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ORIGINAL ARTICLE

Scientific specialties in Green Chemistry
Leonardo Victor Marcelino* 1 , Adilson Luiz Pinto 2 , Carlos Alberto Marques 3

ABSTRACT
Objective. This paper presents an overview of Green
Chemistry research from 1990 to 2017, identifying its
specialties, comparing their relative importance, and inferring
emergent trends.
Design/Methodology/Approach. Co-citation analysis of
14,142 documents retrieved in Web of Science by CiteSpace
software, using network analysis to describe research fronts by
clustering, their relevance by clusters indicators, and
emergence by citation burstiness.
Results/Discussion. Sixteen clusters were found and then
grouped into six big specialties. Some specialties are more
persistent and general (e.g. GC Characterization, Metal
Catalysis, and Microwave Activation) and others are more
recent and focused (e.g. Deep Eutectic Solvents).
Mechanochemical and Photochemistry are emergent trends in
Green Chemistry.
Conclusions. This paper presents a more quantitative/
objective panorama of GC research, comparing the relevance
of research fronts inside the field, and helping future
researchers and decision-makers in further developments of
GC. CiteSpace showed some limitations in clustering. Data
collection was hurdled by changes in the Keyword Plus
algorithm in Web of Science and by the lack of authors

keywords in main journals of the field. Although large, the dataset was restricted to the Web 
of Science database.
Originality/Value. To the best of our knowledge, this is the first quantitative analysis of 
research specialties of GC. It advances past peer evaluation of the field by using indicators 
and metrics to describe the emergence, extension, and decay of specialties.
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1. INTRODUCTION
Green Chemistry (GC) emerged around 1990 mainly in the United States, although practices 
towards reducing the pollution in the chemistry industries were being developed elsewhere 
and even earlier under different names, such as clean, sustainable, benign chemistry, and 
others. Its initial objective to contribute to the prevention of chemical-based pollution has been 
outlined and expressed through the Twelve Principles (Anastas & Warner, 1998), which have 
served the so-called green chemists as guides in their procedures, especially synthetic ones, 
aiming at reducing or eliminating the production and use of hazardous substances.

There is no consensus in the literature whether GC is a field, an area, an epistemic 
community, or a philosophy of Chemistry. This research adopts the concept of field in terms of 
Pierre Bourdieu, as a social space in which agents (green chemists) interact with each other’s 
knowledge under the convergence of interests and from hierarchical relationships (Gilding & 
Pickering, 2011; O’Neil & Ackland, 2020). Although we do not consider it to be a discipline, 
GC has its own, well-defined identity, being compared to a social movement (Woodhouse 
& Breyman, 2005) or an epistemic community (Epicoco et al., 2014). For this reason, this 
research focuses on the GC field and uses only the search term “green chemistry”, even 
though proposals for environmentally benign chemistry are carried out by other names, such 
as clean chemistry, sustainable chemistry, and other terms.

Despite being a new field within Chemistry, its output in the past few years is notoriously 
large and the scientific appraisal has been considerable. In 2017, GC papers were among 
the top 1% most cited articles in Chemistry forming a research front on Green Chemistry, 
sustainability, and metrics (C hinese Academy of Sciences and C larivate Analytics 2018). 
Research fronts describe a recent workgroup that is highly cited and linked to a set of 
restricted, highly cited literature published a few years earlier (Li & Chu, 2017; Price, 1965). 
Due to their large numbers of citations, research fronts represent the subjects that most 
mobilize the scientific community at a given moment, and the literature directly cited by the 
research fronts configures its intellectual basis (Chen, 2017; Clarivate Analytics and Chinese 
Academy of Sciences, 2019). Several authors (Chen, 2017; Small, 1973; Small & Griffith, 
1974) argue that the analysis of the patterns of co-occurrence of citations within a set of 
papers, i.e. co-citation analysis, can be an effective strategy to describe and analyze research 
fronts and specialties.

Some attempts have been made in understanding the nature and boundaries of GC, however, 
as C lark et al. (2014) point out, there are no established criteria on what GC is, and its 
boundaries are still somewhat unclear. Previous studies attempted to summarise the area 
presenting an overview of their practices and challenges (Anastas et al., 2016, 2018; Clark 
et al., 2014; Ivanković, 2017), generally departing from the Twelve Principles and pointing to 
exemplary practices as a basis for tacit knowledge about GC. Research demonstrates the 
richness of GC in association with the Twelve Principles, but it is limited by its subjectivity.

CiteSpace is a powerful and efficient tool for co-citation analyses (Zhang et al., 2020), a viable 
tool to avoid possible subjectivity in the qualitative judgment of a field (C larivate Analytics 
and Chinese Academy of Sciences, 2019). This software is based on research specialties, 
a time-variant network (F (t)) created by the relation between a group of citing papers (the 
research front, Y (t)) and the co-cited papers (the intellectual base, W (t)), as in Equation 1.



(Equation 1)F (t): Y (t) → W (t)

The analysis of the temporal evolution of the specialties is done by the creation of co-citation
networks in time slices, which are then fused into a single heterogeneous net that can be
divided into clusters. The measure of separation between clusters, showing how much these
groups differ, is made by modularity Q (Newman, 2006) and the silhouette is the measure
of internal group cohesion (Rousseeuw, 1987). Separation into clusters allows us to study
themes that are trends in the field under study, and to identify groups of researchers that are
more active and engaged in the investigation of a given object.

CiteSpace has been used previously to investigate the structure and dynamics of scientific
fields concerning environmental issues (Li et al., 2019; Luo et al., 2017; Zhang et al., 2020).
Therefore, this paper uses CiteSpace to investigate the questions: 1) what are the scientific
specialties of GC? 2) What is their relative importance? 3) What are the possible emerging
trends of the field?

Section 2 presents the methodology. Section 3 presents the results and characteristics of the
specialties in GC (sections 3.1 up to 3.8). Section 4 discusses the extension and immediacy
of specialties by their CPT value (section 4.1), emerging trends in GC (section 4.2), and
elements of results validation (section 4.3). Finally, the conclusions presented in section 0.

2. METHODOLOGY
The figure 1 presents a summary of the criteria for selecting the input data in CiteSpace.
All data were collected in the Web of Science (Core Collection, all Indexes) from 1990 to
2017, the beginning of the decade in which GC emerges (ACS 2015; Anastas et al., 2016)
until the last full year at the time of analysis. We searched for records of documents that
usually contain references, selecting the following database categories: articles, reviews,
proceedings papers, and book chapters. From that point on, the search strategy divides itself
into two: searching for the term “green chemistry” in titles, keywords, and abstracts to explicit
affiliation to GC, and searching for all records published in the Green Chemistry Journal and
Green Chemistry Letters and Reviews. The search in the specialized journals was necessary
because their texts do not always use the descriptor “green chemistry” in their titles, abstracts,
and keywords, as this is stated in the names of the journals. Those two journals were chosen
for being specialized in the field (as indicated by their name) and for their big output, being
among the top 20 journals publishing texts with the term “green chemistry” in the titles,
abstracts or keywords.

A final set of 14,142 different records (duplicates excluded) was obtained, being 8,587
records with the term “green chemistry” and 5,987 in specialized journals, analyzed by
CiteSpace software (version 5.2.R1.3.9.2018). I was used Look Back Year (LBY) of -1,
meaning that no time limit is imposed on the formation of specialties and that all cited texts
can be considered in the co-citation analysis. The time slice and the node selection criterion
(Top N) were determined to generate the highest value of Modularity Q and Mean Silhouette
(published as a supplementary material). The final parameters for analysis in CiteSpace are:
Look Back Year (LBY): -1; Time Slice: 3 years (1990-2017); Node types: Cited reference; Top
N.: 100. Other parameters followed the default program settings.

The algorithm for the generation of clusters was applied and their names attributed manually
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by investigating similar topics (words, concepts, tools, and substances) in the titles and
abstracts of articles in the research front. This proved to be more precise than the automatic
naming-tool provided by CiteSpace. The final label for the clusters followed the type “# cluster
number – cluster name”, e.g. “#0 – Ionic Liquids”. CiteSpace attributes the cluster numbers in
decreasing order of intellectual base size. That means cluster #0 has the largest intellectual
base and #18 the smallest.

Figure 1. Criteria to select data for analysis.

To highlight the relative importance of a specialty, we used the CPT indicator created by
Clarivate Analytics to measure how extensive and immediate a research front is (Clarivate
Analytics and Chinese Academy of Sciences, 2019). It evaluates the citation impact of a
research front by the number of its citing paper (C); it highlights the emerging character
and the endurance of a research front by measuring its time span (T), and it considers
the extension of a cluster by the number of core papers (P) in its intellectual base. CPT is
obtained by dividing the average citation impact of a research front (C/P) by the age of the
citing papers (T), then

CPT=C/(P∙T) (Equation 2)

High CPT values may be achieved when a specialty has a big research front, co-citing a
small intellectual base in a short time. That means that the specialty has a large community
of researchers dedicated to analyzing a very defined and restricted theme in a short period.

CiteSpace's citation burstiness considers the sudden increase in the number of citations to
work as indicative of the community's interest in its content and possibly as an element of
the degree of innovation presented by the research (Chen, 2006, 2017). Recent papers with
high values of citation burstiness may represent an emerging trend of a domain. We selected
papers published up to five years before the research (i.e. up to 2012) and whose citation
burstiness lasted until the year of analysis (2017). This provided information on recent papers
that most attracted the interest of the scientific community.



3. RESULTS
The final network has 457 nodes and 1,353 links (edges) in its largest connected component.
According to Table 1, it was only from 1996-1998 that it was possible to establish a co-citation
network within the chosen parameters, close to the publication of important books for the
area, such as Green Chemistry: Designing Chemistry for the Environment (Anastas &
Williamson, 1996) and the important Green chemistry: theory and practice (Anastas &
Warner, 1998), which launches the Twelve Principles of GC. In 1999-2001, almost ten times
more references are found than in the previous years, indicating the contribution of the
Green Chemistry Journal (created in 1999) to the formation of a cohesive GC network. In the
following years, the number of co-cited papers grows, showing the expansion of the field. In
Table 1 the total amount of references is bigger than the references in the input data because
a reference may appear in multiple time slices. Also, some nodes may be either repeated in
multiple time slices or not included in the final network.

Time
Slice

N.
References

Nodes

1990-1992 0 0

1993-1995 9 0

1996-1998 924 38

1999-2001 8754 127

2002-2004 19637 124

2005-2007 36710 101

2008-2010 63773 117

2011-2013 119145 105

2014-2016 167595 102

2017-2017 82628 102

Total 499175 816

Table 1. Distribution of nodes and references by time slices.

The network Modularity Q was 0.8718, above the recommended in the literature (Chen, 2006; 
Zhang et al., 2020), and the mean silhouette value was 0.4188, but the individual result for 
each one of the 16 clusters was higher than 0.7 (Table 2). Those values indicate the network 
is reliable.

Sixteen clusters were generated, labeled from #0 to #18. Clusters #13 to #15 are detached 
from the main network and, therefore, are not included in this analysis. The name of the 
clusters (column “cluster” in Table 2) was attributed considering the most frequent terms 
(words or groups of words) in the titles of texts in the research fronts (available at https://bit.ly/ 
2Ls4Nsd), complemented and refined by reading the abstracts of the texts in the research 
front and looking for similarities in concepts, techniques, or methodology. This also leads
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to grouping the clusters in big specialties (Column 1 in Table 2), according to the thematic
proximity found in reading the abstracts. For example, all clusters in big specialty A address
the issue of solvents, either by using water, no solvent or supercritical fluids. Although ionic
liquids can be used as solvents, they stand out as a very cohesive and emblematic group,
making up their big specialty (B). Cluster #1is general and big enough and cluster #7 is
distinct enough to stand out as individual big specialties.

Table 2. Size, silhouette, and median year of publication in the intellectual base and research front of Green Chemistry.

In the period column of the intellectual base (Table 2), there are nodes whose publication 
year is more recent than the period of the research front (marked with an asterisk). These 
nodes are set between clusters with research fronts with different ages and, somehow, they 
were attributed to the wrong side. For instance, Meehan et al. (2000) are in the intellectual 
base of cluster #5 – Supercritical Solvents, but it is cited by a paper in the neighbor research 
front (Webb, Kunene, and Cole-Hamilton 2005), #7 – CO2 as Substrate. This seems to be a



problem to be addressed in the CiteSpace software.

The intellectual base of several specialties has papers published before 1990, which could
not be explicitly affiliated with GC. In cluster #4, for example, the oldest text is Rideout and
Breslow (1980) on the acceleration of Diels-Alder reactions in water, which is relevant to the
theme of the specialty, but not explicitly affiliated with GC.

We present below the six big specialties and their main clusters with a big intellectual base or
high CPT value.

3.1. A – Solvents
The high volume of solvents used in the chemical industry is a determining factor in
environmental costs and impacts (Anastas et al., 2018) and justifies the existence of a big
specialty dedicated to the study of organic reactions in aqueous media (#4), supercritical
solvents (#5), solid-state (#18) or deep eutectic solvents (#17), the clusters constituting big
specialty A.

3.1.1. Cluster #4 — Organic Reactions in Aqueous Media
Some of the articles that stand out the most for their coverage of the intellectual base are
Soleimani et al. (2011) (with their paper on beta-cyanocarbonyl synthesis in aqueous media
and no catalytic agents), Bhar & Panja (1999) (demonstrating the reduction of carbonyls
in diols using metallic catalysis in aqueous media) and Cadierno et al. (2010) (coupling
reactions promoted by metallic catalysis in aqueous media). As for the number of citations,
the contributions of Anastas & Eghbali (2010) (a general GC review) and Polshetiwar &
Varma (2010) (a review on nano catalysis in GC).

The main documents of the intellectual base according to their frequency deal with organic
reactions in water in general (Li & Chen, 2006; Narayan et al. 2005), with a focus on the
formation of carbon-carbon bonds (Li, 2005), or on with the stereoselectivity of syntheses
(Lindström, 2002).

3.1.2. Cluster #17 — Deep Eutectic Solvents
The articles promote deep eutectic solvents as viable solvents for reactions under ambient
conditions. Other important papers on this research front do not directly address eutectic
solvents, but study reactions under room temperature and pressure (Jérôme et al., 2014;
Vidal & García-Álvarez, 2014). The paper by Pena-Pereira & Namieśnik (2014) is the most
cited, with 87 citations.

Among the most frequent works, two are reviews on properties and applications of eutectic
solvents (Smith et al., 2014; Zhang et al., 2012), and the third is communication on new uses
of a classical eutectic system as a solvent (Abbott et al., 2003).

3.2. B – Ionic Liquids
This big specialty reflects green chemists’ concern to address the large generation of waste
by solvent usage. The first GC specialties identified in this research deal with supercritical
solvents (#5), and solvent recycling and recovery (#6); it is within the latter that the big
specialty B is generated. As Sheldon (2017) points out, the major problems of solvents are
their storage, and potential for recovery and reuse in future processes, one of the promises
of ionic liquids and supercritical fluids (Anastas et al., 2018; Ivanković, 2017).
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3.2.1. Cluster #0 — Ionic Liquids
Early papers in this specialty have the greatest coverage, and present researches that
describe IL synthesis (Branco et al., 2002), analyze characteristics of ionic liquids in synthetic
processes (Baker et al., 2002; Holbrey & Rogers, 2002; Swatloski et al. 2002), and the
combination of those solvents and (bio)catalysts (Farmer & Welton, 2002; Gordon & Ritchie,
2002; van Rantwijk & Sheldon, 2007). An interesting article by Holbrey & Rogers (2002)
questions the green status of ionic liquids, stressing the need to assess its entire process
of production, use, and disposal. The most recent papers present an assessment of IL’s
antimicrobial potential (Busetti et al. 2010), its use in synthetic processes (Aupoix et al., 2010;
Ho et al., 2010), or present an overview of GC (Anastas & Eghbali, 2010) and multiphase
catalyzes (Muldoon, 2009), focusing on the role of ionic liquids.

The top-cited papers in this research front are written by Branco et al. (2002), Holbrey et al.
(2002), Sheldon et al. (2007), and Anastas & Eghbali (2010). The papers with the highest
frequency in the intellectual base are reviews by Welton (1999) (on the role of IL in synthesis
and catalysis), and Dupont & Suarez (2002), and an article (Wasserscheid & Keim, 2000)
addressing the possibilities of IL in metal-catalyzed processes.

3.3. C – Biomass
The use of biomass in the synthesis of useful chemicals is a major GC specialty based
on principle 7 – Use of Renewable Feedstocks, as a response to the imminent depletion
of fossil fuels and the environmental impacts generated by the high emission of carbon
dioxide in the atmosphere (Anastas et al., 2018; Ivanković, 2017). Concerns about possible
competition between crops for food sources and industry (Anastas et al. 2018; Marion et
al. 2017) are approached by second-generation biomass research, such as specialty #11 –
Lignin Valorisation.

3.3.1. Cluster #3 — Biomass Transformation
There is a special interest within this specialty in transforming biomass into biofuels (Alonso
et al., 2010; Bozell & Petersen, 2010; Climent et al., 2014), in the use of catalysts to convert
biomass into products of interest (Chidambaram & Bell, 2010; Liu & Chen 2014; Wang et al.,
2014), and also in the use of glycerol in synthetic processes such as solvent or reagent (Li et
al., 2010; Takagaki et al., 2010).

The main papers cited in the foregoing research front are two reviews by Bozell & Petersen
(2010) (on available and necessary technology to expand the work of biorefineries besides
the production of biofuels), and Alonso et al. (2010) (on the catalytic processes to convert
biomass into biofuels). The paper by Anastas & Eghbali (2010) stands out by the high citation
score. Chidambaram & Bell (2010) and Climent et al. (2014) wrote papers that stand out by
the coverage of the research front.

The intellectual base of specialty #3 has four papers with the highest frequency, three of
them deal with the conversion of biomass into chemicals of interest (Corma et al., 2007)
or specifically into fuels (Huber et al., 2006; Ragauskas et al., 2006); the fourth deals with
the dissolution and direct recovery of cellulose using ionic liquids, dispensing with previous
treatments (Swatloski et al., 2002).

3.3.2. Cluster #11 — Lignin Valorisation
This specialty is directed to investigating lignin recovery processes, transforming them into



carbon compounds with a high added-value (Bosch et al., 2017; Gillet et al., 2017; Huang et
al., 2017; Kumaniaev et al., 2017; Lancefield et al., 2017; Pelckmans et al., 2017; Si et al.,
2017). Papers in this research front have a low citation score, probably because the papers
were recently published.

Among its main (high frequency) publications in the intellectual base is a review on the
catalytic valorization of lignin for the production of renewable compounds (Zakzeski et al.,
2010) and another review on the improvement of lignin refining processes in biorefineries
(Ragauskas et al., 2014).

3.4. D – Catalysis
Catalysis is one of the most versatile tools of GC (Sheldon, 2007), allowing to reduce the
energy required for transformations, to reduce the generation of residues, and to increase
the selectivity of syntheses, as summarized by Anastas et al. (2018) e Ivankovic (2017).
Heterogeneous catalysis, as promoted by solid acid catalysts (#9), has been proposed as
more advantageous by using abundant and less hazardous metals (Anastas et al., 2018). The
use of microwave irradiation is also cited in previous reviews as a possibility for increasing
the energy efficiency of an entire process (Anastas et al., 2018; Ivanković, 2017).

3.5. Cluster #2 — Metal Catalysis and Microwave Activation
This specialty seems to deal mainly with the use of metallic catalysts, and the energetic
activation of organic reactions using microwaves generally developed without the use of
solvents. Among the most cited papers in the research front of #2, there is one broad
presentation of GC (Anastas & Eghbali 2010), two papers related to nano catalysis
(Polshettiwar & Varma, 2010; Varma, 1999). Procopio et al. (2010) have a high degree
of coverage, addressing the issues of the microwave, organocatalysis, and solvent-free
reactions.

The intellectual base of specialty #2 addresses three main themes: solvent-free organic
reactions (Tanaka & Toda, 2000; Varma, 1999), use of catalysts (Miyaura & Suzuki, 1995;
Sheldon et al., 2007), and use of microwaves in organic syntheses (Kappe, 2004; Varma,
1999). It is worth noting that Varma (1999) was part of a first research front in 1999, and later
became an intellectual basis for later fronts.

3.6. Cluster #9 — Solid Acid Catalysis
Papers in #9 deal with synthesis, characterization, and evaluation of solid-state acid catalysts
produced from carbon to hydrolyze organic macromolecules such as cellulose (Hara, 2010;
Hu et al., 2010; Suganuma et al., 2010; Xiao et al., 2010). The subject of this specialty
seems close to the great specialty C – Biomass (same substrate), showing the complexity of
activities involved in GC. Papers by Suganuma et al. (2010) and Xiao et al. (2010) stand out
from this research front for their coverage (higher than 0.5). Papers by Hara (2010) e Peng et
al. (2010) receive many citations.

The intellectual base of #9 has four articles prominent because of their frequency (Anastas &
Eghbali, 2010; Anastas & Kirchhoff, 2002; Clark, 2002; Poliakoff et al., 2002), three of them
are known references of GC, presenting general themes (Anastas & Eghbali, 2010; Anastas
& Kirchhoff, 2002; Poliakoff et al., 2002). The fourth text is a defence of acid soils as catalysts
to improve the “greenness” of chemical processes (Clark, 2002).
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3.7. Cluster #1 – Green Chemistry Characterization
In the research front, papers by Clark (1999), and Anastas & Eghbali (2010) have the highest
coverage. Highly cited papers are written by Poliakoff et al. (2002), and Varma (1999).
Excepting Varma (1999), who deals with solvent-free reactions, all other highly cited texts
deal with general aspects of GC.

The intellectual base of the specialty #1 is strongly influenced by the seminal book by Anastas
& Warner (1998), about the relation between Chemistry and environment, which tackles
issues such as regulation policies for chemical activity, and culminates in the creation of
GC. Other important papers that make up the intellectual base are an article by Trost (1991)
(on atom economy as the search for efficiency in chemical synthesis, suggesting the use of
transition metals as catalysts), a state of the art by Sheldon (2005) (on green and sustainable
solvent alternatives for organic synthesis), and a review on the impact of the E-factor, a
mass efficiency metric, on waste minimization and sustainability reach in the chemical and
pharmaceutical industry (Sheldon, 2007).

3.8. Cluster #7 – CO2 as Substrate
In GC reviews, carbon dioxide is described among the renewable approaches, as it is fixed
from the atmosphere by the growth of biomass (Anastas et al., 2018; Ivanković, 2017). It
is also presented as a safer alternative during some reactions involving organic carbonates
(Anastas et al., 2018; Ivanković, 2017); that is the case of this specialty.

The research front of cluster #7 has papers dealing with reactions in continuous flow
processes (King et al., 1999; Webb et al., 2005), syntheses in the biphasic system (Hou et al.
2002; King et al. 1999), and synthesis of dimethyl carbonate using CO2 (Dhakshinamoorthy
et al., 2010; Juárez et al., 2010; North et al., 2010; Yan et al., 2010). North, Pasquale & Young
(2010) have the top number of citations.

The main articles in the intellectual base address the issue of the reactivity of CO2 and its
derivatives, such as three reviews on the reactivity of carbonates (Sakakura et al., 2007;
Shaikh & Sivaram, 1996; Tundo & Selva, 2002), and a book on supercritical fluids as a
reactive medium (Jessop & Leitner, 2007).

4. DISCUSSION
Figure 2 shows the entire co-citation network in a partitioned way, in which the nodes
belonging to the same cluster were collapsed into a single vertex. The radius of the nodes
indicates the size of the research front and, consequently, the size of the specialty. The width
of the lines is proportional to the number of papers co-cited between two nodes.



Figure 2. Co-citation network of big specialties of Green Chemistry (1990-2017). Each node is a 
specialty, colors represent big specialties and the radius of the node is proportional to the size of 
the research front. Image generated by Gephi.

Specialty #1 – Green Chemistry Characterization is the largest cluster, followed by big
specialties C (46 papers), A (43), and D (42). Big specialty #7 – CO2 as Substrate is the
smallest, with only 18 members in the research front.

Figure 2 shows that specialty #1 occupies a central place in the network, establishing
links with almost all other big specialties. This demonstrates its role in supporting the other
specialties, and especially in defining what GC is. Woodhouse & Breyman (2005) compare
GC to a social movement and the search for identity is a crucial moment for the collective,
which seems to be the main topic in #1. The themes present in this specialty reflect the
main ideas of the other specialties found in this analysis, such as the use of supercritical
CO2 as solvent (Barwinski et al., 2017), solvent-free processes (Varma, 1999), use of
eutectic solvents (Subramaniam 2010), ionic liquids (Stark et al., 2010), biomass (Collinson &
Thielemans, 2010; Hernáiz et al., 2010), and the need to address metrics (Marion et al., 2017;
Sheldon, 2017; Tobiszewski et al., 2017) in chemical processes. The fact that this specialty
presents the same themes in other clusters corroborates the network analysis as a whole and
reinforces the coherence of the GC overview presented here.
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Big specialty B is a very cohesive aggregate, as its clusters are very close. The links
that they establish with specialty #1 indicate some degree of approximation between their
practices. The specialties composing big specialty A are scattered through the network and
are not directly linked to one another, showing that they do not share the same intellectual
foundations, and possibly the same methodologies, although their themes seem very similar.
They surround #1, establishing links between the core of GC and other specialties, especially
B and D.

Specialty #7– CO2 as Substrate is more distant from the other clusters, showing links to #5
– Supercritical Solvents (of which CO2 is a possibility), #1 – GC Characterization and #2 –
Metal Catalysis and Microwave Activation. Although it seems that the use of carbon dioxide
as a substrate is related to the subject of biomass, this specialty does not present links with
great specialty C, suggesting a more focused perspective on the mechanisms and control of
the transformations involving organic epoxides and carbonates.

Big specialty C also has defined behavior, showing the highest degree of separation from
the other components of the network, and a close link between #11 – Lignin Valorisation,
and #3 – Biomass Transformation. Its approximation with the other big specialties is given by
interactions with #0 – Ionic Liquids, #9 – Solid Acid Catalysis, and #4 – Organic Reactions in
Aqueous Medium. This demonstrates the specificity of this specialty (by its distance) and its
complexity, in its connection to very different specialties.

Overall, the structure of the network corroborated some of our classifications into big
specialties. Nevertheless, two big specialties just have a thematic closeness (A and D), since
their clusters are scattered across the whole network. However, this shows how solvents and
catalysis are complex and broad themes, with very different approaches.

4.1. Extension and immediacy of specialties
The CPT value varies from 0.0338 to 0.833, with 9 clusters below 0.1 and 7 above it (Table
2). The factors that contributed to the lower CPT values (<0.1) were either a large time span
of the research front or many core papers in the intellectual base. In the first case, we can
mention the clusters #7– CO2 as Substrate, #2 – Metal Catalysis and Microwave Activation,
#4 – Organic Reactions in Aqueous Media and #1 – GC Characterization in which the low
CPT value reflects the large time span of their research fronts (>16 years) (Table 2). This
may indicate that these are more consolidated specialties or more persistent research trends
within the field. Another factor that affects this group is the proportion between the size of the
research front (C) and the size of the intellectual base (P), indicating a low concentration of
citation in a specific theme and a more general character to the specialties.

The second group of specialties with low CPT has a research front concentrated in a shorter
time, but with a very large intellectual base, as in the case of #0 – Ionic Liquids, #8 –
Ionic Liquids Toxicity, #6 – Recycling and Recovery of Solvents, #10 – Catalytic Oxidation
of Alcohols, and #5 – Supercritical Solvents. This suggests that they had a concentrated
interest either in a period or in a more restricted community of researchers with many shared
references. It is interesting to note that 3 of these specialties are related to ionic liquids, which
may indicate the restriction of those themes to certain research groups or specific periods.

Among the highest CPT values (> 0.1), most clusters have a research front concentrated
in 1 year (#16 - Glycochemistry, #18 – Solid-State Organic Reactions, #12 – Ionic Liquids
Preparation, #11 – Lignin Valorization and # 9 – Solid Acid Catalysis), representing a more
momentary or recent interest. The main factor for the increase in CPT in this low T group



is the ratio between research front and intellectual base, indicating that there are many
researchers interested in specific literature, specific to a theme; this is the case for clusters
# 11 and # 9. Cluster # 17 – Deep Eutectic Solvents draws attention because it has a large
research front and a small intellectual base. Cluster # 3 has the largest intellectual base
among the highest CPT values and 5 years, indicating that it is a strong and growing trend
within GC.

4.2. Emerging trends in Green Chemistry
Twenty-one works were selected by being published between 2012-2017 and with citation
burstiness that lasted until 2017 (Table 3). Cluster #3 – Biomass Transformation has the
highest accumulated value of citation burstiness, showing the continued interest of the
scientific community in this research topic. Cluster #3 also presents the largest number of
papers with high citation burstiness, 9 in total, followed by clusters #1 – GC Characterization
and #17 – Deep Eutectic Solvents with 3 papers each. This corroborates the idea that
these specialties have continued to arouse the strong interest of the scientific community in
recent years. Clusters #3, #11, and #17 –also have high CPT values, as discussed in 4.1,
corroborating the importance and the emergence of these specialties. In 2018, the Chinese
Academy of Sciences and Clarivate Analytics (2018) reported “Deep eutectic solvents and
their applications”, same topic of cluster #17, as one of the key hot research fronts in
Chemistry.

Reference Cluster Citation Burstiness

Strength Begin End

(Prier, Rankic, and MacMillan 2013) * 243,008 2014 2017

(James et al. 2011) * 200,721 2014 2017

(Sheldon 2012) 1 395,044 2013 2017

(Dunn 2012) 1 220,229 2014 2017

(Gu and Jérôme 2013) 1 194,221 2014 2017

(Ragauskas et al. 2014) 11 298,271 2015 2017

(Zhang et al. 2012) 17 282,104 2014 2017

(Smith et al. 2014) 17 233,865 2015 2017

(Francisco, van den Bruinhorst, and Kroon 2013) 17 166,201 2014 2017

(Gawande et al. 2013) 2 174,746 2014 2017

(Gallezot 2012) 3 376,834 2014 2017

(van Putten et al. 2013) 3 334,326 2014 2017

(Besson, Gallezot, and Pinel 2014) 3 244,662 2015 2017

(Clark et al. 2014) 3 225,345 2015 2017

(Alonso, Wettstein, and Dumesic 2013) 3 208,951 2014 2017
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Reference Cluster Citation Burstiness

Strength Begin End

(Climent et al. 2014) 3 181,227 2014 2017

(Lange et al. 2012) 3 181,227 2014 2017

(Brandt et al. 2013) 3 161,928 2014 2017

(Tuck et al. 2012) 3 17,798 2014 2017

(Simon and Li 2012) 4 266,078 2015 2017

(Gawande et al. 2013) 4 213,725 2014 2017

Table 3. Papers published in 2012-2017 with high citation burstiness up to 2017.

Besides, two papers emerged with a high citation burstiness value without belonging to a 
specific cluster. Although these researches have attracted attention, there still seems to be 
no large research community that shares the same literature on the topic, i.e. there is still 
no research front. These papers may indicate very recent and innovative research topics in 
GC with the possibility of developing into specialties in the coming years. One of the papers 
presents a critical review of the mechanochemical synthesis, pointing out its advantages for 
the reduction or elimination of solvent and its more sustainable character (James et al., 2011). 
The second paper deals with the use of visible light to catalyze organic syntheses (Prier et 
al., 2013).

Papers with the biggest citation burstiness in #3 – Biomass Transformation highlight the 
more industrial side of biomass chemistry (Besson et al., 2014; Gallezot, 2012; van Putten 
et al., 2013), especially in the work of Huber et al. (2006). Papers in cluster #1 – GC 
C haracterization focus on the efficiency of the synthesis processes (Sheldon 2012) and 
environmental metrics and criteria for solvent choice (Dunn, 2012). Regarding cluster #17 
– Deep Eutectic Solvents, papers deal with syntheses, properties and applications of deep 
eutectic solvents (Francisco et al., 2013; Smith et al., 2014; Zhang et al., 2012), particularly 
as an alternative to ionic liquids (Francisco et al., 2013).

4.3. Validation of Results
The network generated presented good internal coherence, indicated by the Modularity Q 
value of 0.8718 and cluster silhouette above 0.7. Editorials or reviews on the field, functioning 
as specialists’ testimonials, were used as the basis for expert validation. Thirteen editorials 
were chosen from the themed collection celebrating the 25th anniversary of GC (HSA)
(Anastas et al., 2016; Delidovich & Palkovits, 2016; Jackson et al., 2016; Jessop, 2016; 
Li, 2016; Llevot & Meier, 2016; MacFarlane et al., 2016; Peters & von der Assen, 2016; 
Quadrelli, 2016; Scott & Lee, 2016; Sheldon, 2016; Sneddon, 2016; Wakaki et al., 2016), and 
one editorial celebrating the 20th anniversary of the publication of the GC principles (GCP)
(Anastas et al., 2018). About 10% of the texts in the intellectual base of the network are 
referenced in the HSA editorials and 11% in the GCP editorial (Table 4).

Several editorials highlight substitution for greener solvents in chemical processes (Anastas 
et al., 2018; Jessop, 2016; Li, 2016; Sneddon, 2016), such as water, ionic liquids, supercritical 
fluids, or no solvents at all. Solventless syntheses (Jessop, 2016; Li, 2016; Sneddon, 2016) 
address the challenge of activating substances by microwave irradiation, photochemistry, or 
mechanochemistry, for example. Those strategies are in their infancy and much has to be



developed (Anastas et al., 2018). Those are the same topics addressed in A – Solvents,
B – Ionic Liquids, and #2 – Metal Catalysis and Microwave Activation. Eutectic or neoteric
solvents (as in cluster #17 – Deep Eutectic Solvents) in general are not explicitly discussed in
any editorial. This corroborates the idea of an emerging field in GC.

Regarding big specialty D – Catalysis, metal catalysts are an important tool in GC (Delidovich
& Palkovits, 2016; Li, 2016; Sheldon, 2016; Sneddon, 2016; Wakaki et al., 2016) and their
recovery and reuse is a pursued aim (Anastas et al., 2018). Solid acids and bases are
described by their abundance (Anastas et al., 2018), the possibility of recovery, and the
low generation of residues as it prevents the formation of salts (Delidovich & Palkovits,
2016). Wakaki et al. (2016) use oxidation of alcohols as a practical example to discuss less
hazardous chemical synthesis.

Big specialty Specialty REF in HSA REF in GCP Size IB

A – Solvents #4 – Organic Reaction in Aqueous Media 4 2 31

#5 – Supercritical Solvents 2 0 30

#17 – Deep Eutectic Solvents 0 0 6

#18 – Solid-State Organic Reaction 0 0 5

B – Ionic Liquids #0 – Ionic Liquids 0 3 55

#6 – Recycling and Recovery of Solvents 0 0 29

#8 – IL Toxicity 0 0 19

#12 – IL Preparation 0 0 9

C – Biomass #3 – Biomass Transformation 4 4 33

#11 – Lignin Valorisation 0 0 10

#16 - Glycochemistry 0 0 6

D – Catalysis #2 – Metal Catalysis and Microwave Activation 2 4 38

#9 – Solid Acid Catalysis 2 4 12

#10 – Catalytic Oxidation of Alcohols 2 0 11

#1 – GC Characterization 15 22 45

#7 – CO2 as Substrate 4 4 28

Total* 35 42 368

Table 4. The number of texts in the intellectual base (IB) referenced in the editorial from the collections “Happy Silver 
Anniversary” of GC (HSA) and 20th anniversary of GC principles (GCP).

Several editorials address the possibilities of biomass-derived products (as in big specialty 
C – Biomass) as renewable alternatives as substrate and solvents (Delidovich & Palkovits, 
2016; Li, 2016; Llevot & Meier, 2016; Quadrelli, 2016; Sheldon, 2016; Wakaki et al., 2016), 
especially processes using second-generation biomass, such as lignin (Anastas et al., 2018; 
Li, 2016). The use of carbon dioxide as a building block for the generation of organic 
compounds is approached in four editorial (Anastas et al., 2018; Delidovich & Palkovits, 2016;
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Llevot & Meier, 2016; Wakaki et al., 2016), the same topic as cluster #7 – CO2 as Substrate.

One of the hot topics in #1 – GC Characterization, metrics are discussed in many editorials 
(Delidovich & Palkovits, 2016; Jackson et al., 2016; Quadrelli, 2016), especially if waste is still 
a suitable metric (Peters & von der Assen, 2016) and strategies to assess the greenness of 
practices employing GC principles (Anastas et al., 2018). This analysis corroborates that peer 
review is complementary to bibliometric investigations (Abramo et al., 2019).

5 CONCLUSIONS
In the 27 years considered in this research, 6 different and interrelated big research fronts 
were identified in GC : A – Solvents; B – Ionic Liquids; C – Biomass; D – C atalysis; #1 –
GC Characterization; and #7 – CO2 as Substrate. Specialty #1 – GC Characterization has 
the largest research front and gathers papers to delimit GC, tracing its history, and pointing 
its challenges, functioning as a nucleus for the field. The clusters that made up those big 
specialties are presented in Table 2.

The CPT values show that some specialties have a more general approach and persistence 
inside a research theme, as in #7– CO2 as Substrate, #2 – Metal Catalysis and Microwave 
Activation, #4 – Organic Reactions in Aqueous Media and #1 – GC Characterization. 
Specialties #0 – Ionic Liquids, #8 – Ionic Liquids Toxicity, #6 – Recycling and Recovery of 
Solvents, #10 – Catalytic Oxidation of Alcohols, and #5 – Supercritical Solvents have activity 
restricted in time and by a smaller group of researchers in the research front. Finally, #16 -
Glycochemistry, #18 – Solid-State Organic Reactions, #12 – Ionic Liquids Preparation, #11 –
Lignin Valorization, # 9 – Solid Acid Catalysis and #3 – Biomass Transformation have a big 
research front sharing a small set of references in a relatively small time. This means those 
may be cutting edge trends in GC.

Citation burstiness corroborates cluster #3 – Biomass Transformation as an emerging trend, 
a specialty that is continuously rising interest, especially on industrial applications of biomass 
to produce valuable substances. C luster #1 – GC C haracterization has burst citation on 
environmental and sustainability metrics. Cluster #17 – Deep Eutectic Solvents has shown 
recent interest in using eutectic solvents as an alternative to ionic liquids. Two other research 
themes were found outside the clusters, mechanochemistry, and photochemistry, indicating 
the new potential for GC innovation.

Here it is presented an overview of GC specialties in its 27 years. Although it is not an 
exhaustive description of the topics studied in GC, the co-citation analysis presented here 
gives an idea of the foci of interest of the community of green chemists. CiteSpace showed 
to be a relevant tool to analyze the GC field. However, the lack of author keywords in some 
journals, such as Green Chemistry, hurdled the retrieval of information. Also, the changing 
of an algorithm for Keywords Plus in Web of Science makes it difficult to retrieve the same 
registers nowadays. A thoughtful standardization of databases and indexation is required and 
worth considering in future research. Comparisons with qualitative descriptions made in the 
field corroborate the coherence of the results of this research, and eventual discrepancies 
seem to reflect differences in the approach to information in the field: the analyses made by 
experts start from the Twelve Principles as prior categories for the organization of the GC, 
while this research draws specialties from the field’s citation patterns. This overview here also 
calls for reflection on who the researchers are that furnish the basic knowledge for the rise of 
a specialty (their intellectual authorities), and who the individuals are that contribute the most 
to disseminate research on a particular topic, forming research groups around the same goal



(intellectual hubs). We hope to address these topics in future research.

Notes
This article is an extended version of the paper presented at the EAI DIONE 2020 conference
held on 17 April in Florianopolis, Brazil.
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