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Abstract

Hypoxic–ischemic brain injury is a number one cause of long-term neurologic dis-
ability and death worldwide. This public health burden is mainly characterized by a 
decrease in oxygen concentration and blood flow to the tissues, which lead to an inef-
ficient supply of nutrients to the brain. This condition induces cell death by energy 
depletion and increases free radical generation and inflammation. Hypoxic–ischemic 
brain injury may occur in ischemic-stroke and over perinatal asphyxia, being both 
leading causes of morbidity in adults and children, respectively. Currently, there are 
no effective pharmaceutical strategies to prevent the triggering of secondary injury 
cascades, including oxidative stress and metabolic dysfunction. Neuroactive steroids 
like selective estrogen receptor modulators, SERMs, and selective tissue estrogenic 
activity regulators, STEARs, exert several neuroprotective effects. These encompass 
mitochondrial survival, a decrease in reactive oxygen species, and maintenance of 
cell viability, among others. In this context, these neurosteroids constitute promising 
molecules, which could modify brain response to injury. Here we show an updated 
overview of the underlying mechanisms of hypoxic–ischemic brain injury. We also 
highlight the neuroprotective effects of neurosteroids and their future directions.

Keywords: neuroactive steroids, hypoxia-ischemia, brain injury, oxidative stress, 
metabolic dysfunction

1. Introduction

Hypoxic–ischemic (HI) brain injury is a major cause of long-term neurologic dis-
ability and death worldwide. Brain damage caused by hypoxia-ischemia responds to a 
wide variety of factors, being the central nervous system (CNS) especially susceptible to 
changes in energy levels, mainly glucose concentrations and oxygen [1]. The brain has a 
25% glucose and 20% oxygen consumption of total body weight [2, 3]. This high energy 
demand is attributed to the functions performed by brain cells such as synaptic activity, 
neurotransmitter recycling and ion transport [2]. Thus, ensuring correct brain metabo-
lism results in optimal neuronal functioning. HI brain injury is mainly characterized by 
a decrease in the concentration of oxygen and blood flow, which causes an insufficient 
supply of nutrients to the brain. These pathological conditions lead to cell death due to 
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the increase in free radical production and depletion of ATP [4]. This phenomenon is 
observed both in perinatal asphyxia (PA) and in ischemic stroke (IS) [5–7]. Around 15 
to 20% of infants that suffer PA will die in the postnatal period and further 25% will 
develop severe and long-lasting neurological impairments such as cerebral palsy, epilepsy 
and neurodevelopmental disorders [8], also representing one of the main causes of 
morbidity in children and adults in the world [9, 10]. Similarly, at a structural level HI 
injury mainly affects the layers II, III and VI of the cortex, CA1 and CA3 hippocampal 
areas, striatum and cerebellum [11]. Therefore, the understanding of the underlying 
mechanisms of this pathology is essential for the establishment of efficient treatments.

Several neuroprotective strategies have been tested, including Selective Estrogen 
Receptor Modulators (SERMs) and Selective Tissue Estrogenic Activity Regulators 
(STEARs), which have shown the same benefits as estrogen, including the decrease 
of reactive oxygen species (ROS), maintenance of cell viability, mitochondrial 
survival, among others; without its negative side effects [12–14]. However, there 
are no effective pharmaceutical strategies to prevent the triggering of secondary 
injury cascades, including oxidative stress and metabolic dysfunction. In this sense, 
the present chapter summarizes the underlying mechanisms of HI brain injury and 
compiles several neuroprotective strategies, including SERMs and STEARs.

2. Mechanisms of brain damage in hypoxia-ischemia

Hypoxia is a condition that affects mainly the brain, and it is characterized by 
a low concentration of oxygen, affecting the proper functioning of the organs and 
tissues exposed to it. This insult causes a variety of responses in the brain. An initial 
response occurs immediately after the insult and is associated with a depletion of ATP, 
glucose and phosphocreatine inside the brain. This immediate reaction determines 
the patient’s outcome against injury, which in turn triggers a secondary response that 
occurs several hours later. A temporary energy recovery takes place almost to the 
initial physiological levels, providing a treatment window between 1 and 6 hours fol-
lowing injury [8, 15, 16]. A third phase of persistent effects lasts for several years [17]. 
In general terms, global hypoxia affects the cerebral cortex, the sensorimotor cortex, 
the talamo and the basal ganglia, causing damage in deep gray matter [18].While the 
complete pathogenic pathways of HI are not fully described, some mechanisms like 
apoptosis, increased glutamate, calcium overload, mitochondrial dysfunction and 
oxidative stress have been proposed to contribute to generate neuronal damage [19].

Primary response depends on the energetic failure, which is characterized by the 
reduction of the energy supply, generating the accumulation of Reactive Oxygen 
Species (ROS) via lactate production augment, making the cell susceptible to oxida-
tive stress and mitochondrial dysfunction [18]. Besides this, restricted cerebral blood 
flow causes a switch to anaerobic respiration, reducing ATP and phosphocreatine, and 
increasing lactic acid production [16]. Low levels of ATP derived from this energetical 
failure affect the integrity of the cell membrane. Calcium enters easily to the cell caus-
ing the membrane depolarization, blocking calcium storage in the cell, which in turn 
accumulates in the extracellular space. In addition, the ion flux of sodium/potassium 
is altered by the Na+/K+ pump dysfunction [20]. The second phase of injury is related 
to the recovery of blood flow and the reestablishment of brain metabolism, character-
ized by an inflammatory response, excitotoxicity and oxidative stress, being the main 
responsible for the brain cells death after hypoxia [7, 18].

2.1 Second phase of injury

Apoptosis as necrosis are the death pathways of the cell. They are present in 
brain damage caused by hypoxia, being apoptosis the most common death pathway 
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in the young brain unchained by mitochondrial failure [21]. Apoptosis can fol-
low two pathways, being the extrinsic triggered by external signals like the tumor 
necrosis factor alpha (TNF-α), Fatty acid synthase (FAS), and the intrinsic path 
mediated by internal factors such as DNA damage or cell stress [22]. The extrinsic 
pathway is involved in the action of caspase 8 and 10, which activate caspase effec-
tors directly, interacting with the intrinsic pathway, and triggering a permeabiliza-
tion of the mitochondrial membrane [23].

The Intrinsic pathway is mediated by the release of apoptotic factors such as 
cytochrome-c, Serine protease HTRA2, mitochondrial (Omi/HtrA2), apoptosis 
inducing factor (AIF), endonuclease G (endoG), Second mitochondria-derived 
activator of caspase/direct inhibitor of apoptosis-binding protein with low pI 
(Smac / Diablo) after permeabilization of the membrane. These apoptotic factors 
can trigger cell death processes that can be mediated by caspase-dependent path-
ways. Each of these factors has a role in programmed death. Cytochrome c interacts 
with Apoptosis protease-activating factor-1 (Apaf-1), creating the apoptosome. 
Smac/Diablo interacts with apoptosis inhibitors, AIF and endoG act through a 
caspase- dependent pathway. These are translocated to the nucleus, causing nuclear 
fragmentation [24, 25]. Hence, the permeabilization of the mitochondrial mem-
brane has been proposed as a marker of a point of no return in hypoxic injury.

2.2 Excitotoxicity

HI injury triggers responses at both the systemic and cellular levels. When the 
energy supply is interrupted, excitotoxicity occurs through an uncontrolled release 
of excitatory neurotransmitters such as glutamate, causing an acute cascade damag-
ing neurons and glial cells at cytoplasmic and mitochondrial levels, and also causing 
disruption of the BBB [23]. Glutamate activates NMDA receptors, causing the accu-
mulation of Ca ++ and nitric oxide (NO), which in turn cause production of ROS. The 
increased levels of intracellular calcium in neurons and glial cells in turn results in the 
activation of calcium-dependent proteases, reactive oxygen species (ROS) production, 
mitochondrial dysfunction, oxidative stress, cytotoxic edema, lipases and deoxyribo-
nuclease (DNase), and the stimulation of pro-cell death pathways [23, 26, 27].

2.3 Oxidative stress

The balance between the oxidant and the antioxidant levels of the cell is called 
redox homeostasis. An imbalance in favor of the intracellular level of oxidants results 
in what is known as oxidative stress. This deregulation occurs mainly in two free 
radicals, the reactive oxygen species (ROS), and the reactive nitrogen species (RNS) 
[28, 29]. Oxidative stress plays a major role in the pathophysiology of HI, due to the 
significant damage to nucleic acids (DNA degeneration), lipids (lipid oxidation), 
proteins and different organelles such as the mitochondria [7]. There are differ-
ent sources of free radicals (ROS and RNS) following HI, including mitochondrial 
electron transport chain (ETC), xanthine oxidase (XO), NADPH oxidases (NOX) and 
nitric oxide synthase (NOS), and arachidonic acid (12/15 lipoxygenase) [26, 28].

2.4 Mitochondria

Mitochondria plays a vital role in survival of the different cells of the CNS [30]. 
It is composed of two membranes, one internal and one external, each with differ-
ent functions. Within these membranes is the matrix. There are enzymes respon-
sible for the main metabolic processes to produce ATP, such as the Krebs cycle, 
β-oxidation, as well as the metabolism of aminoacids [31]. Additionally, the mito-
chondria is involved in moderating processes of death (apoptosis) and biogenesis or 
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cell proliferation [31, 32], also in critical processes such the maintenance of neuro-
nal homeostasis, including autophagy, elimination of toxic metabolites like ROS, 
and calcium homeostasis [26, 30, 31, 33].

Neonatal brain has increased vulnerability to damage by oxidative stress when 
compared with the adult brain, in part due to lower levels of antioxidants [34]. In 
adult brain, superoxide dismutase (SOD) 1 can scavenge ROS generating hydro-
gen peroxide (H2 O2), thus allowing further breakdown by catalases to H2 O. In 
contrast, neonatal SOD1, although expressed, can exacerbate brain injury caused by 
HI possibly due to the absence or downregulation of enzymes such as catalase and 
glutathione peroxidase 1, required downstream of SOD1 [35].

Mitochondria plays a key role in HI injury since the disturbances in energy 
metabolism trigger a number of pathophysiological responses converging at 
mitochondrial levels, such as the control of energy metabolism, production of ROS, 
and the release of apoptotic factors into the cytoplasm [36]. Mitochondria consti-
tutes an important regulator of cell death due to its ability to release proapoptotic 
proteins following mitochondrial permeabilization. Apoptosis can occur through an 
intrinsic pathway, where DNA damage or cellular stressors activate apoptosis, or an 
extrinsic pathway, following activation of death receptors [36].

2.5 Cardiolipin peroxidation

Another consequence of cell death caused by ROS-induced oxidative stress is 
the peroxidation of a mitochondrial lipid, cardiolipin [37], one of the most critical 
targets in the components of the evolution of HI injury. This is a unique phospho-
lipid, which is found mostly in the inner mitochondrial membrane, where it has a 
very close association with the components of oxidative phosphorylation [37, 38]. 
Cardiolipin plays a crucial role in the insertion into the membrane and the function 
of cytochrome C, cytochrome C oxidase and other phosphorylation complexes. This 
is required, therefore, for an optimal functioning of complexes I (NADH: ubiqui-
none reductase), complex III (NADH: ubiquinone cytochrome C oxidoreductase), 
complex IV (cytochrome C oxidase) and complex V (ATP synthase) [39].

When HI occurs, enzymatic and non-enzymatic processes induce lipid peroxi-
dation. The non-enzymatic process is triggered by the interaction of ROS with the 
fatty acyds of the membranes, and the enzymatic process include the activation 
of lipoxygenases (LOX), cyclooxygenases (COX), phospholipase A2 (PLA2) and 
Cyt C [40, 41], which leads to an alteration in the structure of this phospholipid 
responsible for mitochondrial dysfunction. Hence, the release of cytochrome c 
depends on the integrity of itself. This severe sensitivity to ROS is due to its high 
content of fatty acids [39].

2.6 Inflammation in HI

Accompanied by the reactions mentioned above, there is a role played by differ-
ent glial cells in the injury caused by hypoxia, mainly in inflammation. This injury 
initially triggers an immediate response in neuroglial cells, which contribute to the 
damage mechanisms mentioned above, due to the secretion of a large amount of 
proinflammatory cytokines and ROS.

2.7 Astrocytes

In the last 20 years, astrocytes have been granted multiple functions, such as 
providing support, helping in the maintenance of the cerebral microenvironment 
for an appropriate function, regulating the blood flow in the brain, which are 
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essential for the adequate functioning of neurons [2, 42]. Another important astro-
cytic function is the contribution to brain metabolism [43]. Astrocytes takes glucose 
from blood vessels and provide energy metabolites to neurons [44]. In addition, 
through the lactate shuttle, astrocytes provide lactate to the neurons as a substrate 
for the citric acid cycle and can therefore supply their energy requirements [45].

However, the role of astrocytes in injuries such as hypoxia are not fully eluci-
dated. Astrocytes as microglia, when subjected to insults such as hypoxia, may act 
differently depending on the severity of the injury. Immediately after hypoxia, 
astrocytes enter in an activated state, which eventually ends in a glial scar [46, 47].  
Astrocytes plays important roles in the brain during HI. Because of the tight 
connection with brain capillaries, astrocytes suffer damage firstly after ischemia, 
and then, damaged astrocytes kill neighboring neurons. The number of apoptotic 
astrocytes increases gradually as the extension of ischemic time, which leads to 
further expand of cerebral infarction area [48].

Astrocytes can exacerbate cytotoxicity death due to secrete inflammatory cyto-
kines such as IL-1, IL-6, interferon-γ, and TNF-α; and can also help the migration of 
immune cells to the CNS by the secretion of chemokines [49]. Likewise, there is also 
a protective effect exerted by astrocytes, which play an important role in tolerance 
to cerebral ischemic injury [50] and inflammation [50, 51].

2.8 Microglia and endothelial cells

Microglia, the immune cells of the CNS, are the first to be activated after hypoxia. 
They migrate to the place of injury and change their morphology to an amoeboid-lice 
functional cell, acting in conjunction with monocytes and macrophages [49, 52, 53]. 
Microglia M1 release proinflammatory agents to the environment such as ROS, cyto-
kines ((IL) -1β, IL-6, tumor necrosis factor-alpha (TNF-α)), glutamate, nitric oxide, 
creating a cytotoxic environment triggering cell death [49, 52, 53].

The extent of injury noted in HI is not only determined by the biochemical 
cascades that trigger the apoptosis-necrosis continuum of cell death in the brain 
parenchyma, but also by the pro-inflammatory factors of the Blood Brain Barrier 
(BBB), such as the endothelial cells [54]. Endothelial cells can sense variation in 
the Parcial Oxygen Pressure (PO2) through different mechano-sensors. Then, they 
can adapt their metabolism to maintain ATP production, switching into an hypoxic 
metabolism. In this way, endothelial cells augment the production of ROS by mak-
ing the respiratory chain slower, reduce the cytochrome-c capacity in order to trap 
O2, and alter the cellular redox potential [54, 55]. In cerebrovascular endothelial 
cells (cEND) OGD augmented the mRNA expression of IL-1 alpha, IL- 6 glut-1 
transporter and total nitric oxide concentration increasing significantly the perme-
ability of the cEND monolayer [56].

2.9 Selective vulnerability of the brain to HI

The pathophysiology of HI is complex. The damage on the developing brain 
is determined by several factors: timing of asphyxia, intensity, severity of HI and 
immaturity of the brain. Beside this, different areas of the brain and different cell 
types present a selective vulnerability to this injury [18].

The immaturity of brain represents a significant factor in the outcome of HI 
brain injury. Although risk factors of HI in term newborns are similar to those 
observed in preterm newborns, the immature brain in the last ones, especially 
those with a very low birth weight, is highly vulnerable to injury [18]. This, due to 
hypoperfusion caused by the defectively functioning lungs and hearts in preterm 
newborns, and the poor auto-regulatory capacity the immature brain possess [57]. 
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HI injury induces white matter injury with noticeable oligodendroglia loss, due to 
the poorly vascularization in white matter compared with cerebral cortex. This 
injury, known as periventricular leukomalacia (PLV), triggers cognitive, sensory, 
and motor impairment in preterm infants. Abnormalities of cortical gray matter 
and hippocampus are also found in the immature brain [18].

In addition, in the developing brain there is a spectrum of lesions caused by HI. 
Alongside PVL, periventricular hemorrhagic infarction in association with gemi-
nal matrix (ganglionic eminence) hemorrhage, with or without intraventricular 
hemorrhage, or thalamocortical injury (Table 1) [58].

The developing brain exhibits selective vulnerability. As it was mentioned above, 
certain cells and regions appear vulnerable depending on the severity and timing of 
injury. Projection neurons, especially in the deep gray nuclei, are at greatest risk dur-
ing ischemic insults in the term brain [18]. Subplate neurons are the earliest and the 
most transient cell population of the neocortex. The subplate zone peaks at the onset 
of the developmental window of vulnerability to PVL (GW 24) and undergoes dis-
solution during the third trimester. Subplate neurons are largely absent at 6 months 
of postnatal age. HI injury leads to moderate to near-complete subplate neuron cell 
death, whereas most cortical neurons are intact. This selective vulnerability may be 
due to early cellular maturation and a developmentally related increase in glutamate 
receptor expression, including NMDA receptor 1, kainate and AMPA receptors [59]. 
On the other hand, in the preterm brain, subplate neurons and oligodendrocytes 
(OL) precursors are most vulnerable. Consequent abnormal thalamocortical con-
nectivity may explain the somatosensory and visual impairment seen in prematurely 
born infants suffering HI brain injury [60, 61]. OL progenitors appear to be the most 
vulnerable, showing impaired maturation and development following injury.

Hemorrhagic lesions

Germinal matrix (ganglionic eminence) (frequently associated with PVL)
Limited (grade I†)

With intraventricular hemorrhage (grade II)
With ventricular expansion (grade III)
With PHI (grade IV)

Subpial
Cerebellar
Subarachnoid space (temporal lobe and cerebellum)

White-matter lesions

Periventricular leukomalacia (PVL)
With focal necrosis
With diffuse white-matter gliosis only

Periventricular hemorrhagic infarction (PHI)

Combined gray- and white-matter lesions

Single cerebral artery–distribution infarcts (porencephaly)
Hydranencephaly (bilateral large hemispheric infarcts)
Multicystic encephalomalacia

Gray-matter lesions

Thalamic and basal ganglionic injury (“status marmoratus”)
Neuronal necrosis in basis pontis and subiculum (pontosubicular necrosis)
Mobius syndrome (brainstem neuronal loss and gliosis)
Cerebellar infarct

PHI = periventricular hemorrhagic infarction; PVL = periventricular leukomalacia.
†Grade refers to clinical severity assigned based on transfontanelle ultrasonography or other neuroimaging. Adapted 
from [58].

Table 1. 
Lesions caused by HI in the developing brain.



7

Neuroactive Steroids in Hypoxic–Ischemic Brain Injury: Overview and Future Directions
DOI: http://dx.doi.org/10.5772/intechopen.93956

2.10 Oligodendrocytes and astrocytes

Oligodendrocytes, the myelin-forming glia that ensheath axons in the CNS, 
exhibit four sequential stages of maturation. Oligodendroglial progenitors, the 
pre-OL (or late oligodendroglial progenitor), the immature OL, and the mature 
myelin-producing OL [60], are extremely susceptible to HI. The injury involves 
maturational delays in oligodendrocyte population inducing oxidative stress. 
Following HI, OLs fail to fully mature, leading to persistent aberrations in myelin 
ultrastructure, which are associated with permanent disability and neurodevelop-
mental impairment [62].

Astrocytes are the predominant glial population in the CNS. They play a crucial role 
in HI as mentioned above. However, sustained HI brain injury can lead to decreased 
astrocytic function and, thereby, greatly decreased neuronal regeneration [60].

2.11 Blood–brain barrier and vascular fragility

The brain evidences a high requirement of oxygenated blood. This demand 
has resulted in the development of specific cerebral blood vessel networks with 
arteriovenous hierarchy. The Blood–Brain Barrier (BBB) is a specific and unique 
component of the cerebrovascular network. It is a highly specialized biochemical 
and structural barrier at the interface between blood and brain. BBB is involved in 
preserving ionic homeostasis within cerebral microenvironment and regulating the 
entry of molecules into the brain [63].

HI injury in neonatal brain induces an increase in BBB permeability, affect-
ing important cellular and functional components of this vessel network such as 
pericytes, the tight junctions of endothelial cells and astrocytes [60, 63, 64].

Delicate and thin vessels in the developing brain may not sustain the lack of 
blood flow to compensate the requirements of oxygen and nutrients that the brain 
needs, due to the underdeveloped distal arterial network and an immature cerebral 
auto regulatory capacity. Peripheral arteries in the growing brain lack collateral ves-
sels and exhibit limited vasodilatory function in response to the hypoxic–ischemic 
event, resulting more susceptible to HI injury [60].

3. Experimental models

In vivo and in vitro models are used for studying hypoxia (Table 2). In the 
most used animal model, a unilateral ligation of the carotid artery (UCCAO) is 
performed, followed by an exposure to an oxygen atmosphere of 8% for 1–3 hours, 
mainly developed in rodents [65]. This reproduces the anatomical damage caused 
by HI in neonates, with gray matter damage in the hippocampus, thalamus and 
basal ganglia, as well as in white matter [65, 66]. Similarly, it reproduces metabolic 
damage in parameters such as: cerebral acidosis, decreased cerebral blood flow, and 
decreased glucose uptake [52] and has the ability to show the neuroprotective effect 
of different therapeutic approaches like hypothermia [67, 68]. Bilateral ligation of 
the carotid artery is also used to accentuate white matter damage [69, 70] .

In another animal model, ligation of the common carotid is excluded and 
hypoxic damage is performed by oxygen deprivation. This experimental paradigm 
is used to describe milder lesions and to investigate the biochemical alterations of 
the brain [52]. On the other hand, this model has been used in larger animals such 
as primates, sheep, pigs and rabbits in order to better replicate the conditions of a 
human fetus with HI, with the disadvantage of not being able to perform behavioral 
tests and not having a methodological archetype between experiments [52, 71–73].
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3.1 In vitro approaches

The different methodological limitations of in vivo models make in vitro models 
relevant. In order to replicate the conditions that occur in the presence of a depriva-
tion or decrease in glucose and oxygen levels such as those present in HI, several 
studies have proposed a model of oxygen and glucose deprivation (OGD) (Table 2).  
This experimental model has the ability to adjust to specific research needs and 
the versatility of being able to use different cell lines, making possible the study 
of the bases of the molecular and biochemical mechanisms of HI injury. However, 
methodological differences have been found in the implementation of this model, 
especially in the exposure time of hypoxia and reoxygenation. [74–81], making this 
model dependent on the specific conditions of the tissue or cells used [7].

Another methodological approach used to study the effects of hypoxia in vitro 
include chemical hypoxia-mimetic agents (HMAs) (Table 2). These are based on 
producing at molecular level the effects caused by low concentration of oxygen, 
mainly those involved in the expression of Hypoxia-inducible factor-1 (HIF-1) [82, 
83]. The activation of this factor depends on oxygen concentration, and HIF-1 is 
involved in several cellular processes that trigger hypoxia [84–89].

Reference Species Animal model Outcomes

Large animal models

[73] Macaca 

nemestrina, near 
term

UCO Poor weight gain and cerebellar growth, 
abnormal brain
DTI, behavioral impairment, 43% develop 
CP.

[90, 91] Fetal sheep, 
near term

Bilateral CCAO Shorter HI (<30 min): selective neuronal 
loss. Longer HI:
cortical necrosis. Post-HI EEG suppression 
related to insult
severity and pathology; prevented by 
hypothermia.

[92] Fetal sheep, 
midgestation

Bilateral CCAO Necrosis of subcortical white matter, 
neuronal loss in thalamus and striatum 
similar to near term fetus. Little loss of 
final EEG amplitude.

[93] Fetal sheep, 
midgestation 
and near Term

UCO Hippocampal neuronal loss only in near 
term group. Degree of injury associated 
with the severity of hypotension during 
UCO.

[94] Pigs, <24 h old CCAO + hypoxia Secondary energy failure. Energy 
metabolism ameliorated by hypothermia 
(35°C for 12 h) at 24 h–48 h.

[95] Pigs, P9 Hypotension + hypoxia ~60% fall in CBF, reduced cerebral O2 
uptake, phosphorylated metabolites and 
pH and increased inorganic phosphate.

[71] Rabbits, 21–22d 
gestation

Uterine ischemia P1 pups: overt posture and tone after 
ischemia >37 min, correlates with 
microgliosis in basal ganglia and thalamus.
MRI: WMI in IC.

Rodent models with global hypoxic or excitotoxic component

[96] Mice at E8, P0 
or P5

Ibotenate, i.c.v. Laminar neuronal depopulation of layer V–
VIa. P5: neuronal loss in all cortical layers, 
formation of porencephalic cysts.
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Reference Species Animal model Outcomes

[97] Pregnant 
Sprague–
Dawley rats, 
embryonic

Hypoxia E5-E20 White matter cysts in offspring P0–P7, 
increased lipid peroxidation, WMI and 
macrophages.

Rodent models with hypoxia-ischemia

[98, 99] Sprague Dawley 
rats, P1–P3

CCAL + hypoxia Selective vulnerability of late OL 
progenitors, independent of age.
Death of sub-plate neurons, motor deficits, 
altered thalamocortical connections to 
somatosensory and visual cortex normal.

[65] Sprague–
Dawley rats, P7

CCAL + hypoxia Unilateral ischemic injury in the cortex, 
hippocampus, basal ganglia in >90% of 
survivors.

[100] Wistar rat, P7 LPS, 4 h prior to CCAL 
+ hypoxia

Blocking lymphocyte trafficking reduced 
brain inflammation, BBB damage, and 
improved LPS-induced HI brain injury. No 
effect with pure HI.

[101] C57Bl/6 WT, 
Tg SOD1, GPx1 
over-expressing 
P7 mice

CCAL + hypoxia Reduced injury in GPx1-Tg mice but not in 
SOD1-Tg or GPx1/SOD1. NOS inhibition 
did not improve outcome in SOD-Tg.

[102, 103] C57BL/6 WT 
and Gal-3 KO, 
P9

CCAL + hypoxia Increased BBB permeability 2–24 h, 
reduced BBB protein expression. Infarct 
volume reduction in Gal-3 KO mice.

[104] C57BL/6 J and 
TRIF KO mice, 
P8–9

Poly I:C, 14 h prior to 
CCAL + hypoxia

Increased infarct volume and WMI, 
prevented in TRIF KO.
Injury linked to inflammatory response & 
decrease in M2-like microglia.

Focal ischemia rodent models

[105] Wistar rat, P7 Permanent MCAO +1 h 
CCAO

Infarcts in frontoparietal cortex at 3-month 
recovery. DNA fragmentation from 6 to 
96 h.

[106–108] Sprague Dawley 
rats, P7

Transient MCAO, 3 h Severe unilateral perfusion deficits, 
restoration of CBF upon suture removal. 
Decreased ADC associated with brain 
injury at 24 h reperfusion. Demonstrated 
endogenous neuroprotective role of 
microglial cells after acute injury.

[109] Sprague Dawley 
rats, P10

Transient MCAO, 1.5 h Time resolved cell-type specific increase in 
HIF-1a and
VEGF expression, gliosis.

[110] C57/Bl6 mice, 
CD36 KO and 
WT, P9

Transient MCAO, 1.5 h 
and 3 h

Focal ischemia–reperfusion, increased 
injury and caspase-3 cleavage associated 
with apoptotic neuronal debris in CD36 
KO. Effects independent of NFκB 
activation.

In vitro models

Reference Cell line Experimental model Outcomes

[74] PC12 cells 48 h OGD/ 2 h 
reperfusion

Significant morphological cell changes

[75] Primary cortical 
astrocyte

6 h OGD/ 0, 12, 24, 
48 h reperfusion

Significantly increased 2- NBDG uptake 
by about 1.2 to 2.5 times in cells compared 
to control
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Reference Species Animal model Outcomes

[76] Primary 
cerebral cortex 
neurons

3 h OGD/ 48 h 
Reperfusion

Damage to neuronal viability, dendrite 
branch number in neurons deceased 
significantly

[79] Primary 
astrocyte

3, 5, 7 h OGD/ 24 h 
Reoxygenation

Increases in HMGB1 and TNF-a, induced 
phosphorylation of PI3K, promoted 
nuclear translocation of NF-kB

[111] Primary cortical 
neurons

2 h OGD Suppressed significantly cortical neurons 
proliferation

[112] SH-SY-5Y cells 6 h OGD/ 1 h 
reoxygenation

Caused significant mitochondrial 
fragmentation, excessive mitochondrial 
fission

[77] Primary 
Cortical Neuron

OGD Decrease in neurite outgrowth

[78] Neural 
progenitor cell

6 h OGD Increased apoptosis

[113] Mouse 
hippocampal 
neurons HT22

4 h OGD/ 24 h 
Reoxygenation

miR-144-3p expression was significantly 
downregulated in neurons following 
OGD/R treatment

[81] Neuro 2a cells 4 h OGD/ 12 h 
Reoxygenation

Inhibited cell viability and cell 
proliferation, reduced phosphorylation 
levels of p38 MAPK and ERK1/2

[114] SH-SY5Y cells 
and primary 
murine cortical 
neurons,

4 h OGD OGDR-induced mitochondrial 
depolarization, reactive oxygen species 
production, lipid peroxidation and DNA 
damages

[115] Primary 
astrocytes and 
microglial cells

2 h OGD/ 48 h 
Reoxygenation

Induced abnormally opened hemichannels 
with increased ATP release and EtBr 
uptake but reduced GJIC permeability.
Astrocytic Cx43, hemichannels, and GJIC 
play critical roles in OGD/R injury-induced 
neuroinflammatory responses.

[116] Primary 
astrocytes

4 h OGD/ 3 h, 6 h, 12 h, 
24 h reoxygenation

Expression of Ski was proved to be 
up-regulated

[117] Primary 
hippocampal 
neurons

2 h OGD/ 24 h 
reperfusion

Caspase-3 activity and expression 
increased in the first 24 h,

HMAs models

Reference Cell line/species Experimental model Outcomes

[82] Multiple 
myeloma cell 
line U266

CoCl2 CoCl2-mediated hypoxia affects the 
expression profiles of genes that are 
functionally related to apoptosis and 
angiogenesis

[83] Myeloid 
leukemic cell 
lines NB4 and 
U937

CoCl2 and DFO Apoptosis with a loss of mitochondrial 
transmembrane potentials, activation of 
caspase-3/8 and cleavage of anti-apoptotic 
protein Mcl-1

[118] U251 human 
glioblastoma 
cell line

CoCl2 Increases HIF-1a gene expression

[119] Glioblastoma 
cell lines 
U373MG and 
DBTRG05MG

DFO Activation of factors associated with ECM 
degradation and invasion of glioma cells
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4. Neuroactive steroids

Neuroactive Steroids were defined by Baulieu [128] as steroids synthesized in 
the nervous system capable of inducing neuronal excitability [129]. Compounds 
as dehydroepiandrosterone, androstenedione, and deoxycorticosterone meet the 
requirements to be categorized as neuroactive steroids. Interestingly, neuroactive 
steroids induce responses on GABA receptors and modulate the activity of 5α and 3α 
reductases affecting steroid synthesis [130–132]. In this regard, neuroactive steroids 
can be exogenously synthesized and produce similar effects on the CNS. In the 
current definition neuroactive steroids are molecules capable of inducing several 
effects on CNS including ion channel modulation, voltage-dependent calcium 
channels activation and AMPA-NMDA receptors activation [133–135]. Besides the 
neuroactive properties of steroids, there are a plethora of protective functions char-
acterized on neurons, astrocyte and microglia [136–139]. The effects of neuroactive 
steroids on neurons include the increase of dendritic spines, viability, antioxidant 
capacity [140, 141]. On astrocytes, neuroactive steroids improve the mitochondrial 
function, modulate the synthesis of antioxidant molecules and growth factors and 
pro-survival factors as Bcl-2 [142–145]. Finally, on microglia, the effects include the 
modulation of immune response via regulation of the synthesis and secretion of 
cytokines and inflammatory mediators [139].

Reference Species Animal model Outcomes

[120] C57BL/6 mice DFO DFO up-regulated the expression of 
vascular endothelial growth factor 
(VEGF), HIF-1α protein and growth 
associated protein 43 (GAP43) and 
down-regulated the expression of divalent 
metal transporter with iron-responsive 
element (DMT1 + IRE), α-synuclein, and 
transferrin receptor (TFR)

[121] Hippocampal 
neurons

DFO pretreatment/3 h 
OGD

45% reduction in cell death

[122] Sprague–
Dawley rats

Subarachnoid 
hemorrhage/DFO 
treatment

DFO-induced increase in HIF-1 protein 
level and activity exerts significant 
attenuation of BA vasospasm

[123] Hippocampal 
cultures

Ppreconditioning 
CoCl2, DFO or 
dimethyloxylalyglycine 
(DMOG), 3 h OGD

Cobalt induced the transcription of the 
cytokine erythropoietin.
Cobalt and DFO, enhanced survival of 
neurons.
DMOG exacerbates OGD-induced 
neuronal death

[124] Sprague–
Dawley rats

CCA/DFO treatment Neural-protective and angiogenesis effects 
through regulating the levels of HIF-1α

[125] Adipose-derived 
stem cells

DFO preconditioning Restored neovascularization potential of 
ADSCs

[126] Sprague – 
Dawley rats

MCA/DFO treatment Preserved brain volumes, upregulation of 
HIF1a

[127] Wistar rats MCAO/
DFO + Erythropoietin 
treatment

Reduced the number of cleaved caspase 
3-positive cells in the ipsilateral cerebral 
cortex.

Modified from [7].

Table 2. 
Experimental models for HI.
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Neuroactive steroids may induce both genomic and non-genomic mechanisms 
associated with its protective effects [146]. The genomic mechanisms involve the 
modulation of pro-survival genes, anti-inflammatory [147] and anti-apoptotic 
functions [148]. For example, the activation of signaling pathways like Akt-PI3K 
and MAPK, and the upregulation of the anti-apoptotic mediators like Bcl-2 and 
antioxidant enzymes like SOD and GPx [149] are under control of Neuroactive 
steroids. Other mechanisms include the downregulation of pro-inflammatory 
cytokines such as IL-1β, IL-6 and TNF-α [150]. The non-genomic effects include the 
antioxidant properties of some neurosteroids, especially the ones that include an 
A-phenolic ring in their chemical structure [151]. Interestingly, some neuroactive 
steroids are capable of exerting its effects through G-protein coupled receptors, 
for example via GPR30 receptor [152]. Until now, there is a large body of evidence 
demonstrating the beneficial effects of neuroactive steroids following ischemia/
reperfusion and traumatic brain injury (TBI) in animal models (Liu et al., 2005; 
O’Connor et al., 2005) as well as steroid-demonstrated effectiveness in glucose 
deprivation and oxygen–glucose deprivation in in vitro models [148]. Despite this 
evidence, the direct use of estrogens is not fully recommended and still represents 
a potential risk for human health [153, 154] (For further evidence, see Table 3). In 
fact, it has been documented that the use of estrogen and progesterone increases 
the risk to develop breast and uterus cancer, as well as, vascular diseases, brain 
hemorrhage and clotting disorders [155–159]. To circumvent these issues, selective 
compounds that mimic the protective action of neuroactive steroid without the side 
effects were developed. These compounds were defined as selective estrogen recep-
tor modulators (SERMs) and selective tissue-specific estrogenic activity regulators 
(STEARs). SERMs and STEARs exert their actions as estrogenic agonists or antago-
nists depending on the target organ [146, 160]. Tissue selective properties of SERM 
and STEAR are currently under investigation (Figure 1).

Reference Type of study Outcomes

[197]9 Human Psychiatric 
study

The evidence summarized supports the idea that MDD and PPD 
are psychiatric disorders involving neurosteroids and GABAergic 
dysfunction

[198] Comparative human 
and animal studies

The study shows potential mechanisms that underlie sex-related 
differences in behavior and its implications for stress-related 
illnesses.

[199] Animal and human 
studies

The negative cognitive consequences of sleep deprivation may arise 
from the effort of the brain to counteract the detrimental effect of 
sleep loss via compensatory mechanisms

[200] Animal (neonatal 
foal) study

Progesterone might be a promissory marker for identifying 
continuous endogenous production of neuroactive steroids in foals 
with suspected NMS and other diseases

[201] Human study Individual domains of cognitive can be considered as an 
endophenotype of psychosis. It is possible that higher levels of 
cortisol and testosterone in siblings are consistent with high-risk 
states for psychosis

[202] Animal model Exposure to neuroactive steroids induced a sustained elevation in 
tonic current in Fmr1 KO mice. Neuroactive steroids may act to 
reverse the deficits of tonic inhibition seen in FXS, and thereby 
reduce aberrant neuronal hyperexcitability associated to this 
disorder

[203] Peripartum 
depressed women

Cortical GABA+/Cr concentrations are associated with postpartum 
RSFC. It is possible that allopregnanolone may be associated with 
postpartum intra-DMPFC connectivity.
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Reference Type of study Outcomes

[204] Animal and human 
studies

Nervous diabetic complications show sex dimorphic features. 
In this regard, sex-oriented therapies with neuroactive steroids 
might be aimed to counteract nervous damage observed in diabetic 
pathology.

[205] Animal and human 
studies

Neuroactive steroids under pathological conditions may alter 
their levels involving sex differencies in the outcome. Neuroactive 
steroid may be considered as neuroprotective factors to be deeply 
investigated.

[206] Animal and human 
studies

Some studies point to a lag between neuroactive steroid 
dysregulation and subsequent symptoms. The study also consider 
key interactions with other aspects of neuroactive steroid 
physiology, such as synthetic enzymes or receptor plasticity.

[207] Animal and human 
studies

There is a very close link among neuroactive steroids and the 
control of metabolic axis to understand the biological basis of 
many pathologies based on metabolic alterations, for example the 
metabolic syndrome, obesity or diabetes.

[208] Women study Women at both extremes of the weight spectrum have low 
mean serum allopregnanolone. Neuroactive steroids such as 
allopregnanolone may be potential therapeutic targets for 
depression and anxiety in traditionally treatment-resistant groups.

[209] Animal and human 
studies

Low levels of neuroactive steroids could have a part in 
development of depression, neuro-inflammation, multiple 
sclerosis, experimental autoimmune encephalitis, epilepsy, and 
schizophrenia. On the other hand, stress and attention deficit 
disorder could occur during high levels.

[210] Animal and human 
studies

Several Compounds have completed a phase 1 single ascending 
dose (SAD) and multiple ascending dose (MAD) clinical trial and 
is currently being studied in parallel phase 2 clinical trials for the 
treatment of postpartum depression (PPD), major depressive 
disorder (MDD), and essential tremor (ET).

[211] Animal model DHEAS and progesterone were good predictors of HPA Axis 
dysfunction and outcome in hospitalized foals.

[212] Clinical study The first-episode antipsychotic-naive schizophrenic patients 
showed a significantly higher blood level of DHEA-S compared 
with healthy controls. On the other hand, serum DHEA-S level 
has an inverse relationship with aggression and may serve as a 
biological adaptive mechanism to antagonize the neuronal damage 
caused by cortisol.

[213] Animal and human 
studies

Clinical trials designed to test neuroactive steroid therapeutics in 
PTSD may benefit from such considerations. However it is needed 
to validate clinically accessible methods for identifying specific 
neuroactive steroid system abnormalities at the individual level.

[214] Animal and human 
studies

Strain variation in neuroactive steroid levels correlated with 
numerous behavioral phenotypes of anxiety sensitivity accessed in 
GeneNetwork, consistent with evidence that neuroactive steroids 
modulate anxiety-like behavior.

[215] Aged human study We observed a significant difference in plasma concentration of 
cortisol and estradiol between experimental groups. In the AIS 
group, higher levels of these neuroactive steroids were associated 
with more pronounced neurological, cognitive and functional 
deficits in women compared to men.

Table 3. 
Neuroactive steroids used in experimental models and clinical studies.
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4.1 Selective estrogen receptor modulators

The activation or partial activation of Estrogen receptors (ER) trigger critical 
signal pathways due to complex molecular mechanisms. ER interact with several 
endogens and exogenous ligands promoting structural changes with the subsequent 
transactivation of estrogen response elements (ERE) in the DNA. ER interact also 
with co-activators, co-repressors and chaperones, affecting the way that the tissues 
exert their estrogenic response [161, 162]. ER show structural components that may 
be involved in their particular action mechanism. One of the most striking domain 
is the ligand binding domain (LBD) that interacts with specific ligands [163] (Cano 
et al., 2006). It is believed that the high or low affinity of the ligand with LBD plays 
a central role in the function of ER. Ligand interaction with LBD induces confor-
mational changes that lead to specific bind to activators with co-activators and 
co-repressors modulating the estrogenic response [161, 164]. In this context, the 
conformational change is predetermined in part by the chemical nature of the ligand 
and its interaction with ER [165]. SERMs are capable of exploiting this advantage. 
A clear example is tamoxifen, a selective compound with estrogenic activity in the 
liver, but anti-estrogenic activity in breast tissue [166]. These compounds have been 
widely used in clinics for the treatment of breast cancer and as hormonal replacement 
therapy (HRT) strategies [167]. SERMs are defined as compounds that are capable of 
binding ER and produce several responses, ranging from a pure estrogenic agonism 

Figure 1. 
Potential Neurosteroids action mechanism. The effects of neurosteroids on neurons include the increase 
of dendritic spines, viability, and antioxidant capacity. The action mechanism is associated to classical 
(canonical) transduction pathway that includes the transactivation of estrogen receptor to dimerize and 
promote the transcription of estrogen response elements ERE. For tibolone, it is described the classical 
transduction pathway but also the transactivation of androgen response elements ARE and progesterone 
response elements PRE. It is possible that all together response elements explain the beneficial and protective 
properties of tibolone. Interestingly, the protective properties also has been observed on astrocytes and microglia.
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to an anti-estrogen activity [146]. SERMs may protect nervous tissue following spinal 
cord and traumatic brain injuries [168, 169]. Gonzales-Burgos et al. (2012) demon-
strated that SERMs increase the number of dendritic spines in hippocampal neurons 
[170]. Raloxifene, a second-generation SERM, demonstrated to improve sensory 
motor and working memory deficits following TBI [168], suggesting that SERMs may 
act as potential therapeutic compounds after CNS injury.

SERMs action mechanisms include the activation of transcription factors such as 
NF-κB through the PI3K-P38-ERK1/2 pathway [146]. SERMs also induce the produc-
tion of antioxidant enzymes such as manganese superoxide dismutase (MnSOD) 
[171] and the endothelial nitric oxide synthase (eNOS) [172]. Interestingly, 
SERMs may induce the upregulation of anti-apoptotic proteins such as Bcl-2 [173]. 
Altogether, the activation of these multifactorial protective signaling cascades may 
improve the outcome of highly heterogeneous pathologies like TBI and HI Brain 
Injury (HIBI). Currently, SERM are used as primary treatments to counter osteopo-
rosis and some kind of cancer. Compounds like raloxifen (Evista ®) and tamoxifen 
(Nolvadex®) are routinely prescribed for thousand women [174, 175]. Several 
reports have described the protective effects of SERMs on the CNS [176–178]. It 
is well known that tamoxifen is capable of preserving pyramidal neurons follow-
ing penetrant lesion [179]. Furthermore, raloxifen exerts protective functions by 
increasing glutamate reuptake via induction of GLT-1 expression on primary astro-
cytes [180]. However, the complete action mechanism of several SERMs needs to be 
fully elucidated, due in part, to the complex agonist–antagonist action [181].

4.2 Selective tissue estrogenic activity regulators

The pharmacologic necessity to develop estrogenic safe compounds against 
climacteric symptoms in post-menopause women lead to synthesize a distinctive 
compound with selective estrogenic properties. As a result, STEARs are compounds 
capable of inducing an estrogenic, progestogenic and androgenic response. The 
most used STEAR compound is tibolone [160]- Tibolone has become a well-known 
treatment for climacteric symptoms than other HRT compounds, especially in 
women suffering low libido, persistent fatigue and blunted motivation [172, 182]. 
Tibolone has been used in the prevention of cardiovascular diseases and osteopo-
rosis [183, 184] Tibolone exhibits weak estrogenic, progestogenic and androgenic 
properties [160, 183, 185].

The selective action mechanism of tibolone and STEARs is currently under 
investigation. However, it is well known that tibolone acts as a pro-drug that has 
complex effects due to its particular mode of action on different steroid receptors. 
It has been demonstrated that the body metabolized tibolone via two-phase reacts 
to produce three different metabolites [186]: two hydroxyl-metabolites (3-alpha-
hydroxy- and 3-beta-hydroxy tibolone) as a result of 3-alpha and 3-beta hydroxys-
teroid dehydrogenase enzymes (3α-HSD and 3ß-HSD), and one isomer (delta-4 
tibolone) synthesized by 3-beta-hydroxysteroid dehydrogenase [160, 183, 185].

Interestingly, 3α-HSD is predominantly expressed in the liver, whereas 3ß-HSD 
is expressed in adrenal glands, ovary and placental tissue [160, 183, 185]. Tibolone 
metabolism is under liver control by α-ketoreductases including hepatic AKR1C1 and 
AKR1C2 [186]. STEARs like tibolone might be metabolized by the brain, due to brain 
cells, for example, astrocytes fully expressing all the needed enzymes to carry out the 
biochemical steps. Kloobsterboer et al. 2017 demonstrated in primates (cynomolgus) 
the occurrence of 3α OH tibolone and 3β OH tibolone metabolites in the brain. They 
also detected sulfated tibolone metabolites (inactive chemical compounds) in the 
brain and plasma. Each metabolite has different features. For example, tibolone 
perse and delta-4 tibolone are agonists for progesterone receptor PR and androgen 
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receptor AR [185], while 3-alpha and 3-beta hydroxy metabolites are agonists for 
ER, but antagonists for PR and AR [185, 187]. This tibolone-steroid receptor interac-
tion and other regulatory mechanisms might explain the tissue-selective effects of 
tibolone [160, 186]. Belenichev et al. (2012) used cortical neurons from neonatal rats 
to evaluate the neuroprotective activity of tibolone in a model of glutathione deple-
tion that produces oxidative stress and mitochondrial dysfunction. These authors 
found that tibolone prevented mitochondrial dysfunction and neuronal cell death. 
Additional studies account for the protective effects of tibolone in an ovariectomized 
rat model following cerebral ischemia injury [188]. Tibolone has also shown anti-
inflammatory effects tested in cardiovascular animal models [184].

Kloosterboer et al. 2007 propose an additional action mechanism of tibolone and 
STEARs that involves the control of sulfatase and sulfotransferase tissue-specific 
activity [189]. Since sulfatase and sulfotransferase activity is tissue-specific, it is pos-
sible that tibolone exerts its function according to cell type specificity and modulating 
nuclear receptors activity in the tissues [190]. For instance, it is needed to further 
investigate the tissue-specific role of tibolone in CNS, for example, in neurons, astro-
cytes, and microglia. Interestingly, tibolone protects the mitochondrial activity by the 
preservation of the mitochondrial membrane potential and by increasing the levels 
of proteins that control the opening of the mitochondrial permeability transition 
pore (mPTP), such as Bcl-2. Avila-Rodriguez et al. (2014) demonstrated that tibolone 
protects the mitochondria of T98G glial cells from glucose deprivation [141].

De Marinis’ research group recently described and characterized a particular globin 
belonging to CNS called neuroglobin (Ngb1). Neuroglobin is under control of estro-
genic response. In fact, the use of estradiol in several cellular models demonstrated 
the increase of neuroglobin levels [191–193]. Currently, it is known that neuroglobin 
is an 18 kDa protein that binds molecular oxygen with more affinity than hemoglobin, 
probably, increasing the availability of oxygen in the neural tissue [194]. Neuroglobin 
is expressed in neurons under basal conditions and is also expressed in astrocytes 
and microglia after brain injury [194]. Avila-Rodriguez et al. 2016 demonstrated that 
tibolone is capable of increasing the expression of neuroglobin producing a protective 
effect in a glucose deprivation astrocyte-like model. The action mechanism of tibolone 
may be associated with ERß receptor as demonstrated by several studies [191, 193].

Other studies demonstrated the protective effect of tibolone against lipid per-
oxidation and protein oxidation [195]. Tibolone is capable of increasing the density 
of dendritic spines in hippocampal neurons, indicating a potential role in synaptic 
plasticity and memory [196]. Guzmán et al. (2007), also showed that tibolone 
metabolites exert estrogenic activity on human astrocytes and oligodendrocytes-
like cell lines [187]. Tibolone may become a promissory option to counter the detri-
mental effects of TBI and hypoxic injury due to its pleiotropic beneficial properties.

4.3 Selective tissue-specific estrogenic activity regulators and neuroglobin

Pathologic conditions like hypoxia and glucose deprivation, which may lead to neu-
roinflammation, reduce the expression of ER-α and increase the expression of ER-ß 
[216]. In this regard, De Marinis et al. (2013) showed that hypoxia may induce the 
production of pro-inflammatory mediators like IL-6, and INF-γ [193]. Interestingly, 
estrogen is capable of diminishing the secretion of those pro-inflammatory media-
tors. It was demonstrated in a pro-oxidant model induced by H2O2 and stimulated via 
lipopolysaccharide (LPS). Later, it was demonstrated that the anti-inflammatory effect 
was mediated by NF-κB modulation and ER-ß activation [191, 193]. Therefore, it is 
reasonable to assume that the activation of ER-ß in hypoxic and glucose deprivation 
models may be considered as beneficial for brain tissues. Tibolone is capable of induc-
ing the activation of ERß and increasing neuroglobin expression. Avila-Rodriguez  
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et al. (2016) demonstrated that neuroglobin expression depends on ER-ß activation 
and tibolone favors both mechanisms [217]. Originally, neuroglobin was reported 
in neurons but later it was detected in other cell types such as astrocytes [218]. 
Interestingly, neuroglobin has been associated with neuroprotective effects on several 
injury models including middle cerebral artery occlusion (MCAO), focal cerebral 
ischemia, ß-amyloid induced toxicity, oxygen and glucose deprivation [217, 219–221].

Neuroglobin may mediate the response against hypoxia by inducing signal 
pathways. It has also been documented as a reactive oxygen radical scavenger 
with NADH oxidase activity to favor anaerobic glycolytic metabolism [217]. 
Controversial studies based on low levels of neuroglobin and low relative oxygen 
affinity propose that neuroglobin may exert or participate in collateral roles 
other than solely oxygen store [217, 222] (See Figure 2 for further illustration). 
Additionally, photoactivation (NADH/FMN) experiments demonstrated that 
neuroglobin participates in the ROS and RNS elimination, suggesting a critical role 
in removing dangerous highly reactive species [223]. The change in the hexaco-
ordinated state of neuroglobin according to normoxic or hypoxic conditions also 
suggests oxygen sensor capabilities [222]. Proper neuroglobin activity protects 
neurons and astrocytes against cell death [191]. In this regard, overexpression or 
induction of neuroglobin may be considered as potential neuroprotective therapies. 
Interestingly, STEARs such as tibolone are capable of increasing and inducing 
neuroglobin activity, which have been proposed as potential action mechanisms in 

Figure 2. 
Neuroglobin exerts interesting beneficial properties. Neuroglobin includes in its protein structure a particular 
prosthetic haem group to store oxygen. However, it is reported for neuroglobin additional protective functions 
that include oxygen sensor capabilities and detoxification properties (against reactive oxygen species and 
reactive nitrogen species). Evidence shows that the protective functions of neuroglobin may be induced via 
signal transduction mediators including steroid hormones and neurosteroids. For example, some neurosteroids 
increase neuroglobin production improving mitochondrial functions and inducing anti-apoptotic mechanisms.
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brain tissue [191, 217, 222]. According to computations studies and simulations, it 
has been proposed the neuroglobin may interact with cytochrome c. This apparent 
interaction may explain the electronic transfer between neuroglobin (ferrous) and 
cytochrome c (ferric) [191, 224]. Potentially, neuroglobin may modulate cytoplas-
mic cytochrome c, resulting in diminished apoptotic processes in injured tissues. 
Surprisingly, De Marinis et al. (2013) showed that neuroglobin hijacks cytochrome 
c in a neuroblastoma cell model injured via hydrogen peroxide [191]. The estrogenic 
induction of neuroglobin (and eventually by tibolone) increased neuroglobin 
expression and diminished the apoptotic cell death mechanism [191].

5.  Neuroprotective properties of estrogen and its derivates on brain 
injury

A derivate of estrogen, 17β-estradiol, is a female sex hormone and neuroactive 
steroid (NAS) related to the development of secondary sexual characteristics, fat 
storage and regulation of menstrual cycle [225]. 17β-estradiol, showed beneficial 
effects in verbal and visual memory performance, which was originally administered 
as a hormone replacement therapy in order to ameliorate climacteric symptoms [226]. 
The activity of 17β-estradiol depends on its union with ERs [43, 226, 227]. These 
receptors are classified in two subtypes: estrogen receptor-beta (ER-β) and estrogen 
receptor-alpha (ER-α). ERα has its locus in 6 chromosome, while the locus for the Erβ 
is in the 14 chromosome [226]. These ERs are transcription factors which present the 
peculiarity of being activated by a ligand. ER-α and ER-β have a similar structure, 
with a DNA-binding domain and a ligand-binding domain [228]. 17β-estradiol binds 
to ERs and induces the activation and the homodimerization or heterodimerization 
of these receptors. Then, the ERs bind to estrogen-responsive elements (EREs) in the 
promoter region of specific genes through the DNA-binding domain, recruiting tran-
scriptional co-activators and co-repressors [228, 229]. Classical ERs may also regulate 
gene transcription by acting as transcriptional partners at non-ERE sites, such as 
activating protein 1 (AP1) sites [230]. 17β-estradiol can bind to membrane-associated 
non-classical ERs, such as G protein-coupled ERs (GPERs). GPER30, a member of 
the G protein-coupled receptor superfamily, regulates the activity of extracellular 
signal-regulated kinases (ERKs) and the phosphoinositide 3-kinase (PI3K) signaling 
pathway. This union allows the interaction with the signaling of other neuroprotective 
molecules [228, 231]. Another membrane-associated non-classical ER is Gαq protein-
coupled membrane ER (Gq-mER), which was originally identified in hypothalamic 
neurons, modulating μ-opioid and GABA neurotransmission [228, 232].

These findings have led to research on the neuroprotective properties of estro-
gen and its derivates in brain injury. In HI brain injury 17β- estradiol has shown 
several neuroprotective effects, such as: reducing reactive gliosis, decreasing 
oxidative stress, ameliorating the release of pro inflammatory molecules, prevent-
ing cell death and mitochondrial dysfunction, releasing neurotrophic factors [7]. 
It has also been reported that 17β- estradiol produced significant protection against 
OGD-induced cell death in primary oligodendrocytes and against oxidative stress, 
having a potential role in attenuation of HI and oxidative injury [233]. In addition, 
in neonate rats subjected to HI, three doses of 17β-estradiol (using repeated dosing 
paradigm) provided approximately 70% protection of the hippocampus, basal gan-
glia, and amygdala. These results suggest 17β-estradiol acts as a potent neuroprotec-
tive agent against HI-induced damage to the developing brain, and that pretreating 
infants at risk for hypoxic ischemic injury may be advisable [234]. Moreover, 
treatment with estradiol after PA augmented the expression of IGF-1 and its recep-
tor (IGF-IR). The PI3K/Akt/GSK3 signaling pathway was activated as an increase 
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in Akt and GSK3 phosphorylation [235]. However, it has been found that male 
sex is a well-established epidemiological risk factor for poor neurodevelopmental 
outcome after PA. While the mechanisms responsible for this gender difference are 
unknown, growing evidence has identified neuro-inflammation, oxidative stress 
and cell death pathways as key players in these differences [236].

Using a mice model of MCAO with a mutant form of ER-α, neuroprotection was 
absent, showing that protective properties depend on Er-α [237]. Similarly, after emu-
lating hypoxia in the neuroblastoma cell line SH-SY5Y by using CoCl2 (250 μg/mL), an 
hypoxic mimetic agent, treatment with 17β-estradiol (250 nM) exerted neuroprotection. 

Figure 3. 
Ros production.
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Afterwards, using ER-α and ER-β agonist (PPT and DPN, respectively) without 
17β-estradiol treatment, results showed neuroprotection was mimicked by PPT and sug-
gested that ER-α regulates this protective effect [235]. Likewise, in a model of astrocytic 
cells it was found that estradiol improved in one of the HI conditions, parameters such 
as cell viability, mitochondrial membrane potential, reduced ROS production and 
prevented the loss of mitochondrial mass [38]. Nevertheless, estrogen use can have det-
rimental effects like the augment in the incidence of breast and uterus cancer [12–14]. 
In order to maintain the benefits and avoid these side effects, other drugs have been 
developed, mainly SERMs and STEARs [12–14]. The mechanism of regulation of the 
SERMs that determines either if they act as agonist or antagonist in an specific cell type 
depends on the predominant subtype of estrogen receptor alpha or beta. In addition, the 
co-activators, co- factors and helper proteins of each cell will determine the kind of the 
response of the tissue exposed to SERMs [238, 239].

In a MCAO rat model, neurogenesis in the ipsilateral subventricular zone (SVZ) 
after ischemia was significantly higher in estrogen and raloxifene-treated animals 
compared to rats treated with placebo. Otherwhise, tamoxifen did not show this 
enhancing effect on neurogenesis. However, both SERMs tamoxifen and raloxifene 
as well as estrogen, significantly reversed the spine density loss observed in the 
ischemic cortex at day-5 post ischemia [240]. On the other hand, tibolone action is 
given by the metabolization of the tibolone to three different metabolites (delta-4 
tibolone; alpha-hydroxy tibolone and 3- beta-hydroxy tibolone). Each of them 
produces different responses. Delta-4 tibolone is an agonist to the androgen receptor 
and the progesterone receptor, meanwhile alpha-hidroxy and beta-hidroxy tibolone 
are antagonists of those receptors but agonists of the ER [241]. Keeping this in mind, 
Avila-Rodriguez et al. (2014) found out that tibolone ameliorates the effects of the 
GD on an in vitro model of astrocytes, making this molecules interesting for further 
research in a OGD model [12]. For this reason, in recent years we have been working 
on the implementation of these neuroprotection strategies in an astrocyte model 
using Raloxifene as a neuroprotector in the OGD model. Figures 3 and 4 show the 

Figure 4. 
Mitochondrial mass.
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deleterious effect caused by glucose and oxygen deprivation, both in the production 
of ROS and in the loss of mitochondrial mass, respectively, and how this neuroactive 
steorid may decrease damage in different concentrations (unpublished data).

6. Conclusion

The different pathologies in which the HI events and with these, the oxygen 
and glucose deprivation are present, have been shown to exert a high impact on 
society. Over the years, a multitude of efforts have been directed towards the search 
for effective treatments that counteract the damage caused by these conditions. 
The different neuroprotection targets try to combat specific points of damage 
caused by hypoxia, including oxidative stress, dysregulation of the cell cycle and 
energy homeostasis [242]. Both in the initial damage phase and in the final one, 
the different neuroprotective agents may have anti-inflammatory, antioxidant, 
anti-excitotoxicity or anti-apoptotic capacities [243]. However, due to the complex 
network of factors that influence these pathologies, such as the cellular interactions 
(molecular, biochemical, protein, etc.) inherent to the CNS, as well as the gender-
dependent response [236] to the use of these neuroprotective agents, the success 
in the treatments has not been optimal [7]. Estradiol treatment not only prevents 
neuronal damage, but may also limit the neurodegenerative modifications induced 
by HI in the early stage of development. The development of SERMs and STEARs 
brings with it a range of possibilities for the treatment of HI, due to its advantages, 
focused on the nervous system without having side effects. However, it is necessary 
to develop new generations of these compounds to improve their neuroprotective 
effects. Further research is necessary to provide new alternatives in the implemen-
tation of new therapeutic strategies and novel approaches.
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