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Chapter

Application of Deep Learning 
Approaches for Enhancing 
Mastcam Images
Ying Qu, Hairong Qi and Chiman Kwan

Abstract

There are two mast cameras (Mastcam) onboard the Mars rover Curiosity. Both 
Mastcams are multispectral imagers with nine bands in each. The right Mastcam has 
three times higher resolution than the left. In this chapter, we apply some recently 
developed deep neural network models to enhance the left Mastcam images with 
help from the right Mastcam images. Actual Mastcam images were used to demon-
strate the performance of the proposed algorithms.

Keywords: Mastcam, Curiosity rover, image fusion, pansharpening, deep learning, 
Dirichlet-net, U-net, transition learning

1. Introduction

The Curiosity rover (Figure 1) has several instruments that are used to char-
acterize the Mars surface. For example, the Alpha Particle X-Ray Spectrometer 
(APXS) [1] can analyze rock samples collected from the robotic arm and extract 
compositions of rocks; the Laser Induced Breakdown Spectroscopy (LIBS) [2] can 
extract spectral features from the vaporized fumes and deduce the rock composi-
tions at a distance of 7 m; and the Mastcam imagers [3] can perform surface charac-
terization from 1 km away.

The two Mastcam multispectral imagers are separated by 24.2 cm [3]. As shown 
in Figure 2, the left Mastcam (34 mm focal length) has three times the field of view 
of the right Mastcam (100 mm focal length). In other words, the right imager has 
three times higher resolution than that of the left. To generate stereo image or con-
struct a 12-band image cube by fusing bands from the multispectral imagers from the 
left and right Mastcams [4–6], a practical solution is to downsample the resolution 
of the right images to that of the left images, which would avoid the artifacts caused 
by Bayer pattern [7] or the JPEG compression loss [8]. Although this approach has 
practical merits, it may restrict the potential ability of Mastcams. First, downsam-
pling the right images will throw away those high spatial resolution pixels in the 
right bands. Second, the lower resolution of the current stereo images may degrade 
the augmented reality or virtual reality experience of users. If one can apply some 
advanced pansharpening algorithms to the left bands, then one can have 12 bands of 
high-resolution image cube for the purpose of stereo vision and image fusion.

In the past two decades, there have been many papers discussing the fusion of a 
high resolution panchromatic (pan) image with a low-resolution multispectral image 
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(MSI) [10–14]. This is known as pansharpening. In our recent papers [15, 16], we 
proposed an unsupervised network structure to address the image fusion/super-res-
olution (SR) problem for hyperspectral image (HSI), referred to as HSI-SR, where 
a low-resolution (LR) HSI with high spectral resolution and a high-resolution (HR) 
MSI with low spectral resolution are fused to generate an HSI with high-resolution 
in both spatial and spectral dimensions. Similar to MSI, HSI has found extensive 
applications [17–21]. In this chapter, we adopt the innovative approaches designed in 
[15, 16], referred to as unsupervised sparse Dirichlet Network (uSDN), to enhance 
Mastcam images, where we treat the right Mastcam image as MSI with higher spatial 
resolution and the left Mastcam image as HSI with low spatial resolution.

In this chapter, we focus on the application of uSDN to enhance Mastcam 
images. In Section 2, we first introduce the problem of HSI-SR and then briefly 
summarize the key ideas of uSDN. In Section 3, we apply uSDN on actual Mastcam 
images. In Section 4, we include some further enhancements of uSDN and experi-
ments. In Section 5, we introduce a transition learning concept, which is a natural 
extension of uSDN. Some preliminary results are also included. Finally, we conclude 
the chapter with some remarks.

Figure 2. 
The two Mastcam imagers [9]. (a) Left Mastcam (b) Right Mastcam.

Figure 1. 
Curiosity rover and its onboard instruments [7].
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2. The uSDN algorithm for HSI-SR

In this section, we describe the uSDN algorithm developed in [15, 16]. For more 
details, please refer to the reference. First of all, we will formulate the problem of 
HSI-SR to facilitate the discussion of Mastcam enhancement. Table 1 summarizes 
the mathematical symbols used in this chapter.

The basic idea of uSDN is illustrated in Figure 3. First, the LR HSI, × ×∈ m n L
hY R  

with its width, height, and number of spectral bands denoted as ,m ,n  and ,L  

respectively, is unfolded into a 2D matrix, ×∈ mn L
hY R . Similarly, the HR MSI, 

× ×∈ M N l
mY R  with its width, height, and number of spectral bands denoted as ,M ,N  

and l , respectively, is unfolded into a 2D matrix ×∈ MN l
mY R . And the SR HSI, 

× ×∈ ,M N LX R is unfolded into a 2D matrix ×∈ MN LX R . Note that, generally, the spatial 

resolution of the MSI is much higher than that of the HSI, that is,  ,M m  ,N n  

and the spectral resolution of HSI is much higher than that of the MSI, that is, L l . 

The objective is to reconstruct the high spatial and spectral resolution HSI, 
× ×∈ M N LX R , with LR HSI and HR MSI.

Due to the limitation of hardware, each pixel in an HSI or MSI may cover more 
than one constituent materials, leading to mixed pixels. These mixtures can be 
assumed to be a linear combination of a few basis vectors (or source signatures). 
Both LR HSI hY  and HR MSI mY  can be assumed to be a linear combination of c  

HSI Hyperspectral image

MSI Multispectral image

HSI-SR HSI super-resolution

HR High-resolution

LR Low-resolution

hY / hY 3D/2D LR HSI

/m mY Y 3D/2D HR MSI

X / X 3D/2D Reconstructed HR MSI

Φh Spectral bases of HSI

Φm Spectral bases of MSI

hS Coefficients/Representations of HSI

mS Coefficients/Representations of MSI

R Transformation matrix


hY Reconstructed 2D HSI

,W b Network weights and bias

( )θm heE / ( )θm meE Encoder of the HIS/MSI

( )θh hdD Decoder of the HIS and MSI

θhe /θme Encoder weights of HIS/MSI

θhd Decoder weights of HSI and MSI

s Representations vector of a single pixel

β, ,v u Stick-breaking parameters

( )pH s Entropy function

( ),h mA S S Angular difference

Table 1. 
Symbols and abbreviations.
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basis vectors with their corresponding proportional coefficients (referred to as 
representations in deep learning), as expressed in Eqs. (1) and (2), where ×Φ ∈ c L

h R  

and ×Φ ∈ c l
m R  denote the spectral basis of hY  and mY , respectively. They preserve 

the spectral information of the images. ×∈ mn c
hS R  and ×∈ MN c

mS R  are the propor-

tional coefficients of hY  and mY , respectively. Since the coefficients indicate how 

much each spectral basis has in constructing the mixed pixel at specific spatial 
locations, they preserve the spatial structure of HSI. The relationship between HSI 
and MSI bases can be expressed in the right part of Eq. (2), where ×∈ L lR R  is the 

transformation matrix given as a prior from the sensor [22–29].

 = Φh h hY S , (1)

 = Φ ,m m mY S Φ =Φ ,m hR  (2)

 = Φ .m hX S  (3)

With ×Φ ∈ c L
h R  carrying the high spectral information and ×∈ MN c

mS R  carrying 

the high spatial information, the desired HR HSI, ,X is generated by Eq. (3). See 

Figure 3. Since the ground truth X  is not available, the problem has to be solved in 
an unsupervised fashion. In addition, the linear combination assumption enforces 
the representation vectors of HSI or MSI to be non-negative and sum-to-one, that 

is, =∑ =1 1,c
j ijs where is  is the row vector of either mS  or hS  [24, 29].

The uSDN unsupervised architecture is shown in Figure 4. It has three unique 
structures. First, the network consists of two encoder-decoder networks, to extract 
the representations of the LR HSI and HR MSI, respectively. The two networks share 
the same decoder, such that both the spectral and spatial information from multi-
modalities can be extracted with unsupervised settings. Second, the representations 
of both modalities, hS  and mS , are enforced to follow a Dirichlet distribution where 

Figure 3. 
General procedure of HSI-SR [15].
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the sum-to-one and non-negative properties are naturally incorporated into the 
network [30–34]. The solution space is further regularized with a sparsity con-
straint. Third, the angular difference of the representations from two modalities is 
minimized to preserve the spectral information of the reconstructed HR HSI.

3. Mastcam image enhancement using uSDN with improvements

3.1 Applying uSDN for Mastcam enhancement

uSDN has been thoroughly evaluated with two widely used benchmark datas-
ets, CAVE [35] and Harvard [36]. Details can be found in [15, 16]. Here, we adopt 
uDSN to enhance the resolution of Mastcam images. As mentioned earlier, the 
right Mastcam has high resolution than the left. Hence, we treat the right Mastcam 
images are HR MSI and the left images as LR HSI. Although uSDN was introduced 
to deal with the general HSI super-resolution problem, we can treat the Mastcam 
image enhancement simply as a special case of HSI-SR.

For quantitative comparison, the root mean squared error (RMSE) and spectral 
angle mapper (SAM) are applied to evaluate the reconstruction error and the 
amount of spectral distortion, respectively.

The results are shown in Figure 5. The reconstructed image is very close to the 
ground truth. Most methods require that the size of high-resolution image should 
be equal to an integer multiplication of the size of low-resolution image. Thus, we 
only compare the method with CNMF [29] which works for arbitrary image size. 
The results are shown in Table 2. We observe that uSDN is able to outperform 
the CNMF.

3.2 Improvement based on uSDN

In this section, we summarize some further improvement of uDSN by fine-
tuning the existing network structure in uSDN in order to further enhance the 
fusion performance.

Figure 4. 
Simplified architecture of uSDN [15].
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Figure 5. 
Results of Mastcam image enhancement using uSDN. The left column shows the six bands from the left camera. 
The middle column shows the corresponding reconstructed results. The right column shows the six bands from 
the right camera.
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The existing structure of uDSN described in Section 3.1 is improved in two 
ways. First, in Section 3.1, the architecture consists of two deep networks, for the 
representation learning of the LR HSI and HR MSI, respectively. And only the 
decoders of the LR HSI and HR HSI networks are shared. The spectral information 
(i.e., the decoder of the LR HSI network) is extracted through the LR HSI network. 
Then the representation layer of the HR HSI is optimized by enforcing the spectral 
angle similarity. However, this introduces additional cost function, that is, angular 
difference minimization, and the optimization procedure is time consuming. In 
the improved uDSN, for the HR HSI network, most of the encoder weights are 
shared with the weights of the LR HSI encoder. Only a couple of encoder weights 
are updated during the HR HSI optimization. In this way, both the representations 
of the LR HSI and HR HSI networks are reinforced to follow Dirichlet distributions 
with parameters following the same trends. And the representations extracted from 
the LR HSI matches the patterns of that extracted from the HR HSI as shown in 
Figure 6.

Second, to further reduce the spectral distortion of the estimated HR HSI, 
instead of using 2l  loss, we adopt the 21l  loss, which encourages the network to 

reduce the spectral loss of each pixel. Compared to the network with 2l  loss, the 

network with 21l  loss is able to extract spectral information of images more accu-

rately. The 21l  loss can not only reduce the spectral distortion of the estimated HR 

HSI, but also improve the convergence speed of the network.
The result of the proposed method on individual HSI is visualized in Figure 7. 

When we optimize the network with 21l  loss, we can observe that the difference 

between the estimated MSI and the ground truth MSI is very small, with RMSE of 
1.7428 and SAM of 0.25615.

Approaches RMSE SAM

CNMF 0.056 2.48

uSDN 0.033 2.09

Table 2. 
Evaluations for image enhancement from Mastcam.

Figure 6. 
Representations extracted from the LR HSI (top row) and the HR HSI (bottom row).
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4. Combination of Dirichlet-Net and U-Net

In this section, we propose to combine Dirichlet-Net with U-Net [37] to mitigate 
the mis-registration issue in the left and right Mastcam images.

Since in real scenarios, the images from the left and right cameras may not 
match each other perfectly even after registration, we propose a combination of 
Dirichlet-Net and U-Net to further improve the fusion performance using non-
perfectly registered patches. We propose an unsupervised architecture as shown in 
Figure 8, which consists of two deep networks, an improved Dirichlet-Net for the 
representation learning of the MSI, and a U-Net for switching the low-resolution 
spatial information patches with high-resolution spatial information patches. 
Then the HR MSI of the left Mastcam image is generated by combining its spectral 
information with the spatial information of improved resolution.

Figure 8. 
The architecture of the proposed approach that combines Dirichlet-net with U-Net.

Figure 7. 
The results using improved uSDN. The left column shows the first two bands from the left camera. The 
second column shows the corresponding reconstructed images from the improved uSDN. The third column 
shows the reference images from the right camera. The right column shows the absolute difference between the 
reconstructed images and the reference images.
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From the last step in Figure 8, we are able to extract both the spectral and spatial 
information from LR MSI (left Mastcam) and HR MSI (right Mastcam). Although 
the scenes from the left and right camera are not the same, we assume they share the 
same group of spectral bases. And if we could improve the spatial information of 
the LR MSI using HR MSI, the quality of the LR MSI can be enhanced.

The architecture of the U-Net is illustrated in the lower part of Figure 8. We first 
learn a U-Net to recover the extracted spatial information, ,mS  of HR MSI, ,mY  by 

convolution and deconvolution layers. The convolution layers extract HR spatial 
features from ,mS and the de-convolutional layers take these extracted features to 

rebuild the spatial information of mS . Then we extract features from the spatial patches 

hS  of the LR HSI hY  with the same convolution layers and switch these feature patches 

with their most similar feature patches in the HR spatial features [38]. Finally, the left 
Mastcam image with enhanced resolution, X, is generated by feeding the switching 
patches into de-convolutional layers of U-Net and the decoder of the Dirichlet-Net.

Here, we show experimental results from the proposed combination (Dirichlet-Net 
and U-Net) approach in Figures 9 and 10. We can observe that the reconstructed left 
Mastcam image is sharper than the raw MSI captured from the left camera directly and 
the spectral distortion of the recovered MSI is small, although only part of the high 
resolution MSI (right Mastcam image) is given from the right camera. Note that, due 
to the memory constraint, only a small patch can be recovered every time, thus there 
exist some disconnected parts in the results. This issue will be addressed in Section 5.

5. Spatial representation improvement with transition learning

High spatial resolution images have one natural property, that is, the transitions 
among pixel values are smooth. The patch-based method aims to replace the LR 

Figure 9. 
The results of test image MSL_0002_0114_M1. The top row shows the six bands of raw images from the left 
camera. The bottom row shows the corresponding reconstructed images from the proposed method.

Figure 10. 
The cropped results of test image MSL_0002_0114_M1. The top row shows the six bands of raw images from 
the left camera. The bottom row shows the corresponding reconstructed images from the proposed method.
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Figure 12. 
The results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images from 
the left camera. The second, third, fourth and fifth columns show the corresponding reconstructed images from 
Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning method, 
respectively.

Figure 11. 
The architecture of the proposed transition learning approach.
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patches from the LR MSI representations hS  with the most similar HR patches from 

the HR MSI representation, mS . Since the LR MSI and HR MSI are unregistered and 

there is no ground truth of enhanced MSI, the patch-based improvement could not 
guarantee the smooth transitions in the reconstructed images, that is, the replaced 
patches may not match their neighbors. Therefore, in this section, we propose 
another structure based on transition-learning, to further improve the spatial 
resolution of LR HSI. The main structure is shown in Figure 11.

To learn smooth transitions between pixels, we first extract sub-images from the 
representations ,mS of HR MSI with stride 3, as shown in the lower part of 

Figure 11. For example, since the super-resolution factor is 3, we extract 9 sub-
images from mS . Then the network learns the transitions between the center 

sub-image with the other 8 sub-images. Since the LR MSI and HR MSI have similar 
statistic distributions, we assume that the transitions among pixels in both modali-
ties are the same. Therefore, the representations hS  of LR MSI can be treated as the 

center sub-image of enhanced MSI and the other 8 sub-images of enhanced MSI can 
be estimated by feeding the representations hS  of LR MSI into the network trained 

by .mS  There are still residuals between the reconstructed and the ideal representa-

tions of .mS  This time, we adopt the principle described earlier to add high fre-

quency residuals on the enhanced MSI.

Figure 13. 
The cropped results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images 
from the left camera. The second, third, fourth, and fifth columns show the corresponding reconstructed images 
from Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning 
method, respectively.
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Here, the experimental results of the proposed approaches are compared with 
the results from Bicubic and the state-of-the-art single image super-resolution 
method EnhanceNet [39], as shown in Figures 12–14. Note that, since the 
EnhanceNet only offers the 4X pre-trained weights, we show its 4X reconstruc-
tion results for fair comparison, in case the down-sampling procedure reduces the 
quality of the reconstructed images. The Bicubic does not improve the resolution 
much. The EnhanceNet was trained on natural image dataset; thus it works poorly 
on remote sensing images. Compared to the bicubic or EnhanceNet methods, we 
can observe that the proposed methods can not only improve the spatial resolution 
of LR MSI, but also preserve the spectral information well, even though the images 
from the left and right camera are not registered. The transition-based approach 
works better than the patch-based one, because it learns the relationship between 
the reconstructed pixels.

6. Conclusions

In this chapter, we summarize the application of several deep learning-based 
image fusion algorithms to enhance Mastcam images from Mars rover. The first 

Figure 14. 
The cropped results of the test image MSL_0002_0114_M1. The left column shows the six bands of raw images 
from the left camera. The second, third, fourth, and fifth columns show the corresponding reconstructed images 
from Bicubic, EnhanceNet, the proposed patch-based method and the residual-based transition-learning 
method, respectively.
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algorithm termed as uDSN is based on the Dirichlet-Net, which incorporates 
the sum-to-one and sparsity constraints. Two improvements of the uDSN were 
then investigated. Finally, a transition learning-based approach was developed. 
Promising results using actual Mastcam images are presented. More research will be 
carried out in the future to continue the above investigations.
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