the peripheral part of the antenna complex [114]. It 
has been hypothesized that the decrease in chlorophyll b due to Cr could be due to 
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the destabilization and degradation of the proteins of the peripheral part [61]. The 
interaction of heavy metals with the functional SH groups of proteins according 
to Van Assche and Clijsters [131, 132] is a possible mechanism of action for heavy 
metals.

7.2 Water relation

Every physiological process is directly linked to water’s chemical potential. 
Water’s chemical potential is a quantitative expression of water-related energy. 
In plant growth regulation, water can be considered as the most important factor 
because it affects all growth processes directly or indirectly [133]. Plants grown in 
contaminated heavy metal soils often suffer from drought stress due primarily to 
poor physicochemical properties of the soil and shallow root system; researchers 
are interested in investigations on plant water relation under heavy metal stress. 
According to Barcelo et al. [134], Selection of drought resistance species can be 
considered to be an important trait in phytoremediation of soils polluted with 
heavy metals. The heavy metal stress can induce stress in plants through a series of 
events leading to decreased water loss like enhanced water conservation, decrease 
in number and size of leaves, decrease in root hair, malformation of parenchyma-
tous cells stomatal size, number and diameter of xylem vessels, increased stomatal 
resistance, enhancement of leaf rolling and leaf abscission, higher degree of root 
suberization [90]. It has been suggested that through various mechanisms operating 
on the apoplastic and/or the symplastic pathway, heavy metals may influence root 
hydraulic conductivity. Reduced cell expansion can occur in the growth medium 
at relatively low concentrations without damaging the integrity of the cells. In 
bean plants, for instance, leaf expansion growth was inhibited after 48 h in bean 
plants exposed to 3 uM Cd. The most significant higher toxic effect of Cr (VI) is to 
degenerate the stomatal conductance that could damage the cells and membranes 
of stomatal guard cells. In this way, the relationship between water and many plant 
species has been affected.

8. Mechanism of metal tolerance

Complex processes has used by plants to adjust their metabolism to rapidly 
changing environment. These processes include transduction, transcription, percep-
tion, and transmission of stress stimuli [135–137]. During stressing conditions plants 
adopt various process likes mechanisms of resistance and tolerance, later involves the 
immobilization of a metal in roots and in cell walls [138]. The plants adopt a series of 
mechanisms to avoid heavy metal toxicity which include: (i) Through auto oxidation 
and Fenton reaction plant produce reactive oxygen, (ii) blocking of main functional 
group, and (iii) from biomolecules displacement of metal ions, [139]. Plants are 
capable of growing in polluted soils because; (i) plants avoid metal absorption by 
aerial components or sustain low metal concentrations over a wide range of metal 
concentrations in soil by trapping metals in their roots [140]; (ii) plants deliberately 
absorb metals in their epidermal tissues due to the development of metal binding 
chelators (iii) they storing metals in non-sensitive parts by alter metal compartmen-
talisation pattern that is called metal indicators, and (iv) by the process of hyperac-
cumulators i.e. they can accumulate metals at much higher levels than soil in their 
aerial components [141, 142]. The processes used for hyperaccumulation are still 
unclear. Plants that can accumulate either As, Cu, Cr, Ni, Pb, or Co > 1000 mg kg−1 
or zinc >10,000 mg kg−1 in their shot dry matter ([141, 143–145]; Baker and 
Reeves 2000) or Mo > 1500 mg kg−1 [146] are the standard for classifying plants as 
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hyperaccumulators. (ii) Plants that absorb metals 10–500 times higher than aver-
age amounts in shoots [147], (iii) plants that accumulate metal components more 
in shoots than in roots [141]. Very few higher plant species have adaptations that 
enable them to live and replicate with Zn, Cu, Pb, Cd, Ni, and As highly polluted 
soils. [148, 149]. The tree roots of these plants can deliberately forage towards less 
polluted soil areas [150] and can “rest and wait” for optimal growth conditions even 
with highly reduced growth [151].

9. Conclusion

For the biological, biochemical and physiological functions of plants, various 
types of heavy metal elements are very important, including protein biosynthesis, 
lipids, nucleic acids, growth substances, hormones, chlorophyll and secondary 
metabolism synthesis, stress tolerance, morphological, structural and functional 
integrity of different membranes and other cellular compounds. These metal 
components, however, become poisonous in nature, above allowable limits, 
depending on the types of plants and the nature of the metal. Metal toxicity can 
inhibit the transport chain of electrons, reduce CO2 fixation, decrease the produc-
tion of biomass, and cause chloroplast malformation. It can also affect plant growth 
by generating free radicals and ROS and other substances, which, by decreasing 
important cellular components, pose a threat to continuous oxidative damage. In 
addition, heavy metal stress can induce many events in plants leading to decrease 
in number and size of leaves, enhancement of leaf rolling and leaf abscission, 
leave erosion, changes in stomatal size, guard cell size, and stomatal resistance, 
and higher degree of root ligninization, suberization. Symptoms that are visible in 
plant by the affect of heavy metal toxicity include drying of older leaves, chlorosis, 
and necrosis of young leaves, stunting, wilting, canker, colour changes, blotch 
wrinkling and yield reduction. However, plants use complex processes (perception, 
transduction, and transmission of stress stimuli) and several non enzymatic and 
enzymatic mechanisms such as CAT, SOD, POD, and APX that activate the cell for 
their metabolism to heavy metal stress.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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