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Abstract

Post-transcriptional regulation is an important step of gene expression that 
allows to fine-tune the cellular protein profile (so called proteome) according to the 
current demands. That mechanism has been developed to aid survival under stress 
conditions, however it occurs to be hijacked by cancer cells. Adjustment of the 
protein profile remodels signaling in cancer cells to adapt to therapeutic treatment, 
thereby enabling persistence despite unfavorable environment or accumulating 
mutations. The proteome is shaped at the post-transcriptional level by numerous 
mechanisms such as alternative splicing, mRNA modifications and triage by RNA 
binding proteins, change of ribosome composition or signaling, which altogether 
regulate the translation process. This chapter is an overview of the translation 
disturbances found in leukemia and their role in development of the disease, with 
special focus on the possible therapeutic strategies tested in acute leukemia which 
target elements of those regulatory mechanisms.

Keywords: leukemia treatment, therapy resistance, mRNA translation,  
RNA binding proteins, ribosomal proteins

1. Introduction

Translation is one of the regulatory levels that allows cells to adapt the profile 
of proteins (the proteome) to the current demand of cellular processes like cell 
division or environmental signals such as hypoxia. Generally, protein synthesis 
requires activation of the complex mechanisms that are tightly regulated [1]. Since 
the protein synthesis is related to cell growth and cell cycle, any disturbances of this 
process can be a mechanism underlying unregulated cell growth, neoplastic trans-
formation and tumor development.

For the great majority of cellular mRNAs, the 5′ cap-dependent translation is 
the most efficient mechanism of protein synthesis [2]. An alternative mechanism of 
translation initiation is engaged during cell cycle progression [3], cell differentia-
tion and apoptosis, as well as during cellular stress response [4]. Global regulation 
of translation is often based on the activation or inhibition of one or more com-
ponents of the translational machinery (eukaryotic initiation factors, ribosomal 
proteins, ribosomal RNA), whereas the specific regulation often occurs through 
the action of two groups of factors: cis-acting elements found in mRNA molecule 
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(specific mRNA sequences such as internal ribosome entry sites IRES, mRNA 
posttranscriptional modifications) and trans-acting factors (such as RNA-binding 
proteins, microRNAs) that bind to mRNA [5]. Furthermore, changes in the cellular 
signaling can also trigger translational reprogramming. Based on the significant role 
that all steps of the translation regulation play in development of cancers, including 
hematological malignancies, and their pro-survival and adaptive function, thera-
peutic targeting of those mechanisms has been proposed and studied.

2. Modifications of RNA

Posttranscriptional modifications have been found in non-coding RNAs such 
as ribosomal RNAs (rRNA) and transfer RNAs (tRNA) as well as in messenger 
RNAs (mRNA). There are about 150 modifications discovered by far. They include 
pseudouridylation (ψ), methylation or deamination of adenosine to inosine 
(A-to-I editing). Such modifications have impact on the splicing and translation of 
mRNA and contribute to epitranscriptional regulation of gene expression. Some 
modifications exist only in the coding sequence (like A-to-I editing), whilst others 
are deposited only in a 5′-untranslated regions (5’UTR) such as 5-methylcytosine 
(m5C) and 7-methylguanosine (m7G). The N6-methyladenosine (m6A) modifica-
tion is ubiquitously present and deposited in along the mRNA coding sequence and 
5′/3′UTRs.

The m6A modification is added to the mRNA in the nucleus by so called ‘writers’ 
or removed by ‘erasers’ and is recognized by proteins which bind to m6A methyl-
ated mRNA (so called ‘readers’). It has impact on the mRNA stability, export from 
the nucleus, decay and translation (for recent review on the role of RNA modifica-
tions in cancer, including acute myelogenous leukemia (AML) see: [6–8]). The 
m6A modification has been found to play a critical role in AML development and 
progression (for review see: [9, 10]).

The m6A writer proteins - methyltransferase-like protein (METTL) 3 and 14 are 
overexpressed in AML. It was reported that their deletion limits the cancerogenic 
cellular potential [11, 12]. On the other hand, METTL3 overexpression stimulated 
the translation of Myc, Bcl-2 and PTEN what contributed to increased proliferation 
and survival of AML cells [13]. Controversially, increased expression of fat mass 
and obesity-associated demethylase (FTO), which acts as a m6A eraser, also led 
to higher level of oncogene expression. Moreover, its inhibition reduced growth 
of AML cancer cells [14]. Activity of FTO has been found to be directly inhibited 
by R-2-hydroxyglutarate (R-2HG) leading to loss of stability of Myc mRNA and 
decreased proliferation rate of leukemic cells [15]. This effect is postulated to result 
from discrepancy of mRNA triage for translation or decay of pro- and anti-onco-
genic proteins in respect to the presence of m6A deposition in mRNA [8].

Though YTHDF2, the m6A reader, appears not to be required for normal hema-
topoietic stem cells, it occurs to be essential for AML cells similarly to METTL3 and 
FTO. Its overexpression facilitates AML cells propagation, whereas its silencing 
disables proliferative and clonogenic potential of leukemia cells. Thus, YTHDF2 
seems to be a good therapeutic target in AML, which would enable the selective 
eradication of cancer cells whilst spearing healthy hematopoietic stem cells [16].

Another m6A reader proteins might also play a key role in the regulation of 
cancer development. The insulin-like growth factor 2 mRNA-binding protein 
(IF2BP1–3) stabilizes m6A-modified mRNAs such as MYC oncogene, thus enhanc-
ing its translation and contributing to oncogenesis [17].

Apart from modification of mRNA, also pseudouridylation of tRNA contributes 
to AML progression. The tRNAs that contain 5′ terminal oligoguanine (TOG) 
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are the source of 18 nucleotide regulatory sequences (mTOGs), which stimulate 
differentiation and limit proliferation of hematopoietic stem cells (HSC) by inhibit-
ing translation initiation in HSC. This effect depends on the presence of ψ on the 
mTOGs. It has been found that development of AML is accompanied by decreased 
level of pseudouridine synthase 7 (PUS7). Downregulation of PUS7 abolished 
healthy stem cells differentiation and increased translation demonstrating signifi-
cance of ψ modification in the development of AML [18]. The oncogenic mTOGs, if 
attenuated by specific inhibitors, could constitute an effective therapeutic target.

The above examples show that the post-transcriptional regulation of gene 
expression at the step of RNA modifications constitutes a potent target to disable 
expression of some oncogenes that should allow to switch the cell fate back towards 
appropriate hematopoietic differentiation.

3. RNA binding proteins

Activation of RNA binding proteins (RBPs) constitutes an additional layer of 
posttranscriptional regulation, which has a great impact on the final protein level 
in the cell. The main function of RNA binding proteins is to recognize the primary 
transcript (pre-mRNA) and assemble ribonucleoprotein complexes, what governs 
processes of pre-mRNA maturation i.e. splicing, polyadenylation, attachment of 
a guanyl cap at the 5′ end of pre-mRNA and RNA modifications. Moreover, RBPs 
binding to the target mRNA is required for proper mRNA transportation from 
the nucleus to the cytoplasm and distribution into various cellular compartments. 
Additionally, trans-acting regulatory RNA binding proteins have the ability to affect 
translation of the specific mRNA, mainly through the interaction with untranslated 
regions (3′UTR and 5′UTR) and coding region of mature mRNA, what results in 
changes in ribosome recruitment.

Considering the multifunctional properties of RNA binding proteins, any altera-
tions in those proteins’ activity are associated with multiple cancers (reviewed in 
[19]), including leukemias (reviewed in [20]), and provide a substantial therapeu-
tic opportunity.

The Musashi (MSI) RNA binding proteins (MSI1 and MSI2) contribute to 
development of various types of cancer. Their elevated expression has been dem-
onstrated in acute myelogenous leukemia (AML), acute lymphoblastic leukemia 
(ALL) and chronic myelogenous leukemia blastic phase (CML-BP) [21–23]. MSI 
proteins regulate translation of mRNAs encoding proteins involved in several 
oncogenic signaling pathways, such as MYC [24], TGFβ/SMAD3 [25] and PTEN/
mTOR [26]. Thus, inhibition of MSI RNA-binding activity could demonstrate a 
novel therapeutic strategy, probably not only in solid tumors but in hematological 
malignancies as well. A small molecule Ro 08–2750 (Ro) has been shown recently to 
bind selectively to MSI2 and interfere with its mRNA binding activity, thus trigger-
ing increased apoptosis and inhibition of known MSI targets in myeloid leukemia 
cells [27]. Other agents with presumptive MSI1 inhibitory activity have also been 
tested and they include (−)-gossypol (natural phenol extracted from cottonseed) 
[28] and ω − 9 monounsaturated fatty acids (e.g. oleic acid) [29]. Although those 
agents display inhibitory effects on MSI1 activity, the specificity of both should be 
further confirmed.

Another RNA binding protein involved in mRNA translation and deregulated 
in leukemia is DDX3. Mutations in DDX3 gene display oncogenic potential in T-cell 
lymphoma [30] and lymphocytic leukemia [31]. A small molecule inhibitor  
(RK-33) targeting DDX3, which has been tested so far, demonstrates the pro-apoptotic 
activity. Its administration promoted higher sensitivity to radiation in lung cancer 
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DDX3-overexpressing cells [32, 33], thus providing an argument to develop and 
improve DDX3 inhibitors, which can target cancer cells, including leukemia.

The activity of HuR RNA binding protein is also deregulated in some types of 
leukemia [34–37]. Elevated HuR level promotes tumorigenesis, thus targeting HuR 
could be a promising anti-cancer therapy. A few chemical compounds against HuR 
activity have been tested so far. MS-444 small molecule inhibitor interfered with 
HuR binding to target ARE-mRNAs and showed anti-tumor properties in various 
types of cancers [38–40]. Quercetin and b-40 have been found to inhibit HuR bind-
ing to TNFα mRNA, what resulted in TNFα destabilization and decreased TNFα 
secretion [41]. A coumarin-derived and HuR-targeted small molecule inhibitor 
CMLD-2, exhibited cytotoxicity towards human lung cancer cells [42], proving that 
HuR is a good candidate for cancer treatment strategy.

Aberrations of other RNA binding proteins have been linked to the activity of 
BCR-ABL1, an oncoprotein responsible for chronic myeloid leukemia (CML) devel-
opment. BCR-ABL1-dependent decrease of CUGBP1 level resulted in repression of 
the C/EBPβ mRNA translation [43]. As C/EBPβ transcriptional activity controls the 
maturation of hematopoietic cells in the myeloid lineage, its deficiency contributes 
to differentiation arrest of CML cells and CML progression to the blast crisis [44]. 
An increased level and activity of RNA binding proteins: hnRNP K [45], hnRNP 
A1 [46], hnRNP E2 [46], TLS/FUS [47] and La/SSB [48] have also been observed. 
These proteins regulate translation of important cancer-related factors: the hnRNP 
K protein positively regulates c-MYC mRNA translation, protein La/SSB promotes 
MDM2 mRNA translation, and increased hnRNP E2 activity leads to inhibition of 
the C/EBP1α protein synthesis.

Activities of RNA binding proteins described above result in the differentiation 
arrest of CML cell, but also their increased proliferation and survival. Considering 
the mentioned features, RNA binding proteins provide a significant therapeutic 
possibility to treat acute leukemia patients.

A single RBP interacts with a number of different mRNAs, and prerequisite for 
this is a presence of the RBP’s binding sequence. The recognition motif for a given 
protein is often present in mRNAs encoding proteins needed in a certain process. 
For instance, mRNAs of cell cycle regulating proteins are bound by HuR. Thus, 
targeting activity of the specific RBP, interfering with its binding ability or masking 
the targeted sequence would impact the fate of a group of mRNAs. Therefore, this 
constitutes an opportunity to modulate synthesis of functionally related proteins.

4. Alternative splicing

This post-transcriptional process is one of the key steps of messenger RNA mat-
uration (mRNA) but apart from that, it allows to elevate complexity of the cellular 
proteome. A core complex called spliceosome is responsible for excision of introns 
from pre-mRNA in the nucleus. It consists of five small nuclear ribonucleoproteins 
(snRNPs) – U1, U2, U5, U4/U6 – and small nuclear RNA (snRNA). Splicing is regu-
lated by cis-acting elements, which are the nucleotide sequences of primary tran-
script, trans-acting elements, which are the splicing factors or other RNA binding 
proteins regulating splicing: heterogenous nuclear ribonucleoproteins (hnRNPs) 
and serine/arginine-rich (SR) proteins. The nucleotide sequence of the transcript 
promotes or represses splicing at the certain sites. The trans-acting elements can 
antagonize the activity of splicing factors leading to change in splice site selection, 
known as alternative splicing event. For an overview of the splicing process or inter-
actions of RNA binding proteins with regulators of alternative splicing see: [49–51]. 
Furthermore, modification of RNA within the cis-acting region (like m6A) is one 
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of the major factors that has impact on the binding of trans-acting elements (as 
described above). It has been found that the m6A modification enhances binding 
by RBPs such as hnRNP A2B1 [52] or SRSF3, whilst respells SRSF10 from transcript 
[53], exerting the effect on splicing of mRNA. This demonstrates how two distinct 
post-transcriptional events, RNA methylation and splicing, can cross-talk to tightly 
control the transcript fate and expression of a particular protein.

Extracellular signals lead to modification of operation of trans-acting proteins, 
affecting or enhancing their action. Therefore, activity of regulatory elements 
involved in this process is sensitive to environmental signals such as cytokines or 
hypoxia. Through modulation of alternative splicing, the level of proteins’ isoforms 
can be adjusted according to the circumstances. Additionally to selective intron 
skipping/excision, alternative splicing can affect length of poly(A) region. As a 
result, this influence stability of the mRNA, causing its enhanced decay or transla-
tion. Apart from that, mutation of the gene sequence modifies binding of RBPs 
what has impact on the ultimate expression level. Some of the splicing regulators 
were reported to play an oncogenic role, whilst others act as tumor suppressors.

Apoptosis-stimulating Protein of TP53–2 (ASPP2) is a tumor suppressor 
enhancing TP53-mediated apoptosis. It has been found that a splice variant ASPP2κ 
is overexpressed in AML and displays anti-apoptotic function, therefore supporting 
proliferation of the cells [54].

Analysis of the transcriptome profile revealed that progression of CML from 
chronic phase (CML-CP) towards acute blastic phase (CML-BP) is accompanied by 
changes in splicing pattern of genes, thus affecting spliceosome. The exon skipping 
event in hnRNP A1 led to accumulation of bigger isoform in the CML-BP, though 
the biological significance of this has not been studied [55].

Altogether, it makes the alternative splicing machinery a powerful tool for 
cancer cells to support their survival. On the other hand, the necessity to achieve 
certain modifications through splicing makes cancer cells dependent on this pro-
cess. Such regulation creates an opportunity for therapeutic targeting.

Activity of SR proteins can be modulated by modifications: phosphorylation 
of SR proteins can affect activity and switch general splicing repressor to selective 
activator [56], methylation of SRSF1 by the protein arginine methyltransferase 5 
(PRMT5) modulates splicing of many proteins involved in proliferation, therefore 
supports leukemia development [57]. Its overexpression exerts oncogenic effect 
increasing aggressiveness of leukemia cells [58]. Specific inhibitors of PRMT5 have 
been clinically tested for potential treatment of blood and solid cancers [59]. As 
transcription of PRMT5 it directly stimulated by MYC transcription factor [60], 
thus leukemia cells overexpressing MYC could be selected for treatment with 
PRMT5 inhibitors.

A screen of RBPs playing role in AML revealed that RNA binding motif protein 
39 (RBM39) plays a significant role in RNA splicing and stimulates proliferation of 
leukemia cells [61]. A sulfonamid drugs (indisulam, tasisulam, E7820 and CQS,), 
which are an example of proteolysis-targeting chimeras (PROTACs) compounds, 
led to polyubiquitination and proteasomal degradation of RBM39, what exerts 
anticancer activity [62]. The effect depended on the CUL4-DCAF15 E3 ubiquitin 
ligase, therefore the level of expression of this enzyme could be used as indicative 
marker in therapy involving sulfonamid drugs [62, 63].

Leukemia development and progression can be triggered by occurrence of point 
mutations in splicing factors such as SF3B. Activity of spliceosomal complex con-
taining the mutated protein, but not wild type SF3B, can be blocked by a specific 
small molecule inhibitor H3B-8800 [64]. It has been shown that AML cells with 
mutated U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1), a component of spli-
ceosome, display increased sensitivity to sudemycin – a drug targeting SF3BP1, both 
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in vitro and in vivo. Transcripts altered by sudemycin treatment encoded proteins 
involved in receptor and signal transduction activities [65]. Noteworthy, SF3B1 has 
distinct effect on the transcript splicing than SRSF2. Mutation in any of them led to 
hyperactivation of NF-κB signaling, whilst simultaneous mutation of both SF3B1 
and SRSF2 displayed synthetically lethal effect [66].

The splicing regulatory network is complex and full of various cross-talk regula-
tions and interactions. Due to interactive nature of regulatory factors, which influ-
ence each other’s activity, lowering the level of one factor activates a compensatory 
mechanism that is mediated by another factor. This refers to both SR [67] as well as 
hnRNP proteins [68]. Thus, the results should be interpreted cautiously, because 
the observed effect resulting from a loss of one splicing factor may in fact be the 
secondary effect of a change in the network. Nevertheless, targeting of the cis- or 
trans-regulating elements gives possibility to hit precisely the source of oncogenic 
transformation.

5. Translation initiation

Previously we described the processes, which regulate translation of the specific 
RNA in a controlled manner. The initiation of translation is another step on the way 
of protein synthesis, which is tightly controlled. The process can be remodeled by 
multiple cellular intrinsic signaling pathways that can be active in malignant cells.

Constitutive activation of the PI3K/Akt/mTOR signaling pathway [69, 70] has 
been observed in various types of leukemia, including acute lymphoblastic leuke-
mia (ALL), Philadelphia (Ph) chromosome positive and Ph-like acute lymphoblas-
tic leukemia (BCR-ABL1-like ALL) or AML. Continuous activity of the PI3K/Akt/
mTOR pathway contributes to unregulated proliferation and leads to resistance to 
therapy with tyrosine kinase inhibitors (TKI) [71]. Activation of mTOR results in 
phosphorylation of S6K kinase and eukaryotic translation initiation factor 4E bind-
ing protein (4E-BP1), promoting cap-dependent mRNA initiation of translation 
and increased protein synthesis in leukemia cells [72]. On the other hand, mTOR 
pathway stimulates cap-independent translation mediated by internal ribosome 
entry sites IRES, mainly by activation of eIF4A helicase [73]. Another signaling 
pathway that regulates initiation of translation is the Ras/MAPK/ERK pathway. Its 
activity has also been found in leukemia cells [71, 74]. Activation of that pathway 
resulted in phosphorylation of the translation initiation factor eIF4E by MNK1/2 
kinases. This contributed to increased β-catenin mRNA translation efficiency and 
activation of the Wnt/β-catenin signaling pathway, which plays an important role 
in differentiation and proliferation of leukemia cells [71, 75]. Microenvironmental 
signals, such as acute hypoxia or nutrient deprivation, trigger so called Integrated 
Stress Response (ISR) pathway, which shapes the mRNA translation. There are 
four protein kinases activated dependently on the stressor type: GCN – amino acid 
deprivation, PKR – appearance of viral RNA, PERK – accumulation of unfolded/
misfolded proteins in the ER and HRI – oxidative stress, heme deficiency, osmotic 
shock and heat shock. Activation of these kinases in response to stress leads to 
phosphorylation of eukaryotic initiation factor 2 subunit alpha (eIF2α) and 4E-BP, 
which orchestrate number of downstream events regulating translation. ISR has 
been shown to be active in leukemia cells and displayed pro-survival properties of 
those cells [76].

Changes in cellular signaling provide a great opportunity for the anti-leukemia 
treatment strategy. One is based on the inhibition of PI3K/Akt/mTOR [77] and  
Ras/MAPK/ERK [78] signaling pathways. Rapamycin, an inhibitor of the mTOR 
signaling pathway, has been tested in the context of leukemia treatment [79]. 
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Moreover, PP242 and hippuristanol, inhibitors of mTOR-eIF4A pathways, also have 
the potential to overcome TKI resistance [73]. Recent reports have shown that riba-
virin, which is used as an antiviral drug, inhibits the mTOR/eIF4E and ERK/Mnk1/
eIF4E pathways in leukemia cells expressing BCR-ABL1 oncogene and ultimately 
leads to reduction of anti-apoptotic proteins, inhibition of proliferation and con-
sequently apoptosis of leukemia cells [80]. Salubrinal, guanabenz and Sephin1 are 
known agents inhibiting activity of phosphatase, which dephosphorylates eIF2α. 
Their effectiveness has been studied mainly in the context of neurological disor-
ders, but leukemia should also be included into this research. Inactivation of ISR 
pathway can constitute a significant treatment strategy. The best described group 
of molecules targeting ISR are inhibitors of the kinases phosphorylating eIF2α, 
i.e. PERK kinase. The compounds GSK2606414 and GSK2656157 were designed to 
bind selectively to the ATP binding pocket of the PERK kinase and to inhibit PERK 
activity. Their potency has been studied in a vast number of cancers. Unfortunately, 
the use of those inhibitors caused serious side effects [81] and recently not spe-
cific effects have been reported [82]. Alternatively, a small molecule ISRIB (ISR 
inhibitor) is another example of the drug that inhibits general translation. It acts 
downstream of the eIF2α factor in the ISR signaling pathway and through direct 
interaction with eIF2B abolishes the phosphorylation effect of eIF2α [83].

Initiation of the translation process can be altered by aberrant cell signaling 
leading to enhanced expression of proteins, which play a pro-survival role and 
support cell proliferation. Therefore, interference with elements enabling the 
stimulated translation, could be one of the strategies that, by targeting general 
protein synthesis, restrict propagation potential of acute leukemia cells. The broad 
spectrum of proteins which synthesis might be disturbed by such treatment, has 
both advantages and disadvantages. On one hand such treatment will affect most 
of actively translating cells in the body. On the other hand however, this attitude 
represents a powerful tool to block highly proliferative acute leukemia cells by limit-
ing their ability to propagate. Moreover, taking into account the heterogeneity of 
cancer, it might be effective towards broader spectrum of leukemia cell clones and 
push the clonal selection towards less proliferative, so less aggressive form of cancer. 
This in turn enables other drugs, which can be then used in combinatory treatment 
to exert the beneficial effect.

6. Ribosomal proteins

Machinery that physically executes the protein synthesis on the matrices of 
mRNA is based on ribosomes. This complex entities are formulated of rRNA 
core and ribosomal proteins (RPs) of small (RPS) or large (RPL) subunit. Recent 
evidence demonstrated that ribosomes can contain different RPL/RPS, thus indicat-
ing a heterogeneity among ribosomes. Additionally, different expression of some 
RPL and RPS in the tissues has been observed. There are RPs, such as RPL38, which 
regulate translation of the Homeobox genes during embryo development [84], 
showing involvement of RPs in directing tissue organization. This heterogeneity of 
the translational machinery is further amplified by proteins associating/interacting 
with ribosomes [85, 86] (reviewed in more detail here [87]).

Existence of ribosomopathies demonstrates that RPs can play significant role in 
determining the cell fate. The first ribosomopathy which has been recognized was 
the Diamond-Blackfan anemia (DBA) caused by defect in RPS19 gene, what leads 
to the bone marrow failure [88]. Since then, more similar aberrations related to 
pathological state have been discovered. It has been observed that ribosomopathies 
are often related to cancers including leukemia, bone marrow failure and anemia.
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Difference in expression of ribosomal proteins between normal and malignant 
tissues has been found [89] (for review see [90]). It has also been proposed that 
aberrant expression of ribosomal proteins might support cancer progression. 
Overexpression of RPL23 in CD34-positive myelodysplastic cells (MDS) had impact 
on therapy effectiveness and was associated with poor prognosis [91]. Moreover, 
CD34-positive cells refractory to azacitidine treatment, displayed upregulation of 
RPL15, RPL28, RPL31 and RPL32 ribosomal proteins [92]. Recent study of MDS 
revealed that progression to AML is accompanied by elevated expression of some 
ribosomal proteins in CD123-positive cells [93]. Contrary to this, some ribosomal 
proteins play a tumor suppressor role in development of leukemia. Loss of RPL11 
promoted lymphomagenesis [94], deletion in RPL5 gene has been found in multiple 
myeloma [95] and mutations in RPL5 and RPL10 contribute to development of 
T-cell acute lymphoblastic leukemia [96]. Additionally, mutation in RPL10 caused 
upregulation of phosphoserine phosphatase, which stimulated proliferation of 
cancer cells [97], deletion of a fragment of chromosome 5 led to myelodysplastic 
syndrome, which may progress to AML caused by RPS14 haploinsufficiency [98], 
deletion of RPL22 led to T-cell ALL by inducing a stemness factor [99] and muta-
tion of RPS15 has been discovered to drive chronic lymphoblastic leukemia (CLL) 
development [100] and to cause cancer relapse [101]. Altogether, these examples 
clearly show that abnormally expressed ribosomal proteins are strong candidates 
for leukemia drivers.

It has been shown that ribosomal proteins associated with the ribosome define 
pool of mRNA transcripts that are selectively translated by this ribosome [102]. 
There are RPs that facilitate translation upon stress by interacting with IRES or 
allowing for translation with the use of alternative upstream open reading frames 
[uORFs]. For instance, RPS5 regulates binding of transcripts with IRES-2 [103] and 
RPS25 regulates binding of IRES-1 in 40S subunit [104].

Phosphorylation or other modifications of ribosomal proteins might also have 
impact on the spectrum of translated proteins. However, even if the phosphoryla-
tion of RPS6 is well documented, its physiological role remains not clear (for 
review see [105]). More recently, a phosphorylation of RPL12 has been identified to 
facilitate translation of AU-rich mRNAs during mitosis [86].

Selectivity for mRNA binding by the particular RPs shows that besides being a 
part of the translational machinery, they might actually play an important regula-
tory role of this process. Furthermore, identification of numerous proteins that 
interact with ribosome, so called ribosome associated proteins, has revealed that 
its activity is shaped by the microenvironment [85]. Changes of mRNA transla-
tion upon RPL12 phosphorylation during cell cycle progression [86] represent 
an example of how cells could use the translational machinery itself, to adapt the 
proteome to the current demands. This creates possibility for cellular signals to have 
impact on the translation machinery, allowing adjustment of the profile of synthe-
sized proteins and by that way contributing to leukemia progression.

Targeting of ribosome activity could be a strategy of leukemia treatment. 
Based on cryo-EM structure, an antibiotic called cycloheximide (CHX) has been 
designed, that stalls ribosomes on mRNA [106]. However, due to high toxicity level, 
CHX is mainly used in molecular biology assays nowadays. Homoharringtonine 
(omacetaxine, HHT) is now the only FDA approved drug to treat CML patients 
refractory to TKIs [107]. Its mechanism of action is based on prevention of binding 
of tRNA to the ribosome [108], while at the cellular level this compound reduces the 
level of anti-apoptotic proteins Bcl2 and MCL-1, thus guiding leukemic cells into 
the apoptotic pathway [109]. Targeting of monosome translation by HHT has been 
recently intensively tested. This drug is also examined in terms of AML treatment. 
Omacetaxine occurred to be highly potent in subpopulation of myelodysplastic 
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cells progressing towards AML [93]. Apart from that, usage of HHT has shown the 
synergistic effect in combinatory therapy (as reviewed in [110]).

Additionally, there are strategies to target ribosomal proteins biosynthesis at the 
step of transcription by using DNA intercalating agents such as: oxaliplatin, cispla-
tin or carboplatin [111] or by specific inhibition of ribosomal genes transcription by 
Polimerase I inhibitor CX-5461 [112]. This inhibitor showed the clinical potential in 
Myc expressing multiple myeloma [113, 114]. The Phase I clinical study in hemato-
logical malignancies has reported the increased patients survival/enhanced elimina-
tion of cancer cells [115].

The fact that the presence of ribosomal protein or its modification might be 
different in cancer versus healthy cells creates opportunity to target cancer cells in 
more precise way, limiting the damage of healthy tissue. Design of specific small 
molecule inhibitors or other drugs targeting precisely the deregulated ribosomes 
would allow effective elimination of leukemia cells ‘hiding’ quiescently in the niche.

7. Conclusions

Translation regulation is a key process, which enables cancer cells to adapt the 
proteome according to the cellular demands and therefore survive the therapeutic 
treatment. Moreover, it can contribute to oncogenic transformation, because 
deranged translation can be a source of enhanced expression of such oncogenes 
as Myc. This includes modification of activity of certain RNA binding proteins or 
stimulation of signaling, what leads to increase of global protein synthesis rate. 
Thus, targeting the translation regulatory mechanisms can be an effective way to 
eliminate the oncogene-driven malignant cells or just limit cancer cells potential for 
survival. In other words, therapeutic targeting of post-transcriptional regulation 
of gene expression gives possibility for both, precise medicine approach as well as 
blockade of cancer cells proliferation, irrespective of the evolving cancer clones or 
oncogene expression.
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