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Abstract

Pancreatic carcinoma is the fourth leading cause of cancer death in the word 
wild. Although the advance in treatment this disease, the 5-years survival rate 
is still rather low. In the recent year, many new therapy and treatment avenues 
have been developed for pancreatic cancer. In this chapter, we mainly focus on the 
following aspect: 1) the treatment modality in pancreatic cancer, including chemo-
therapy, radiotherapy, and immunotherapy; 2) the mechanism of pancreatic cancer 
treatment resistance, especially in cancer stem cells and tumor microenvironment; 
3) the diagnosis tools in pancreatic cancer, including serum markers, imaging 
methods and endoscopic ultrasonography. Novel molecular probes based on the 
nanotechnology in the diagnosis of pancreatic cancer are also discussed.

Keywords: pancreatic carcinoma, immunotherapy, cancer stem cell, tumor 
microenvironment, nano-medicine

1. Introduction

Pancreatic cancer is currently the fourth leading cause of cancer-related 
death and is predicted to be the most common cause of cancer mortality by 2030 
[1]. Despite advances in the treatment of pancreatic cancer, prognosis remains 
extremely poor with 5-year survival of only 8% [2]. The low survival rate is 
attributed to several factors, such as asymptomatic until the disease develops to an 
advanced stage, early and extensive metastasis, and high resistance to treatment. 
Therefore, precision diagnosis and effective treatment is a critical clinical issue.

Currently, commonly employed treatments for pancreatic cancer include 
surgery, chemotherapy, and radiation therapy. Surgical resection is regarded as 
the only treatment for curing pancreatic cancer. However, only 15% of pancreatic 
cancer patients present with disease that are resectable upfront. Chemotherapy is 
the mainstream treatment for local, advanced and metastatic pancreatic cancer [3]. 
Among the traditional treatment, chemotherapy is the most advanced modality, 
especially the target therapy. The role of radiotherapy in pancreatic cancer is still 
controversial. Although the clinical trial results were disappointing, immuno-
therapy is the still greatly investigated approaches in pancreatic cancer. The deeper 
investigation of treatment resistance mechanism and novelty modality develop-
ment is urgently needed.
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2. Treatment modality of pancreatic cancer

At present, commonly employed treatment for pancreatic cancer include surgery, 
chemotherapy, and radiotherapy. The treatment options depend on the stage of 
pancreatic cancer. Some emerging therapeutic technologies have yet to mature, such 
as molecular targeted therapy and immunotherapy.

2.1 Surgical therapy

Surgical resection is regarded as the only treatment for cure and can result 
in significantly longer survival of pancreatic cancer. According to the diseased 
localization and extension, pancreatic cancer is divided into resectable, borderline 
resectable, or locally advanced. Resectable cases account for 15% of pancreatic 
cancer patients and this subpopulation is the only potential for cure. However, 
5-year survival is at best 20–25%. Borderline resectable cases account for another 
5–10%. For some patients with early recurrence or not have the complications of 
aggressive disease and latent metastasis, neoadjuvant therapy is one alternative 
measures to reduce the tumor burden and obtain better local control. The proper 
sequence of surgical therapy and neoadjuvant therapy is the determine factor. 
Delivering full-dose chemotherapy preoperative therapy may be more effective 
than postoperative therapy because the resected tumor bed is associated with 
poor drug delivery. In patients with borderline resectable pancreatic cancer after 
effective neoadjuvant therapies, the possibility for an R0 resection is higher, and 
survival of patients who underwent surgical resection is better than that of those 
who did not [4]. Approximately 30–40% of patients have locally advanced unre-
sectable pancreatic cancer (LAPC) in which tumor is involvement of neighboring 
blood vessels [5].

2.2 Chemotherapy

Chemotherapy is the mainstay treatment for advanced and metastatic pancre-
atic cancer. Fluorouracil and gemcitabine are the first line chemotherapy drugs. 
However, their clinic effective is still disappointing. In recent years, the National 
Comprehensive Cancer Network (NCCN) guidelines have recommended two 
options: one is the FOLFIRINOX regimen of four drug combination (fluorouracil + 
calcium folate + oxaliplatin + irinotecan), another is the AG regimen of a combina-
tion of paclitaxel and gemcitabine [6]. Although the four-drug combination scheme 
is effective to some extent, its toxicity and side effects are great. Considering the 
physical strength score of some patients, the application of this scheme is limited. 
The albumin paclitaxel regimen is relatively safe and has fewer adverse reactions. 
More and more researches recommend this regimen as the first-line treatment of 
pancreatic cancer in the future. The following subsets are specially suitable for 
the albumin paclitaxel treatment, such as neoadjuvant and salvage chemotherapy 
patients, postoperative adjuvant chemotherapy patients, and advanced chemo-
therapy patients [7].

2.3 Radiotherapy

Radiotherapy is always used as a curative treatment for localized cancer or 
lymph node metastasis, and as a palliative treatment in patients with widespread 
disease. Overall, nearly 50–60% of patients with cancer receive radiotherapy [8]. 
The role of radiotherapy in pancreatic cancer is controversial. Multiple clinical 
trials have been designed to access the role of radiology in pancreatic carcinoma 
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over the last 30 years and mixed results were acquired. According to the LAP-07 
trial, no benefit was found to the addition of radiotherapy to gemcitabine for locally 
advanced pancreatic cancer [9]. The American society of radiation oncology’s 
(ASTRO) guidelines recommended the clinical practice of radiotherapy for high-risk 
pancreatic cancer patients. It is recommended to conditionally undergo fractional 
radiotherapy or stereotactic body radiation therapy (SBRT) after chemotherapy in 
surgically resectable patients. The conditional provision of conventional fractional 
radiation is recommended in positive lymph nodes and margins were found during 
surgical resection. Neoadjuvant chemotherapy combined with radiotherapy is con-
ditionally recommended after systemic chemotherapy for patients with resectable 
boundaries. It is recommended to conditionally concurrent chemo or radiotherapy 
or SBRT as salvage radiotherapy after systemic chemotherapy in locally advanced 
patients who are not suitable for surgery. New radiotherapy technology, such as 
intensity modulated radiation therapy (IMRT), SBRT, with advances in motion 
management, target delineation, treatment planning, and image guidance, allows 
for reducing treatment-related toxicities, improving control of micro-metastatic 
disease and dose escalation, as well as possible synergy between radiation and other 
therapy. Therefore, there is great potential for radiation to improve future outcomes 
in pancreatic cancer. [10].

2.4 Immunotherapy

Immunotherapy is a treatment that eliminates tumor cells by reactivating and 
enhancing the anti-tumor immune response of tumor patients. Much excitement 
has been generated immunotherapy in tumors that are refractory to traditional 
treatment, as well as resistance to traditional agents. Moreover, cancer immuno-
therapy has gone all the way from a promising preclinical application to a clinical 
reality. A variety of tumor associated antigens are high expression in pancreatic 
cancer, such as mucin1 (MUC-1), carcinoembryoni-cantigen (CEA), prostate stem 
cell antigen (PSCA), vascular endothelial growth factor (VEGF), mesoth-elin 
(MSLN) and K-ras mutation. Unfortunately, the use of immunotherapy alone 
has encountered disappointing results in clinical trials in pancreas cancer, with 
response rates only [10]. Immunotherapy includes the following methods:  
(1) Active immunotherapy. Active immunotherapy refers to immunizing tumor-
associated antigens to stimulate tumor-specific immune response of the body to 
eliminate tumors. Tumor associated antigens (TAAs) have been widely explored 
as cancer vaccines for treatment of pancreatic cancer in both mouse models and 
clinical trial [11]. Due to a variety of the tumor associated antigens expressing on 
the pancreatic cancer cells, several vaccines can be explored for the pancreatic 
cancer active immunotherapy, such as GVAX vaccine. K-ras gene has a high muta-
tion rate in pancreatic cancer and K-ras vaccine has become an important target for 
immunotherapy of pancreatic cancer. Studies have found that the cationic nano-
encapsulated K-ras peptide vaccine has a significant therapeutic effect on pan-
creatic cancer xenograft mice, and can significantly prolong the survival of mice 
[12]. In a I phase of clinical trial, following inoculated with MUC-1 peptide-loaded 
DC vaccine in 7 pancreatic cancer patients, the number of mature DC cells in 2 of 
them increased significantly and peripheral blood lymphocytes were activated and 
produced large amounts of IL-12p40 and IFN-γ [13]. (2) Passive immunotherapy. 
Passive immunotherapy refers to substances with immune effects are modified in 
vitro and then injected into human body to enhance anti-tumor immune response 
and eliminate tumors. At present, passive immunotherapeutic strategies used 
for pancreatic cancer including: 1) Antibody-mediated passive immunotherapy. 
Antibody-mediated passive immunotherapy involves targeting tumors using 
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monoclonal antibodies, antibody-drug conjugates, antibody fragments, or radio-
immunotherapy conjugates to inhibit oncogenic signaling, immune suppression, 
or immune checkpoints [11]. Combination anti-CD40 antibody with gemcitabine 
showed an effective tumor inhibition. 2) Passive T cell mediated immunotherapy. 
Passive T cell mediated immunotherapy includes adoptive T-cell transfer and 
chimeric antigen receptors (CAR) T-cells therapy. (3) Immune checkpoint block-
ing therapy. Immune checkpoint blocking therapy is an immunotherapy method 
that can reverse the immunosuppressive signal by blocking the immunoregula-
tory molecules and enhance the anti-tumor immune response. Pancreatic cancer 
tumor cells overexpress immunosuppressive ligands, such as B7-1, B7-2 and PD-L1, 
which bind to surface inhibitory receptors CTL-4 and PD-1 of T cells to suppress 
effector T cell activity and evade immune surveillance. In 2011, the FDA approved 
Ipilimumab, the first humanized monoclonal antibody targeting CTL-4, for the 
treatment of patients with advanced melanoma. Its effect on pancreatic cancer has 
entered the clinical trial stage. Studies have shown that Ipilimumab can promote 
the proliferation of T cells and the secretion of Th1 cytokines, and enhance the 
killing effect of CD8+ T cells on Colo356/FG pancreatic cancer cells [14]. Two 
PD-1 blocking antibodies pembrolizumab and nivolumab are FDA approved for 
use in the treatment of metastatic non-small cell lung cancer, melanoma, renal 
cell cancer, and head and neck cancer [15]. In mouse model of pancreatic cancer, 
anti-PD-1 or PD-L1 blocking treatment promoted the generation of CD8+ T cells to 
tumor invasion and anti-tumor immune response. In a number of clinical trials, no 
objective tumor remission was observed in pancreatic cancer patients treated with 
anti-PD-1 or anti-PD-L1 blocking alone, suggesting that PD-1 or PD-L1 blocking 
alone does not have a good therapeutic effect on pancreatic cancer. (4) CAR-T 
therapy. Chimeric antigen receptor (CAR) is composed of the single chain variable 
fragment (ScFv) of monoclonal antibody, the hinge region and the transmembrane 
region of TCR receptor, and the intracellular signal transduction region in series. 
They form the chimeric antigen receptor by viral infection or electrical transforma-
tion on the surface of T cells. CAR-T can recognize antigens on the surface of tumor 
cells directly without being restricted by HLA molecules. Therefore, CAR-T has 
a broader application prospect in tumor immunotherapy. Target specific CAR-T 
cells were designed to target the highly expressed tumor-associated antigens 
of pancreatic cancer, making the treatment more specific. Tn-MUC-1 CAR-T: 
Posey et al. designed CAR-T cells targeting the Tn/STn glycopeptide phenotype 
on MUC-1 [16]. When CEA + C15A3 pancreatic cancer cells were transfected to 
mice, the cancer cells were quickly cleared and serum levels of IL-1β and IL-5 were 
significantly increased [17]. PSCA CAR-T: PSCA is also a tumor-associated antigen 
highly expressed in pancreatic cancer, and CAR-T targeting PSCA has a significant 
anti-tumor effect on xenograft mice of human pancreatic cancer after treatment, 
in which 40% of the tumors in mice have completely subsided [18]. MSLN CAR-T: 
Hingorani et al. designed CD8+ CAR-T cells targeting MSLN, and found that MSLN 
CAR-T cells could specifically kill KPC tumor cells and produce a large amount of 
IFN-γ in vitro. The metastasis rate dropped from 64% to 46%, and overall survival 
increased from 54 days to 96 days [19].

Due to unique tumor microenvironment of pancreatic cancer, both traditional 
treatment and single immunotherapy is not ideal. Although tumor vaccine can 
induce the activation of effector T cells, the activation degree is very limited and 
only a few effector T cells and NK cells exist in the tumor microenvironment and 
peripheral blood of pancreatic cancer patients. Although immune checkpoint 
blocking therapy can block the inhibitory effect of effector T cells, there are still 
many soluble immunosuppressants inhibiting effector T cells in the tumor micro-
environment of pancreatic cancer. For CAR-T treatment, in addition to being 
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influenced by immunosuppressive factors in the tumor microenvironment, the 
fibrous stroma layer around pancreatic cancer cells can prevent the infiltration of 
CAR-T into the tumor and further its efficacy. Therefore, a deep understanding 
the characteristics of the immune microenvironment of pancreatic cancer and its 
impact on immunotherapy and/or other traditional treatment will greatly improve 
the treatment effect. The combination of immune checkpoint blocking therapy 
with radiotherapy, chemotherapy and tumor vaccines can enhance the function 
of tumor-specific T cells and promote lymphocyte infiltration into the tumor site. 
Anti-CD40 agonist can reverse the resistance of pancreatic cancer mice to PD-1 
and CTLA-4 blocking antibodies, and improve the therapeutic effect of blocking 
antibodies. Pembrolizumab (PD-1 blocking antibody) and nivolumab (CTLA-4 
blocking antibody) combined with radiotherapy can significantly prolong the 
survival of mice with pancreatic adenocarcinoma [20]. In order to design a reason-
able immunotherapy strategy according to the characteristics of pancreatic cancer 
microenvironment and improve the effect of pancreatic cancer immunotherapy, 
we should start from the following aspects: (1) destroy the fibrous matrix layer of 
pancreatic cancer and increase the infiltration of effector T cells into the tumor; (2) 
remove excessive immunosuppressive cells such as Tregs and MDSCs, and reverse 
the immunosuppressive microenvironment; (3) recruit more T cells to the tumor 
site to enhance the anti-tumor immune response of effector T cells; (4) enhance the 
targeting and killing of effector T cells.

3. Treatment resistance of pancreatic cancer

Radiotherapy and chemotherapy plays a central part in curing pancreatic 
cancer. The major cause of treatment failure with pancreatic cancer treatment 
strategies mainly focus on the cancer cell itself and their localized tumor microen-
vironment (TME). Some of the tumor cells are already resistant to the “achievable” 
of anticancer treatment, termed intrinsic resistance. Other tumor cells are initially 
sensitive but become resistant during the course of treatment, termed acquired 
resistance. Regardless of the intrinsic or acquired resistance mechanisms, cancer 
stem cells are thought to be the major cause of tumor treatment resistance. TME 
refers to the internal environment in which tumor cells interact with their sur-
rounding tissue components to form a complex and conducive to the biological 
behavior of tumor cells.

3.1 Tumor microenvironment

Tumor microenvironment is generally composed of three parts: (1) matrix 
components: extracellular matrix (ECM) and stromal cells; (2) cell components: 
including endothelial cells and immune cells; (3) soluble factors: including cyto-
kines and immunoregulatory molecules [21]. The components of the tumor micro-
environment are conducive to tumor proliferation, invasion, adhesion, angiogenesis 
and anti-radiation chemotherapy, and promote the generation of malignant tumors. 
Pancreatic tumor microenvironment has its own characteristics: (1) a rich of matrix 
components, such as pancreatic stellate cells (PSC), cancer associated fibroblasts 
(CAF), typeI collagen, hyaluronic acid and other extracellular matrix; (2) immune 
cells; (3) a large number of soluble immunosuppressive factors [22].

Pancreatic cancer cells secrete platelet-derived growth factor (PDGF), trans-
forming growth factor beta (TGF-β), AngiotensinII and other cytokines [23]. These 
cytokines can activate PSCs depending on several signaling pathways, such as 
extracellular signal-regulated kinase (ERK), c-jun nh2-terminal kinase (JNK), p38 
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mitogen-activated protein kinase (P38MAPK), Janus kinase-signal transducers and 
activators of transcription (JAK–STAT), and phosphatidylinositol 3 kinase (PI3K) 
[24, 25]. The activated PSCs secrete a variety of growth factors in paracrine manner, 
and further promote the growth and proliferation, inhibit apoptosis and enhance 
their invasion ability of pancreatic cancer cells, leading to the treatment resistance 
[26]. CAFs are the critical part of pancreatic cancer microenvironment and func-
tion in secreting extracellular matrix proteins and participating in the formation 
of tumor blood vessels. CAFs also secrete interferon-gamma (IFN-γ) and tumor 
necrosis factor-alpha (TNF-α), which further inhibits the function and infiltration 
of effector T cells and induces the immunotherapy failure [27]. A large amount of 
extracellular matrix, including collagen, fibronectin I, III, XI and hyaluronic acid 
exist around the pancreatic cancer cells. Extracellular matrix creates a favorable 
tumor microenvironment for the growth of pancreatic cancer cells [28]. Moreover, 
accumulated extracellular matrix leads to the collapse and occlusion of intratumoral 
blood vessels, making anti-tumor drugs and immune cells fail to reach the tumor, 
which is useful for the chemotherapy resistance and immune escape [29].

Immune cells are rich in the TME. In pancreatic cancer, the immunity is in a state 
of imbalance between immune cell number and function. The number of CD4 + T 
cells, CD8 + T cells, NK cells and DC cells is decreased and present in an inactive or 
immature phenotype and state. However, CD4+ regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSC), and tumor associated macrophages (TAMs) with 
immunosuppressive effect are active and abundant [30]. The “incapacity” state of 
effector cells, abundance of immunosuppressive cells and their released soluble 
immunosuppressive factors form the immunosuppressive microenvironment of 
pancreatic cancer [31].

Exist of soluble immunosuppressive factors in the microenvironment of pan-
creatic cancer is the important mechanism for tumor cells evading immune surveil-
lance. (1) Transforming growth factor-β (TGF-β): TGF-β is a well-studied cytokine 
that is secreted by various immune cells (Tregs, MDSCs and TAMs) and tumor cells 
[32]. TGF-β has a dual action in cancer, as a tumor suppressor and a tumor promoter. 
As a tumor promoter factor, TGF-β can affect both the adaptive and innate immune 
systems and contributes to the evasion of immune surveillance [32]. TGF-β directly 
inhibits CD8 + T cell cytotoxicity [33], stimulates the generation of Tregs and con-
tributes to exclusion of T cells from the tumor core [34]. TGF-β also inhibits NK cell 
proliferation and cytotoxic functions and affects myeloid cells (tumor-infiltrating 
macrophages and neutrophils) immunosuppressive activity [35]. In addition, TGF-β 
also promotes pancreatic cancer progression and metastasis depending on promot-
ing the growth of fibroblasts and the formation of tumor extracellular matrix, and 
inducing tumor cells to secrete VEGF and matrix metalloproteinase 2 (MMP2) 
[36]. (2) IL-10: IL-10 is mainly produced by Tregs and TAM and inhibits antigen 
presenting cell (APC) and effector T function [36]. (3) Indoleamine-2, 3-dioxy-
genase (IDO): IDO is mainly produced by MDSCs and pancreatic cancer cells. Its 
role is to catalyze the decomposition of tryptophan necessary for the activation of 
effector T cells into Kynurenine, thus inhibiting the activation of effector T cells 
[37]. Moreover, IL-10, IL-13 and IL-23 secreted by activated fibroblasts promote the 
transformation of CD4 + T cells into Th2 or Th17 helper T cells, which is help to the 
tumor immune promoter microenvironment [38]. CCL5, CCL22 and CCL17 recruit 
monocytes and Tregs cells to accumulate in the tumor site, which is useful for the 
tumor immunosuppressive microenvironment [39].

One of the most prominent features of pancreatic cancer is featured with the 
asymmetry distribution of nutrients, insufficient oxygenation (hypoxia), acidic 
pH (acidosis), and elevated levels of reactive oxygen species (ROS). Hypoxia is 
one of the hallmarks of pancreatic cancer and the major drivers of tumor radio and 
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chemo-resistance. Hypoxia induces radio- or chemo-resistance through a variety 
of mechanisms. Firstly, hypoxia protects cancer cells from DNA damages [40, 41]. 
Secondly, hypoxia drives treatment resistance by accumulating and stabilizing 
hypoxia-inducible factor-1α (HIF-1α)[40, 42]. HIF-1a induces excessive secretion 
of proangiogenic signals, such as vascular endothelial growth factor (VEGF), and 
results in rapid but abnormal tumor vessel formation, which reduce the chemo-
therapy drug accumulation in the tumor bed. HIF-1α activation also increases the 
expression of key enzymes that drive the accumulation of lactate and pyruvate as 
well as the antioxidants glutathione and NADPH. NADPH scavenge reactive oxygen 
species (ROS) generated by radiation exposure to limit DNA damage [41]. Lactate 
up-regulates the HIF-1α pathway creating a futile cycle of radio- and immune resis-
tance [42, 43]. In addition, radiation-induced vascular damage can enhance tumor 
hypoxia and trigger an immune response by increasing the production of cytokines/
chemokines, thereby inducing the replenishment of immune cells. Subsequent 
tumor revascularisation occurs via HIF-1α dependent and independent recruitment 
of bone marrow-derived cells [44, 45].

3.2 Cancer stem cells (CSCs)

CSCs are a very small subset of relatively quiescent cells in the tumor that are 
endowed with the ability to self-renew and differentiate into non-stem daughter 
cells that make the bulk of tumor. Epigenetics has been implicated in many aspects 
of CSC biology and its role has been extensively studied [46]. Molecular determi-
nants involved in various types of epigenetic modification, including DNA meth-
ylation, histone modification. Recent work has shown that miR-205 in combination 
with GEM was more efficient in reducing the proliferation of CSCs and resensitized 
GEM resistant pancreatic cancer cells to GEM [47].

Many signaling pathways are frequently deregulated in CSCs including Myc, 
Notch, Hedgehog (Hh), Wnt, FGF/FGFR, EGF/EGFR, NF-κB, MAPK, PTEN/PI3K, 
HER2, JAK/STAT and so on [48, 49]. Furthermore, altered cell cycle regulation can 
play a role in CSC quiescence, proliferation and apoptosis [50]. Cell cycle regula-
tors are frequently lost (p53, Rb, p16/CDKN2A, CDKN1B) or amplified (CCND1, 
CDK4,CCNE1) in pancreatic CSCs [51]. Altered cell cycle program in pancreatic 
CSCs help them resist therapy-induced apoptosis [50].

Aside from intrinsic factors, extrinsic factors also contribute to CSC treatment 
resistance biology. Like normal SCs, CSCs reside in and rely on specialized tumor 
microenvironments, called niche, to maintain a balance between self-renewal 
and differentiation and therapy resistance. The CSC niche in pancreatic cancer 
is composed of a variety of stoma cells including inflammatory cells, immune 
cells, vascular endothelial cells, fibroblasts, smooth muscle cells, mesenchymal 
cells, adipocytes, nerve fibers and neural cells, together with extracellular matrix 
(ECM)[52]. These various components collaboratively interact with each other via 
networks of cytokines, chemokines and growth factors to create a hypoxia inflam-
matory, and immunosuppressive environment that facilitates pancreatic cancer 
treatment resistance [52]. The special pancreatic CSC niches include the hypoxia 
niche and the perivascular niche. In pancreatic cancer, hypoxia has been shown to 
promote the CSC expansion [53]. Oxygen plays a crucial role in generating ROS 
that mediate the anticancer effects of radiotherapy and chemotherapy. The low 
oxygen tensions in the hypoxia area of the tumor contain low levels of ROS, reduc-
ing the risk for the cells being killed [54]. In addition to physically protecting of 
the niches, other components of tumor microenvironment including extracellular 
matrix (ECM), cancer associated fibroblasts, immune cells and inflammatory cells 
also play a role in protecting pancreatic CSCs from both chemotherapy and other 



Pancreatic Cancer

8

therapies [55]. They provide CSCs with resistant signaling stimuli through surface 
receptors to activate other lines of defense for CSCs. Stromal cells secrete high levels 
of HGF which makes co-cultured human pancreatic cancer cells acquire resistance 
to various anticancer drugs particularly RAF inhibitors [56]. Other growth factors 
or cytokines including interleukin 6 (IL-6), fibroblast growth factor (FGF) and 
neuregulin 1 are reported to help form the so-called ‘chemo-resistant niche’ of CSCs 
by activating various survival signaling pathways [57, 58].

In addition to the niches, CSC could activate the second line of defense under 
treatment stress, i.e., the drug efflux mechanisms that pump the drug out of the cell 
are another special defense for pancreatic CSC treatment. The transmembrane pro-
teins of the ABCT family are the main players of drug efflux and highly expressed 
on pancreatic CSCs [59], including multidrug resistance-associated protein 1 
(MRP1 or ABCC1) and breast cancer resistance protein (BCRP or ABCG2] [59].

In case of the drug efflux has failed and the drug has invaded the cytoplasm 
of CSCs, high levels of drug inactivating enzymes or low expression of the drug 
activating enzymes would make the cells resistant to the drugs. Thymidine phos-
phorylase converts capecitabine into 5-fluorouracil (5-FU)[60].

Unless unrepairable DNA damage occurs, DNA repair is another main reason 
for radio- or chemo-resistance of pancreatic CSCs [61, 62]. It has been shown that 
DNA damage checkpoint and repair proteins such as the ATM, Chk1/2,p53, BRCAs 
and XRCC5 are aberrantly overexpressed or over-activated in CSCs but not in non-
CSCs [63], and is further activated by DNA-damaging therapy such as radiation 
rendering delayed cell division and prolonged DNA repair time leading to resistance 
[64, 65]. Similar to normal stem cells, CSCs rely on specific signaling pathways for 
maintaining essential proliferation, survival and the balance between self-renewal 
and differentiation. In response to therapies, CSCs either over-activate pro-survival 
and anti-apoptotic signaling or down-regulate proapoptotic signaling as another 
mechanism of resistance to therapies [66]. For example, inhibition of NF-κB 
hinders the stemness of CSCs in pancreatic cancer.

Lastly, regeneration of CSCs by EMT is a likely mechanism for radio- or chemo-
resistance of cancer and relapse. EMT program has been linked to the acquisition 
of aggressive traits and treatment resistance in CSCs [67]. A set of pleiotropic EMT 
transcription factors (eg. Snail1/2, Zeb1/2, Twist) together with EMT inducers (eg. 
TGF-β) have been proven to contribute to CSCs treatment resistance [68]. Indeed, 
rapid repopulation of CSCs is believed to occur in human tumors during radiother-
apy [69], and redistribution of CSCs to the quiescent phase of the cell cycle makes 
the cells more resistant to radiotherapy.

4. Diagnosis of pancreatic cancer

Traditional methods of diagnosing early pancreatic cancer include serum markers, 
imaging methods and endoscopic ultrasonography. Emerging nanotechnology and 
advanced materials are becoming novel strategies for pancreatic cancer diagnosis. The 
application of multiple diagnostic methods can help to detect pancreatic cancer in the 
early stage, which is help to improve the survival rate.

4.1 Serological mark

During the development of pancreatic cancer, it can actively secrete certain 
substances, which have been preliminarily proved to be useful for the diagnosis and 
prognosis evaluation of pancreatic cancer. Carbohydrate antigen 19-9(CA19-9) is 
the most commonly used serological marker in diagnosis of pancreatic cancer [70]. 
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The sensitivity and specificity of CA19-9 in the diagnosis of pancreatic cancer are 
not high, which limits its clinical application. Combination CA19-9 with CA125 
significantly improve the sensitivity of pancreatic cancer detection and contribute 
to its early diagnosis [71]. Dj-1, a protein secreted by pancreatic adenocarcinoma 
cells, was found to be positive in 68.5% of pancreatic cancer samples and signifi-
cantly increased in the blood sample of pancreatic cancer patients [72]. Soluble 
complement iC3b was found to be able to detect tumor recurrence at the early stage 
and more sensitivity than imaging [73]. Recent studies have also suggested that 
tumor-associated antigen MUC-1 specific antibody, TAB004, may be useful in the 
diagnosis of pancreatic cancer [74]. In addition, combination CA19-9 with both 
REG4 and tumor necrosis factor-a family member, APRIL, significantly improve 
sensitivity to the diagnosis of pancreatic cancer [74, 75]. A recent study has shown 
that a serum protein biomarker panel consisting of CA125, CA19-9, and laminin γC 
(LAMC2) significantly improve performance in detecting pancreatic cancer than 
single serum marker [76].

In addition to traditional serum tumor markers, some novel circulating tumor 
markers has made great process. MicroRNAs are a group of small non-coding RNA, 
consisting of 19 to 25 nucleotides, which are involved in the growth, proliferation 
and differentiation of pancreatic cancer. Multiple studies have confirmed that 
abnormally expressed serum microRNAs, such as miR-21, miR-196a and miR-155, 
have certain significance in the diagnosis of pancreatic cancer. Moreover, the diag-
nostic value of microRNAs is higher than that of traditional serum tumor markers 
[77]. Exosome is a kind of extracellular vesicles (EV), with a size of 50 ~ 150 nm. 
Exosome can be secreted under physiological or pathological state. Exosome 
contains DNA, microRNA, protein or other signaling molecules, and plays the role 
of exchanging information between cells. Since tumor cells can secrete exosomes 
10 times more than normal cells, analysis of abnormal serum exosomes and their 
encapsulated molecules often has widely been application in the diagnosis for 
tumors [78]. With the ability to enter the peripheral circulatory system, circulatory 
tumor cells (CTC) vary in individual and express both epithelial and mesenchymal 
markers [79]. It has been reported that such cells can be detected in the peripheral 
blood of 40% ~ 100% of pancreatic cancer patients, which may be used for the early 
diagnosis of pancreatic cancer [80].

4.2 Imaging diagnosis

Multi-Detector Computed Tomography (MDCT) is now the most routinely 
performed for the diagnosis of suspicious pancreatic lesions, assessment of resect-
ability and vascular invasion, and detecting metastatic lesions [81]. The appear-
ances of pancreatic cancer in non-contrast CT scan include solid mass (84.2%), 
diffuse enlargement (13.3%) with a vague or uneven glandular appearance, usually 
of slightly lower or equal density. A pancreas-specific protocol with dual-phase 
or multi-phase dynamic contrast is usually used, including early arterial phase 
images, pancreatic phase images and portal venous phase images. Early arterial 
phase images are sensitivity in evaluating the tumor and peri-pancreatic arteries. 
Pancreatic phase images are sensitivity in evaluating pancreatic lesions, and portal 
venous phase images are sensitivity in evaluating the involvement of the portal 
vein, the superior mesenteric vein and other veins. Enhanced CT scan showed 
enhancement in the early stage, with a peak earlier than the liver, relative lack of 
blood, about 93% showed uneven low density, distal pancreatic atrophy and dilata-
tion of the pancreatic duct [81].

In addition to showing the anatomical features of pancreatic tumors, MRI can 
also supply information about the metastatic lesions in lymph nodes and liver. 
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The weighted expression of T1WI was low or slightly low signal, while T2WI was 
slightly high or mixed signal for the tumor mass. The enhancement scan showed 
significant enhancement of the normal pancreas and only slight enhancement of 
the tumor. Diffusion-weighted imaging (DWI) is an MRI technique based on the 
Brownian motion of water molecules in tissue [82], which is greatly useful in dif-
ferentiating mass-forming focal pancreatitis from pancreatic cancer [83, 84].

PET-CT can show the metabolic activity of the tumor, and has obvious advan-
tages in the detection of pancreatic metastasis and the evaluation of systemic 
tumor load. Combination of PET-CT with endoscopic ultrasonography is useful for 
suspected pancreatic cancer diagnosis because of the high sensitivity of PET-CT and 
the high specificity of endoscopic ultrasonography (EUS)[85].

EUS is considered the most sensitive method for detecting early neoplastic in the 
pancreas, which is superior to MDCT [86]. A meta-analysis of 20 studies showed 
that the performance of EUS in PDAC diagnosis depended on the T stage. The 
sensitivity and specificity was 72% and 90% for T1–2 stage cancers and 90% and 
72% for T3–4 stage cancer in EUS [87]. EUS can detect pancreas lesions as small 
as 2–3 mm [88]. In particular, EUS guided fine needle biopsy has become the most 
accurate method for the localization and qualitative diagnosis of pancreatic cancer.

4.3 Molecular imaging diagnosis

In 1999, Weissleder of Harvard University first proposed the concept of 
molecular imaging [89]. Molecular imaging is a biological process that can be 
observed, qualitatively and quantitatively analyzed in humans and other living 
organisms at the molecular or cellular level. It generally includes two-dimensional 
or three-dimensional images and quantitative maps of signals changing over time. 
The rise of molecular imaging has broken the limitation of traditional imaging 
in mainly reflecting the changes of anatomical structure, made modern medical 
imaging go deep into the microscopic level of living organisms, realized the exten-
sion of structural image to functional image, and provided an effective way for 
accurate medical disease diagnosis. Molecular imaging relies on advanced imaging 
equipment, highly sensitive and specific molecular imaging probes [89].

Several groups have investigated novel imaging agents that are coupled to 18F 
applied to PET own to its false positives (eg, benign causes of inflammation like 
pancreatitis) and false negatives (eg, non–18F fluorodeoxyglucose avid tumors). 
Other strategies to detect pancreatic cancer with molecular imaging agents include 
targeting proteins that are overexpressed by the cancer (eg, mesothelin), signaling 
pathways (eg, epidermal growth factor receptor), tumor stroma (eg, hedgehog 
signaling, vascular endothelial growth factor), and other targets that are associated 
with the disease (eg, plectin-1, MUC-1] [90]. Another molecular imaging method 
that is of interest for early detection is hyperpolarized MRI, which can identify 
metabolic aberrations in the pancreas that indicate precancerous lesions [91].

Researchers used PEG as shell, limiting Mn2+ calcium phosphate acid as nuclear 
build a lack of oxygen can be used in the tumor area imaging of molecular probes, 
after the probe enters the tumor, tumor area lower pH can cause lack of oxygen. The 
dissolution of calcium phosphate thus releases its limitations of Mn2+, causing local 
T1 relaxation rate increase significantly, thus successfully mapping the hypoxia 
zone in the tumor to improve clinical tumor treatment effect [92]. In addition, the 
design of introducing the disulfide bond into the probe and being interrupted by 
increased glutathione (GSH) in vivo successfully realized the molecular level imag-
ing (fluorescence, 19f-MRS, MRI, etc.) reflecting the redox state of the lesion area 
[93]. By introducing amino acid sequences that can be recognized and cut off by 
caspase-3, the probe can realize the aggregation of small molecule monomers under 
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the action of activated caspase-3, causing significant amplification of the imaging 
signal, and thus reflecting the occurrence of early apoptotic events in pancreatic 
carcinoma [94].

5. Conclusion

As one of the highest mortality cancer, pancreatic cancer is still a disaster 
disease. Novel diagnosis and therapy avenues should be developed to improve the 
survival rate of this disease.
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