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ABSTRACT

Context. The identification of smaller and smaller signals from objects observed with a non-perfect instrument in a noisy environment
poses a challenge for a statistically clean data analysis.
Aims. We compute the probability that frequencies determined in various data sets are related or not, which cannot be answered with
a simple comparison of amplitudes. Our method provides a statistical estimator for whether a given signal with different strengths in
a set of observations is of instrumental origin or is intrinsic.
Methods. Based on the spectral significance as an unbiased statistical quantity in frequency analysis, Discrete Fourier Transforms
(DFTs) of target and background light curves are compared. The individual False-Alarm Probabilities are used to deduce a conditional
probability of a peak in a target spectrum being real in spite of a corresponding peak in the spectrum of sky background or of
comparison stars. Alternatively, we can compute joint probabilities of frequencies to occur in the DFT spectra of several data sets
simultaneously but with different amplitude, leading to composed spectral significances. These are useful to investigate a star observed
in different filters or during several observing runs. The composed spectral significance is a measure of the probability that none of
the coinciding peaks in the DFT spectra under consideration are due to noise.
Results. Cinderella is a mathematical approach to a general statistical problem. Its potential reaches beyond photometry from
ground or space to all cases where a quantitative statistical comparison of periodicities in different data sets is desired. Examples of
the composed and the conditional Cinderella mode for different observation setups are presented.
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1. Introduction

The micromagnitude precision achieved by the MOST1

(Microvariability & Oscillations of STars) mission (Walker
et al. 2003; Matthews 2004) not only provides exciting new re-
sults in asteroseismology, but reveals instrumental problems that
challenge our data reduction techniques (see Sect. 1.1). Cosmic
ray impacts on the detector, stray light, positioning errors of the
satellite, and thermal stability problems introduce periodic and,
in the worst case, pseudo-periodic effects into photometric mea-
surements. All this calls for new techniques in data reduction
and analysis (see Sect. 1.2).

Space observations in general can provide an unprecedented
amount of data, requiring an enhanced degree of automatic data
analysis without sacrificing accuracy and reliability. In this con-
text, SigSpec (Reegen 2007) was developed to combine the
Discrete Fourier Transform (DFT) – a standard method to de-
termine stellar pulsation frequencies – with a clean statistical
quantity: the spectral significance of a peak in an amplitude or
power spectrum by comparison to white noise.

The basic idea of Cinderella is to use target and com-
parison data sets simultaneously for a cross-identification of

1 MOST is a Canadian Space Agency mission, jointly operated by
Dynacon Inc., the University of Toronto Institute of Aerospace Studies,
the University of British Columbia, and with the assistance of the
University of Vienna, Austria.

artifacts in the frequency domain. It is the first technique permit-
ting a statistically unbiased and quantitative comparison of dif-
ferent (not necessarily photometric) time series in the frequency
domain. Being applicable to practically all measurements of
physical quantities over time, Cinderella has the potential to
become a valuable tool beyond the scope of micromagnitude
space photometry.

1.1. The MOST mission

The first space telescope designed and built for photometric stel-
lar seismology was EVRIS (Vuillemin et al. 1998), a 10-cm pho-
toelectric telescope aboard the MARS-96 probe, but it unfortu-
nately did not achieve the transfer orbit. An instrument providing
photometric information on a large scale useful for asteroseis-
mology was NASA’s WIRE satellite, whose primary scientific
goal of infrared mapping failed, but a 5-cm star tracker telescope
with a CCD detector turned out to permit stellar photometry of
remarkable quality (e.g., Buzasi et al. 2000). The MOST satellite
launched in June 2003 was a precursor to the CNES-led mission
COROT (Baglin et al. 2004), which was successfully launched
on December 27, 2006, and which is producing extremely useful
space photometric data of hitherto unprecedented accuracy and
volume.

MOST, WIRE and COROT are low-Earth-orbit (LEO)
missions with comparable environmental effects (e.g., cosmic
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Fig. 1. The raw light curve (blue) of the MOST Fabry target βCMi and
after data reduction (red). Harmonics of the satellite’s orbital frequency
(≈14.2 d−1; dotted green) and the detected stellar signal (3.257 d−1

and 3.282 d−1; dotted black) are indicated.

radiation, stray light scattered from the Earth’s surface). Also,
all three missions must extract asteroseismic information from a
series of up to hundreds of thousands of CCD frames (or sub-
rasters), each of which may consist of a few hundred to several
million pixels. Hence, the present work may apply to other LEO
space photometry missions and to ground-based multi-object
photometry.

The MOST telescope is a 15-cm Maksutov optical telescope,
supplied with a single broadband filter and initially with two
identical CCD detectors: one used for science data acquisition,
the other for the Attitude Control System (ACS). Thanks to the
low mass of 54 kg and the ACS developed by Dynacon, Inc.
(Groccott et al. 2003; Carroll et al. 2004), a pointing stability
of approximately ±1′′ rms is achieved.

In Fabry Imaging mode the telescope entrance pupil is im-
aged onto the CCD via a Fabry microlens as shown by Figs. 7
and 8 of Walker et al. (2003). Each Fabry Image is an annulus
with an outer diameter of 44 pixels. The pixels in a square sub-
raster outside the annulus are used to estimate the background.
MOST also obtains Direct Imaging photometry of typically
1−6 stars, based on defocused images (FWHM ∼ 2.2 pixels;
Rowe et al. 2006; Huber & Reegen 2008), and Guide Star pho-
tometry of about 20−30 stars (Aerts et al. 2006; Saio et al. 2006).

1.2. Data reduction

The data reduction described by Reegen et al. (2006) applies
linear correlations between pairs of target and background pixels
for stray light correction. This so-called decorrelation technique
is also applicable to simultaneous photometry of several stars, in
this case correlating variable vs. constant stars.

Figure 1 illustrates the performance of the Fabry imaging
photometry with MOST data of β CMi (Saio et al. 2007). The
blue graph refers to the raw data and the red graph to the reduced
light curve. The overall noise level decreased by an order of 10,
and so did the harmonics of the orbital frequency of the space-
craft, (≈14.2 d−1 for 101.4 min; Walker et al. 2003). However,
instrumental peaks (dotted green lines) persisted on a lower level
and their amplitudes still exceeded the stellar signal (main fre-
quencies: 3.257 d−1 and 3.282 d−1; dotted black line).

1.3. SigSpec

SigSpec (Reegen 2007) is based on DFT amplitude spectra
and consecutive prewhitening of dominant peaks. Instead of
considering the peak with the highest amplitude to be signifi-
cant and estimating the reliability roughly in terms of signal-
to-noise ratio, the Probability Density Function (PDF) is em-
ployed. The PDF depends on the frequency and phase of the
examined peak using white noise as a reference. The mean pho-
tometric magnitude in a time series is usually reduced to zero
before evaluating the DFT. SigSpec takes the resulting statisti-
cal consequences into account, and is not restricted to Gaussian
distributed residuals.

The False-Alarm Probability is a frequently used statisti-
cal quantity in time series analysis. It is the probability that a
peak at a given amplitude level is generated by noise. Formally
it is obtained through integration of the PDF. To avoid prob-
lems in computing extremely low numerical values, SigSpec
returns a quantity called spectral significance (hereafter abbre-
viated as “sig”), which is the negative logarithm of the False-
Alarm Probability. It gives the number of uncorrelated data sets
needed, containing pure noise, so that a peak in the Fourier do-
main appears that is comparable in amplitude and phase to the
peak under consideration in the observed data.

Although SigSpec was as a powerful tool for analyzing
MOST photometry, it occasionally suffered from the weakness
of having to refer to uncorrelated (i.e. white) noise.

1.4. The virtue of Cinderella

Frequencies with individual amplitudes and phases (“peaks”)
in the DFT spectra of a target and comparison data sets are
examined by Cinderella for compatibility. In other words,
Cinderella allows us to investigate whether these data sets are
related by any physical (deterministic) process. The procedure is
the same if the comparison data represent sky background or a
star with a different frequency spectrum to the target star, which
– in the best case – is a constant star. Subsequently, the terms
“target star” and “comparison star” will be used, keeping in mind
that everything discussed here readily applies to sky readings in-
stead of comparison stars as well. Obviously, all compared data
sets have to be observed under similar conditions. An extension
of the method to handle more than one comparison data set is
useful for multi-object environments, such as photometry in a
field.

In conditional mode, Cinderella establishes a quantitative
comparison of significant frequencies occurring at the same time
in at least two different data sets. It returns a statistically robust
value, called conditional sig, for the probability that a peak in
the spectrum of one data set is not (deterministically) related to a
peak in the other data set(s) within a given frequency resolution.

The alternative composed mode is dedicated to testing
whether peaks in different DFT spectra with similar frequencies
are “real”, in the sense of not due to noise. The corresponding
quantity, the composed sig is a measure of the probability that
none of the examined peaks is due to noise.

1.5. Frequency resolution

The question of how to set the frequency difference acceptable
for the consideration of peaks as coincidental is crucial to the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078855&pdf_id=1
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examination of corresponding peaks in different DFT spectra. In
this context, an alternative definition to the Rayleigh resolution,

δ fR :=
1
∆t
, (1)

with ∆t denoting the total time interval width of the time series
is introduced by Kallinger et al. (2007). They suggest to addi-
tionally employ the sig for a peak amplitude according to

δ fK :=
1

∆t
√

sig (A)
, (2)

to obtain a more realistic criterion for matching peaks (frequency
resolution) than provided by Eq. (1). Their numerical simula-
tions show an excellent agreement of this quantity (subsequently
termed Kallinger resolution) with the frequency error derived by
Montgomery & O’Donoghue (1999).

For practical applications, it is useful to enhance the flexibil-
ity of Cinderella by introducing an exponent z and to re-define
the frequency resolution according to

δ f :=
1

∆t
[ √

sig (A)
]z , (3)

where z usually attains values in the range [0, 1]. The Rayleigh
resolution is obtained for z = 0, whereas z = 1 yields the
Kallinger resolution.

2. Theory

The theoretical framework of Cinderella presented here con-
tains a conversion that makes amplitudes in the DFT spectra of
different datasets comparable, introduces conditional and com-
posed sig, discusses how to handle peaks in a target dataset with-
out a corresponding counterpart in the comparison dataset, and
generalizes the method to multiple comparison datasets.

2.1. Amplitude transformation between different mean
magnitudes

Assuming that stray light artifacts are additive in terms of inten-
sity, a signal amplitude detected in a comparison data set may
readily be used for a comparison with the target amplitude, if
intensities were employed for the frequency analysis. The cor-
responding magnitude variations appear on a scale that depends
on the average magnitude. This is reasonable for instrumental
effects as well. Let us further assume that mean intensities 〈I〉
are converted into mean magnitudes 〈m〉 according to

〈m〉 = −2.5 log〈I〉, (4)

which holds to a sufficient approximation if the variations are
small compared to the mean intensity. In strict terms, a ge-
ometrical mean intensity transforms into an arithmetic mean
magnitude.

Given a mean magnitude 〈mC〉 and a stray-light induced si-
nusoidal variation with amplitude AC (in magnitudes), the max-
imum intensity in the comparison light curve will be

〈IC〉 + ∆I = 10−0.4(〈mC〉−AC), (5)

where 〈IC〉 denotes the mean intensity of the comparison data
and ∆I is the intenstity amplitude corresponding to AC. Thus an
estimate of the intensity amplitude is obtained by

∆I = 10−0.4(〈mC〉−AC) − 10−0.4〈mC〉. (6)

This magnitude-intensity transformation of amplitudes uses the
maximum and mean intensities only. The reason is that varia-
tions are distorted by the logarithmic scaling, and this distor-
tion is stronger towards low intensities. Hence the Gaussian error
propagation (producing symmetric errors only) is not appropri-
ate, nor is it advisable to use the minimum intensity as an estima-
tor. Both statements were confirmed by numerical simulations.

Since the stray-light induced variation is assumed additive in
terms of intensity, the maximum target intensity will be

〈IT〉 + ∆I = 10−0.4〈mT〉 + 10−0.4(〈mC〉−AC) − 10−0.4〈mC〉, (7)

substituting for ∆I according to Eq. (6). The approximation

AT ≈ 2.5 log

(
1 +
∆I
〈IT〉
)

(8)

for the target amplitude corresponding to a comparison ampli-
tude AC leads to

AT ≈ 2.5 log

[
1 +

10−0.4(〈mC〉−AC) − 10−0.4〈mC〉

10−0.4〈mT〉

]
· (9)

This is an estimator of the amplitude in a target star correspond-
ing to artificial intensity variations of amplitude AC in a compar-
ison star.

This is a theoretically consistent transformation that will
yield a reasonable estimate in many practical applications.
However, the detailed study of contaminated measurements may
occasionally demand special approaches to the calibration of
magnitudes. Such an example is presented in Sect. 3 and dis-
cussed in detail therein.

2.2. Frequency and phase differences

If a peak in the DFT amplitude spectrum of a comparison dataset
is found within the Rayleigh or Kallinger frequency resolution
around a target peak, the two considered frequencies and phases
generally do not match perfectly. We know that DFT peak am-
plitudes show systematic deviations for different frequencies and
phases (e.g. Kovacs 1980); a transformed amplitude AT at a fre-
quency ω′ and a phase angle θ′ in Fourier Space need not refer
to the same amplitude at the frequency ω and the phase angle θ
of the corresponding target peak. However, since all calculations
were performed using SigSpec (Reegen 2007) and since the am-
plitudes are optimized by least-squares fits, they may be consid-
ered free of such effects to a satisfactory extent.

We omit possible effects of frequency and phase lag. Under
the condition that the same instrumental or environmental pro-
cess is responsible for both target and comparison signal, the
frequencies are expected to be equal. In addition, frequency de-
viations are already taken into account for candidate selection.
This is why the frequencies in the target and comparison data are
considered equal at this stage of calculation. On the other hand,
it was pointed out by Reegen et al. (2006) that stray light mov-
ing over a detector produces phase differences in the stray light
signal measured at different positions on the CCD. These phase
lags are the main constraint of the quality of the data reduction
procedure described there. Hence it definitely makes sense to
omit the phase information in the technique introduced here and
consider all signal phases consistently aligned with the phase in
the target dataset.
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2.3. Conditional spectral significance

The interesting question is now, “What is the probability that a
given target peak with an amplitude A (ω, θ) is generated by the
same process as a transformed comparison peak with an ampli-
tude AT (ω′, θ′)?” The answer may be given in terms of sig.

According to Sect. 2.1, we may use AT (ω, θ) ≈ AT (ω′, θ′).
If a comparison of sigs is desired for constant time-domain sam-
pling, frequency and phase, then the calculations simplify to a
comparison of signal-to-noise ratios,

sig (A, ω, θ)
sig (AT, ω′, θ′)

=

(
A
AT

)2 〈x2
T〉
〈x2〉 , (10)

where 〈x2〉 denotes the variance of the target dataset includ-
ing the signal itself, and 〈x2

T〉 is the variance the target dataset
would have if the amplitude were AT instead of A. Annotating
the variance of the target light curve after prewhitening 〈x2

P〉,
the scaling from A onto AT is obtained via the difference of
variances 〈x2〉 − 〈x2

P〉, which is a measure of the amount of
signal prewhitened for an amplitude A. If an amplitude AT
is used instead, the corresponding amount will transform into(

AT
A

)2 (〈x2〉 − 〈x2
P〉
)
. Then the variance 〈x2

T〉 becomes

〈x2
T〉 = 〈x2

P〉 +
(AT

A

)2 (
〈x2〉 − 〈x2

P〉
)
. (11)

This expression transforms Eq. (10) into

sig (A, ω, θ)
sig (AT, ω′, θ′)

= 1 +

⎡⎢⎢⎢⎢⎢⎣
(

A
AT

)2
− 1

⎤⎥⎥⎥⎥⎥⎦ 〈x2
P〉
〈x2〉 · (12)

The conditional False-Alarm Probability of producing at least
an amplitude A, if an amplitude AT is presumed, is a fraction
of the corresponding individual False-Alarm Probabilities, if the
corresponding processes are independent. The sig is defined as
the (negative) logarithm of False-Alarm Probability, where the
ratio of False-Alarm Probabilities corresponds to a difference of
sigs, i.e., we obtain

sig (A | AT, ω, θ) = sig (A, ω, θ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩1−
1

1+
[(

A
AT

)2− 1
] 〈x2

P〉
〈x2〉

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ · (13)

This is the conditional sig of a target peak with an amplitude
A considering of a comparison peak with a transformed ampli-
tude AT, where the transformation of the comparison amplitude
may be performed according to Eq. (9). E.g., a peak with a con-
ditional sig of 2 is true despite the given comparison peak in 99
out of 100 cases.

The computation of conditional sigs for multiple compar-
ison datasets is part of the Cinderella analysis of the tar-
get dataset under consideration vs. each individual comparison
dataset. Then the individual conditional sigs may be averaged
over all comparison datasets. The resulting mean conditional sig
and the corresponding rms error are reasonable estimators for
the overall reliability of a target peak. In practical applications,
one will trust a target peak if the mean conditional sig is high,
both in absolute numbers and in units of rms error.

2.4. Joint distributions

An alternative question, relevant in some cases, is, “Given two
independently measured datasets, what is the (joint) probability

of a coincident peak not to be due to noise in both datasets?”
The difference with respect to Sect. 2.3 is that here neither of
the two time series is treated as a comparison dataset. This ques-
tion may, e.g., apply to differential photometry of the same target
with respect to different comparison stars, or to measurements of
the same target in different years. The considered case refers to
a logical “and”.

Given two statistically independent time series with two
coincident peaks at sigs sig (A1), sig (A2), the False-Alarm
Probability, ΦFA 1,2 = 10−sig (A1,2) of an individual peak is the
probability that it is generated by noise. The complementary
probability that the considered peak is true is 1 − 10−sig (A1,2).
If the individual components are statistically independent, the
(joint) probability of all components being real is the product of
the individual probabilities,

1 − ΦFA = (1 −ΦFA 1) (1 −ΦFA 2) . (14)

Consistently, a “joint sig” is introduced as the negative logarithm
of the total False-Alarm Probability, ΦFA, and in terms of indi-
vidual sigs, one obtains

sig (A1 ∧ A2) := − log
{
1 −
[
1 − 10−sig (A1)

] [
1 − 10−sig (A2)

]}
. (15)

In computational applications, numerical problems may oc-
cur with a straight-forward implementation of this relation,
namely if 10−sig (Ai) produces an overflow. If sig (A2) is high
and sig (A1) > sig (A2), then the resulting joint sig will be
sig (A1 ∧ A2) ≈ sig (A2), and the amount of change in sig (A2)
by the composition with sig (A1) may be calculated by a linear
estimate according to

sig (A1 ∧ A2) ≈ sig (A2) +
d sig (A1 ∧ A2)

dΦFA 1

∣∣∣∣∣
ΦFA 1=0

ΦFA 1, (16)

which evaluates to

sig (A1 ∧ A2) ≈ sig (A2) −
(

1
ΦFA 2

− 1

)
ΦFA 1 log e. (17)

For ΦFA 2 � 1, we may set 1
ΦFA 2
− 1 ≈ 1

ΦFA 2
, which yields

sig (A1 ∧ A2) ≈ sig (A2) − 10sig (A2)−sig (A1) log e. (18)

If sig (A1), sig (A2) differ by e.g. 5, the joint sig will deviate from
min
[
sig (A1) , sig (A2)

]
in the 5th digit.

If more than two, say N, time series are examined, Eq. (15)
may be generalized to

sig
(∧

An

)
:= − log

⎧⎪⎪⎨⎪⎪⎩1 −
N∏

n=1

[
1 − 10−sig (An)

]⎫⎪⎪⎬⎪⎪⎭ . (19)

In practical applications, the employment of the joint sig as an
estimator for the reliability of a peak in several different DFT
spectra simultaneously may lead to very low absolute sig values.
This becomes evident if we consider N corresponding peaks at
the same sig level csig. Then the composed sig is

sig
(∧

An

)
= − log

[
1 −
(
1 − 10−csig

)N]
, (20)

which consistently decreases with increasing number of
datasets N.

Setting csig =: π4 log e, which is the expected sig for white
noise (Reegen 2007), Eq. (19) evaluates to

sig
(∧

An

)
= − log

{
1 −
[
1 − exp

(
−π

4

)]N}
. (21)

This makes it clear that both the sigs of given peaks as well as the
“noise” in the significance spectrum will consistently decrease
with the number of employed time series.
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2.5. Composed spectral significance

The dependence of the statistical properties of the joint sig on
the number of datasets is potentially problematic, since it does
not provide numerical values that can easily be interpreted. Thus
it is convenient to introduce a more intuitive scaling.

Equation (20) may be re-written as

csig (An) = − log
[
1 − N
√

1 − 10−sig (
∧

An)
]
, (22)

where csig – the composed sig – is now considered as a func-
tion of An. The meaning becomes clear substituting Eq. (19) for
sig (
∧

An), which yields

csig (An) = − log

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1 −
N

√√√ N∏
n=1

[
1 − 10−sig (An)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (23)

The composed sig of a sample of corresponding peaks is the
unique sig level for the individual peaks that would reproduce
the given joint probability. The advantage of this quantity is that
it is essentially independent of the number of datasets under con-
sideration.

2.6. Trust coefficient

A related question is, “Given N datasets and an associated com-
posed sig for a set of corresponding peaks therein, what is the
fraction of datasets in which the considered peak is significant?”
Since sig is a floating-point number rather than a binary output
in the sense of, “This peak is true/false”, it does not provide a
unique basis for the decision whether to consider a given peak
due to noise. But if we assign two constant sig levels a, r to ac-
ceptance and rejection of a peak, respectively, Eq. (19) may be
written as

sig
(∧

An

)
= − log

[
1 − (1 − 10−a)M (1 − 10−r)N−M

]
, (24)

if M out of the N peaks are accepted. Expressing this relation in
terms of τa

r := M
N , we obtain

τa
r =

1
N log
[
1 − 10−sig(

∧
An)
]
− log (1 − 10−r)

log (1 − 10−a) − log (1 − 10−r)
, (25)

for the fraction of accepted peaks in the examined sample. The
function τ is called the trust coefficient. It is the fraction of re-
liable peaks in a sample of N datasets, based on the assumed
sig levels a for an accepted peak (not due to noise) and r for a
rejected peak (due to noise).

Substituting sig (
∧

An) with the right-hand expression in
Eq. (19) transforms Eq. (25) into

τa
r =

1
N

{∑N
n=1 log

[
1 − 10−sig(An)

]}
− log (1 − 10−r)

log (1 − 10−a) − log (1 − 10−r)
· (26)

On the other hand, the trust coefficient is related to the composed
sig via

τa
r =

log
[
1 − 10−csig (An)

]
− log (1 − 10−r)

log (1 − 10−a) − log (1 − 10−r)
, (27)

which follows from Eqs. (23) and (26). Since the composed sig
is independent of the number of examined spectra, the trust co-
efficient is independent as well.
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Fig. 2. Relation between the trust coefficient and the composed sig;
12 different constellations of the constant sig levels assigned for ac-
ceptance (a) and rejection (r) are displayed. The orange lines represent
the solutions for a→ ∞.

Figure 2 displays the relation between the trust coefficient
and the composed sig for altogether 12 parameter combinations
where a ∈ {1, 1.5, 2, 3} and r ∈

{
0.1, π4 log e, 0.5

}
. For csig (An) <

r, the trust coefficient is 0, for csig (An) > a it is 1. Furthermore,
for a→ ∞, Eq. (27) yields

τ∞r = 1 −
log
[
1 − 10−csig (An)

]
log (1 − 10−r)

, (28)

which is indicated by the orange lines in the figure. For all three
values of r, the graphs for τ3

r and τ∞r are almost the same. Thus,
τ∞π

4 log e will provide a reasonable estimator for the percentage of
significant peaks in a sample in practical applications.

2.7. Peaks without coincidences

The search for and comparison of coincident peaks raises the
question of how to treat signal components that have no counter-
part in the comparison spectra. In our experience, it is reasonable
in such cases to assign a constant sig level of π4 log e ≈ 0.341 (the
expected sig for white noise) to the comparison data. Then a tar-
get peak, for which no significant coincidence is detected, can
be compared to the expected value for pure noise by default.

3. Conditional spectral significance applied
to MOST photometry

In Sect. 2.3, the conditional sig was introduced as a measure of
the probability that a specific peak in a DFT spectrum (charac-
terized by frequency, amplitude and phase) is deterministically
linked to a peak in another dataset within the frequency resolu-
tion (Eq. (3)). Considering one of the two datasets to represent
the sky background or a constant comparison star, this concept
can be used to isolate intrinsic frequencies from instrumental
or environmental periodicities. If a peak in the target data has
a significant counterpart in the comparison data, it is not con-
sidered intrinsic. If the frequency, phase and amplitude of the
signal, the time base of the observations, and the noise charac-
teristics are exactly the same in both datasets, the decision is
obvious. But how should the general (and typical) case be han-
dled where the peaks and the noise are different in the two time
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Fig. 3. Cinderella result for βCMi. The conditional sig was estimated
for each peak, referring to the background pixel with the highest mean
sig between 0 and 50 d−1 as the comparison dataset. Blue bars indicate
frequencies with sig (A | AT) > 5. The red bars represent frequencies
also found in the comparison dataset with sig (A | AT) ≤ 5.

series? What if the readings are taken at different times, as in the
case of single-channel photometry? The answer is given by the
conditional sig, a novel approach to an old problem. Relying on
SigSpec, it inherits the substantial advantage of unbiased statis-
tical methodology.

An application of Cinderella comparing two datasets is
presented in Sect. 3.1 below.

Multi-object photometry monitoring three or more objects in
one run builds up a scenario where more information is poten-
tially available than can be handled by the procedure outlined
above. If more than one constant star is in the observed sample,
the comparison of target data with several other time series at
once is desired. As mentioned in Sect. 2.3, this may be achieved
by a pairwise comparison of the target dataset vs. each compar-
ison dataset. Then the arithmetic mean and rms error over all
the results provide good estimators for the overall reliability of a
peak in the target spectrum.

3.1. Single comparison dataset

The first sample scenario concerns MOST measurements of the
target star βCMi and of the sky background. The target data
were reduced according to Reegen et al. (2006). To obtain a most
restrictive estimate, the “worst” background pixel was used for
comparison: a significance spectrum for the intensities of each
pixel over time was calculated, and the mean sig in the range
from 0 to 50 d−1 was used to determine the appropriate pixel.
We picked the one with the highest mean sig. The frequency res-
olution was applied according to Eq. (3) with z = 0.75.

After a comparison of significant signal components
(SigSpec output) in both reduced target and sky background
data using Cinderella (Fig. 3), the orbital frequency of the
spacecraft (14.2 d−1), integer multiples and 1 d−1 aliases stand
out with their negative conditional sigs, indicating that these
frequencies are present in both datasets and hence to be con-
sidered instrumental. In the figure, all peaks with a conditional
sig sig (A | AT) > 5 are displayed in blue color, the rest in red.
The limit of 5 corresponds to a probability of 105 that the target
peak was not generated by the same process as the correspond-
ing background peak: in one out of 100 000 cases, the signal

found in the background data plus white noise would produce
DFT amplitude in the target data at least as high as the given
one.

Of course, a high conditional sig does not definitely rule out
that a peak is instrumental. It only asserts that no sufficient in-
dication for a common origin of target and background signal at
the examined frequency is found. For example, significant orbit-
related frequencies occasionally show up for the MOST data in
the Cinderella ouput. This is likely due to the fact that the tar-
get area is contaminated by stray light more severely than the sky
background available. For a clear statement on the intrinsic (stel-
lar) nature of suspicious peaks that survive the Cinderella pro-
cedure, follow-up measurements are indispensible. On the other
hand, if there is a peak present in the Cinderella output, that
has to be ruled out for a good reason, the corresponding condi-
tional sig may safely be used as a threshold and applied to the
entire spectrum.

Our technique was successfully applied to several MOST
targets: AQ Leo (Gruberbauer et al. 2007), γEqu (Gruberbauer
et al. 2008), and HR 1217 (Cameron et al. 2008).

3.2. Multiple comparison datasets

In some cases multiple comparison datasets are available. MOST
guide star photometry is a good example. While sky measure-
ments are not provided in this observation setup, several light
curves of stars which likely suffer from the same contamination
by stray light or instrumental trends are present. However, not
every comparison dataset is equally affected and we may not see
each instrumental frequency in each DFT spectrum. If we do, the
amplitudes (when transformed to some reference mean magni-
tude value) usually vary from object to object, depending on the
position of the stars on the CCD. Still, if these effects are addi-
tive in intensity to a first approximation, Cinderella provides
the means to handle such a situation, due to the statistical nature
of the conditional sig.

The suspected Am star HD 114839, a γDor/δSct hybrid ob-
served by MOST using guide star photometry (King et al. 2006),
is a good example. It shows intrinsic variability in the low- and
intermediate-frequency band, both of which are usually affected
by stray light. Since four additional guide stars were observed at
the same time, we are able to employ our technique.

In this case, the target dataset was compared to each of the
comparison datasets according to the procedure discussed in
Sect. 3.1. The conditional sigs of the four Cinderella analyses
are averaged, and the standard deviation is computed. These two
quantities are used to form a two-fold criterion for the reliability
of a target peak. First, a threshold for the conditional sig is de-
fined. In the present example, it is 5. No peak with a mean condi-
tional sig below this limit is considered intrinsic. Moreover, this
threshold has to be exceeded by kσ, σ denoting the standard de-
viation and k representing an arbitrarily chosen real number. In
this case, we use k = 3. Thus we only rely on peaks with mean
conditional sigs greater than 5 + 3σ.

Figure 4 shows the results, which are in very good agreement
with King et al. (2006). However, in contrast to their method,
no manipulation of data other than removal of outliers using
3σ clipping was performed. The blue peaks are considered in-
trinsic according to the criterion given above. Among the red
(rejected) peaks, there are some with sig (A | AT, ω, θ) < 5 and
even negative conditional sigs, but also several peaks where the
conditional sigs range up to 100. In these cases the scatter of sigs
in the comparison spectra is very large. Most of the frequen-
cies flagged as artifacts are in the low frequency region below
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Fig. 4. Cinderella result for HD 114839. A mean conditional sig was
assessed for each peak by averaging over the conditional sigs derived
from each individual comparison time series. Blue bars indicate fre-
quencies with a mean conditional sig exceeding the limit of 5 by more
than 3σ. Frequencies not meeting this condition are shown in red color.

1 d−1, where nothing survives, and close to the MOST orbit fre-
quency of 14.2 d−1. In addition, three peaks at 11.2, 13.2 and
15.2 d−1 are rejected, which correspond to 1 d−1 aliases of the
orbit frequency. This aliasing is due to stray light undergoing
periodic terrestrial albedo variations as the spacecraft orbits the
Earth above the terminator (Reegen et al. 2006).

4. Composed spectral significances applied
to MOST data

As described in Sect. 1.4, the composed sig is a measure of
the consistency of a signal detected in multiple data sets, al-
lowing for some mismatch in frequency, amplitude and phase
(see also Sect. 3). This is, for instance, of good use for multisite
campaigns, where various instruments with different character-
istics are employed. In the case of MOST data, the composed
sig can be applied to multiple observing runs on the same star
throughout the lifetime of the mission. Significant frequencies
consistently detected in multiple data sets will also remain sig-
nificant in terms of the composed sig. Peaks that are produced
by noise will most likely be unique to each observation run.
Correspondingly, their composed sig will decrease with increas-
ing number of time series involved.

In the case of conditional sigs, we have one of the involved
datasets flagged as a target and can search for coincidences using
the frequency resolution (Eq. (3)) about a target frequency. There
is no such reference for composed sig computation, because all
datasets are considered to be equivalent. Thus we split the fre-
quency range of interest into a sequence of frequency bins. In
our example, the grid of bins is ten times finer than the Rayleigh
frequency resolution (bin width 1

10∆t ), and consecutive bins do
not overlap. For each bin, the significance spectra for all time
series are searched for matching peaks, i.e. peaks that either lie
in the bin or deviate from it by not more than their Kallinger
resolution. If a time series contributes more than one peak to
a given bin, only the peak with the highest significance is taken
into account. Finally, the composed sig is computed for all peaks
associated with the bin.
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Fig. 5. A comparison of the composed sig and the individual sig of five
background light curves from the same observing run. The gray bars
represent an overplot of the significant peaks detected in all five time
series individually, as found by SigSpec. The black bars correspond to
the results of the composed sig analysis described in Sect. 4.

In Fig. 5 we present the SigSpec results of five individual
sky background time series from the observing run on the open
cluster NGC 752. We extracted the sky background signal of
five CCD subrasters by selecting pixels which are, to a first ap-
proximation, not influenced by any stellar PSF. Each time series
was analyzed individually with SigSpec. What we expected was
that in the individual DFT spectra, the stray-light induced orbit
peaks and their 1 d−1 aliases would be accompanied by spuri-
ous peaks at lower sig, whereas the composed sigs would pro-
duce a spectrum that would only contain features that referred to
long-periodic trends and stray light. The gray graph represents
an overplot of all five individual significance spectra. Between
the orbit harmonics and their aliases, many peaks are visible.

The black plot refers to the composition of all five light
curves. Only long-term trends, common to all five datasets, as
well as signal corresponding to the orbital frequency of the stray
light are considered to be significant. Furthermore, 1 d−1 side-
lobes of the orbital harmonics are visible, referring to daily stray
light modulations probably induced by the dependence of the
terrestrial albedo on the position over the Earth’s surface. Other
frequencies, clearly visible in the significance spectra of the indi-
vidual time-series, are not consistently detected and are therefore
regarded as noise.

5. Conclusions

This paper introduces a technique to interpret periodicities in
an ensemble of data of common origin. Cinderella relies on
SigSpec (Reegen 2007), thus benefitting from a correct employ-
ment of the complex phase information in Fourier Space on the
one hand and a clean statistical description of interrelation of
datasets on the other.

The conditional Cinderella mode is based on a quantita-
tive comparison between one target and one or more comparison
datasets and returns a measure of the probability (conditional
sig) for periodicities identified in the target data to be determin-
istically related (to be “unique”) to the target.

The composed Cinderella analysis returns a measure of
the joint probability (composed sig) that a given periodicity ob-
served in individual datasets – but with different signal strengths
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– is not due to noise. Such datasets could contain, e.g., mea-
surements of the same target in different observing runs or with
different instruments (e.g., different filters or simultaneous spec-
troscopy and photometry).

Our experience (as outlined in our examples in Sect. 3) con-
firms that Cinderella reliably identifies residual instrumental
signal in the MOST data even after a fairly sophisticated data
reduction in the time-domain and also provides quantitative ar-
guments to distinguish intrinsic from instrumental signal.

Cinderella is a statistically correct technique replacing
what experienced observers achieve intuitionally when evalu-
ating, for example, differential photometry, but, of course, the
method is not limited to photometry. It quantitatively determines
conditional and composed probabilities for matching peaks in
DFT spectra of any kind of dataset containing periodicities.
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