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ON RIGIDITY OF NICHOLS ALGEBRAS

IVÁN ANGIONO⋆, MIKHAIL KOCHETOV⋆⋆, AND MITJA MASTNAK⋆⋆

Abstract. We study deformations of graded braided bialgebras using cohomological
methods. In particular, we show that many examples of Nichols algebras, including the
finite-dimensional ones arising in the Andruskiewitsch-Schneider program of classification
of pointed Hopf algebras, are rigid. This result can be regarded as nonexistence of “braided
Lie algebras” with nontrivial bracket.

1. Introduction

Let k be a field of characteristic 0 and V a k-vector space. The symmetric algebra
S(V ) =

⊕
n≥0 S

n(V ) is a graded bialgebra by declaring the elements of V primitive, i.e.

∆(x) = x ⊗ 1 + 1 ⊗ x for all x ∈ V , and extending to a morphism of (unital) algebras
∆: S(V ) → S(V ) ⊗ S(V ). Then Lie brackets on V are in one-to-one correspondence with
graded deformations of S(V ) as a bialgebra (or just as an augmented algebra).

We are interested in graded deformations of bialgebras generalizing S(V ), namely, the
Nichols algebras of braided vector spaces, which have become prominent in the theory of
Hopf algebras (see the survey [1] and references therein). Recall that a braided vector space
is a vector space V equipped with a linear isomorphism c : V ⊗ V → V ⊗ V that satisfies
the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c),

where id = idV . The Nichols algebra of (V, c), denoted by B(V, c) or just B(V ) if the braiding
is clear from the context, is the unique (up to isomorphism) graded braided bialgebra
B =

⊕
n≥0 Bn with B0 = k, B1 = V such that the restriction of the braiding of B to V is

c, B is generated by V as an algebra, and V coincides with the space P (B) of primitive
elements of B.

In the case of symmetric braiding, i.e., c2 = id, the concept of braided Lie algebra is
well understood [18, 8, 20, 23, 21]. This includes the usual Lie algebras (when c is the
flip v ⊗ w 7→ w ⊗ v), Lie superalgebras (when V is graded by Z2 and c is the signed flip

v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v where p denotes parity) and color Lie superalgebras. It follows
from Kharchenko’s version of PBW Theorem [20, Theorem 7.1] that such Lie structures on
(V, c) are in one-to-one correspondence with graded deformations of B(V, c) as a braided
bialgebra with a fixed braiding (see Section 3).
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It is an important and difficult question for what finite-dimensional braided vector spaces
the Nichols algebra is also finite-dimensional. This condition puts severe restrictions on c.
For example, in the case of signed flip, this happens if and only if the even part of V is zero,
in which case the Nichols algebra is the exterior algebra Λ(V ) and there are no nontrivial
graded deformations.

We believe that such rigidity is typical for finite-dimensional Nichols algebras. We estab-
lish it for a wide class of symmetric braidings (Theorem 3.3) using the description of finite-
dimensional triangular Hopf algebras by Etingof and Gelaki [11, 15, 12]. We also establish
a sufficient condition of rigidity (Theorem 5.3) using cohomological techniques, and verify
that it is satisfied for finite-dimensional Nichols algebras in the Yetter-Drinfeld category
kΓ
kΓYD over an abelian group Γ (Theorem 6.3) using a description of these Nichols algebras in
terms of generators and relations [4]. It follows that any finite-dimensional Nichols algebra
arising from a diagonal braiding, i.e., a braiding of the form c(xi ⊗ xj) = qijxj ⊗ xi where
{x1, . . . , xθ} is a basis of V and qij ∈ k×, does not admit nontrivial graded deformations
(Theorem 6.4).

It should be mentioned that the so-called bosonizations of these Nichols algebras often
admit nontrivial graded deformations (or “liftings”), as has been shown by Andruskiewitsch
and Schneider in the course of their program of classification of pointed Hopf algebras [3].

Our sufficient condition also applies to some interesting infinite-dimensional Nichols al-
gebras (see Section 7) and other braided bialgebras close to Nichols algebras (Theorem 7.1).
This may explain the difficulty of constructing new examples in [7], where an attempt is
made to define and study braided Lie algebras for non-symmetric braiding.

2. Preliminaries

2.1. Braided tensor categories. It is often more convenient to work in a category rather
than with a stand-alone braided vector space. By a tensor category we always mean a strict
monoidal k-linear category, see e.g. [24] for details. We are mostly interested in categories
of k-vector spaces endowed with some additional structure. To simplify notation, we omit
associativity isomorphisms and parentheses in tensor products. In particular, we denote
the tensor powers of an object V by V ⊗n for all n ≥ 0, where V ⊗0 is the unit object.

A braided tensor category is a tensor category V with a braiding, i.e. a natural family of
isomorphisms cV,W : V ⊗W →W ⊗ V in V satisfying the so-called hexagon axioms:

cU,V⊗W = (idV ⊗cU,W )(cU,V ⊗ idW ) and cU⊗V,W = (cU,W ⊗ idV )(idU ⊗cV,W ),

for all U, V,W in V. The braid equation follows:

(cV,W ⊗ idU )(idV ⊗cU,W )(cU,V ⊗ idW ) = (idW ⊗cU,V )(cU,W ⊗ idV )(idU ⊗cV,W ).

The category is said to be symmetric if cW,V cV,W = idV⊗W for all V , W in V.
The most well known braided tensor categories are the category of (co)modules over

a (co)quasitriangular bialgebra and the category of Yetter-Drinfeld modules over a Hopf
algebra with bijective antipode. We will now briefly recall the relevant definitions and fix
notation; details can be found in textbooks such as [27, 22]. We use the standard Sweedler
notation for coalgebras and comodules.
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A coquasitriangular (CQT) bialgebra is a pair (H,β) where H is a bialgebra and β is a
bilinear form H ×H → k that is invertible with respect to convolution and satisfies

β(h(1), k(1))h(2)k(2) = β(h(2), k(2))k(1)h(1),

β(hk, ℓ) = β(h, ℓ(1))β(k, ℓ(2)),

β(ℓ, hk) = β(ℓ(2), h)β(ℓ(1), k),

for all h, k, ℓ ∈ H. The category of right comodules MH is braided as follows:

cV,W (v ⊗ w) = β(v(1), w(1))w(0) ⊗ v(0), for all v ∈ V,w ∈W.(1)

Similarly, the category of left comodules HM is braided by

cV,W (v ⊗ w) = β(w(−1), v(−1))w(0) ⊗ v(0), for all v ∈ V, w ∈W.

If G is a group then the Hopf algebra H = kG admits a CQT structure β if and only if
G is abelian. In this case the possible maps β are just linear extensions of bicharacters
G×G→ k×. Right H-comodules are just G-graded vector spaces, V =

⊕
g∈G Vg, and the

braiding is given by v ⊗ w 7→ β(g, h)w ⊗ v for all v ∈ Vg, w ∈Wh, g, h ∈ G.
An object V of the Yetter-Drinfeld category H

HYD is simultaneously a left module and a
left comodule such that the following compatibility condition holds:

h(1)v(−1) ⊗ h(2) · v(0) = (h(1) · v)(−1)h(2) ⊗ (h(1) · v)(0) for all v ∈ V, h ∈ H.

A morphism is a linear map preserving both action and coaction. The braiding is given by

cV,W : v ⊗ w 7→ v(−1) · w ⊗ v(0).

The category of right Yetter-Drinfeld modules YDH
H is defined in a similar manner. If Γ is a

group and H = kΓ then an object in H
HYD is just a Γ-graded vector space with a left action

of Γ such that g · Vh = Vghg−1 , for all g, h ∈ Γ. The braiding is given by v ⊗w 7→ g ·w ⊗ v,

for all v ∈ Vg, w ∈W . In particular, if Γ is abelian then the semisimple objects in YDH
H are

vector spaces graded by the direct product Γ× Γ̂ where Γ̂ is the character group of Γ. For a
vector space V with such a grading, we will denote the homogeneous component of degree

(g, χ) by V χ
g . The braiding becomes v ⊗ w 7→ ψ(g)w ⊗ v, for all v ∈ V χ

g and w ∈Wψ
h .

If a CQT bialgebra (H,β) is a Hopf algebra then its antipode is bijective. Moreover MH

can be regarded as a full subcategory of the Yetter-Drinfeld category YDH
H if we define the

right action of H on a right comodule V by means of the usual left action of H∗ and the
homomorphism of algebras Hop → H∗ : h 7→ β(·, h), i.e., v · h =

∑
β(v(1), h)v(0), for all

v ∈ V , h ∈ H. Similarly, HM can be regarded as a full subcategory of HHYD.
If (U, c) is a finite-dimensional braided vector space then the FRT construction [22, 29]

yields a CQT bialgebra (H,β) such that U ∈ MH and c = cU,U where cU,U is given by
(1). Moreover, for any V,W ∈ MH and a linear map f : V → W that commutes with the
braiding with U in the sense that (f⊗id)cU,V = cU,W (id⊗f) and (id⊗f)cV,U = cW,U (f⊗id),
there exists a biideal I of H contained in the left and right kernels of the bilinear form β
such that f is a morphism in MH/I [29, Corollary 1.9]. Hence, replacing (H,β) by (H̄, β̄),
where H̄ is the quotient of H by the largest biideal contained in the left and right kernels

of β and where β̄ is induced by β, we obtain a braided category, MH̄ , that contains (U, c)
and all linear maps that commute with the braiding with U .
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There is a Hopf algebra version of the above construction — see e.g. [29] and references
therein — for braided vector spaces satisfying a certain condition, called rigidity in [29],
which allows us to define the braiding operators cU,U∗ , cU∗,U and cU∗,U∗, where U∗ is the

dual space. Namely, there exists a CQT Hopf algebra (H,β) such that U ∈ MH and
c = cU,U . Again, any linear map that commutes with the braiding with U can be included

in the category MH/I where I is a Hopf ideal contained in the left and right kernels of β,
see the proof of [29, Proposition 5.4]. Since the largest biideal contained in the kernels of

β is automatically a Hopf ideal, we obtain a CQT Hopf algebra H̄ such that MH̄ includes
(U, c) and all linear maps that commute with the braiding with U .

We are especially interested in the case of diagonal braiding: c(xi ⊗ xj) = qijxj ⊗ xi
where {x1, . . . , xθ} is a basis of U and qij ∈ k×. Here we can take H = kG, where G is

the free abelian group Zθ, and define the bicharacter β by setting β(ei, ej) = qij, where

{e1, . . . , eθ} is the standard basis of Zθ. If we make U a G-graded vector space by declaring
xi ∈ Uei then we get c = cU,U in MH . Alternatively, we can make U an object of kΓ

kΓYD
for each abelian group Γ containing elements g1, . . . , gθ such that there exist characters

χ1, . . . , χθ ∈ Γ̂ satisfying χj(gi) = qij; then we declare xi ∈ Uχi
gi and get c = cU,U in kΓ

kΓYD.
We can choose the group Γ so that it is generated by g1, . . . , gθ and the characters χ1, . . . , χθ
separate points of Γ. It is easy to see that in this case a linear map f : V → W commutes
with the braiding with U if and only if f is a morphism in kΓ

kΓYD.

2.2. Braided bialgebras. A bialgebra in a braided tensor category V with unit object
1 is an object B with four morphisms: multiplication m : B ⊗ B → B, unit u : 1 → B,
comultiplication ∆: B → B⊗B and counit ε : B → 1 such that (B,m, u) is a unital algebra,
(B,∆, ε) is a counital coalgebra, and the following compatibility conditions hold:

∆m = (m⊗m)(idB ⊗cB,B ⊗ idB)(∆ ⊗∆), εu = id1, εm = ε⊗ ε, ∆u = u⊗ u.

Note that the braiding appears only in the compatibility condition involving m and ∆.
One can define a braided bialgebra without reference to any categories [29]: it is a braided

vector space (B, c) with four linear maps, m : B ⊗ B → B, u : k → B, ∆: B → B ⊗ B and
ε : B → k, that commute with the braiding induced by c among the tensor powers of B
and satisfy the following conditions: (B,m, u) is a unital algebra, (B,∆, ε) is a counital
coalgebra, u is a counital coalgebra map, ε is a unital algebra map, and finally ∆m =
(m⊗m)(idB ⊗c⊗ idB)(∆ ⊗∆).

Obviously, a bialgebra B in a braided tensor category consisting of vector spaces and
linear maps (such asMH or HHYD) satisfies the definition of braided bialgebra with c = cB,B.
Conversely, it is shown in [29] that any finite-dimensional braided bialgebra (B,m, u,∆, ε, c)
can be included in the category MH over a suitable CQT bialgebra (Hopf algebra if c is
rigid) H such that m,u,∆, ε are morphisms in MH and c = cB,B in MH .

We are mainly interested in the case of the Nichols algebra B(V ) of a finite-dimensional
vector space V with a rigid braiding c, which is a braided Hopf algebra, not necessarily finite-
dimensional but equipped with a grading over non-negative integers whose components are
finite-dimensional. It can be constructed as the quotient of the tensor algebra T (V ) by a
graded biideal I(V ) [1, Proposition 2.2], which is determined by the braiding c; indeed the
homogeneous components of I(V ) are the kernels of the so-called quantum symmetrizers
on the tensor powers of V [1, Proposition 2.11]. This construction can be carried out
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either with the stand-alone braided vector space (V, c) or in a suitable braided category of
comodules or Yetter-Drinfeld modules.

2.3. Graded deformations and liftings. We review the theory of formal graded defor-
mations and liftings from [25], but in a slightly more general setting. The theory of formal
bialgebra deformations was introduced by Gerstenhaber and Schack [16], while the graded
version and its connection to liftings was considered by Du, Chen and Ye [10]. In this
context, a graded bialgebra will mean a bialgebra B in a braided tensor category V (con-
sisting of vector spaces and linear maps) equipped with a grading, as an object in V, over
non-negative integers, B =

⊕
n≥0 Bn, which is at the same time an algebra and a coalgebra

grading, i.e., BiBj ⊆ Bi+j and ∆(Bk) ⊆
⊕

i+j=k Bi ⊗ Bj, for all i, j, k ≥ 0.

Let t be an indeterminate and consider the polynomial algebra k[t] equipped with its
standard grading, i.e., t has degree 1. By extending scalars from k to k[t], the braided tensor
category V gives rise to the braided tensor category Vk[t]. A (formal) graded deformation of
a graded bialgebra (B,m,∆) in V is a k[t]-linear graded structure (mt,∆t) on B[t] = B⊗k[t]
such that (B[t],mt,∆t) is a graded bialgebra in Vk[t].

We say that two graded deformations, (B[t],mt,∆t) and (B[t],m′
t,∆

′
t), are equivalent if

there exists a k[t]-linear graded bialgebra isomorphism f : (B[t],mt,∆t) → (B[t],m′
t,∆

′
t).

A lifting (U , π) of B consists of a filtered bialgebra U and a filtered vector space isomor-
phism π : U → B such that grπ : grU → grB = B is an isomorphism of graded bialge-
bras. An equivalence between liftings (U , π) and (U ′, π′) is a filtered bialgebra isomorphism
f : U → U ′ such that gr π ◦ gr f = gr π′.

A graded deformation is given by a sequence of pairs of maps (mi,∆i), i ≥ 0, of degree −i
such that mt|B⊗B = m+

∑
i≥1mit

i and ∆t|B = ∆+
∑

i≥1∆it
i. We also denote (m0,∆0) =

(m,∆). A graded deformation (B[t],mt,∆t) defines a lifting (U , π), where U is B as a
filtered vector space, π is identity, and (mU ,∆U ) = (mt,∆t)|t=1.

If (U , π) is a lifting, then the linear maps m̃ : B ⊗ B
π−1⊗π−1

−→ U ⊗ U
mU→ U

π
→ B and

∆̃: B
π−1

→ U
∆U→ U ⊗ U

π⊗π
−→ B ⊗ B decompose into direct sums of homogeneous components

mi,∆i of degrees −i for i ≥ 0, and the structure maps (mt,∆t) = (
∑

imit
i,
∑

i∆it
i) on

B[t] define a formal graded deformation of B.
Up to equivalence, these correspondences are inverses of each other.

2.4. Graded bialgebra cohomology. Let B be a bialgebra in V. Consider the bisimpli-
cial complex B = (Bp,q)p,q≥0,

Bp,q = Hom(B⊗p,B⊗q).

The left and right diagonal actions and coactions of B on B⊗n will be denoted by λl, λr, ρl, ρr,
respectively. Note that they involve the braiding. The horizontal faces

∂hi : Hom(B⊗p,B⊗q) → Hom(B⊗(p+1),B⊗q)

and degeneracies

σhi : Hom(B⊗(p+1),B⊗q) → Hom(B⊗p,B⊗q)
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are those for computing Hochschild cohomology:

∂h0 f = λl(id⊗f),

∂hi f = f(id⊗ . . .⊗m⊗ . . .⊗ id), 1 ≤ i ≤ p,

∂hp+1f = λr(f ⊗ id),

σhi f = f(id⊗ . . .⊗ u⊗ . . . ⊗ id);

the vertical faces

∂cj : Hom(B⊗p,B⊗q) → Hom(B⊗p,B⊗(q+1))

and degeneracies

σcj : Hom(B⊗p,B⊗(q+1)) → Hom(B⊗p,Bq)

are those for computing coalgebra (Cartier) cohomology:

∂c0f = (id⊗f)ρl,

∂cjf = (id⊗ . . .⊗∆⊗ . . .⊗ id)f, 1 ≤ j ≤ q,

∂cq+1f = (f ⊗ id)ρr,

σci f = (id⊗ . . .⊗ ε⊗ . . . ⊗ id)f.

The vertical and horizontal differentials are given by the usual alternating sums

∂h =
∑

(−1)i∂hi , ∂c =
∑

(−1)j∂cj .

By abuse of notation we identify a cosimplicial bicomplex with its associated cochain bi-
complex. The bialgebra cohomology of B is then defined as

H∗
b(B) = H∗(TotB).

where

TotB = B0,0 → B1,0 ⊕B0,1 → . . .→
⊕

p+q=n

Bp,q ∂b
→ . . .

and ∂b is given by the sign trick (i.e., ∂b|Bp,q = ∂h ⊕ (−1)p∂c : Bp,q → Bp+1,q ⊕Bp,q+1).
Let B0 denote the bicomplex obtained from B by replacing the edges by zeroes, i.e.,

Bp,0
0 = 0 = B0,q

0 for all p, q. The truncated bialgebra cohomology is

Ĥ
∗

b(B) = H∗+1(TotB0).

For computations, it is convenient to use the normalized bicomplex B+, which is obtained
from the cochain bicomplex B by replacing Bp,q = Hom(B⊗p,B⊗q) with the intersection of
degeneracies

(B+)p,q = (∩Kerσhi ) ∩ (∩Kerσcj) ≃ Hom((B+)⊗p, (B+)⊗q),

where B+ = ker(ε). This change does not affect the cohomology.
We can describe the first two cohomology groups as follows:

Ĥ
1

b(B) = {f : B+ → B+ | f(ab) = af(b) + f(a)b, ∆f(a) = a(1) ⊗ f(a(2)) + f(a(1))⊗ a(2)}

and

Ĥ
2

b(B) = Ẑ2
b(B)/B̂

2
b(B),



ON RIGIDITY OF NICHOLS ALGEBRAS 7

where

Ẑ2
b(B) =

{
(f, g)

∣∣ f : B+ ⊗ B+ → B+, g : B+ → B+ ⊗ B+,

af(b, c) + f(a, bc) = f(ab, c) + f(a, b)c,(2)

c(1) ⊗ g(c(2)) + (id⊗∆)g(c) = (∆ ⊗ id)g(c) + g(c(1))⊗ c(2),(3)

(f ⊗m)∆(a⊗ b)−∆f(a, b) + (m⊗ f)∆(a⊗ b) =(4)

− (∆a)g(b) + g(ab) − g(a)(∆b)
}

and

B̂2
b(B) =

{
(f, g)

∣∣ ∃h : B+ → B+, f(a, b) = ah(b) − h(ab) + h(a)b,

g(c) = −c(1) ⊗ h(c(2)) + ∆h(c)− h(c(1))⊗ c(2)
}
,

where the elements a, b, c range over B+. All maps above are assumed to be morphisms in
V. By ∆(a ⊗ b) we mean the braided coproduct in B ⊗ B, namely, (id⊗cB,B ⊗ id)(a(1) ⊗
a(2) ⊗ b(1) ⊗ b(2)), and we write f(−,−) instead of f(−⊗−). In the resulting deformation
(see the next subsection), Equation (2) will correspond to associativity, Equation (3) to
coassociativity and Equation (4) to compatibility.

Now assume that B is Z-graded and let Bℓ denote the subcomplex of B consisting of
homogeneous maps of degree ℓ, i.e.,

Bp,q
ℓ = Hom(B⊗p,B⊗q)ℓ = {f : B⊗p → B⊗q | f is homogeneous of degree ℓ}.

Complexes (B0)ℓ, B
+
ℓ and (B+

0 )ℓ are defined analogously. The graded bialgebra and trun-
cated graded bialgebra cohomologies are then defined by:

H∗
b(B)ℓ = H∗(TotBℓ) = H∗(TotB+

ℓ ),

Ĥ
∗

b(B)ℓ = H∗+1(Tot(B0)ℓ) = H∗+1(Tot(B+
0 )ℓ).

Note that if the support of the grading is finite, in particular if B is finite-dimensional, then

H∗
b(B) =

⊕

ℓ∈Z

H∗
b(B)ℓ and Ĥ

∗

b(B) =
⊕

ℓ∈Z

Ĥ
∗

b(B)ℓ.

2.5. Cohomological aspects of graded deformations. Given a graded deformation of
B, let r be the smallest positive integer for which (mr,∆r) 6= (0, 0) (if such an r exists). Then

(mr,∆r) is a 2-cocycle in Ẑ2
b(B)−r. Every nontrivial deformation is equivalent to one for

which the corresponding (mr,∆r) represents a nontrivial cohomology class [16, 10]. Hence,

if Ĥ
2

b(B)(ℓ) = 0 for all ℓ < 0, then B is rigid, i.e., has no nontrivial graded deformations.

Conversely, given a positive integer r and a 2-cocycle (m′,∆′) in Ẑ2
b(B)−r, the maps

m+ trm′ and ∆ + tr∆′ define a bialgebra structure on B[t]/(tr+1) over k[t]/(tr+1). There
may or may not exist (mr+k,∆r+k), k ≥ 1, for which mt = m+ trm′+

∑
k≥1 t

r+kmr+k and

∆t = ∆+ tr∆′ +
∑

k≥1 t
r+k∆r+k make B[t] into a bialgebra over k[t].

An r-deformation of B is a graded deformation of B over k[t]/(tr+1), i.e. a pair (mr
t ,∆

r
t )

defining a bialgebra structure on B[t]/(tr+1) over k[t]/(tr+1) such that (mr
t ,∆

r
t )|t=0 =

(m,∆). For any 2-cocycle (m′,∆′) in Ẑ2
b(B)−r, there exists an r-deformation, given by

(m+ trm′,∆+ tr∆′).
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If a given (r−1)-deformation can be extended to an r-deformation, then all ways of doing

so are parametrized by Ĥ
2

b(B)−r. More precisely, suppose that (B[t]/(tr), mr−1
t , ∆r−1

t ) is
an (r − 1)-deformation, where

mr−1
t = m+ tm1 + . . .+ tr−1mr−1, ∆r−1

t = ∆+ t∆1 + . . .+ tr−1∆r−1.

If

D = (B[t]/(tr+1),mr−1
t + trmr,∆

r−1
t + tr∆r)

is an r-deformation, then

D′ = (B[t]/(tr+1),mr−1
t + trm′

r,∆
r−1
t + tr∆′

r)

is an r-deformation if and only if (m′
r −mr,∆

′
r −∆r) ∈ Ẑ2

b(B)−r. Note also that if (m′
r −

mr,∆
′
r −∆r) ∈ B̂2

b(B)−r, then deformations D and D′ are equivalent.

The obstruction to extend r-deformations to (r + 1)-deformations lies in Ĥ
3

b(B)−r.

3. The case of symmetric braiding

Let (V, c) be a braided vector space with c2 = id. Then B(V ) is a quadratic algebra: it is
the quotient of T (V ) by the ideal generated by the elements x⊗y−c(x⊗y), for x, y ∈ V . If
c is the flip (respectively, signed flip) then B(V ) = S(V ) (respectively, S(V0)⊗ Λ(V1)) and
the graded deformations of B(V ) are in one-to-one correspondence with brackets [ , ] : V ⊗
V → V making V a Lie algebra (respectively, superalgebra). For arbitrary c, we need the
following generalization of Lie algebra introduced by Gurevich [18] under the name “Lie
c-algebra”.

Definition 3.1. Let L be a vector space, c : L ⊗ L → L ⊗ L a symmetric braiding, and
[ , ] : L⊗ L → L a linear map. Then (L, [ , ], c) is a braided Lie algebra if

c([ , ]⊗ idL) = (idL⊗[ , ])(c ⊗ idL)(idL⊗c) (compatibility),

[ , ](idL⊗L+c) = 0 (anticommutativity)

[ , ]([ , ]⊗ idL)
(
idL⊗L⊗L+(c⊗ idL)(idL⊗c) + (c⊗ idL)(idL⊗c)

)
= 0 (Jacobi identity).

Note that the compatibility condition (together with c2 = id) simply means that the
bracket commutes with c, and the above Jacobi identity implies a similar identity for
[ , ](idL⊗[ , ]) instead of [ , ]([ , ]⊗ idL). It is straightforward to check that if a vector space
A is equipped with a symmetric braiding c and an associative product m : A ⊗ A → A
that commutes with c then (A, [ , ]c, c) is a braided Lie algebra, where [ , ]c is the braided
commutator m(idA⊗A−c).

Braided Lie algebras naturally arise as Lie algebras in a symmetric tensor category V.
A Lie algebra in V is an object L endowed with a morphism [ , ] : L ⊗ L → L such that
the anticommutativity and Jacobi identity hold for c = cL,L. If (H,β) is a cotriangular
bialgebra (i.e., a CQT bialgebra satisfying β−1(h, k) = β(k, h) for all h, k ∈ H) then the
category MH is symmetric; Lie algebras in this category were introduced and studied in
[8, 9] under the name (H,β)-Lie algebras. By an argument similar to [29] (see Subsection
2.2 above), any finite-dimensional braided Lie algebra can be regarded as an (H,β)-Lie
algebra for a suitable cotriangular bialgebra (Hopf algebra if the braiding is rigid).
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Given a braided Lie algebra (L, [ , ], c), the universal enveloping algebra, which we will
denote Uc(L), is the quotient of the tensor algebra T (L) by the ideal generated by the
degree 2 elements x⊗ y− c(x⊗ y)− [x, y] where x, y ∈ L. The usual increasing filtration of
T (L) gives rise to the standard filtration of Uc(L). As one would expect, Uc(L) becomes a
braided bialgebra if we declare the elements of L primitive. It is not true in general that,
given an ordered basis of L, the corresponding PBW monomials form a basis of Uc(L).
However, the following version of PBW Theorem holds.

Theorem 3.2. [20, Theorem 7.1] The graded algebra grUc(L) associated to the standard
filtration of Uc(L) is naturally isomorphic to Uc(L

◦) where L◦ denotes the braided Lie algebra
with the same underlying braided vector space as L but with zero bracket. �

The standard filtration of Uc(L) coincides with its coradical filtration. Also Uc(L
◦) =

B(L, c).
It follows that graded deformations of B(V, c) as a braided augmented algebra or as a

braided bialgebra (with a fixed braiding) are in one-to-one correspondence with brackets
on V making it a braided Lie algebra. Here the “graded deformations” and “braided Lie
algebras” can be understood in the sense of a stand-alone object or an object in MH for a
suitable cotriangular bialgebra (H,β).

For H = kG, where G is an abelian group, the cotriangular structures on H are linear
extensions of skew-symmetric bicharacters β : G × G → k×. In this case the (H,β)-Lie
algebras are known as the color Lie superalgebras with grading group G and commutation
factor β. Note that the braiding is diagonal and, conversely, any braided Lie algebra with
a diagonal braiding can be regarded as a color Lie superalgebra for some G and β.

By a trick going back to Scheunert [28], color Lie superalgebras can be twisted to be-
come ordinary Lie superalgebras. This procedure works in the same way for all color Lie
superalgebras with given G and β, and is associated to a suitable cocycle twist of (kG,β) as
a CQT bialgebra. Recall that a right 2-cocycle on a bialgebra H is a convolution-invertible
map σ : H ⊗H → k satisfying the following equations for all h, k, ℓ ∈ H:

σ(h, k(1)ℓ(1))σ(k(2), ℓ(2)) = σ(h(1)k(1), ℓ)σ(h(2), k(2)), σ(h, 1) = σ(1, h) = ε(h).

Also recall that if (H,β) is a cotriangular (more generally, CQT) bialgebra then (Hσ, βσ)
is again a cotriangular (respectively, CQT) bialgebra, see e.g. [22]; here Hσ = H as a
coalgebra, the multiplication of Hσ is given by

h ·σ k = σ−1(h(1), k(1))h(2)k(2)σ(h(3), k(3)),

and

βσ(h, k) = σ−1(k(1), h(1))β(h(2)k(2))σ(h(3), k(3)).

Moreover, σ yields an equivalence of braided tensor categories MH and MHσ , which is
the identity on objects and morphisms and only transforms the tensor product. If A is an
algebra (not necessarily associative) in MH with multiplication m : A ⊗ A → A, then the
corresponding algebra in MHσ is A as an H-comodule but with new multiplication:

mσ(a⊗ b) = σ(a(1), b(1))m(a(0) ⊗ b(0)).

We denote this new algebra by Aσ and call it the σ-twist of A. It is shown in [23] that
multilinear polynomial identities of A are preserved under σ-twist if we interpret them in
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each of the categories MH andMHσ in terms of the appropriate action of symmetric groups
on tensor powers of A. In particular, associative algebras remain associative and (H,β)-Lie
algebras become (Hσ, βσ)-Lie algebras.

If H is cocommutative then Hσ = H but β is twisted. If H = kG, with G an abelian
group, then there exists a 2-cocycle σ : G×G→ k× such that βσ is a “sign bicharacter”:

βσ(g, h) =

{
−1 if g, h ∈ G−,
1 otherwise;

where G− = G \G+ and G+ is a subgroup of index ≤ 2. It follows that σ twists any color
Lie superalgebra L with commutation factor β into a Lie superalgebra with even part L+

and odd part L−, where L± =
⊕

g∈G±
Lg.

Etingof and Gelaki [11] showed that, under a certain condition on the antipode called
pseudo-involutivity, a cotriangular Hopf algebra (H,β) can be twisted by a suitable cocycle
to become the algebra of regular functions on a pro-algebraic group G such that βσ = 1

2(ε⊗

ε+ε⊗a+a⊗ε−a⊗a) for some central element a ∈ G with a2 = 1. It immediately follows
[23, Theorem 4.3] that the same cocycle twists (H,β)-Lie algebras to Lie superalgebras
equipped with a G-action. Here the even and odd components are just the eigenspaces
with respect to the action of a, with eigenvalues 1 and −1 respectively.

If H is finite-dimensional then pseudo-involutivity of the antipode is equivalent to in-
volutivity and hence to semisimplicity of H. Later, Etingof and Gelaki [12, 15] described
all finite-dimensional cotriangular Hopf algebras by showing that (H,β) can be twisted in
such a way that its dual triangular Hopf algebra becomes a “modified supergroup algebra”.
As a corollary, any (H,β)-Lie algebra is twisted to a Lie superalgebra equipped with a
supergroup action [23, Theorem 4.6].

One can use the twisting procedure to transfer known properties of Lie superalgebras to
(H,β)-Lie algebras in the above cases. Let Uβ(L) be the universal enveloping algebra of
an (H,β)-Lie algebra L, i.e., Uc(L) for c = cL,L determined by β. It is straightforward to
verify that Uβσ(Lσ) is naturally isomorphic to (Uβ(L))σ . In particular, for V in MH and
c = cV,V induced by β, the σ-twist of the Nichols algebra B(V, c) is naturally isomorphic
to B(V, c′) where c′ is the braiding on V induced by βσ. This gives an alternative proof of
PBW Theorem for (H,β)-Lie algebras [23].

Theorem 3.3. Let (H,β) be a cotriangular Hopf algebra that is either pseudo-involutive or
finite-dimensional. Let V be a finite-dimensional H-comodule with the corresponding braid-
ing c. If the Nichols algebra B(V, c) is finite-dimensional then it does not admit nontrivial
graded deformations as an augmented algebra or bialgebra in MH .

Proof. By our assumption on (H,β), there exists a cocycle σ such that (Hσ, βσ) is as
described by Etingof and Gelaki. Then the braiding c′ induced by βσ on V is just the
signed flip associated to a Z2-grading V = V0 ⊕ V1, so B(V, c′) = S(V0) ⊗ Λ(V1), which
is finite-dimensional only if V0 = 0. But in this case V does not admit nontrivial Lie
superalgebra structures. It follows that V does not admit nontrivial (H,β)-Lie algebra
structures and hence B(V, c) is rigid in MH . �

Corollary 3.4. Let (V, c) be a finite-dimensional braided vector space such that c can
be obtained from a coaction by a finite-dimensional cotriangular Hopf algebra. If B(V, c)
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is finite-dimensional then it does not admit nontrivial graded deformations as a braided
augmented algebra or bialgebra.

Proof. By assumption, V can be regarded as an object in MH for some finite-dimensional
cotriangular Hopf algebra (H,β) such that c = cV,V . Any graded deformation of B(V, c)

can be realized in MH̄ for some quotient (H̄, β̄) of the cotriangular Hopf algebra (H,β), so
it must be trivial by the above theorem. �

4. The vanishing of second algebra cohomology for a class
of augmented algebras in a braided category

Let V be a braided tensor category consisting of vector spaces and linear maps. Let
(B, ε) be an augmented algebra in V acting trivially (i.e., via ε) on some U in V.

⋄ A map f : B⊗B → U in V is an ε-cocycle if f(1, a) = 0 = f(a, 1) and f(xy, z) = f(x, yz)
for all a ∈ B and all x, y, z ∈ B+. The space of all ε-cocycles is denoted by Z2

ε(B, U).

⋄ An ε-cocycle is an ε-coboundary if there exists a map t : B → U such that t(1) = 0 and
f(x, y) = t(xy) for all x, y ∈ B+. The space of all ε-coboundaries is denoted by B2

ε(B, U).

⋄The quotient of ε-cocycles by ε-coboundaries is denoted by H2
ε(B, U) = Z2

ε(B, U)/B2
ε(B, U).

In what follows (B+)2 denotes the range of the multiplication B+ ⊗B B+ m
→ B+, i.e.,

(B+)2 = span{xy | x, y ∈ B+}.

Lemma 4.1 (cf. [25, Subsection 4.1]). Let B be an augmented algebra in V and let M =

ker
(
B+ ⊗B B+ m

→ B
)
. If the map B+ ⊗B B+ m

→ (B+)2 splits in V, then for every space

U ∈ V, we have H2
ε(B, U) = Hom(M,U).

Proof. Let ϕ : (B+)2 → B+ ⊗B B+ be a splitting of m and let p : B+ ⊗ B+ → B+ ⊗B B+

be the canonical projection. We define a map Φ: Hom(M,U) → H2
ε(B, U) as follows: if

f : M → U , then the cocycle Φ(f) : B+ ⊗ B+ → U is Φ(f) = f(p− ϕm). The inverse Ψ of
Φ is defined as follows: if g : B+ ⊗ B+ → U is a cocycle, then Ψ(g) : M → U is the unique
map such that Ψ(g)p = g. Now observe that maps Φ and Ψ are well defined: Φ(f) is always
a cocycle and Ψ(g) = 0 whenever g is a coboundary. Note also that ΨΦ = id and that the
range of ΦΨ− id consists of coboundaries. �

Remark 4.2. A splitting of B+⊗B B
+ m
→ (B+)2 in V automatically exists (it is usually not

unique) if B+ ⊗B B+ is a semisimple object in V. This happens whenever V is either the
category of Yetter-Drinfeld modules over a semisimple and cosemisimple Hopf algebra or
the category of comodules over a cosemisimple CQT bialgebra. It also happens if V is the
category of Yetter-Drinfeld modules over kΓ, where Γ is a possibly infinite abelian group,
and B is a direct sum of its one-dimensional subobjects in V (e.g., a quotient of the tensor
algebra T (V ), for some V of finite dimension over k).

Let V be a an object in V, T (V ) its tensor algebra and I an ideal generated by homo-
geneous elements of degree at least two. Let B = T (V )/I and let π : T (V ) → B be the
canonical projection. We also abbreviate T (V )+ =

⊕
n≥1 V

⊗n and T (V )(2) =
⊕

n≥2 V
⊗n.
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Lemma 4.3. The following is a commutative diagram:

I ⊗ T (V )+ + T (V )+ ⊗ I
m

−−−−→ I
y

y

T (V )+ ⊗ T (V )⊗ T (V )+
id⊗m−m⊗ id
−−−−−−−−−→ T (V )+ ⊗ T (V )+

m
−−−−→ T (V )(2)

π⊗π⊗π

y π⊗π

y π̃⊗π

y

B+ ⊗ B ⊗ B+ id⊗m−m⊗ id
−−−−−−−−−→ B+ ⊗ B+ p

−−−−→ B+ ⊗B B+

m

y m̃

y

(B+)2 (B+)2

where the maps m̃ and π̃ ⊗ π are the universal maps arising from fact (1) below. Moreover,
we have the following facts:

(1) The second and third rows of the diagram are cokernel diagrams.
(2) The second column of the diagram is exact at T (V )+ ⊗ T (V )+.

(3) The composition T (V )(2)
π̃⊗π
→ B+ ⊗B B+ m̃

→ (B+)2 is equal to the restriction of π to
T (V )(2).

(4) The map π̃ ⊗ π is surjective.
(5) If ϕ : T (V )(2) → T (V )+ ⊗ T (V )+ is any splitting of multiplication (e.g., the com-

position T (V )(2)
∼
→ V ⊗ T (V )+ → T (V )+ ⊗ T (V )+ is such a splitting), then

π̃ ⊗ π = p(π ⊗ π)ϕ.

Proof. Clearly, each of the squares of the diagram commutes. We prove the remaining
claims below:

(1) The third row is a cokernel diagram by definition. The second row is a cokernel
diagram due to the fact that T (V )+ = V ⊗ T (V ) as a right T (V )-module (with the
obvious action on the second tensor factor), hence T (V )+⊗T (V )T (V )+ = V⊗T (V )+,

and V ⊗ T (V )+
m
→ T (V )(2) is an isomorphism.

(2) Clear.

(3) As π is an algebra map, we have m(π ⊗ π)m = πm. Hence m̃(π̃ ⊗ π)m = πm. By

the universal property of cokernels this means that m̃(π̃ ⊗ π) = π.
(4) Follows from the fact that maps p and π ⊗ π are surjective.
(5) Follows from the universal property of cokernels.

�

Corollary 4.4. The following sequence is exact:

0 → T (V )+I + IT (V )+ → I
π̃⊗π
−→ B+ ⊗B B+ m̃

→ (B+)2 → 0

Therefore, I/(T (V )+I + IT (V )+) ≃ ker
(
B+ ⊗B B+ → (B+)2

)
.

Proof. To avoid ambiguity, we denote the restriction of π̃ ⊗ π to I by τ . We first prove that

ker(τ) = T (V )+I + IT (V )+. The inclusion T (V )+I + IT (V )+ ⊆ ker(π̃ ⊗ π) follows from
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π̃ ⊗ π(T (V )+I + IT (V )+) = (π̃ ⊗ π)m(T (V )+ ⊗ I + I ⊗ T (V )+) = p(π ⊗ π)(T (V )+ ⊗ I +
I ⊗ T (V )+) = 0.

Let x ∈ ker(τ). Since m(T (V )+ ⊗ T (V )+) = T (V )(2), there exists y ∈ T (V )+ ⊗ T (V )+

such that m(y) = x. Now 0 = (π̃ ⊗ π)m(y) = p(π ⊗ π)(y), and hence (π ⊗ π)y =
(id⊗m−m⊗ id)z for some z ∈ B+ ⊗ B ⊗ B+. Let w ∈ T (V )+ ⊗ T (V ) ⊗ T (V )+ be
such that (π ⊗ π ⊗ π)(w) = z. Define y′ = y − (id⊗m−m⊗ id)w. As (π ⊗ π)y′ = 0 we
have that y′ ∈ I ⊗ T (V )+ + T (V )+ ⊗ I and hence x = m(y) = m(y′) ∈ IT (V )+ + T (V )+I.

We now prove that π̃ ⊗ π(I) = ker(B+ ⊗B B+ m̃
→ (B+)2). The inclusion ⊆ follows from

part (3) of the lemma above: m̃ ˜(π ⊗ π)(I) = π(I) = 0. The inclusion ⊇ follows from the

fact that π̃ ⊗ π is surjective. �

Corollary 4.5. If I is generated by a subobject R, then the induced morphism

R→ ker
(
B+ ⊗B B+ → (B+)2

)

is surjective. �

We summarize the above results in a theorem which will be needed in the next section
to establish rigidity of certain graded bialgebras in V.

Theorem 4.6. Let V be a an object in V and T (V ) its tensor algebra. Let R ⊂ T (V )(2) be
a graded subspace that is an object in V. Consider the augmented algebra B = T (V )/〈R〉
and an object U in V on which B acts trivially (i.e., via ε). If the multiplication map

B+ ⊗B B+ m
→ (B+)2 splits in V, then there is an injection H2

ε(B, U) → Hom(R,U).
In particular, if f is an ε-cocycle such that for every u ∈ B ⊗ B in the range of the

composition R→ V ⊗ T (V )+ → B ⊗ B we have f(u) = 0, then f is an ε-coboundary. �

5. A sufficient condition for rigidity of graded bialgebras
in a braided category

Let B be a graded bialgebra in V. For a homogeneous map f : B⊗B → B of degree ℓ and
a nonnegative integer r we define fr : B ⊗ B → B by fr|(B⊗B)r = f and fr|(B⊗B)s = 0 for

s 6= r. For g : B → B ⊗ B, we define gr analogously. We also define f≤r by f≤r =
∑r

i=0 fi,
and f<r, g≤r, g<r in a similar fashion.

Lemma 5.1 (cf. [25, Lemma 2.3.6]). Let B be a graded bialgebra in V such that B0 = k

and B is generated as an algebra by B1.

(1) If (f, g) ∈ Z2
b(B)ℓ, r > 1, f≤r = 0, and g<r = 0, then gr = 0.

(2) If (f, g) ∈ Z2
b(B)ℓ, ℓ < 0, and f≤r = 0, then g≤r = 0.

(3) If (0, g) ∈ Z2
b(B)ℓ, ℓ < 0, then g = 0.

Proof. The proof in [25] carries over word for word. First note that for every (f, g) ∈ Z2
b(B)

we have f≤1 = 0 and g≤2 = 0, due to the fact that (B+ ⊗ B+)0 = 0 = (B+ ⊗ B+)1. Hence
(1) easily yields (2) and (3).

For (1) recall that ∂cf = −∂hg by Equation (4). If r > 1, a ∈ B1 and b ∈ Br−1, then

(∂cf)(a, b) = 0 = −(∂hg)(a, b) = −(∆a)g(b) + g(ab) − g(a)(∆b) = g(ab).

As Br is spanned by such products ab, we have that g(Br) = 0. �
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Lemma 5.2 (cf. [25, Lemma 2.3.5]). Let B be a connected graded bialgebra in V, let r ∈ N,
and let f : B⊗B → B be a homogeneous unital Hochschild cocycle in V (with respect to left
and right regular actions of B on itself). If f<r = 0, then fr : B ⊗ B → B is an ε-cocycle.

Proof. This follows directly from ∂hf = 0, see Equation (2). �

Theorem 5.3 (cf. [25, Lemma 4.2.2]). Let V be a an object in V and T (V ) its (braided)
tensor bialgebra. Let R ⊂ T (V )(2) be a graded subspace that is an object in V and generates
a biideal in T (V ). Consider the quotient B = T (V )/〈R〉, which is a graded bialgebra in V,
and assume that the multiplication map m: B+ ⊗B B+ → (B+)2 splits in V. If for some

negative ℓ we have that Hom(R,P (B))ℓ = 0, then Ĥ
2

b(B)ℓ = 0.
In particular, if Hom(R,P (B))ℓ = 0 for all negative ℓ, then B is rigid.

Proof. Let (f, g) ∈ Z2
b(B)ℓ. We will find a map s =

∑∞
r=0 sr : B → B such that for every

nonnegative r, (f, g)r = (∂hsr,−∂
csr), from where the result trivially follows since (f, g) =

∂b
∑∞

r=0 sr. Here the sum s =
∑∞

r=0 sr is potentially infinite but locally finite. The cases

r = 0, 1 are clear. Suppose that s0, . . . sr−1 have been found. Let (f ′, g′) = (f, g)− ∂bs<r =

(f, g)−
∑r−1

i=0 (∂
hsi,−∂

csi). Note that, by assumption, f ′|<r = 0 and hence, by Lemma 5.1,
also g′|<r = 0. Let u ∈ (B⊗B) be in the range of the composition R→ V ⊗T (V )+ → B⊗B.
Since m(u) = 0 we have from Equation (4) that fr(u) ∈ P (B). Therefore, the composition

R→ V ⊗ T (V )+ → B⊗B
f
→ B has range in P (B) and must be the zero map. By Theorem

4.6, we get a map t : B → B such that fr = tm. Now define sr = tr and observe that
f ′≤r = f ′r = ∂hsr. Hence, by Lemma 5.1, we also have g′r = −∂csr. �

6. Nichols algebras of diagonal type

In what follows (V, c) will denote a braided vector space of diagonal type, dimV = θ,
such that the associated Nichols algebra B(V ) has a finite root system ∆V

+ in the sense of

[19], i.e., ∆V
+ is the set of Nθ

0-degrees of generators of a PBW basis. In particular, this is
the case if B(V ) is finite-dimensional. Let

−cVij := min {n ∈ N0 | (n+ 1)qii(1− qniiqijqji) = 0} , j 6= i.(5)

Now we fix

• a basis {x1, . . . , xθ} of V and qij ∈ k× such that c(xi ⊗ xj) = qijxj ⊗ xi,
• elements xα ∈ B(V ) of degree α, α ∈ ∆V

+, which generate a PBW basis, see [4].

We use the following notation:

• q̃ij := qijqji for all i 6= j.

• χ : Zθ × Zθ → k× is the bicharacter such that χ(αi, αj) = qij, 1 ≤ i, j ≤ θ, where

{α1, . . . , αθ} is the canonical basis of Zθ.
• Nα is the order of qα := χ(α,α), α ∈ ∆V

+.
• GN is the group of roots of unity of order N and G′

N is the subset of primitive roots
of unity of order N , N ∈ N.

• O(V ) is the set of Cartan roots of V , i.e., the orbit of Cartan vertices under the
action of the Weyl groupoid. Recall that i ∈ {1, . . . , θ} is a Cartan vertex of V if

q̃ij = q
cVij
ii for all j 6= i [4, Definition 2.6].
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We recall the following result, which gives a presentation by generators and relations for
any Nichols algebra of diagonal type with finite root system.

Theorem 6.1. [4] B(V ) is presented by generators x1, . . . , xθ and relations:

xNα
α , α ∈ O(V );(6)

(adc xi)
1−cVijxj , q

1−cVij
ii 6= 1;(7)

xNi

i , i is not a Cartan vertex;(8)

⋄ if i, j ∈ {1, . . . , θ} satisfy qii = q̃ij = qjj = −1, and there exists k 6= i, j such that q̃ik
2 6= 1

or q̃jk
2 6= 1,

(9) x2ij ;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qjj = −1, q̃ik = q̃ij q̃kj = 1, q̃ij 6= −1,

(10) [xijk, xj ]c ;

⋄ if i, j ∈ {1, . . . , θ} satisfy qjj = −1, qiiq̃ij ∈ G′
6, q̃ij 6= −1, and also qii ∈ G′

3 or −cVij ≥ 3,

(11) [xiij , xij ]c ;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qii = ±q̃ij ∈ G′
3, q̃ik = 1, and also −qjj = q̃ij q̃jk = 1 or

q−1
jj = q̃ij = q̃jk 6= −1,

(12) [xiijk, xij ]c ;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy q̃ik, q̃ij, q̃jk 6= 1,

(13) xijk −
1− q̃jk

qkj(1− q̃ik)
[xik, xj ]c − qij(1− q̃jk) xjxik;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy one of the following situations

(i) qii = qjj = −1, q̃ij
2 = q̃jk

−1, q̃ik = 1, or

(ii) q̃ij = qjj = −1, qii = −q̃jk
2 ∈ G′

3, q̃ik = 1, or
(iii) qkk = q̃jk = qjj = −1, qii = −q̃ij ∈ G′

3, q̃ik = 1, or

(iv) qjj = −1, q̃ij = q−2
ii , q̃jk = −q3ii, q̃ik = 1, or

(v) qii = qjj = qkk = −1, ±q̃ij = q̃jk ∈ G′
3, q̃ik = 1,

(14)
[
[xij, xijk]c , xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qii = qjj = −1, q̃ij
3 = q̃jk

−1, q̃ik = 1,

(15)
[[
xij, [xij, xijk]c

]
c
, xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
2 = q̃jk ∈ G′

3, q̃ik = 1,

(16)
[
[xijk, xj ]c xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qkk = qjj = q̃ij
−1 = q̃jk

−1 ∈ G′
9, q̃ik = 1, qii = q6kk

(17)
[
[xiij, xiijk]c , xij

]
c
;
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⋄ if i, j, k ∈ {1, . . . , θ} satisfy qii = q̃ij
−1 ∈ G′

9, qjj = q̃jk
−1 = q5ii, q̃ik = 1, qkk = q6ii

(18) [[xijk, xj ]c , xk]c − (1 + q̃jk)
−1qjk

[
[xijk, xk]c , xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
3 = q̃jk ∈ G′

4, q̃ik = 1,

(19)
[[
[xijk, xj ]c , xj

]
c
, xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qii = q̃ij = −1, qjj = q̃jk
−1 6= −1, q̃ik = 1,

(20) [xij , xijk]c ;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qii = qkk = −1, q̃ik = 1, q̃ij ∈ G′
3, qjj = −q̃jk = ±q̃ij,

(21) [xi, xjjk]c − (1 + q2jj)q
−1
kj [xijk, xj ]c − (1 + q2jj)(1 + qjj)qijxjxijk;

⋄ if i, j, k, l ∈ {1, . . . , θ} satisfy qjj q̃ij = qjj q̃jk = 1, qkk = −1, q̃ik = q̃il = q̃jl = 1,

q̃jk
2 = q̃lk

−1 = qll,

(22)
[[
[xijkl, xk]c , xj

]
c
, xk

]
c
;

⋄ if i, j, k, l ∈ {1, . . . , θ} satisfy q̃jk = q̃ij = q−1
jj ∈ G′

4 ∪ G′
6, qii = qkk = −1, q̃ik = q̃il = q̃jl =

1, q̃jk
3 = q̃lk,

(23)
[[
xijk, [xijkl, xk]c

]
c
, xjk

]
c
;

⋄ if i, j, k, l ∈ {1, . . . , θ} satisfy qll = q̃lk
−1 = qkk = q̃jk

−1 = q2, q̃ij = q−1
ii = q3 for some

q ∈ k×, qjj = −1, q̃ik = q̃il = q̃jl = 1,

(24)
[[
[xijk, xj ]c , [xijkl, xj ]c

]
c
, xjk

]
c
;

⋄ if i, j, k, l ∈ {1, . . . , θ} satisfy one of the following situations

(i) qkk = −1, qii = q̃ij
−1 = q2jj, q̃kl = q−1

ll = q3jj, q̃jk = q−1
jj , q̃ik = q̃il = q̃jl = 1, or

(ii) qii = q̃ij
−1 = −q−1

ll = −q̃kl, qjj = q̃jk = qkk = −1, q̃ik = q̃il = q̃jl = 1,

(25)
[
[xijkl, xj ]c , xk

]
c
− qjk(q̃ij

−1 − qjj)
[
[xijkl, xk]c , xj

]
c
;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy q̃jk = 1, qii = q̃ij = −q̃ik ∈ G′
3,

(26)
[
xi, [xij, xik]c

]
c
+ qjkqikqji [xiik, xij ]c + qij xijxiik;

⋄ if i, j, k ∈ {1, . . . , θ} satisfy qjj = qkk = q̃jk = −1, qii = −q̃ij ∈ G′
3, q̃ik = 1,

(27) [xiijk, xijk]c ;

⋄ if i, j ∈ {1, . . . , θ} satisfy −qii,−qjj, qiiq̃ij, qjj q̃ij 6= 1,

(28) (1− q̃ij)qjjqji
[
xi, [xij , xj ]c

]
c
− (1 + qjj)(1− qjj q̃ij)x

2
ij;

⋄ if i, j ∈ {1, . . . , θ} satisfy that −cVij ∈ {4, 5}, or qjj = −1, −cVij = 3, qii ∈ G′
4,

(29)
[
xi, x3αi+2αj

]
c
−

1− qiiq̃ij − q2iiq̃ij
2qjj

(1− qiiq̃ij)qji
x2iij ;
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⋄ if i, j ∈ {1, . . . , θ} satisfy 4αi + 3αj /∈ ∆V
+, qjj = −1 or mji ≥ 2, and also −cVij ≥ 3, or

−cVij = 2, qii ∈ G′
3,

(30) x4αi+3αj
= [x3αi+2αj

, xij ]c;

⋄ if i, j ∈ {1, . . . , θ} satisfy 3αi + 2αj ∈ ∆V
+, 5αi + 3αj /∈ ∆V

+, and q
3
iiq̃ij, q

4
iiq̃ij 6= 1,

(31) [xiij , x3αi+2αj
]c;

⋄ if i, j ∈ {1, . . . , θ} satisfy 4αi + 3αj ∈ ∆V
+, 5αi + 4αj /∈ ∆V

+,

(32) x5αi+4αj
= [x4αi+3αj

, xij ]c;

⋄ if i, j ∈ {1, . . . , θ} satisfy 5αi + 2αj ∈ ∆V
+, 7αi + 3αj /∈ ∆V

+,

(33) [[xiiij , xiij ], xiij ]c;

⋄ if i, j ∈ {1, . . . , θ} satisfy qjj = −1, 5αi + 4αj ∈ ∆V
+,

(34) [xiij , x4αi+3αj
]c −

b− (1 + qii)(1 − qiiζ)(1 + ζ + qiiζ
2)q6iiζ

4

a q3iiq
2
ijq

3
ji

x23αi+2αj
,

where ζ = q̃ij, a = (1−ζ)(1−q4iiζ
3)−(1−qiiζ)(1+qii)qiiζ, b = (1−ζ)(1−q6iiζ

5)−a qiiζ. �

We fix a realization of (V, c) as a Yetter-Drinfeld module over an abelian group Γ, i.e.,

there exist gi ∈ Γ, χi ∈ Γ̂ such that χj(gi) = qij and we make V an object of kΓ
kΓYD by

declaring xi ∈ V
χi
gi . Let RV be the set of relations defining B(V ) according to the previous

theorem. Note that kRV is a Yetter-Drinfeld submodule of T (V ), because each relation is
Zθ-homogeneous. For each R ∈ RV of degree (a1, . . . , aθ) ∈ Zθ, set

(35) gR := ga11 · · · gaθθ , χR := χa11 · · ·χaθθ , so R ∈ T (V )χR
gR
.

The support of R ∈ RV is the set suppR := {i | ai 6= 0}, i.e., the set of indices of letters xi
appearing in R.

Proposition 6.2. For every R ∈ RV and t ∈ {1, 2, . . . , θ}, we have (gR, χR) 6= (gt, χt).

Proof. We prove this for each defining relation. For (7), see [6, Proposition 3.1]; the proof
does not use that the braiding is of standard type.

We discard easily the cases (6), (8), (9), (14)(v) , (25)(ii) , (27), (34) because χR(gR) = 1.
For the remaining cases, note that the propositions in [4, Section 3] show that (gR, χR) 6=

(gt, χt) for each t /∈ suppR. Therefore, we have to consider only the case t ∈ supp(R).
For each remaining relation R, we compute χR(gR) and/or {χR(gt)χt(gR) | t ∈ suppR}.

(10): we have χR(gR) = qiiqkk 6= qii, qkk. Suppose that gR = gj , χR = χj. Then
q̃ij = χR(gi)χi(gR) = (qiiq̃ij)

2 and q̃kj = χR(gk)χk(gR) = (qkkq̃kj)
2, so q2iiq̃ij = q2kkq̃kj = 1.

But such a generalized Dynkin diagram is not in [19], a contradiction.

(11): now χR(gR) = q3ii 6= qii, q̃ij 6= χR(gi)χi(gR) = q̃ij
2, so (gR, χR) 6= (gi, χi), (gj , χj).

(12): for both sets of conditions, q̃ijq
2
jj q̃jk = 1 so χR(gR) = qiiqkk 6= qii, qkk. Suppose

that gR = gj , χR = χj. But q̃ij 6= χR(gi)χi(gR) = q̃ij
2, a contradiction.

(13): recall that q̃ij q̃ikq̃jk = 1. Suppose that gR = gi, χR = χi. Then qii = χR(gi) =
qiiqijqik, so qijqik = 1. Also qjiqki = 1, so q̃ij q̃ik = 1 and then q̃jk = 1, a contradiction.
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(14)(i) : simply note that χR(gR) = −qkk 6= −1, qkk.

(14)(ii) : as χR(gR) = qiiqkk 6= qii, qkk, the remaining case is t = j. But also q̃ij = −1 6=
χR(gi)χi(gR) = −qii.

(14)(iii) : it follows since χR(gR) = −qii 6= −1, qii.

(14)(iv) again χR(gR) = qiiqkk 6= qii, qkk, so the remaining case is t = j. Suppose that

gR = gj , χR = χj , so 1 = q2jj = χR(gj)χj(gR) = q̃ij
2q̃jk = −qii, a contradiction.

(15): it follows since χR(gR) = −qkk 6= −1, qkk.

(16): again χR(gR) = qiiqkk 6= qii, qkk. Suppose that gR = gj , χR = χj, so

qjj = qiiqkk, 1 = q̃ij q̃jk = χR(gi)χi(gR)χR(gk)χk(gR) = q2iiq
2
kk = q2jj,

which is a contradiction.

(17): it follows from χR(gR) = q−2
jj 6= qii, qjj, qkk.

(18): it follows from χR(gR) = qjj 6= qii, qkk, and χR(gi)χi(gR) = 1 6= q̃ij.

(19): the proof is analogous to the one for (16).

(20): As χR(gR) = q2jjqkk and qjj 6= ±1, we discard the case t = k. The case t = j is

also discarded because 1 = χR(gi)χi(gR) 6= q̃ij. Finally suppose that χR = χi, gR = gi, so
−1 = q̃ij = χR(gj)χj(gR) = q3jj. Then qjj ∈ G′

6 and −1 = χR(gR) = q2jjqkk, so qkk = qjj.

But this case corresponds to a diagram which is not in [19], a contradiction.

(21): Note that χR(gR) = q2jj 6= qjj,−1 = qii = qkk because q2jj = q̃ij
2 ∈ G′

3.

(22): simply χR(gR) = −qii 6= qii, qjj, qkk, qll in all the possible cases.

(23): for t = l we have that χR(gR) = q3jjqll 6= qll, and for t = i, k we have χR(gj)χj(gR) =

1 6= q̃ij, q̃kj. Suppose that χR = χj and gR = gj . Then q̃ij = χR(gi)χi(gR) = q̃ij
3, which is

a contradiction because q̃ij 6= ±1.

(24): now, χR(gi)χi(gR) = χR(gj)χj(gR) = 1 6= q̃ij, q̃kj, so we discard the cases t = i, j, k.

Now q̃kl = q−1
kk 6= χR(gk)χk(gR) = qkk so also (χR, gR) 6= (χl, gl).

(25)(i) : again χR(gi)χi(gR) = χR(gj)χj(gR) = 1 6= q̃ij, q̃kj, and the cases t = i, j, k are
solved. As q̃kl = q3jj 6= χR(gk)χk(gR) = qjj, we conclude that (χR, gR) 6= (χl, gl).

(26): for t = j, k note that χR(gi)χi(gR) = q̃ij q̃ik 6= q̃ij, q̃ik. For (χR, gR) = (χi, gi),

qii = χR(gR) = −qjjqkk, q̃ij = χR(gj)χj(gR) = q̃ij
3q2jj, q̃ik = χR(gk)χk(gR) = q̃ik

3q2kk,

so qjj = −qkk = ±q2ii, but this diagram is not in [19], a contradiction.

(28): we look for the possible generalized Dynkin diagrams for which we need R.

◦ζ
4 ζ9

◦ζ
8

, ζ ∈ G′
12: χR(gR) = 1 6= qii, qjj.

◦ζ
8 ζ

◦ζ
8

, ζ ∈ G′
12: χR(gi)χi(gR) = χR(gj)χj(gR) = ζ10 6= q̃ij.

◦−ζ
ζ7

◦ζ
3

, ζ ∈ G′
9: χR(gR) = ζ8 6= qii, qjj.

◦ζ
6 ζ11

◦ζ
8

, ζ ∈ G′
24: χR(gR) = ζ4 6= qii, qjj.

◦−ζ
−ζ12

◦ζ
5

, ζ ∈ G′
15: χR(gR) = ζ12 6= qii, qjj.
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(29): we consider each possible generalized Dynkin diagram.

◦−ζ
ζ3

◦−1 , ζ ∈ G′
5: χR(gR) = 1 6= qii, qjj.

◦ζ
3 −ζ4

◦−ζ
11

, ζ ∈ G′
15: χR(gR) = ζ11 6= qii, qjj.

◦ζ
8 ζ3

◦−1 , ζ ∈ G′
20: χR(gR) = ζ12 6= qii, qjj.

◦ζ
8 ζ13

◦−1 , ζ ∈ G′
20: χR(gR) = ζ12 6= qii, qjj.

◦−ζ
3 ζ3

◦−1 , ζ ∈ G′
7: χR(gR) = ζ2 6= qii, qjj.

◦ζ
2 ζ3

◦−1 , ζ ∈ G′
8: χR(gR) = 1 6= qii, qjj.

(30): again consider each possible generalized Dynkin diagram.

◦ζ
4 ζ11

◦−1 , ζ ∈ G′
12: χR(gR) = ζ10 6= qii, qjj.

◦ζ
8 ζ7

◦−1 , ζ ∈ G′
12: χR(gR) = ζ2 6= qii, qjj.

◦ζ
8 ζ3

◦−1 , ζ ∈ G′
24: χR(gi)χi(gR) = ζ, χR(gj)χj(gR) = 1 6= q̃ij.

◦ζ
6 ζ

◦−1 , ζ ∈ G′
24: χR(gR) = ζ15 6= qii, qjj.

◦−ζ
−ζ12

◦ζ
5

, ζ ∈ G′
15: χR(gR) = ζ10 6= qii, qjj.

(31): the unique diagram is ◦ζ
3 ζ8

◦−1 , ζ ∈ G′
9, and χR(gR) = −ζ6 6= qii, qjj.

(32): we consider each possible generalized Dynkin diagram.

◦ζ
ζ2

◦−1 , ζ ∈ G′
5: χR(gR) = 1 6= qii, qjj.

◦ζ
ζ17

◦−1 , ζ ∈ G′
20: χR(gR) = ζ5 6= qii, qjj.

◦ζ
11 ζ7

◦−1 , ζ ∈ G′
20: χR(gR) = ζ15 6= qii, qjj.

◦ζ
3 −ζ4

◦−ζ
11

, ζ ∈ G′
15: χR(gR) = ζ 6= qii, qjj.

◦ζ
5 −ζ13

◦−1 , ζ ∈ G′
15: χR(gR) = ζ10 6= qii, qjj.

(33): the unique diagram is ◦ζ
3 −ζ2

◦−1 , ζ ∈ G′
9, and χR(gR) = ζ9 6= qii, qjj. �

Theorem 6.3. Suppose V is an object in kΓ
kΓYD such that its Nichols algebra has a finite

root system. Then HomkΓ
kΓ(kRV , V ) = 0.

Proof. If f ∈ HomkΓ
kΓ(kRV , V ) and R ∈ RV , then f(R) ∈ V χR

gR . By Proposition 6.2, V χR
gR = 0

for each R ∈ RV , so f = 0. �

Theorem 6.4. If B(V ) is a Nichols algebra of diagonal type with finite root system then
B(V ) does not admit nontrivial graded deformations as a braided bialgebra.

Proof. We fix a realization of (V, c) in kΓ
kΓYD where Γ is an abelian group. Without loss of

generality, we may assume that the gi’s generate Γ and the χi’s generate Γ̂. By Theorem 6.3
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and Remark 4.2, the conditions needed to invoke Theorem 5.3 are satisfied, so B(V ) does
not admit nontrivial graded deformations in kΓ

kΓYD. But our choice of realization ensures

that any graded deformation of B(V ) is in kΓ
kΓYD and hence must be trivial. �

7. Examples

7.1. Positive parts of quantum groups. It is well known that, in the generic case, the
positive part of a quantized enveloping algebra is a Nichols algebra of diagonal type. By
Theorem 6.4, these positive parts are rigid. More generally, this applies to the “diagram”
of the pointed Hopf algebra U(D) associated to a generic datum D of finite Cartan type
— see [2], where it is shown that any pointed Hopf algebra whose group-like elements form
a finitely generated abelian group is isomorphic to some U(D) if it is a domain with finite
Gelfand-Kirillov dimension and its infinitesimal braiding is positive.

7.2. Distinguished pre-Nichols algebras. These are infinite-dimensional braided Hopf
algebras projecting onto the corresponding finite-dimensional Nichols algebras. They were
formally defined in [5, Definition 3.1] generalizing the situation with quantum groups at
roots of unity and the corresponding small quantum groups. Let V be a braided vector
space of diagonal type such that B(V ) is finite-dimensional. Then the distinguished pre-

Nichols algebra B̃(V ) is the quotient of T (V ) by the relations in Theorem 6.1 except the
powers of root vectors (6). As a consequence of Theorem 6.3, we have:

Theorem 7.1. Let (V, c) be a braided vector space of diagonal type such that B(V ) is

finite-dimensional. Then B̃(V ) does not admit nontrivial graded deformations as a braided
bialgebra. �

7.3. Nichols algebras over dihedral groups. Let Dm denote the dihedral group of
order 2m. For odd m, it is not known whether the category of Yetter-Drinfeld modules
over Dm has any finite-dimension Nichols algebras. For even m ≥ 4, the only known
finite-dimensional Nichols algebras have a symmetric braiding [13], so Theorem 3.3 applies.

7.4. Nichols algebras over symmetric groups. Let n ≥ 3. The quadratic algebra FKn,
introduced by Fomin and Kirillov [14], is presented by generators x(ij), 1 ≤ i < j ≤ n, and
relations

x2(ij) = 0, 1 ≤ i < j ≤ n,

x(ij)x(jk) = x(jk)x(ik) + x(ik)x(ij), 1 ≤ i < j < k ≤ n,

x(jk)x(ij) = x(ik)x(jk) + x(ij)x(ik), 1 ≤ i < j < k ≤ n,

x(ij)x(kl) = x(kl)x(ij), #{i, j, k, l} = 4.

Milinski and Schneider [26] showed how to make FKn a graded bialgebra in the category
of Yetter-Drinfeld modules over the symmetric group Sn. As an algebra, it is generated
by the vector space Vn with basis {x(ij) | 1 ≤ i < j ≤ n}. Identifying (ij) with the
corresponding transposition in Sn, we can make Vn a Yetter-Drinfeld module where the
coaction is defined by declaring xσ a homogeneous element of degree σ, and the action is
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the conjugation twisted by the sign. The corresponding braiding on Vn is given by

c(xσ ⊗ xτ ) = χ(σ, τ)xστσ−1 ⊗ xσ, χ(σ, τ) =

{
1 σ(i) < σ(j), τ = (ij), i < j,

−1 otherwise,

where σ and τ are transpositions. Then the above relations generate a biideal in the
(braided) tensor bialgebra T (Vn).

It is easy to see that FKn projects onto the Nichols algebra B(Vn). For n = 3, 4, 5, it is
known that FKn = B(Vn) and has dimension, respectively, 12, 576 and 8294400 (see [26]
for n = 3, 4 and [17] for n = 5). Milinski and Schneider conjectured that FKn coincides
with B(Vn) for all n. Moreover, it has been conjectured that dimFKn = ∞ for n ≥ 6 [14].

Theorem 7.2. Let n ≥ 3. Then FKn does not admit nontrivial graded deformations as a
braided bialgebra.

Proof. All relations are in degree 2 and cannot have coaction given by transposition. As
the only primitives in degrees smaller than 2 are in degree 1 and have coaction given by
transpositions, the assumption of Theorem 5.3 is satisfied and these algebras are rigid. �
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