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ABSTRACT

Geochemical Signatures of Komatiites 
and Origin of the Stoughton-Roquemaure Group,

Abitibi Greenstone Belt, Canada.

By: James Suma-Momoh

The genesis of sub-greenschist-facies-metamorphosed komatiitic rocks o f the Stoughton- 

Roquemaure Group (SRG) in the Abitibi Greenstone belt, Canada, is evaluated based on 

the geochemistry o f preserved primary clinopyroxenes. This study tries to distinguish 

between two main models of origin by the application of major and trace elements.

In general, clinopyroxenes in the SRG ultramafic komatiites, komatiites and basaltic 

komatiites are similar in composition. They contain low atomic proportions of non

quadrilateral components (e.g., Ti, Al and Na). The tectonic discrimination diagrams of 

Nisbet and Pearce (1977) and Leterrier et al. (1982) suggest both a plume and subduction 

origin for these rocks, whereas, those o f Beccaluva et al. (1989) are compatible with a 

subduction origin. The SRG clinopyroxenes are seen to have similar compositions to 

those from Barberton (South Africa) and Belingwe komatiites (Zimbabwe), but they 

differ from Gorgona komatiites (Colombia). In addition, they can be compared with very 

low- and low-Ti ophiolitic basalts, island arc tholeiites, boninites, and basaltic andesites 

and andesites thought to evolve in subduction zones.

The SRG trace element data indicate that the rare earth elements (REE) have been 

immobile during metamorphism. REE patterns show depletion in the light REE 

([La/Sm]N < 0.3) and unfractionated heavy REE ([G cI/Y]n -  0.8-1.18). The 

clinopyroxenes are depleted in high field strength elements (Nb, Zr, Ti and Y) relative to 

the more incompatible REE but show enrichment in large ion lithophile elements (Rb, 

Sr). These characteristics are attributed to a subduction zone origin. The overlap between 

plume and subduction affinity in the discrimination diagrams, and the subduction affinity 

from the trace element data make it difficult to assign a particular palaeotectonic setting. 

A parallel line of descent is proposed in which a rising mantle plume intercepted a 

subducting slab at shallow depth.

December, 2006.
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CHAPTER 1 

INTRODUCTION

1.1 What are Komatiites?

Komatiites are ultramafic volcanic rocks that occur mainly in Archaean greenstone belts 

(Nisbet and Walker, 1982; Thurston, 1994; Parman et al., 1997; Ayer et al., 1999). The 

Abitibi greenstone belt in the Superior Province of the Canadian Shield contains some of 

the greatest abundances of well-preserved komatiitic rocks in the world (Davis et al., 

1994), and they indicate the composition, structure and physical conditions of the 

Archaean mantle (Chown et al., 1992; Arndt, 1994). Komatiites (named after the Komati 

River Formation) were first recognized by Viljoen and Viljoen (1969) in the Barberton 

Mountainland greenstone belt o f South Africa.

Komatiites typically have low SiCh content (45-50 %). The features that make these 

rocks distinctive is their high MgO content of 18-30 wt %, compared to 10-15 wt % for 

the most mafic mid-ocean ridge basalts or ocean island basalts (Le Bas and Streckeisen, 

1991; Sproule et al., 2002a, b; Grove and Parman, 2004; Nna-Mvondo and Martinez- 

Frais, 2005); and their large, skeletal, platy, or acicular and parallel or disoriented crystals 

of olivine in a finer-grained groundmass, which Viljoen and Viljoen (1969) formally 

called ‘crystalline quench textures’. Nesbitt (1971) introduced the term ‘spinifex’ for this 

texture. Thus, komatiites from the type locality were first distinguished on the basis of 

chemistry and texture. Arndt (1994) established that the spinifex texture originated as a 

result of magma quenching during emplacement, promoted by rapid cooling of melt with

1
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low nucleation rate and high growth rate of crystals at large degree of supercooling 

(Donaldson, 1982). According to the experimental data o f Green (1975), the MgO 

content of the magma is proportional to its melting temperature, higher MgO contents 

indicating hotter magmas. This very first experiment on komatiites was interpreted to 

imply melting conditions in excess of 1600°C (compared to 1250-1350°C for modem 

mid-ocean ridge basalts — MORB).

Komatiites were produced most commonly in the Archaean (3.8-2.5 Ga) and late 

Archaean. Few were produced in the Proterozoic (2.5-0.56 Ga), and they were infrequent 

in the Phanerozoic eon (< 0.56 Ga). The preponderance of komatiites in the Archaean 

signifies primary differences between early and current mantle conditions (Nna-Mvondo 

and Martinez-Frais, 2005). Decrease in the degree of melting of the mantle due to secular 

cooling up to ~ 500 °C since the Archaean (Fig. 1) has been suggested for the decline in 

abundance of komatiites from the Archaean to Phanerozoic (Davis, 1993; Parman et al., 

2001; Grove and Parman, 2004). This interpretation suggests that komatiites are potential 

‘thermometers’ of the Earth’s cooling (Nna-Mvondo and Martinez-Frais, 2005). The 

oldest known ultramafic rocks on Earth (Barberton komatiites) yield ages of 3.6-3.2 Ga 

(Lopez-Martinez et al., 1992) and have MgO content up to ~ 30 wt % (Parman et al., 

2003), hence, the high temperatures inferred for their source region seem to fit well with 

the concept of a hot early Earth. Komatiites from the Superior Province in Canada 

(Munro komatiites) were the next to be well studied (Pyke et al., 1973; Arndt, 1976). 

These were younger (2.7 Ga) than the Barberton komatiites and had lower MgO content 

(up to ~ 24 wt %), consistent with a cooling Earth (Grove and Parman, 2004).

2
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Fig. 1: Schematic temperature-time diagram illustrating evolution of mantle potential 

temperatures with time. The curve shows drop in temperatures from the Archaean to the 

Phanerozoic suggesting that the Earth has cooled with time. Modified after Davis (1993)

3
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The most outstanding representatives of Phanerozoic komatiites are the Mesozoic 

komatiites from Gorgona Island, Colombia, South America. They are the youngest 

known komatiitic lava (0.089 Ga) and have much lower MgO content (~ 18 wt %) (Kerr 

et al., 1996). Their occurrence indicates unusually high temperatures in the mantle during 

the late Mesozoic era (Nna-Mvondo and Martinez-Frais, 2005). Younger komatiites are 

less common as compared to Barberton and Munro komatiites. One assumption is related 

to a progressive dehydration of hydrous phases in the upper mantle during the mid to late 

Archaean, such that, Mesozoic komatiites appearance may be as a result of local 

hydration of the upper mantle (Inoue et al., 2000).

There are two main types of komatiites, distinguished by their major and rare earth 

element contents: Al-depleted and Al-undepleted. The Al-depleted komatiites have 

comparatively low Al203/Ti02 ratios (~ 10), high CaO/AbOs (>1), and fractionated 

heavy REE (rare earth element) patterns. They are referred to as ‘Barberton-type 

komatiites’. In contrast, Al-undepleted komatiites have high Al203/Ti02 ratios (~ 20), 

low CaO/Al2(>3 (<1) and unfractionated heavy REE patterns. They are referred to as 

‘Munro-type komatiites’ (Dostal and Mueller, 1997; Nna-Mvondo and Martinez-Frais, 

2005).

1.2 What is the Problem?

Komatiites represent some of the oldest ultramafic magmatic rocks preserved in the 

Earth’s crust (Kroner et al., 1991; Lopez-Martinez et al., 1992). For this reason, they have

4
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been used to investigate the evolution of the Archaean crust. Numerous studies of 

komatiites dealing with their stratigraphic position (Anhaeusser, 1971; Tomlinson et al., 

1998; Sproule et al., 2002b; Parman et al. 2003) and geochemistry (Arndt and Nesbitt, 

1982; Hollings et al., 1999; Rollinson, 1999; Parman et al., 2001, 2003) have been 

published, but the original tectonic settings o f komatiites remain enigmatic (Dostal and 

Mueller, 1997).

Several views have been proposed for the origin of these rocks. The original 

interpretation of Viljoen and Viljoen (1969) was that komatiites represent the first crust 

formed on Earth as a result of a catastrophic melting event triggered by convective 

overturn during core formation. A meteoritic impact origin for komatiites was proposed 

by Green (1972) and has recently been supported by Abbott and Isley (2002). Fyfe 

(1978) suggested that komatiites formed in an Archaean plume-dominated environment. 

Based on chemical data and field observations, Glikson (1971) and de Wit et al. (1987) 

proposed that komatiites formed in mid-ocean ridge environments. The similarity 

between modem mafic arc lavas and komatiitic lavas was noted by Brooks and Hart 

(1974) and Cameron et al. (1979), implying komatiite generation in a subduction zone. 

Likewise, the origin of komatiites in the wet melting environment of a subduction zone 

was proposed by Allegre (1982). Parman et al. (1997) and Grove and Parman (2004) 

pointed out the uniqueness of komatiites and suggested that they could not be related to a 

particular tectonic setting.

5
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Of these several schools of thought, two have become prevalent in recent years. The first 

is that komatiites were produced by plumes, and the second, by subduction processes. Of 

these two, the plume model has become the most widely accepted explanation for the 

emplacement o f komatiites (Grove and Parman, 2004).

1.2.1 Plume Model

The plume hypothesis was initially proposed by Fyfe (1978) for the origin of komatiites. 

It has earned considerable support from various workers, e.g., Arndt and Nisbet (1982), 

de Wit et al. (1987), Campbell et al. (1989), Arndt (1994), Dostal and Mueller (1997), 

and Sproule et al. (2002a).

Pressure-temperature constraints on the plume model are shown in Fig. 2. They follow 

fairly closely the models of adiabatic decompression melting used to explain the melting 

at mid-ocean ridges. In these environments, the temperature of a rising piece of mantle 

can be correlated with the major element composition of the magmas it produces 

(Herzberg, 1995).

The plume theory is explained by early secular cooling of the earth. Komatiitic magmas 

were generated from deep within the Earth at the core/mantle boundary when the mantle 

was about 500 °C hotter in the Archaean. Melts produced during this early stage of 

extreme temperature and pressure would have higher MgO and FeO contents but lower 

Na20 , AI2O3 and Si02 contents than melts produced under the later cooler mantle

6
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conditions (Grove and Parman, 2004). Komatiites would form by melting in the hot axial 

jet of the rising mantle plume (Fig. 3), whereas, basaltic komatiites (12-18 wt % MgO) 

would have been produced by melting in the cooler plume head (Campbell et al., 1989; 

Dostal and Mueller, 1997; Sproule et al., 2002b). Subsequent cooling, due to the need to 

transfer heat from the core, provided for the resulting emplacement of komatiites at 

consecutively shallower depths and lower temperatures (Grove and Parman, 2004).

Aitken and Echeverria (1984) reported the discovery of Phanerozioc komatiites on the 

island of Gorgona in South America. These komatiites have even lower MgO contents 

and melting temperatures than the Munro komatiites, again consistent with the idea of a 

cooling Earth. Originally, the tectonic setting of Gorgona was ambiguous, apparently 

corresponding either to the orogenies that affect mainland South America or to the 

Galapagos hotspot (Echeverria, 1980). Recent work on Gorgona suggests that they are 

related to the Galapagos hotspot. This information, therefore, buttresses the paradigm that 

komatiites were produced by plumes (Echeverria and Aitken, 1986; Arndt et al., 1998).

The high MgO contents in older komatiites and their decrease in younger samples 

indicates that komatiites are generated in a plume environment. Plume advocates also 

focus on the low Si02 komatiites, such as those from Munro and Gorgona, and point to 

the compositional similarity of modem ocean island basalts (Grove and Parman, 2004). 

However, melting experiments of representative mantle compositions under hydrous 

conditions (Inoue et al., 2000) have shown that Al-depleted Barberton-type komatiites are 

formed under low temperatures (-1300-1500 °C) and relatively low pressures (< 8 GPa)

7
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in the solidifying hydrous magma ocean. This finding is at odds with a hotter Archaean 

mantle suggested for the origin of komatiites (Nna-Mvondo and Martinez-Frais, 2005).

2500
Mantle Peridotite 

KLB-1

O
2000 Barberton

f iI"Jd 1500 
H

1000
10 200 30

Pressure (Gpa)

Fig. 2: Diagram illustrating depths and temperatures of melting o f komatiites in a plume setting. 

The red lines show the pressure-temperature path experienced by a body o f mantle as it ascends 

adiabatically towards the surface. The green lines are the solidus and liquidus of peridotite with 

representative mantle composition (sample KLB-1). The solidus is the first point at which the 

mantle will begin melting. The liquidus is the point at which the mantle would be completely 

molten. Modified after Herzberg (1995)

8
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t
Ascending mantle plume

Fig. 3: Diagram illustrating a rising mantle plume from the core-mantle boundary. Komatiites 

will form in the hot axial jet and basaltic komatiites will be produced in the periphery of the 

cooler plume head.
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1.2.2 Subduction Model

The generation of komatiites in a subduction zone (Fig. 4) was originally proposed by 

Brooks and Hart (1974). They pointed out that the major element chemistry of komatiites 

and basaltic komatiites is more closely related to modem mafic subduction-related 

magmas than those magmas produced by modem plumes. The initial evidence for a 

subduction origin for some komatiites is the elevated SiCh at high MgO contents; this 

feature is characteristic of the Commondale and Nondweni komatiites. These komatiites 

have much higher Si02 than Munro or Gorgona rocks and show some similarities to 

modem mafic subduction magmas (boninites) (Nna-Mvondo and Martinez-Frais, 2005). 

In general, the Si02 content of magmas decreases with increased melting pressures. The 

high Si02 content in these komatiites cannot be readily explained in a plume scenario 

(Grove and Parman, 2004).

Proponents of the subduction model (e.g., Brooks and Hart, 1974; Cameron et al., 1979; 

Allegre, 1982; Parman et al., 1997,2003; and Wilson, 2003) suggest that hydrous melting 

at shallow mantle depths generated komatiite magmas in a subduction setting. In modem 

magmas, high H2O contents are linked with melting in subduction zones. The 

introduction of water into the system was first proposed after the discovery of pargasitic 

amphibole in Fe-rich komatiites in Finland by Hanski (1992), and in a komatiite from the 

Abitibi belt, sampled by Stone et al. (1997). Subsequent experimental evidence showed 

that anhydrous experiments could not produce the crystallization sequence or phase 

composition of the Barberton komatiites. However, with the addition of H2O, the 

experimental mineralogy was a good match.
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1. Subduction initiation

K om atiitic crust

2. Mature subduction zone
C alc-alkaline m agm as

3. Subduction termination - continent collision

j Highly depleted mantle 

I Lithosphere 

I Continent

Fig. 4: Subduction model for the origin of komatiites in subduction zones, based on boninite 

melting processes.

1: Boninite-like melting produces high MgO melts: komatiites, basaltic komatiites (dark-shaded 

portion) and highly depleted mantle residue.

2: Continued subduction of the lithosphere cools the mantle and the resulting low temperature 

magmas (calc-alkaline andesites) are emplaced on top of the high MgO, ultramafic crust.

3: Finally, ultramafic crust is then thrusted onto continents when subduction terminates during 

continental collisions. Modified after Parman et al. (2004)
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Sun et al. (1989), Poidevin (1994), Wilson and Versfeld (1994), Kerrich et al. (1998), 

Hollings et al. (1999), Parman et al. (2001, 2003) and Wilson (2003), noted that many 

occurrences of komatiites have more compositional similarities to (or are interlayered 

with) modem boninitic lavas than any ocean island basalts. By virtue of such 

geochemical similarities, komatiites are expected to be produced by similar melting 

processes as have been proposed for modem boninites, but at higher mantle temperatures, 

assuming that the Archaean mantle was 100-500 °C hotter than the modem mantle (Nna- 

Mvondo and Martinez-Frais, 2005). Boninites are produced by high degrees of hydrous 

melting in subduction zones and have elevated SiC>2 at high MgO contents (Grove and 

Parman, 2004). According to Stem and Bloomer (1992), they are produced by melting 

conditions associated with the commencement o f subduction. Hall et al. (2003) suggested 

that, in the early stages of a subduction zone, subduction is initiated along an active fault 

in the oceanic crust and the subducted plate rapidly sinks into the mantle, drawing hot, 

buoyant mantle asthenosphere into the forearc (Fig. 4). This early magmatism involves 

hydrated and depleted mantle. The addition of water and asthenospheric upwelling leads 

to massive degrees of melting. Eventually, as the subduction zone matures, this extreme 

form of melting ends and more normal island arc magmas predominate.

In summary, the origin of komatiites continues to be an on-going debate. Some workers 

advocate their formation during plume ascent whereas others favour a subduction zone 

setting. This perhaps suggests the emplacement of komatiites through various tectonic 

settings rather than a single type, as is the case of modem basalts (Parman et al., 1997; 

Grove and Parman, 2004). This study presents analytical data for Al-rich and Al-poor
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komatiites from the Stoughton-Roquemaure Group (SRG) in the Abitibi Greenstone belt 

(~ 30 km NNW of Rouyn Noranda, Quebec), Canada, in order to substantiate which of 

the two competing models is more suitable for the area.

1.3 Previous work on the SRG

Lumbers (1962, 1963) was one of the earliest workers who mapped out the structural 

components of the SRG. He delineated the interface between the metavolcanic rocks 

which he termed Bonis sequence, and the metasedimentary rocks to the north of the belt. 

Eakins (1972) and Jensen (1978) reported that the SRG consists predominantly of 

komatiitic and magnesium- and iron-rich tholeiites. They noted that these metavolcanic 

rocks are interlayered with metasediments, such as, finely layered chert and iron 

formation horizons. Jensen and Langford (1985) outlined the stratigraphic sequence of 

rock units making up the SRG.

Dostal and Mueller (1997) described the geochemical characteristics and physical 

volcanology of komatiites and basaltic komatiites of the SRG. They discussed the 

evolution of the rocks, proposing a model involving a rising mantle plume beneath an arc 

(the Deloro assemblage) in which Al-depleted basaltic komatiites were generated by 

mantle melting, with garnet in the residue at the periphery of the plume, whereas Al- 

undepleted komatiites were formed by a higher degree of melting in the plume axis. 

Sproule et al. (2002a) first mentioned that the Stoughton-Roquemaure Group (like the 

Pacaud assemblage) appears to represent lava channels or lava channel facies of
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channelized sheet flows, compared to the Kidd-Munro and Tisdale assemblages which 

contain a greater abundance of meso- to adcumulate komatiitic peridotites and dunites. In 

addition, they observed that relatively low [Nb/Th] and [Th/Sm] mantle-normalized ratios 

in the SRG, which are much closer to depleted mantle, show that the lava was not 

contaminated. This implies a fundamental distinction either in the nature of the 

lithosphere through which the SRG komatiites ascended, or in magma discharge rates.

Sproule et al. (2002b) also studied spatial and temporal variations in the geochemistry of 

komatiites and basaltic komatiites in the Abitibi greenstone belt. They mentioned that the 

SRG is composed predominantly of Al-depleted, Ti-enriched basaltic komatiites, with 

subordinate low and high-Mg, abundant cumulate, Al-undepleted komatiites. They also 

postulated that the basaltic komatiites in the SRG may be primary melts derived from the 

peripheral parts o f a plume head, consistent with the model proposed by Dostal and 

Mueller (1997). Sproule et al. (2002b) proposed a number of models suggesting plume 

ascent, plume dragging and stalling were responsible for the temporal variation in 

komatiite geochemistry in the Abitibi greenstone belt.

Based on U-Pb geochronology, Ayer et al. (2002) established an age range of 2725-2720 

Ma for the SRG, indicating that the group was deposited in a relatively short time span. 

They reported that the chemical and isotopic signatures of the volcanic rocks deposited 

from about 2750-2700 Ma suggest a repeated tapping of both plume and subduction- 

related mantle sources.
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Gibson et al. (2003) commented on the occurrence of several small volcanogenic massive 

sulphide deposits in the SRG. They observed that the rocks were not depleted in Pd and 

Pt, indicating that the magmas were not sulphide-saturated in the source region and that 

they did not reach sulphide saturation during ascent or emplacement. Gibson et al. (2003) 

concluded that such magmas represent a favourable source for Ni-Cu- (PGE) 

mineralization, as they contain a complete chalcophile element budget.

1.4 Objectives of Study

This work aims at determining the origin of Al-undepleted and Al-depleted komatiites 

from the Stoughton-Roquemaure Group (SRG) of the Abitibi greenstone belt. Emphasis 

is placed on the use of preserved, primary clinopyroxenes to shed light on the origin and 

palaeotectonic setting of these komatiites and related rocks by the application of relevant 

discrimination techniques.

1.5 Scientific Approach

The petrological and geochemical characteristics of volcanic rocks are directly related to 

their tectonic setting. However, post-emplacement alteration (including low temperature 

seawater-basalt interactions, high temperature hydrothermal water-basalt reactions, and 

regional metamorphism) may obscure the original mineralogical and geochemical 

characteristics of the volcanic rocks and thus prevent reconstruction of paleo-tectonic 

regimes. Moreover, it has been established that the geochemical characteristics of

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



primary clinopyroxenes preserved in some spilites and metabasites may be used to 

identify the original magmatic affinity (e.g., Beccaluva et al., 1989; Yaliniz and 

Goncuoglu, 1999; Koizumi and Ishiwatari, 2006).

Komatiites are old and altered rocks. However, clinopyroxenes are locally preserved, and 

can serve as important tools to determine the geotectonic setting in which they formed 

(e.g., Beccaluva et al., 1989; Yaliniz and Goncuoglu, 1999; Parman et al., 2003). The 

present study reports major and trace element compositions of clinopyroxenes in 

representative samples of komatiites and basaltic komatiites from the SRG, as determined 

by electron microprobe and laser ablation (ICP-MS). The geotectonic setting will be 

determined by employing various discrimination techniques previously published by 

Nisbet and Pearce (1977), Leterrier et al. (1982), and Beccaluva et al. (1989).
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CHAPTER 2 

GEOLOGICAL SETTING

2.1 The Superior Province

The Superior Province of Canada (Fig. 5) is the largest Archaean craton in the world. It 

underlies 1,572,000 km2 (Goodwin, 1991, 1996) of the central part of the Canadian 

Shield. It is composed of volcano-plutonic, plutonic, metasedimentary, and high-grade 

gneiss sub-provinces (Thurston, 1991) that range in age between 3.3 -  2.55 Ga (Card, 

1990). The boundaries of the sub-provinces are either major dextral, transcurrent, east- 

striking faults, or zones of plutonic and metamorphic transition. These subprovinces 

differ in aspects, such as, structural style, rock type, and metamorphic grade (Card and 

Ciesielski, 1986).

The volcano-plutonic (granite-greenstone) terranes contain volcanic arc-like rocks that 

have been metamorphosed to a low- or medium-grade. Stratigraphically, the lower of 

three recognized groups are komatiitic ultramafics and mafic volcanics with pillow lava 

structures. The second are andesites and calc-alkaline volcanics that are similar to island- 

arc type rocks. The top layers consist mainly of coarse sediments and smaller amounts of 

cherts, sandstones and limestones (Ayres and Thurston, 1985; Thurston and Olivers, 

1990). Also present are large volumes of granitic plutons intruded into these volcanics 

and sediments.
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\  , Archaean boundary
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I I Plutonic 
■ 1  Volcano-plutonic 
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Hudson Bay

James
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PontiacLake Superior

Fig. 5: Generalized map o f the Superior Province illustrating major lithological subdivisions. 

Modified after Card and Ciesielski (1986)
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The greenstone terranes of the northeastern Superior Province contain the oldest 

metavolcanic rocks, dated in Ontario as much at 3013 ± 10 Ma (Fyon and Green, 1991). 

The greenstone terranes of the southeastern Superior Province contain metavolcanic 

rocks generally younger than 2800 Ma (Corfu and Grunsky, 1987).

The plutonic or intrusive terranes are composed of granitoid rocks, but differ from the 

granites in the volcano-plutonic terranes in the way they relate to other rocks. They 

compose entire subprovinces and were injected at a later time than the granites in the 

greenstone terranes. These Late Archaean granite intrusions emplaced into and adjacent 

to greenstone belts include: tonalite-granodiorite-granite, tonalite-diorite-monzonite- 

granodiorite and syenite (Smith and Williams, 1980; Stem et al., 1989).

Metasedimentary terranes comprise the metamorphic equivalents of greywacke, 

mudstone, tuff, conglomerate and banded iron formations (Goodwin, 1996); these are 

intruded by a wide range of rocks, from potassic granite to tonalite. The metamorphic 

grade varies from middle-amphibolite to granulite facies (Easton, 2000).

The gneissic terranes are usually the product of high-grade metamorphism. The rocks are 

massive to foliated (Fyon and Green, 1991) and are mostly represented by 

quartzofeldspathic gneiss of largely tonalitic to granodioritic composition. There are also 

granulites and complexes of more mafic gneisses derived from gabbro and anorthosite, as 

well as, metavolcanic amphibolites and metasediments. Rocks of the gneissic terrane 

range up to about 3.3 Ga (Goodwin, 1996).
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2.2 The Abitibi Greenstone Belt

The Abitibi greenstone belt is located in the southeastern part of the Superior Province 

(Fig. 5), spanning northern Ontario and Quebec. It has an areal extent of approximately 

115,000 km , making it the largest greenstone belt in the world (de Wit and Ashwal, 

1997) and contains some of the greatest abundances of well-preserved komatiitic rocks 

(Sproule et al., 2002b), particularly in Munro Township. It is, as well, one of the 

youngest (~ 2.7 Ga) volcano-plutonic sub-provinces in the Superior Province. The 

ultramafic, mafic, and volcanic components make up 93% of the rocks; the remaining 

percentage being the felsic and calc-alkaline components (Fig. 6).

Komatiites and high-Mg tholeiites constitute about 12% of the volcanic rocks. The 

metamorphic grade varies from prehnite-pumpellyite to greenschist facies, but 

amphibolite facies rocks occur near late plutons. Due to the low-grade metamorphism 

and heterogeneous nature of the deformation, many of the primary textures and 

mineralogical assemblages within the lithological units have been preserved. Two periods 

of metamorphism have been determined: 2700-2688 and 2680-2670 Ma (de Wit and 

Ashwal, 1997).

Jackson et al. (1994) identified ~ 50 small-scale lithotectonic assemblages. These have 

recently been revised by Ayer et al. (1999, 2002) into nine geochronologically- and 

stratigraphycally-distinct assemblages/groups, namely:
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Timiskaming (2687-2675 Ma)

Porcupine (2696-2692 Ma)

Blake River (2701-2697 Ma)

Kinojevis (2702-2701 Ma)

Tisdale (2710-2703 Ma)

Kidd-Munro (2718-2710 Ma) 

Stoughton-Roquemaure (2725-2720 Ma) 

Deloro (2730-2725 Ma) and 

Pacaud (2750-2735 Ma)

OV 1'A.RIO

Middle
Precambrian
Sediments

Early
Precambrian
Sediments

I Granitoid 
Rocks

iMafic
intrusions

Ultramafic
Rocks

Volcanic
Rocks

Fig. 6: General geological map of the Abitibi greenstone belt showing association o f the various 

rocks. Modifiedfrom: http://user.mi-frcmkfi4rt.de/~lahqye/fieldtrip/html/abitibitx.html
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In the Abitibi greenstone belt, komatiitic rocks occur in only four of these lithotectonic 

groups: the Pacaud, Stoughton-Roquemaure, Kidd-Munro, and Tisdale groups. All 

komatiitic rocks in the Pacaud group are Ti-depleted komatiitic basalts; those in the 

Stoughton-Roquemaure Group are Al-depleted komatiites (ADK) and Al-undepleted 

komatiites (AUK). The majority of those in the Kidd-Munro and Tisdale assemblages are 

AUK with rare ADK and Ti-enriched komatiites (TEK) (Sproule et al., 2002b).

Goodwin and Ridler (1970) mapped and divided the belt into a Northern Volcanic Zone 

(NVZ) and a Southern Volcanic Zone (SVZ) (Fig. 7). These zones are the most 

fundamental subcomponents of the Abitibi greenstone belt (Chown et al., 1992). The 

NVZ is dominated by a cycle of 2730-2720 Ma volcanism and sedimentation. On the 

other hand, the SVZ comprises a mix of volcanic ages, but is largely characterized by 

2720-2685 Ma volcanism. Magmatic associations in the SVZ include: (a) tholeiitic 

basalts and komatiites; (b) a depleted tholeiitic-boninite suite; (c) arc tholeiites and calc 

alkaline rocks; (d) adakites and high Mg# andesites; (e) syn-orogenic batholithic 

intrusions, and (f) pre- to post-orogenic shoshonites (Wyman et al., 2002).

Both zones are separated from one another by the steeply dipping, east-striking Destor- 

Porcupine fault (Chown et al., 1992). The fault zone has a strike length of over 300 

kilometres (Jackson and Fyon, 1991).
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Fig. 7: Subdivision of the Abitibi greenstone belt into Northern Volcanic Zone (NVZ) and Southern Volcanic Zone (SVZ). Further subdivision of 

the volcanic and sedimentary cycles is also shown. The location of the study area is outlined. Modified from Dostal and Mueller (1997)



2.3 The Study Area

The study area (Fig. 7) lies in the southern extremity of the Northern Volcanic Zone that 

consists of two 1-5 km thick mafic-felsic volcanic cycles, namely:

(i) a Monocyclic Volcanic Segment to the south, made up of an extensive subaqueous 

basalt plane with scattered felsic volcanic complexes (2730-2725 Ma). It is overlain by 

and interlayered with elongate volcaniclastic sedimentary basins and intra-arc 

volcaniclastic turbidites (Chown et al., 1992; Dostal and Mueller, 1997).

(ii) a Polycyclic Volcanic Segment to the north, comprising a second mafic-felsic 

volcanic cycle (2722-2711 Ma) and a sedimentary assemblage containing local 

shoshonitic volcanic rocks (Chown et al., 1992).

The Hunter Mine Group — a 4-5 km thick volcanic unit of 2730 Ma; forms part of the 

monocyclic volcanic segment (Fig. 8). This Group is composed of massive to brecciated 

rhyolitic lava flows and lobes, and an extensive felsic-dominated dyke swarm (Fig. 8). 

Mafic dykes (similar to those in the SRG) are as well present in this swarm, signifying a 

period of prolonged dyke emplacement that involved feeding of the volcanic flows 

belonging to the SRG (Dostal and Mueller, 1997). Directly above the swarm in the upper 

500-1000 m thick transition zone of the Hunter Mine Group is a highly variable 

association of pyroclastic and volcaniclastic sedimentary rocks, iron formation, mafic to 

intermediate dykes and sills, and mafic and felsic lava flows. The mafic flow component 

increases toward the SRG.
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Fig. 8: Geological map of the study area showing the relationship between the Stoughton- 

Roquemaure Group (SRG) and the Hunter Mine Group. The two komatiite units o f the SRG are 

shown and two sample points are indicated (starred). Modified from Dostal and Mueller (1997)
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In general, the flows are 3-20 m thick and exhibit massive columnar-jointed sections that 

grade vertically and laterally into pillow breccia and pillowed flows with flows ranging 

from 20-150 cm in diameter, and displaying centimeter-scale chilled margins and internal 

polygonal jointing. The pillowed flow facies constitutes the komatiitic basalts and 

komatiites of the SRG. In situ brecciation around pillows is not uncommon but extensive 

columnar joints range from 10-30 cm in diameter within flows, and are perpendicular to 

the cooling front. Massive and columnar-jointed mafic dykes represent the youngest 

phase in the felsic dyke swarm (Dostal and Mueller, 1996).

Immediately above the 4-5 km thick central portion of the Hunter Mine Group is the 200 

m thick mafic-ultramafic SRG. To the west, the SRG thickens to 2 km whereas the 

Hunter Mine Group continues to thin. Both the HMG and SRG are truncated by the 

Lyndhurst fault (fig. 8). This explains the limited thickness of the SRG above the central 

part of the Hunter Mine Group (Dostal and Mueller, 1997).

The SRG consists of tholeiitic basalts, with localized komatiites and felsic volcanic rocks. 

Volcanic rocks o f the SRG may represent the start of the polycyclic volcanic segment or 

may be still part of the monocyclic volcanic segment (Dostal and Mueller, 1997). The 

narrow age range of 2725-2720 Ma for the SRG indicates that this assemblage was 

deposited in a relatively short time span (Ayer et al., 2002). Goutier (1993) has identified 

two lithological units in the SRG, namely, (i) an alternating 50-400 m thick komatiitic 

unit, and (ii) a 100-1000 m thick basaltic unit. Both units have been traced for several 

kilometers. The ultramafic flows are probably the lateral along-strike equivalents o f the
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well-documented komatiite flows of Munro Township that lies to the west of the study 

area.

Rocks of the SRG and the transition zone of the HMG were largely subjected to sub- 

greenschist facies metamorphism, characterized by the prehnite-chlorite-epidote 

assemblage. The HMG and SRG are ‘locally’ overturned strata younging to the south. 

They trace a large anticline that closes to the west. The sequences dip steeply at 70-90° 

(Dostal and Mueller, 1997).
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CHAPTER 3 

PETROGRAPHY

3.1 Komatiite Cooling Units

Ultramafic lavas have distinct features. Arndt et al. (1977) presented sections of 3 types 

of komatiite flows from the Munro Township (Fig. 9). Spinifex texture is often preserved 

in the upper parts of such flows. This texture is commonly characterized by randomly 

oriented skeletal crystals of olivine or pyroxene, and results from relatively rapid in situ 

crystallization of ultramafic or highly mafic liquids (Condie, 1982; Arndt, 1994).

Komatiite cooling units are petrographically and chemically layered (Fig. 9). Layering is 

a result of gravitative settling of early-formed olivine crystals in the most mafic cooling 

units and of olivine and pyroxene in the less mafic units (Arndt, 1994). Arndt et al. 

(1977) showed that layering is not necessarily laterally continuous or of uniform 

thickness. In moving away from the source of the flow, the spinifex zone (i.e., A2 unit) 

may thin out and possibly terminate, leaving only the lower part of the flow (B unit — 

foliated skeletal olivine and peridotites) covered by the chilled and fractured flow top (Ai 

unit) (Fig. 10).

Komatiitic rocks of the SRG display the textural pattern shown in Fig. 9a. It can also be 

deduced on textural grounds that they belong to the A2, Bi and B2 units o f the column. 

Pyke et al. (1973) subdivided the A2 unit into upper and lower spinifex zones. Plate 1 

illustrates an idealized boundary between the two zones. The upper layer is characterized
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by short and disoriented clinopyroxenes far less than 30 mm in length, whereas the lower 

layer comprises of long fan-like clinopyroxene strands of at least 30 mm in length.

Plate 2 shows the boundary between the Bi unit and overlying A2 unit. Rocks in the Bi 

unit are fine to medium-grained and contain equant and subhedral microphenocrysts of 

clinopyroxenes showing a weak or skeletal foliation. This observation follows closely 

those previously made by Pyke et al. (1973), Arndt et al. (1977) and Arndt (1994), for the 

komatiite flows from Munro Township. The last part of the komatiite flow to remain 

fluid was the Bi layer, as shown by flow textures (Arndt, 1986).

The following sections provide general thin section descriptions o f four groups of rocks 

that were collected from the study area by Dostal and Mueller in the years 1995 and 

2000. The rocks are: ultramafic komatiites, komatiites, basaltic komatiites and basalts. 

For this exercise, a total number of 40 slides were selected and examined with the aid of a 

polarizing microscope.
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(a) (b)

Overlying flow unit

Underlying flow unit

$_A,

A,

Fig. 9: Diagrammatic sections through three types of komatiite 

Canada (Arndt et al, 1977).

Description:

(a)

UPPER PART OF FLOW UNIT 

At: Chilled and fractured flow top. 

A2: Spinifex

LOWER PART OF FLOW UNIT 

Bi: Foliated skeletal olivine 

B2 -  B4: Medium- to fine-grained 

peridotite.

B3: Knobby peridotite.

(b)

Ai: Chilled flow top with fine 

polygonal jointing.

A2: Spinifex

B: Medium- to fine-grained 

peridotite.

(C)

flows from Munro Township,

(c)

Ai: Chilled flow top with 

Fine polygonal jointing.

B: Main part o f flow; medium- 

to fine-grained peridotite with 

coarse polygonal jointing.
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Chilled and
fractured 
flow top (A,)

Spinifex Zone
(fid

Cumulate Zone 
(B)

East West

Direction away from spinifex zone

30m

Fig. 10: Thinning o f the spinifex zone in a komatiite flow in Munro Township. Modified after 

Arndt etal. (1977)
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Plate 1: Presumed boundary (broken line) between the upper and lower zones o f the A2unit. Note 

the difference in the length o f clinopyroxenes in both zones. Cpx = Clinopyroxene; Epi -  

Epidote. Sample: ROQ-95-18, x5 crossedpolars (xpl).

Plate 2: Photo showing probable boundary between the A2 (above) and Bi (below) units. Note the 

flow pattern in Bj. Sample: ROQ-95-8b, x5 plane polars (xpl).
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3.1.1 Ultramafic Komatiites

Serpentine and opaque minerals are the essential minerals. The serpentine formed as a 

result of the alteration of primary olivine. Partially altered olivine phenocrysts retain 

prominent irregular cracks. Opaque minerals (e.g., magnetite) occur along the edges and 

cracks of the olivine phenocrysts (Plate 3). Brucite is commonly mixed in with the 

serpentine alteration products (Shelly, 1993). Hematite occurs as deep red, translucent 

crystals especially in the cores of grains. These are enclosed by black magnetite, formed 

at the expense of the hematite. Granular aggregates of chromite crystals are present as 

inclusions in some olivine plates (Fleet and MacRae, 1975). Clinopyroxenes are observed 

as minute angular and skeletal crystals. The former show basal sections with extinction 

angles ranging from 45° to 52°, indicating that they are augites. Some of the skeletal 

clinopyroxenes exhibit nucleation growth wherein they appear to emanate from a central 

point (Plate 4).

Chlorite formed through the alteration of either olivine or serpentine and clinopyroxene, 

commencing from the outer rim and continuing inwards. It shows anomalous interference 

colours appearing in shades o f blue, purple or brown.
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Plate 3: Magnetite (Mgt) aggregates deposited along the edges and cracks o f olivine 

microphenocryst; flanked by clinopyroxenes (Cpx). Sample: WP-00-15, xlOxpl.

Plate 4: Skeletal clinopyroxenes showing nucleation growth to form a digitating pattern. Oli = 

olivine. Sample: WP-00-17, xlOxpl.
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Plate 5 shows hexagonal serpentine pseudomorphs after olivine, occurring in 

juxtaposition and aligned parallel to one another in a closely packed manner. The 

alteration of olivine to serpentine is only partial in this specimen. These might be olivine 

cumulates and the alignment denotes some amount of flow of the magma.

The ultramafic komatiites occupy the basal portion of the komatiite cooling units. It can 

be suggested that ultramafic komatiites are distinguished from komatiites by having 

olivine cumulates; more opaque minerals but no spinifex texture.

Plate 5: Partially altered olivine cumulates (centre). Note their alignment. Sample: Wp-00-8, 

x5xpl.
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3.1.2 Komatiites

The komatiites show several types of spinifex texture. For instance, there is pyroxene 

spinifex texture with acicular or skeletal clinopyroxene plates ranging from about 0.5 mm 

to 120 mm in length. Some of these skeletal plates portray ‘backbone’ (Plate 6) and 

dendritic structures. In radiating spinifex texture, elongate clinopyroxene phenocrysts 

assume a fan-like pattern. Furthermore, there is randomly oriented spinifex wherein 

elongate clinopyroxene phenocrysts are oriented in different directions. Fan-shaped, 

feathery and aggregates of clinopyroxenes also occur in the fine-grained matrix (Plate 7). 

Fleet and MacRae (1975) report that as pyroxene grain size decreases, its crystal shape 

changes from acicular to fan-shaped to bow-tie shape to feathery crystallites. The 

occurrence of spinifex textures in all the studied komatiite slides suggest that the samples 

were collected from the A2 unit.

Chlorite appears to have formed by the alteration of olivine and pyroxene. Also, 

actinolite seems to have formed by the alteration of clinopyroxenes. Prismatic crystals of 

orthopyroxenes occur in minor amounts. Some of the pyroxenes are bent, revealing the 

effect of deformation.
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Plate 6: Fibrous serpentine (Spt), skeletal plates o f clinopyroxenes and orthopyroxenes (Opx) 

embedded within a dark brown and glassy matrix (M). The central clinopyroxene plate has a 

'backbone' structure. Sample: ROQ-95-15, xlOxpl.

Plate 7: Feathery (centre) and aggregates (top left and right) o f clinopyroxenes. Sample: ROQ-95- 

15, xlOxpl.
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3.1.3 Basaltic Komatiites

These rocks consist almost entirely of clinopyroxene, serpentine, actinolite, epidote and 

locally, partially altered olivine phenocrysts. Clinopyroxene crystals range in size from 

about less than a millimetre to up to about 20 mm in length (ROQ-95-1), embedded in a 

groundmass of chlorite and serpentine. Euhedral and subhedral phenocrysts of fresh 

clinopyroxenes occur (ROQ-95-2) but sometimes, partial alteration to chlorite is evident. 

As well, clinopyroxenes form fan-like structures (ROQ-95-3) and are pitted (ROQ-95- 

21 A). Clinopyroxene spinifex texture is common in most samples of basaltic komatiites 

and represents the lower section of the group, close to the underlying komatiite unit 

(Plate 8). The randomly oriented spinifex portions consist of fibrous serpentine and 

skeletal plates of clinopyroxenes. They intersect with no preferred orientation and 

probably represent the top of the A2 unit of a typical komatiite suite.

Serpentine exhibits a brown mesh-like texture and seems to have been derived from the 

alteration of olivine and clinopyroxene. Subhedral epidote and euhedral crystals of 

actinolite occur as well.

The opaque minerals tend to be concentrated in places and are often associated with 

chlorite. They constitute about 2-15 % by volume of the rock. Plagioclase has largely 

been deformed and altered to sericite (ROQ-95-19).

Amygdaloidal texture was seen in a few slides (example, ROQ-95-2). In some cases the 

vesicles have been occupied by quartz (centre), rimmed by minute grains of chlorite,
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muscovite and clinopyroxene. In other instances (example, ROQ-95-5) the centre is 

occupied by quartz and pyrite, and rimmed by chlorite.

The basaltic komatiites host secondary veins consisting of plagioclase, quartz, chlorite, ± 

calcite; ± opaque minerals (Plate 9).

Plate 8: Clinopyroxene plate spinifex texture. The elongated strands o f clinopyroxenes in the 

plates signify that the slide represents the basal end o f the unit. Sample: ROQ-95-18, xlOxpl.
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Plate 9: Bifurcating veinlets in clinopyroxene spinifex polygonal plates o f basaltic komatiite. 

Note the alteration of plagioclase (Pig) to sericite (Seri). Chlorite (Chi) occurs at the margins o f 

the veins. Cal = calcite and Qtz = quartz. Slide: ROQ-95-19, x5xpl.

3.1.4 Basalts

The basalts are porphyritic. Embedded in the dark, fine-grained matrix are (among 

others) microphenocrysts of plagioclase and pyroxene. Some of the plagioclase has been 

partially altered to sericite. Sheaves and spherulites of prehnite (spherulitic texture) are 

associated with quartz and chlorite (Plate 10).
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Plate 10: Sheaves and spherulites of prehnite (Pre) in basalt. Slide: WP-00-13b, x20xpl.

3.2 Alteration and Metamorphism

Most of the primary minerals in the four groups of rocks have been transformed to 

secondary minerals via alteration and metamorphism. The vitric groundmass is mostly 

altered to chlorite, albite, epidote, and Fe-Ti oxides, but quench textures are readily 

observed (Dostal and Mueller, 1997). The olivine microphenocrysts have been replaced 

by serpentine, chlorite, magnetite and pyrite. Some of the pyroxenes have been replaced 

by serpentine, actinolite and chlorite; the plagioclase has transformed to sericite, and in 

the basalts, to prehnite. These minerals are important metamorphic index minerals, and 

show that the rocks have been metamorphosed to the sub-greenschist facies.
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CHAPTER 4 

MINERAL CHEMISTRY

4.1 Introduction

In this chapter, geochemical data obtained on komatiitic rocks from the SRG is discussed. 

The mineral chemistry of the unaltered clinopyroxenes preserved in the rocks will be 

utilized to find out the origin of the SRG. Both major and trace elements will be used to 

determine the original tectonic setting. A first approach will focus on the discrimination 

diagrams of Nisbet and Pearce (1977), Leterrier et al. (1982) and Beccaluva et al. (1989). 

The use of such discrimination diagrams may also serve to test their applicability or 

suitability to rocks of the SRG. The second approach will rely mainly on the systematics 

shown by the trace elements and rare earth elements (REE).

4.2 Analytical Techniques

Initially, a total of forty thin sections were studied and from these, five thin sections 

(representative of one ultramafic komatiite, two komatiites, and two basaltic komatiites) 

were selected on the basis of clinopyroxene freshness and homogeneity. The 

corresponding hand specimens of the selected slides were located and polished thin 

sections prepared with a thickness of 0.1 mm. With the aid of a polarizing microscope at 

Saint Mary’s University, at least three clinopyroxene grains were delineated in each slide 

except for the single ultramafic komatiite slide in which only two grains could be 

identified.
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4.2.1 Electron Microprobe Analysis

Electron microprobe analysis is a technique for chemically analyzing small selected areas 

of solid samples (Reed, 1996). It is principally used for determining the concentrations of 

the major elements of minerals (Rollinson, 1996). The technique involves exciting the 

sample with a beam of electrons. The electrons produce secondary X-rays with 

wavelengths that are characteristic of the elements present in the sample; hence, a 

qualitative analysis is easy to obtain by identifying the intensities from their wavelengths. 

By comparing the intensities of these wavelengths with those emitted from standards 

(pure elements or compounds of known composition), it is also possible to determine the 

concentrations of the elements (quantitative analysis). Accuracy approaching ± 1 % 

(relative) is obtainable and detection limits are typically in the region of 50ppm, though 

lower values can sometimes be achieved (Reed, 1996).

During fall season of 2005, the clinopyroxene cores were analyzed for major elements 

using a JEOL JXA-8200 electron microprobe at the Department o f Earth Sciences, 

Dalhousie University, under the expert supervision of Patricia Stoffyn-Egli. The electron 

beam conditions were 15 kV acceleration voltage, 20 nA current, and minimum beam 

diameter (~ 1 pm). Sanidine was used as a standard for Si, Al and K; kaersutite for Ti, Ca 

and Mg; garnet for Fe; pyrolusite for Mn; jadeite for Na; pure nickel metal for Ni; pure 

chromite metal for Cr; and fluorapatite for P. The count time for each element was 20 

seconds on the peak, and 10 seconds for each of the background measurements (one on 

each side of the peak). Kaersutite was also used as a control to monitor instrument 

performance. A total of 58 analyses were obtained.
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4.2.2 Laser ablation (ICP-MS)

Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) is a 

versatile technique for solid micro sampling analysis. It provides rapid analysis of small 

areas on a sample and no lengthy preparations are required. The technique combines the 

advantage of the in situ micro solid sampling by LA and the high sensitivity multi

element capability by ICP-MS. In analytical atomic spectrometry, free atoms or ions are 

required for the interaction with light energy. The sampling-generation of such free atoms 

can be achieved by combination with ICP-MS. The micro amount of the laser-ablated 

material is transported by a carrier gas to the second excitation process (ICP-MS) in 

which the ablated materials are evaporated, atomized, and excited. Trace elements and 

rare earth elements in rock forming minerals, such as pyroxene, olivine and plagioclase 

can be easily determined.

In early spring of 2006, polished sections of thickness 0.1 mm were sent to the Metals 

laboratory at the University of Windsor, Windsor, Ontario. The clinopyroxenes were 

analyzed for trace elements by the expertise of Brian Fryer, using a Thermo Elemental® 

X7 ICP-MS, coupled with a non-homogenized, high power Continuum solid state 

ND:YAG laser (wavelength: 266 nm; maximum power: 40 MJ; pulse rate: 20 Hz; 

primary beam width: 6 mm). To improve ablation characteristics and prevent burning 

through the thin sections, the laser power was reduced to approximately 2 MJ and the 

beam diameter to 2 mm, which, when focused onto the sample through a lOx lens, 

resulted in an ablation spot size of ~ 40 pm. Data acquisition was performed by 

traversing the laser beam across each grain at a rate of 5 pm/sec. A glass reference
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standard (NIST 610) was analyzed before and after every 16 samples (n = 2 replicates 

before and after), which allowed for subsequent quantification and correction of 

instrumental drift. This same standard also was used to determine precision (Cv < 10 % in 

all cases) in estimating elemental concentrations. The Argon carrier gas (i.e., background) 

was analyzed for 60 seconds before every sample, allowing limits of detection to be 

calculated for individual samples. The conversion of the ICP-MS output data (counts/sec) 

to concentration units (pg/g) was accomplished using a combination of the X-7 software 

(Plasma Lab®) to establish integration regions and Microsoft Excel® sheet software for 

data reduction. Calcium concentrations of the standard and samples were used as an 

internal standard to correct for ablation yield differences.

4.3 Results

Calculation of pyroxene structural formulae was on the basis of four cations and six 

oxygens; Fe3+ and Fe2+ distribution calculated to provide stoichiometric proportions. The 

calculated cation values range from 3.999 to 4.018, very close to the predicted value. 

Slightly higher totals for the calculated cations could be as a result of the presence of a 

small Fe3+ occurring in the pyroxene structure as a minor component (Chai and Naldrett, 

1994). Table 1 is a report on the clinopyroxene analysis along with calculated structural 

formulae. Clinopyroxenes of the SRG are (distinctively) Mg-rich augites that merge into 

the diopside field on a pyroxene quadrilateral (Fig. 11). End-member percentage 

variations for the three types of rocks are summarized in Table 2. The Ca content is 

relatively high and varied as seen from the clinopyroxene compositional spread in the
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quadrilateral plot (Fig. 11); showing that the wollastonite content (CaSi03) ranges from 

34.36 -  45.57 %. The mole fraction of magnesium (XMg) (= Mg/[Mg + Fe2+]) falls within 

the range of 0.88 -  0.89, 0.76 -  0.87, and 0.81 -  0.86 for the clinopyroxenes, with 

maximum values decreasing slightly from ultramafic komatiite, komatiites and basaltic 

komatiites, respectively. In each case the XMg is > 0.70 and averages beyond 0.80, 

suggesting that the host rocks are from primary magma. SRG augites have higher 

wollastonite contents but slightly lower XMg than those in Barberton komatiites (Fig. 12). 

From the experimental results of Parman et al. (1997), high wollastonite contents of 

augite in komatiites indicate crystallization from a water-saturated (hydrous) magma at 

substantial pressures of -200 MPa (2 kbars). In addition, crystallization under anhydrous 

conditions at any pressure cannot produce the high wollastonite contents of the augites.

The SRG augites have lower to moderate concentrations of Al, Ti, Na and other non

quadrilateral components. The number of atoms of Al per formula unit (based on six 

oxygens) ranges from 0.075 -  0.146, with an average of 0.113 atoms in the 

clinopyroxenes o f ultramafic komatiites. These values are closer to those in komatiite 

clinopyroxenes (0.069 -  0.138 atoms, average of 0.109 atoms) but slightly lower (only on 

average) as compared to basaltic komatiite clinopyroxenes (0.058 -  0.202 atoms, average 

of 0.138 atoms). The average number of atoms of Cr in the ultramafic komatiite 

clinopyroxenes (0.019 atoms) could also be compared to that in komatiite clinopyroxenes 

(0.020 atoms). On average, clinopyroxenes in the basaltic komatiites account for the 

lowest number of atoms of Cr (0,009 atoms). The number of atoms of Ti varies from 0.01 

- 0.018 (average of 0.013 atoms) in the clinopyroxenes of ultramafic komatiites; 0.004 -
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0.016 (average of 0.008 atoms) in the komatiites, and 0.006 -  0.022 (average of 0.014 

atoms) in the basaltic komatiite clinopyroxenes. The average number of atoms of Na in 

all clinopyroxenes of the three rock groups is rather very close— 0.013 atoms in 

ultramafic komatiites, 0.012 atoms in komatiites, and 0.014 atoms in basaltic komatiites. 

The same is true for the average concentration of Mn— 0.005 atoms in ultramafic 

komatiites, 0.007 atoms in komatiites, and 0.006 atoms in clinopyroxenes of basaltic 

komatiites. The rather uniform number of atoms of non-quadrilateral components could 

indicate the differentiation of the three groups of rocks from the same parent magma.

Various trends were obtained when Si4+ was plotted against certain cations. For example, 

the plot of Si4+ - Al3+ gave a negative trend in which number of atoms of Si4+ increased 

relative to Al3+ (Fig. 13). Such a pattern might be due to substitution phenomenon during 

crystallization, wherein, as Si4+ decreased in the tetrahedral (T-) site of the pyroxene 

structure, there was a subsequent increase in the same site by Al3+. A similar negative 

linear relationship is obtained for the Si4+ - Ti4+ plot. So, Al3+ and Ti4+ appear to behave 

alike with respect to Si4+. The discrepancy of tetrahedral Si4+ is compensated by Al3+, but 

Al3+ occupies both tetrahedral and octahedral sites. A negative trend between Ti4+ and 

Si4+ may suggest either that Ti4+ is more competitive in occupying the octahedral site 

than Al3+ or that replacement o f Al3+ for Si4+ demands an efficient charge balance in the 

octahedral site of the pyroxene structure (Chai and Naldrett, 1994).

A number of elemental couples illustrate a positive correlation with respect to charge- 

balance maintenance in the pyroxene structure (Table 3). The most common
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substitutional pair in all three groups of rocks is Al17 -  A1VI. Other important 

substitutional pairs include: A1IV -  Ti, Na -  Ti, Fe2+- Ti, and Fe2+- Mn. Cr -  Na and Cr -  

Ti substitution is important only in ultramafic komatiite clinopyroxenes. Thus, the most 

significant non-quadrilateral substitutional molecules in all the three groups of pyroxenes 

are: CaTiAkOe, NaTiSiA106 and CaNaMnAlSiC>6. The first two-named substitutional 

molecules are in agreement with Beccaluva et al. (1989).
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^ ------------------Legend:
•  Ultramafic komatiite (sample WP-00-8)
♦  Komatiite (sample ROQ-95-21A)

O Komatiite (sample ROQ-95-21B)

■  Basaltic komatiite (sample ROQ-95-2)

□  Basaltic komatiite (sample ROQ-95-12A)

•  Ultramafic komatiite (sample WP-00-8)
♦  Komatiite (sample ROQ-95-21 A)

O Komatiite (sample ROQ-95-21B)

■  Basaltic komatiite (sample ROQ-95-2)

□  Basaltic komatiite (sample ROQ-95-12A)

CaSi03

CaMgSi03 CaFeSi03

Augite

/
MgSi03 FeSi03

Fig. 11: Clinopyroxene compositions from SRG komatiites and related rocks, plotted on the

pyroxene quadrilateral. The clinopyroxenes are Mg-rich augites.
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Fig. 12: Wollastonite content (molecular %) versus mole fraction of magnesium (XMg) (=Mg/[Mg 

+ F e2+]) for clinopyroxenes in SRG komatiitic rocks. The large grey shaded field represents the 

compositions of augites in Barberton komatiites at high pressure (2 Kilobars). The smaller grey 

field represents experimentally produced augites at low pressure (1 bar). Refer to Fig. 11 for 

symbols. Modified after Parman et al. (1997)
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4.4 Clinopyroxene and Original Tectonic Settings

Nisbet and Pearce (1977) reviewed work relating the chemical composition of igneous 

clinopyroxenes to the nature of their host rocks. The geochemical characteristics of 

preserved primary clinopyroxenes may be used to identify original magmatic affinities 

because the composition of these minerals is related to the chemistry of the host lava 

(Nisbet and Pearce, 1977). A similar approach has been taken by some workers, such as, 

Leterrier et al. (1982), Beccaluva et al. (1989), Parman et al. (1997), Yaliniz and 

Goncuoglu (1999), and Shimizu et al. (2005). Consequently, these data help constrain the 

original tectonic setting(s) of komatiitic rocks.

4.4.1 The Tectonic Discrimination Diagrams of Nisbet and Pearce (1977)

Nisbet and Pearce (1977) investigated the relationship between the composition of calcic 

clinopyroxenes from basalts of different magma types and tectonic settings. They 

distinguished between the following magma types:

>  Ocean Floor Basalts (OFB) — These basalts are plume related.

>  Volcanic Arc Basalts (VAB) —  Subduction related. These basalts are erupted

above subduction zones in island arcs or at active continental margins.

>  Within Plate Tholeiitic Basalts (WPT) —  plume related. As the name implies, these

basalts are erupted within plates in oceanic islands or continental rifts.

>  Within Plate Alkali Basalts (WPA) —  plume related.
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WPA magmas are characterized by high concentrations of T i02, AI2O3 and Na20 . High- 

Ti clinopyroxenes typically crystallize from silica-undersaturated magmas. The 

abundance of Ti and Al in clinopyroxenes reflects that in the magmas from which they 

crystallized and the proportion of these elements increases from subalkaline through 

tholeiitic, alkaline to peralkaline magmas. The clinopyroxenes of WPT have higher Ti, 

Al, Fe and Mn than those in VAB (Nisbet and Pearce, 1977).

The tectonic discrimination diagrams of Nisbet and Pearce (1977) are based on various 

combinations of: Si02, TiC>2, AI2 O3 , FeO (total iron), MnO, MgO, CaO and Na20 .

4.4.1.1 Observation and Interpretation

The Ti02 -  MnO -  Na20  discrimination diagram (Fig. 14) does not seem to be useful in this 

study because a greater proportion of the points plot in the ‘all’ field —  D.

Figure 15 shows the relationship between the aluminum content o f the SRG 

clinopyroxenes and the extent of silica saturation of the magma from which the crystals 

were formed. It can be observed that the clinopyroxenes originated from subalkaline 

(non-alkaline) magmas. This distinguishes WPA from being the possible magma type for 

rocks of the SRG. There is an overlap between three magma types (VAB, OFB and 

WPT) which cannot be conveniently distinguished on the basis of the Si02-Al2C>3 

diagram. Nonetheless, perhaps WPT could be eliminated because it has lower SiC>2 and 

higher AI2 O3  than VAB. It is, however, important to note from the diagram that
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clinopyroxenes from one of the two basaltic komatiite samples {i.e., sample ROQ-95- 

12A) appear to be Al-enriched as they plot near the border between subalkaline and 

alkaline magmas.

The Si02-TiC>2 diagram (Fig. 16) helps to discriminate the possible magma type with 

which clinopyroxenes of the SRG are associated. It reveals that the clinopyroxenes are 

low in Ti(>2 (< 1 wt %) but have comparatively high SiC>2 (> 49 wt %). Hence, WPA 

magma which contains high TiC>2 and low SiC>2 concentrations is eliminated as a 

possibility. According to Nisbet and Pearce (1977), WPT magma contains more TiC>2 

than VAB magma and so cannot be safely distinguished by this technique. VAB magmas 

have high SiC>2 and low TiC>2; these criteria are in perfect agreement with the plot. 

Nonetheless, some of the points overlap with the field of OFB (characterized by a spread 

from low to high TiC>2 concentrations with simultaneous decreasing SiC>2 concentrations). 

A similar overlap is reflected in Fig. 17.

One of the techniques of Nisbet and Pearce (1977) employs a statistical approach 

involving discriminant functions (FI and F2) containing eigenvectors (Fig. 18). 

Clinopyroxenes from rocks of the SRG cluster in the VAB/OFB field. Although the 

diagram could not discriminate between VAB and OFB, it nonetheless eliminates WPA 

and WPT.
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4.4.1.2 Summary

Although the discrimination diagrams of Nisbet and Pearce (1977) are of limited use in 

distinguishing VAB, OFB and WPT magmas; they do link VAB with subduction zones 

and OFB with plume settings. Unfortunately, overlapping data between the two magma 

types on the diagrams creates ambiguity, so no firm conclusion can be drawn from Nisbet 

and Pearce’s (1977) plots. Either the diagrams do not effectively discriminate between 

the two magma types, or both tectonic processes were in fact responsible for 

emplacement of the SRG rocks. Hence, other tectonic discrimination techniques should 

be employed.
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TiO,

Key to fields:

A = VAB

B = OFB

D = all

E = VAB + WPT + WPA

F = VAB + WPA

G = WPA

MnO Na20

Ultramafic komatiite (sample WP-00-8)

Komatiite (sample ROQ-95-21A)

Komatiite (sample ROQ-95-2 IB)

Basaltic komatiite (sample ROQ-95-2)

Basaltic komatiite (sample ROQ-95-12A)

Fig. 14: Ti02 -  MnO -  Na20  (wt %) discrimination diagram using clinopyroxenes of the SRG. 

Abbreviations: VAB = volcanic arc basalts; OFB = ocean floor basalts; WPA = within plate alkali 

basalts; WPT = within plate tholeiitic basalts. (Based on Nisbet and Pearce, 1977)
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Fig. 15: Si02 -  A120 3 bivariate plot for discriminating clinopyroxenes from different magma 

types. Note that most of the clinopyroxenes from the SRG fall into the Subalkaline (non-alkaline) 

categoiy. Diagram is modified from Nisbet and Pearce (1977).
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Fig. 16: Si02 -  Ti02 bivariate plot for discriminating clinopyroxenes of the SRG. Diagram is 

modified from Nisbet and Pearce (1977).
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Fig. 17: MgO/FeO -  HO2 discrimination technique employing clinopyroxenes of the SRG. Refer 

to Fig. 16 for symbols. This diagram is modified from Nisbet and Pearce (1977).
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Fig. 18: FI -  F2 (discriminant functions) plot for clinopyroxenes of the SRG. Refer to Fig. 16 for 

symbols. Abbreviations: VAB = volcanic arc basalts; OFB = ocean floor basalts; WPT = within 

plate tholeiitic basalts; WPA = within plate alkali basalts. {Based on Nisbet and Pearce, 1977)
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4.4.2 The Tectonic Discrimination Diagrams of Leterrier et al. (1982)

By using calcic clinopyroxene phenocrysts from recent basaltic rocks of various magma 

types, Leterrier et al. (1982) presented a number o f discrimination diagrams for use in 

identifying original tectonic settings irrespective of metamorphic or metasomatic 

alterations. The discrimination diagrams are based on the Ti, Cr, Ca, Al and Na contents, 

and give a level of confidence of greater than 80%. The approach of Leterrier et al. 

(1982) was aimed at attempting to clarify the tectonic discrimination diagrams of Nisbet 

and Pearce (1977).

Leterrier et al. (1982) distinguished between three basaltic magma types, namely:

>  Alkali basalts

>  Non-orogenic tholeiites

>  Orogenic basalts

This distinction was based on the observation that the composition of clinopyroxenes 

varies according to the chemistry of their host lavas (e.g., Nisbet and Pearce, 1977; 

Leterrier et al., 1982).

Alkali basalts are generally low in Si, but have higher Ti, total Al, and Na contents 

compared to other types of basalts. The group of alkali basalts includes rocks from 

oceanic and continental intra-plate volcanism (which is the same as WPA and WPT, 

respectively, of Nisbet and Pearce, 1977).
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Non-orogenic tholeiites are rich in Ti and Cr. They include oceanic island tholeiites, 

abyssal tholeiites, back-arc basin tholeiites, continental tholeiites and transitional basalts 

from rift zones. Non-orogenic tholeiites are formed in spreading zones (plume related) 

and are equivalent to the OFB of Nisbet and Pearce (1977).

Orogenic basalts are low in Ti and Cr when compared to basalts from spreading areas 

(Leterrier et al., 1982). They include island arc tholeiites and calc-alkali basalts from 

active continental margins, and island arc shoshonitic lavas. These magmas are 

subduction-related and could be compared to the VAB of Nisbet and Pearce (1977).

Figures 19, 20 and 21 are the results obtained on inputting the SRG clinopyroxene data 

into the discrimination diagrams of Leterrier et al. (1982).

4.4.2.1 Observation and Interpretation

Figure 19 shows that rocks of the SRG are not related to alkali basalt magmas, thus, 

supporting the elimination of oceanic and continental intra-plate volcanism (WPA and 

WPT) from being the possible tectonic settings of these rocks. This diagram indicates that 

the host magmas of the samples are either non-orogenic tholeiites (OFB) or orogenic 

basalts (VAB). Figure 20 indicates clinopyroxenes are from the two families. A tholeiitic 

character for these clinopyroxenes is apparent in Fig. 21 (note that as a result of an error 

in the initial formula stated in Leterrier et al. (1982), the regression equation has been 

amended in this work).
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4.4.1.2 Summary

Non-orogenic tholeiites of the SRG, which are equivalent to the OFB of Nisbet and 

Pearce (1977), are of plume origin. In addition, the occurrence of orogenic basalts, which 

are equivalent to the VAB of Nisbet and Pearce (1977), infers a subduction origin. This, 

therefore, implies that the tectonic discrimination techniques of Leterrier et al. (1982) are 

consistent with those of Nisbet and Pearce (1977) in the sense, that the two techniques 

present results that support both plume and subduction origins for the SRG rocks.
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Fig. 19: Ti -  Ca + Na (atomic proportions) tectonic discrimination diagram for clinopyroxenes 

(Cpx) from either alkali basalts or tholeiitic and calcalkali basalts. The line separates the two 

groups and shows that the last-two-named magma types (non-alkali basalts) are supported for the 

SRG. Modified after Leterrier et al. (1982)
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Fig. 20: Ti + Cr -  Ca (atomic proportions) tectonic discrimination diagram for non-alkali basalts 

between non-orogenic basalts and orogenic basalts. The diagram illustrates that clinopyroxenes of 

the SRG are from both non-orogenic and orogenic basalts. Modified after Leterrier et al. (1982)
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Fig. 21: Ti -  Al(tot.) (atomic proportions) diagram distinguishing between clinopyroxenes in 

calc-alkali and tholeiitic basalts. It could be seen that the samples are closely related to the 

tholeiitic domain. Modified after Leterrier et al. (1982)
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4.4.3 The Tectonic Discrimination Diagrams of Beccaluva et al. (1989)

Beccaluva et al. (1989) assembled over 500 microprobe analyses for igneous calcic- 

clinopyroxenes in basaltic rocks from various low-Ti to high-Ti ophiolitic complexes. 

They observed that the composition of clinopyroxenes was related to the host magma 

type and original tectonic setting. Beccaluva et al. (1989) subdivided ophiolitic basalts 

into two groups, namely:

>  Very low-Ti and low-Ti ophiolitic basalts

>  High-Ti ophiolitic basalts

Very low-Ti and low-Ti ophiolitic basalts have low AI2O3, NaaO and high SiC>2 contents. 

These basalts are related to island arc tholeiites (IAT) and boninites (BON), respectively, 

which are generated above subduction zones (Beccaluva et al., 1989). This group of 

basalts is equivalent to the VAB of Nisbet and Pearce (1977) and the Orogenic basalts of 

Leterrier et al. (1982).

High-Ti ophiolitic basalts have high AI2O3, Na20  and low Si02 contents and are best 

equated to mid-ocean ridge basalts (MORB) of spreading ridges (Beccaluva et al., 1989). 

This group is equivalent to the OFB of Nisbet and Pearce (1977) and the Non-orogenic 

basalts of Leterrier et al. (1982).

The tectonic discrimination diagrams of Beccaluva et al. (1989) are based on various 

combinations of oxides and cations (Figs. 22 to 27).
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4.4.3.1 Observation and Interpretation

A Ca-Mg-Fe diagram was used by Beccaluva et al. (1989) to subdivide ophiolitic basalts 

into very low-Ti and low-Ti basalts, as well as, high-Ti basalts. Clinopyroxenes from 

very low-Ti and low-Ti basalts plot around the endiopside-augite boundary, whereas 

those from high-Ti basalts plot in the augite-to-salite field. Using this diagram, it can be 

seen from Fig. 22 that the studied clinopyroxenes plot in the endiopside-augite boundary; 

indicating that they are related to very low-Ti and low-Ti basalts.

The Ti02-Na20-Si02 (wt %) diagram in Fig. 23 seems to support both MORB and IAT 

magma types for rocks o f the SRG. With increasing Si(>2 concentrations and decreasing 

TiC>2 and Na20  concentrations, clinopyroxenes compare favourably with those of IAT, 

BON and BA-A (basaltic andesites and andesites). The reverse is the case for 

clinopyroxenes from MORB and WOPB (within ocean plate basalts). These 

clinopyroxenes plot within the IAT field. This characteristic pattern is also evident in 

Figs. 24 and 25. In Figs. 26 and 27, the points plot partly in the fields of IAT, BON and 

BA-A, all of which are related to subduction origin.

4.4.3.2 Summary

From Fig. 22, positioning of the clinopyroxenes along the endiopside-augite boundary 

signifies very low- and low-Ti basalts association, which is further revealed in Figs. 25 to 

27. Based on the paradigm that the composition of clinopyroxenes reflects the 

composition of their host magmas (Nisbet and Pearce, 1977; Capedri and Venturelli,
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1979; Leterrier et al., 1982; Beccaluva et al., 1989; Yaliniz and Goncuoglu, 1999), it 

could be reasoned (from the results) that rocks of the SRG originated in a subduction 

zone setting.

The possible affinity with mid-ocean ridge basalts and within ocean plate basalts magmas 

may be significant (Figs. 23 to 27), even though the points plot in only a narrow zone in 

some of the diagrams. However, despite the overlaps in the resulting diagrams, the 

tectonic discrimination techniques of Beccaluva et al. (1989) indicate that rocks of the 

SRG correspond to island arc tholeiites, boninites, and basaltic andesites and andesites. 

These three magma types are affiliated with a subduction zone environment.
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Fig. 22: Classification of clinopyroxenes into (a) very low- and low-Ti, and (b) high-Ti 

association, based on their positioning in the endiopside-augite and augite-to-salite fields, 

respectively. Note that the clinopyroxenes plot around the endiopside-augite boundary, indicating 

their host magma types are very low- and low-Ti basalts. The diagram is modified after 

Beccaluva et al. (1989) and Deer et al. (2001)
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Fig. 23: Ti02 -  Na20  -  Si0 2 (wt %) discrimination diagram for clinopyroxenes from basalts of 

different tectonic settings. Abbreviations: WOPB -  within ocean plate basalts; MORB = mid

ocean ridge basalts; IAT = island arc tholeiites; BA-A = basaltic andesites and andesites; BON = 

boninites. Overlaps occur but note the perfection with which clinopyroxenes of the SRG classify 

as IAT. See Fig. 22 for symbols. The diagram is modified after Beccaluva et al. (1989).

71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.0

BON
BA-A

IAT»
GO

MORB \ .WOPB

0.1 0.2 0.4 0.50.30.0

A l (tot.) 

Legend
Ultramafic komatiite (sample WP-00-8) ' v  

Komatiite (sample ROQ-95-21A) \

Komatiite (sample ROQ-95-21B) 1

Basaltic komatiite (sample ROQ-95-2) /

Basaltic komatiite (sample R O Q -95-12A )y^

Fig. 24: Si -  Al (tot.) (atomic proportions) covariation discrimination technique. There are 

overlaps but note how the points fit into IAT field. Abbreviations: WOPB = within ocean plate 

basalts; MORB = mid-ocean ridge basalts; IAT = island arc tholeiites; BA-A = basaltic andesites 

and andesites; BON = boninites. This diagram is modified after Beccaluva et al. (1989).
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Fig. 25: Al (tot.) -  Ti (atomic proportions) for clinopyroxenes of the SRG. Note also how well the 

points plot in IAT field. Some points plot in a narrow area of the MORB field but none plots 

within the WOPB field. Abbreviations: WOPB = within ocean plate basalts; MORB = mid-ocean 

ridge basalts; IAT = island arc tholeiites; BA-A = basaltic andesites and andesites; BON = 

boninites. Modified after Beccaluva et al. (1989)
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Fig. 26: Na -  Ti (atomic proportions) discrimination technique. Affinity with BA-A, BON and 

IAT is evident and cluster only within a narrow zone o f the MORB field. None of the points plots 

in the WOPB field. Abbreviations: WOPB = within ocean plate basalts; MORB = mid-ocean 

ridge basalts; IAT = island arc tholeiites; BA-A = basaltic andesites and andesites; BON = 

boninites. Modified after Beccaluva et al. (1989)
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Fig. 27: Ti -  A1IV (atomic proportions) covariation discrimination technique. Note that there is no 

meaningful plot of points within the MORB field. Most points plot in the BON, IAT and WOPB 

fields. Abbreviations: WOPB = within ocean plate basalts; MORB = mid-ocean ridge basalts; 

IAT = island arc tholeiites; BA-A = basaltic andesites and andesites; BON = boninites. Modified 

after Beccaluva et al. (1989)
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4.5 Discussion

Application of the discrimination plots to the SRG rocks provides mixed results but 

nonetheless places some constraints on the nature of the original tectonic setting of the 

SRG. It has been seen on one hand that the tectonic discrimination diagrams of Nisbet 

and Pearce (1977) and Leterrier et al. (1982) favour both processes of plume and 

subduction origin. The techniques of Beccaluva et al. (1989), on the other hand, point 

toward a subduction origin. The lack of complete agreement among the three 

discrimination techniques renders it difficult to advance a general conclusion.

For the purpose of comparison, analyses of clinopyroxenes from the SRG were added to 

a database containing a total of 32 analyses of calcic clinopyroxenes in komatiites from 

Barberton Mountainland Greenstone belt, South Africa (Parman et al., 2003); Belingwe 

Greenstone belt, Zimbabwe (Shimizu et al., 2005); and Gorgona Island, Columbia 

(Aitken and Echeverria, 1984; Echeverria, 1980) (Table 4).

The resulting discrimination diagrams of Leterrier et al. (1982) show that all the 

clinopyroxenes from the four localities (including the SRG) are related to tholeiitic 

basalts (Fig. 28) rather than alkali basalt magma (Fig. 29); and that Gorgona komatiites 

resemble non-orogenic basalts formed by plumes (Fig. 30). The discrimination diagrams 

of Beccaluva et al. (1989) further support the idea that Gorgona komatiites are of plume 

origin, and that Barberton, Belingwe and SRG komatiites are similar in composition 

because they show close association with boninites, basaltic andesites and andesites, and
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island arc tholeiites which are thought (Beccaluva et al., 1989; Grove and Parman, 2004) 

to form in a subduction zone setting (Figs. 31 to 34).

Barberton, Belingwe and SRG clinopyroxenes have lower Al contents when compared to 

plume-related Gorgona clinopyroxenes (Figs. 31 to 33). The Gorgona clinopyroxenes 

have relatively high Ti contents (Fig. 34); and they resemble high-Ti basalts as they plot 

in the augite-to-salite field on a Ca-Mg-Fe diagram (Fig. 35). High-Ti concentrations are 

common in ocean floor basalts and mid-ocean ridge basalts of plume origin. On the other 

hand, Barberton, Belingwe and SRG clinopyroxenes straddle the augite-endiopside 

boundary, consistent with their very low- to low-Ti contents, characteristic of boninites 

and island arc tholeiites which are generated above subduction zones (Beccaluva et al., 

1989).

Clinopyroxenes from Gorgona komatiites are distinguished by having higher 

concentrations of AI2O3 and Ti02 . Gorgona komatiites are reported to have been 

emplaced by plumes (Arndt et al., 1998; Nna-Mvondo and Martinez-Frais, 2005). 

Although the origin o f Barberton and Belingwe komatiites is still a controversial issue, 

the compositions of their clinopyroxenes seem to be much closer to SRG clinopyroxenes. 

The elinopyroxene compositions of Barberton, Belingwe and SRG clinopyroxenes can be 

better compared to those of boninites, island arc tholeiites and basaltic andesites and 

andesites formed in subduction zones.
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In another similar approach, analyses of clinopyroxenes from the SRG were added to a 

database containing a total of 46 analyses of calcic clinopyroxenes from rocks of various 

magma types and localities (Table 5). In every trial plot involving Ti and Na, it could be 

observed that the SRG clinopyroxenes cluster with those from island arc tholeiites, low- 

Ti ophiolitic basalts, boninites and basaltic andesites (Figs. 36 to 38). These rocks are 

known to evolve in a subduction zone setting. Basaltic rocks that could be compared to 

those from mid-ocean ridges and within ocean plates are clearly distinguished in these 

diagrams. Clinopyroxenes of the SRG are high in SiC>2 (49.96 - 53.97 wt %), CaO (17.33 

- 21.97 wt %), and MgO (14.88 - 19.29 wt %). However, they have low Ti(>2 (0.15 - 0.78 

wt %) and Na20  (0.14 - 0.24 wt %) contents compared to alkali basalts, mid-ocean ridge 

basalts and back-arc basalts (Capedri and Venturelli, 1979; Leterrier et al., 1982; 

Beccaluva et al., 1989; Lapierre et al., 1992). These geochemical characteristics are 

synonymous with eastern Mediterranean basalts and the ophiolites of Troodos (Cyprus), 

Vourinos & Pindos (Greece), Sarikaraman (Turkey); and the basalts of Betts Cove 

(Newfoundland, Canada), all of which are reported to have island arc affinity (Beccaluva 

et al., 1989; Yaliniz and Goncuoglu, 1999). Thus, on the basis of such close similarities, 

it can be argued that rocks of the SRG evolved in a subduction zone environment. This 

inference can be tested using trace element data for the SRG clinopyroxenes.
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Fig. 28: Ti -  Al (tot.) (atomic proportions) diagram distinguishing between clinopyroxenes in 

calc-alkali and tholeiitic basalts. The figure shows that SRG, Barberton, Belingwe and Gorgona 

clinopyroxenes are more closely related to tholeiitic basalts than to calc-alkali basalts. Modified 

after Leterrier et al (1982)
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Fig. 29: Ti -  Ca + Na (atomic proportions) diagram comparing clinopyroxenes (Cpx) from the 

SRG to those from Barberton, Belingwe and Gorgona komatiitic rocks. The line separates two 

magma types and indicates that the host rocks in all four localities are of tholeiitic and calc-alkali 

affinity. Modified after Leterrier et al. (1982)
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Fig. 30: Tectonic discrimination diagram of Ti + Cr -  Ca (atomic proportions) for non-alkali 

basalts between non-orogenic basalts and orogenic basalts. The SRG, Barberton and Belingwe 

clinopyroxenes straddle along the line of distinction for which no assertion could be made, but 

Gorgona clinopyroxenes are clearly from non-orogenic basalts. Modified after Leterrier et a l 

(1982)
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Fig. 31: Si -  Al (tot.) (atomic proportions) covariation discrimination diagram. Note the parallel 

relationship between SRG and Belingwe clinopyroxenes. Note also the close relationship and 

trend o f Gorgona clinopyroxenes with the WOPB field. Abbreviations: WOPB = within ocean 

plate basalts; MORB = mid-ocean ridge basalts; IAT = island arc tholeiites; BA-A = basaltic 

andesites and andesites; BON = boninites. This diagram is modified after Beccaluva et al. (1989).
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/ •

Legend:
•  Ultramafic komatiite (sample WP-00-8)
♦  Komatiite (sample ROQ-95-21A)
O Komatiite (sample ROQ-95-21B)
■ Basaltic komatiite (sample ROQ-95-2)
□  Basaltic komatiite (sample ROQ-95-12A) 
H Barberton komatiite 
B Gorgona komatiite 
► Belingwe komatiite 
C* Belingwe basaltic komatiite

Fig. 32: Ti -  A1IV (atomic proportions) covariation discrimination diagram. The figure shows 

similar character between SRG, Barberton and Belingwe clinopyroxenes to BA-A, BON and 

IAT. Gorgona clinopyroxenes plot out o f these fields. Abbreviations: WOPB = within ocean 

plate basalts; MORB = mid-ocean ridge basalts; IAT = island arc tholeiites; BA-A = basaltic 

andesites and andesites; BON = boninites. Modified after Beccaluva et al. (1989)
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o  Komatiite (sample ROQ-95-21B)
■ Basaltic komatiite (sample ROQ-95-2)
□ Basaltic komatiite (sample ROQ-95-12A) 
B Barberton komatiite 
HI Gorgona komatiite
► Belingwe komatiite
>  Belingwe basaltic komatiite

Fig. 33: Al (tot.) -  Ti (atomic proportions) discrimination diagram indicating close relationship 

between SRG, Barberton and Belingwe clinopyroxenes to one another and to BA-A, BON and 

IAT magmas which are of subduction origin. Gorgona clinopyroxenes plot out o f these fields. 

Abbreviations: WOPB = within ocean plate basalts; MORB = mid-ocean ridge basalts; IAT = 

island arc tholeiites; BA-A = basaltic andesites and andesites; BON = boninites. Modified after 

Beccaluva et al. (1989)
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H Gorgona komatiite 
► Belingwe komatiite 
1> Belingwe basaltic komatiite

Fig. 34: Na -  Ti (atomic proportions) discrimination diagram. Although there is overlap, the 

affinity of SRG, Barberton and Belingwe clinopyroxenes with BA-A, BON and IAT is evident. 

On the other hand, Gorgona clinopyroxenes plot well in the MORB and WOPB fields which 

indicate a plume origin. Abbreviations: WOPB = within ocean plate basalts; MORB = mid-ocean 

ridge basalts; IAT = island arc tholeiites; BA-A = basaltic andesites and andesites; BON = 

boninites. Modified after Beccaluva et al. (1989)

85

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Legend:
•  Ultramafic komatiite (sample WP-00-8)
♦  Komatiite (sample ROQ-95-21A)
O Komatiite (sample ROQ-95-21B)
■ Basaltic komatiite (sample ROQ-95-2)
□ Basaltic komatiite (sample ROQ-95-12A) 
B Barberton komatiite 
H Gorgona komatiite
► Belingwe komatiite
>  Belingwe basaltic komatiite

CaSiO,

Diopside Hedenbergite

Salite Ferrosahte

Augite Ferroaugite

/
MgSiO FeSiO,

Fig. 35: Classification of clinopyroxenes into (a) very low- and low-Ti, and (b) high-Ti 

association, based on their positioning in the endiopside-augite and augite-to-salite fields, 

respectively. SRG clinopyroxenes compare well with Barberton and Belingwe clinopyroxenes 

because they plot around the endiopside-augite boundary, thus, classifying their host magma 

types as very low- and low-Ti basalts. Contrarily, Gorgona clinopyroxenes plot in the augite-to- 

salite field, classifying its host magma type as high-Ti basalts. The diagram is modified after 

Beccaluva et al. (1989) and Deer et al. (2001)
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Legend;__________________________________________________
Rock type Location (examples) Basaltic equivalent

for comparison
A Ophiolitic basalts Mt. Maggiorasca & Mt. Penna-Quatese: Northern Apennines, External Lingurides ( Italy). Mid ocean ridge basalts

A Ophiolitic basalts Mt. Bocco-Case Arena & Framura: Northern Apennines, Internal Lingurides (Italy). W ithin ocean plate basalts

▼ Alkali basalts Intracontinental and oceanic islands „  „ „ „

®  Ophiolitic basalts M athia M ine & Akrounda: Troodos (Cyprus); Krapa Vourino & Pindos (Greece). Island arc tholeiites

€ ' Ophiolitic gabbros Sarikaraman: Central Anatolia (Turkey). „  „  „

+  Basalts Mathiati Mine & Ora: Troodos (Cyprus); Asprokambo Vourinos (Greece). Boninites

X Basalts Grevena District: Pindos (Greece); Betts Cove, Newfoundland (Canada). Basaltic andesites and andesites

^  p  Komatiites and related rocks. (This study)
ma

Fig. 36: Plots of Ti02 against other oxides in clinopyroxenes from rocks of the SRG and from 

various localities with basaltic equivalents.

87

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig. 36 continued:
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Legend:
Rock type Location (examples) Basaltic equivalent 

for comparison
▲ Ophiolitic basalts Mt. Maggiorasca & Mt. Penna-Quatese: Northern Apennines, External Lingurides ( Italy). Mid ocean ridge basalts

A  Ophiolitic basalts Mt. Bocco-Case Arena & Framura: Northern Apennines, Internal Lingurides (Italy). 

T  Alkali basalts Intracontinental and oceanic islands

® Ophiolitic basalts Mathia Mine & Akrounda: Troodos (Cyprus); Krapa Vourino & Pindos (Greece).

© Ophiolitic gabbros Sarikaraman: Central Anatolia (Turkey).

+  Basalts Mathiati Mine & Ora: Troodos (Cyprus); Asprokambo Vourinos (Greece).

X Basalts Grevena District: Pindos (Greece); Betts Cove, Newfoundland (Canada).

+ p  Komatiites and related rocks. (This study)

Within ocean plate basalts

Island arc tholeiites

Boninites 

Basaltic andesites and andesites
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A Ophiolitic basalts Mt. Bocco-Case Arena & Framura: Northern Apennines, Internal Lingurides (Italy). W ithin ocean plate basalts

▼ Alkali basalts Intracontinental and oceanic islands » .. »

O Ophiolitic basalts Mathia M ine & Akrounda: Troodos (Cyprus); Krapa Vourino & Pindos (Greece). Island arc tholeiites

e Ophiolitic gabbros Sarikaraman: Central Anatolia (Turkey). .. »

+ Basalts Mathiati Mine & Ora: Troodos (Cyprus); Asprokambo Vourinos (Greece). Boninites

X Basalts Grevena District: Pindos (Greece); Betts Cove, Newfoundland (Canada). Basaltic andesites and andesites

•

■ o
Komatiites and related rocks. (This study)

Fig. 37: Plots of Na20  against other oxides in clinopyroxenes from rocks of the SRG and from 

various localities with basaltic equivalents.
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Fig. 37 continued:

60

50

40
0 1 2

Na20  (wt %)

0s

£
o'
u r

20

I
9pH

10

0
0 21

N^O (wt %) Na20  (wt %)

Legend: I__________________________________________________________________
Rock type Location (examples) Basaltic equivalent

for comparison
▲ Ophiolitic basalts Mt. Maggiorasca & Mt. Penna-Quatese: Northern Apennines, External Lingurides ( Italy). Mid ocean ridge basalts

A Ophiolitic basalts Mt. Bocco-Case Arena & Framura: Northern Apennines, Internal Lingurides (Italy). Within ocean plate basalts

▼ Alkali basalts Intracontinental and oceanic islands „ „ „  „

®  Ophiolitic basalts Mathia M ine & Akrounda: Troodos (Cyprus); Krapa Vourino & Pindos (Greece). Island arc tholeiites

® Ophiolitic gabbros Sarikaraman; Central Anatolia (Turkey). „ „  „

+  Basalts Mathiati Mine & Ora: Troodos (Cyprus); Asprokambo Vourinos (Greece). Boninites

X Basalts Grevena District: Pindos (Greece); Betts Cove, Newfoundland (Canada). Basaltic andesites and andesites

^ ^  Komatiites and related rocks. {This study)

90

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



%
A A M

2 4

Ti02 + Na20  (wt %)

0s

+
Ouu-

20

10

0
640 2

Ti02 + Na,0 (wt %)

Legend: _______________________________________________________________
Rock type Location (examples) Basaltic equivalent

for comparison
▲ Ophiolitic basalts Mt. Maggiorasca & Mt. Penna-Quatese: Northern Apennines, External Lingurides ( Italy). Mid ocean ridge basalts

A Ophiolitic basalts Mt. Bocco-Case Arena & Framura: Northern Apennines, Internal Lingurides (Italy). Within ocean plate basalts

T  Alkali basalts Intracontinental and oceanic islands „ „ „

®  Ophiolitic basalts Mathia M ine & Akrounda: Troodos (Cyprus); Krapa Vourino & Pindos (Greece). Island arc tholeiites

© Ophiolitic gabbros Sarikaraman: Central Anatolia (Turkey). „ „ „

+  Basalts Mathiati Mine & Ora: Troodos (Cyprus); Asprokambo Vourinos (Greece). Boninites

X Basalts Grevena District: Pindos (Greece); Betts Cove, Newfoundland (Canada). Basaltic andesites and andesites

^  ̂  Komatiites and related rocks. (This study)
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Fig. 38: Plots showing possible combinations of Ti02 & Na20  with other oxides.
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4.6 Trace Element Investigation

The rare earth element (REE) data of SRG clinopyroxenes have been averaged for each 

of the three groups of rock types so as to obtain a general picture of the various patterns 

(Table 6). In order to assess the chemical effects of metamorphism on the samples, the 

approach of Parman et al. (2003) has been applied. This involves calculating the trace 

element composition of a hypothetical augite in equilibrium with the melt, and comparing 

it with the analyzed cores of augite crystals preserved in that sample. The hypothetical 

augites were calculated using the respective whole-rock compositions (Table 6) and 

clinopyroxene-melt partition coefficients. Unlike Parman et al. (2003), the partition 

coefficient values in this work are based on those of tholeiitic basalts as determined by 

Fujimaki et al. (1984), since the SRG clinopyroxenes are better related to this type of 

magma (Fig. 21). In komatiitic magmas, olivine and trace amounts of spinel are the only 

phases to have crystallized before the appearance of augite. The amount of olivine that 

crystallizes before augite nucleates is -30 % (Parman et al., 2003). The calculated melt 

compositions have not been corrected for olivine and spinel addition/subtraction because 

these minerals have low REE concentrations such that their omission will not have any 

significant effect on the relative concentrations of the elements (Parman et al., 2003; 

Shimizu et al., 2005).

REE compositions of augites calculated from the whole-rock compositions of the 

samples display analogous patterns to the analyzed, averaged augite cores (Fig. 39). Such 

harmonization indicates that the REE have been immobile in the whole-rock samples 

(Parman et al., 2003). Agreement is especially displayed by the overlap in the komatiite
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samples (ROQ-95-21A, ROQ-95-21B) and in one of the two basaltic komatiite samples 

(ROQ-95-2). The calculated augite composition for the cumulate sample (ultramafic 

komatiite —  WP-00-8) is lower than the others because the melt composition is diluted 

by the presence of olivine (Parman et al., 2003); this is manifested by the comparatively 

low REE values for the whole-rock sample (Table 6). There is a general light rare earth 

element (TREE) depletion and flat heavy rare earth element (HREE) pattern in the 

analyzed augites (Fig. 39), consistent with known partitioning of trace elements between 

clinopyroxene and melt. The degree of LREE depletion is similar in the analyzed augites: 

(La/Sm)N = 0.22 in sample WP-00-8 (ultramafic komatiite); (La/Sm)N = 0.20 in sample 

ROQ-95-2 IB (komatiite); 0.24 and 0.25 in the basaltic komatiite samples (ROQ-95-2 and 

ROQ-95-12A, respectively). Sample ROQ-95-21A (komatiite), however, records the 

lowest ratio ([La/Sm]N = 0.13); indicating that it is more LREE depleted than the others. 

Flat HREE pattern is shown in the (G(J/Y)n ratio, varying almost laterally from 0.80-1.18.

The primitive mantle-normalized (McDonough and Sun, 1995) spidergram shows 

negative high field strength element (HFSE —  Nb, Zr, Ti and Y) anomalies relative to 

the REEs in all the samples (Fig. 40); indicating that the HFSEs are fractionated with 

respect to the more incompatible REEs. Sample ROQ-95-21A (komatiite), which has the 

lowest (La/Sm)N ratio, also records the greatest depletions in Zr and Ti. Compared to the 

other HFSEs, the anomaly shown by Y is only subtle. Ta has not been included in the 

diagram because most of the analyses indicate ‘below detection limit’. The fractionation 

of Zr-Hf in Fig. 40 is particularly striking because these two incompatible HFSEs have 

the same chemical and geochemical properties. For example, Zr and H f have the same
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ionic charge (4+) and very similar ionic radii —  0.072 nm and 0.071 nm in the six fold 

coordination, respectively, thus, they are expected to behave similarly (Westrenen et al., 

2001). In this study, Zr/Hf ratios vary between 13.94 and 20.00. Initially, Fujimaki et al. 

(1984) stated that Zr-Hf fractionation cannot be usually expected unless under special 

circumstances. If the crystallization involves garnet and/or ilmenite, this can be detected 

by the Zr and Hf abundance variations in conjunction with the REE.

4.6.1 Discussion

Even in slightly altered rocks, rare earth element (REE) patterns can faithfully represent 

the original composition of the unaltered parent (Rollinson, 1996). With respect to trace 

element contents, subduction-related lavas are typically enriched in LILE (e.g., Sr, K, Ba, 

U, Th) and depleted in the HFSEs (e.g., Nb, Ta, Zr, Hf) relative to mid-ocean ridge 

basalts (MORB). The trace element pattern has been interpreted as resulting from 

metasomatism of peridotites in the sub-arc mantle, prior to partial melting by a H20-rich 

component derived from the subducting oceanic lithosphere (Ayers et al., 1997; Johnson, 

1998; Gaetani et al., 2003). McDade et al. (2003) similarly suggest that depletion of 

HFSEs is attributed to a variety of subduction-related processes, most of which infer 

retention of the elements in a titanite (sphene, CaTiSiOs) phase in the slab during 

dehydration and/or partial melting of the metabasaltic portion of the slab or its 

sedimentary cover. Other possible titanium phases could be rutile (TiOa), ilmenite 

(FeTiOs), or perovskite (CaTiOs).

94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



From the trace element investigation in this study, negative concentration anomalies are 

observed for Nb, Zr, Ti and Y relative to the REEs (Fig. 40). As noted above, such 

occurrences are attributed to subduction-related processes; plume-related MORB do not 

show these anomalies. In Fe-Ti oxides, Ta is more compatible than Nb (Dra > I>Nb), 

meaning, Ta enters the mineral structure more easily than Nb, leaving little (if any) of 

this component in the melt (Klemme et al., 2006). This behavior is perhaps responsible 

for the extremely low concentration of Ta in the clinopyroxene analyses.

Recent experimental investigation on clinopyroxene-melt trace element partitioning has 

shown that clinopyroxene can fractionate Zr and Hf (Lundstrom et al., 1998; Hill et al., 

2000; Takawaza et al., 2000; McDade et al., 2003; Carsten et al., 2004). However, 

negative anomalies for Zr atypical of mid-ocean ridge basalts and ocean island basalts; 

this suggests that for such basalts, the clinopyroxene effect on Zr is offset by garnet 

influence, as it appears that garnet has a pronounced positive partitioning anomaly for 

both Zr and Hf, relative to Sm and Nd (Fujimaki et al., 1984; Green et al., 1989; Sun and 

McDonough, 1989; Hart and Dunn, 1993).

Trace element investigation in this study is therefore in agreement with assertions made 

earlier on the basis of major element data. The clinopyroxene trace element systematics 

support that komatiitic rocks of the SRG are better compared with subduction zone 

affinity than with those of plumes.
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Fig. 39: Cl Chondrite-normalized rare earth element patterns of augite in samples of ultramafic 

komatiite, komatiite and basaltic komatiite from the SRG, Normalizing values are after 

McDonough and Sun (1995). Thick solid lines represent the compositions of augite calculated to 

be in equilibrium with their corresponding whole rock compositions, using the clinopyroxene- 

melt partition coefficients of Fujimaki et al. (1984).
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Fig. 40: Primitive mantle-normalized multi-element diagram for clinopyroxenes in komatiitic 

rocks from the SRG. Normalizing values are those of McDonough and Sun (1995); ordering is 

according to Pearce (1983). Note the relative enrichment in LILE (Rb, Sr), and depletion in HFSE 

(Nb, Zr, Ti) relative to the rare earth elements. The pattern is indicative o f a subduction origin.
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CHAPTER 5

CONCLUSIONS

The ‘origin of komatiites’ has been a subject of research and intense debate over the 

years. At present, most of the opinions expressed are pivoted on either plumes or 

subduction processes.

It is of utmost importance to note that the results obtained in this work are exciting on 

one hand but quite challenging on the next. The tectonic discrimination diagrams of 

Nisbet and Pearce (1977) and Leterrier et al. (1982) favour both plume and subduction 

origins for komatiites of the Stoughton-Roquemaure Group. The discrimination diagrams 

of Beccaluva et al. (1989) support a subduction origin but hints of plume influence are 

also indicated. Stoughton-Roquemaure Group clinopyroxenes resemble those in 

Barberton and Belingwe komatiites, and are also associated with very low-Ti and low-Ti 

ophiolitic basalts, island arc tholeiites, boninites, and basaltic andesites and andesites. 

This similarity, however, cannot justify a firm subduction zone categorization because 

the origin of Barberton and Belingwe komatiites still remains controversial. Nevertheless, 

we have seen that the clinopyroxene compositions of Barberton, Belingwe and Stoughton 

Roquemaure Group komatiites differ from those of the accepted, plume-generated 

Gorgona komatiites. The trace element systematics in this study implies that the 

Stoughton-Roquemaure Group was formed by subduction processes. All these constraints 

make it cumbersome to pinpoint a single process or activity for emplacement o f the 

Group in question. However, the general geochemical characteristics allow us to purport
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that there was some plume influence during emplacement of the komatiitic rocks. 

Whether subduction or mantle plume activity was the main event cannot be distinguished 

unequivocally, but it seems that more subduction signatures are recorded by 

clinopyroxenes than are plume. A plausible presumption might be that a rising plume 

intercepted a subducting slab such that the emplaced lava preserved imprints of both 

processes.
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Table 1a: Electron Microprobe analyses of clinopyroxenes in ultramafic komatiite.
Oxides (wt %) WP-00-8-1 WP-00-8-2a WP-Q0-8-2b Average
Si02 52.76 52.46 53.97 53.06
Ti02 0.42 0.67 0.36 0.48
AI203 3.42 2.78 1.77 2.66
Cr203 0.34 1.01 0.63 0.66
FeO* 4.87 4.96 4.51 4.78
MnO 0.18 0.18 0.18 0.18
MgO 18.46 18.70 19.17 18.78
CaO 19.68 19.05 20.02 19.59
Na20 0.16 0.22 0.19 0.19
K20 0.01 0.00 0.00 0.00
Total 100.30 100.02 100.81 100.38

Wo 39.68 38.51 39.48 39.23
En 51.81 52.60 52.61 52.34
Fs 7.95 8.09 7.21 7.75
Ac 0.57 0.80 0.69 0.69

Table 1b: Electron Microprobe analyses of clinopyroxenes in komatiites.
Oxides (wt %) ROQ9521A1a ROQ9521A1b ROQ9521A2 ROQ9521A3 ROQ9521A4a1 ROQ9521A4a2 ROQ9521A4b ROQ9521A5 ROQ9521B1a1 ROQ9521B1a2 ROQ9521B1b1
Si02 51.03 50.72 52.52 51.84 52.32 51.86 50.29 51.27 51.76 51.68 52.09
Ti02 0.25 0.22 0.15 0.27 0.22 0.20 0.25 0.28 0.29 0.21 0.28
AI203 3.04 2.68 1.57 2.51 2.83 2.92 3.05 3.15 3.09 2.92 2.60
Cr203 1.01 0.84 0.59 0.75 0.98 1.00 0.84 1.07 1.01 1.04 0.76
FeO* 5.78 6.02 6.20 6.23 6.52 6.18 6.44 5.67 5.84 6.31 6.83
MnO 0.16 0.18 0.23 0.19 0.22 0.19 0.16 0.15 0.17 0.21 0.22
MgO 16.63 16.62 18.14 16.64 17.83 17.20 16.58 16.65 17.51 18.21 17.99
CaO 20.01 19.87 18.82 20.08 18.28 19.54 19.49 20.02 19.85 18.58 18.27
Na20 0.18 0.17 0.15 0.19 0.17 0.19 0.17 0.18 0.17 0.16 0.18
K20 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.09 97.33 98.39 98.70 99.37 99.26 97.28 98.44 99.68 99.32 99.22

Wo 41.59 41.28 38.13 41.34 37.58 40.06 40.60 41.65 40.34 37.70 37.20
En 48.12 48.04 51.15 47.66 50.98 49.08 48.06 48.21 49.53 51.42 50.96
Fs 9.63 10.03 10.16 10.31 10.82 10.17 10.69 9.45 9.51 10.28 11.19
Ac 0.66 0.65 0.57 0.69 0.62 0.69 0.65 0.69 0.61 0.59 0.65
* Total Fe analysed as FeO.
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Table 1c: Electron Microprobe analyses of clinopyroxenes in basaltic komatiites.
Oxides (wt %) ROQ95-2-1 ROQ95-2-2 ROQ95-2-3a ROQ95-2-3b ROQ95-2-3C ROQ-95-2-4 ROQ95-2-5 ROQ95-2-6a1 ROQ95-2-6a2 ROQ95-2-6b1 ROQ95-2-6b2
Si02 52.59 51.03 53.36 52.06 52.40 52.48 52.86 52.29 52.51 52.21 52.50
Ti02 0.36 0.72 0.24 0.53 0.41 0.40 0.33 0.32 0.42 0.46 0.42
AI203 2.08 3.93 1.39 2.82 2.67 2.21 2.06 2.26 2.29 2.94 2.58
Cr203 0.40 0.14 0.23 0.47 0.40 0.34 0.31 0.34 0.42 0.33 0.30
FeO* 6.21 7.76 7.47 7.21 7.16 6.63 6.34 7.39 6.67 6.85 6.68
MnO 0.19 0.20 0.25 0.17 0.17 0.15 0.18 0.22 0.16 0.16 0.17
MgO 17.54 16.27 19.29 17.25 16.50 17.32 17.47 18.07 17.80 17.20 17.16
CaO 20.34 19.87 17.33 19.47 20.86 20.25 20.47 18.38 19.88 19.81 20.36
Na20 0.18 0.19 0.14 0.18 0.22 0.20 0.17 0.19 0.19 0.19 0.17
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.87 100.10 99.69 100.17 100.78 99.98 100.19 99.46 100.35 100.15 100.34

Wo 40.65 40.51 34.36 39.29 41.79 40.51 40.80 36.90 39.53 39.99 40.83
En 48.77 46.17 53.22 48.45 45.98 48.22 48.46 50.51 49.24 48.31 47.88
Fs 9.94 12.62 11.93 11.59 11.42 10.56 10.11 11.88 10.55 11.02 10.69
Ac 0.64 0.70 0.50 0.67 0.81 0.71 0.63 0.70 0.68 0.68 0.61

Oxides (wt %) ROQ95-2-6C1 ROQ95-2-6C2 ROQ95-2-6d1 ROQ95-2-6d2 ROQ95-12A1a ROQ95-12A1b ROQ95-12A1C ROQ95-12A1d ROQ95-12A2a ROQ95-12A2b ROQ95-12A2c
Si02 52.98 51.42 53.51 52.76 50.01 50.28 50.68 50.66 50.83 50.41 51.09
Ti02 0.34 0.59 0.29 0.38 0.59 0.76 0.54 0.55 0.60 0.69 0.60
AI203 2.15 3.22 1.34 2.33 3.86 4.47 4.25 3.85 4.49 4.61 4.04
Cr203 0.31 0.37 0.24 0.37 0.27 0.45 0.25 0.23 0.33 0.22 0.22
FeO* 7.00 7.18 7.06 7.55 6.12 6.96 6.94 6.21 6.61 7.43 6.30
MnO 0.18 0.18 0.21 0.19 0.15 0.16 0.18 0.14 0.20 0.19 0.17
MgO 18.03 17.06 18.54 18.48 14.99 15.17 15.04 15.15 15.40 15.35 15.41
CaO 18.90 19.47 18.91 18.09 21.86 20.67 21.38 21.53 21.37 20.56 21.71
Na20 0.19 0.21 0.15 0.16 0.21 0.22 0.21 0.21 0.22 0.23 0.20
K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Total 100.08 99.70 100.24 100.31 98.05 99.14 99.46 98.54 100.03 99.71 99.76

Wo 37.87 39.48 37.34 36.09 45.57 43.31 44.33 44.91 44.07 42.60 44.72
En 50.25 48.14 50.97 51.29 43.50 44.22 43.38 43.98 44.20 44.25 44.16
Fs 11.21 11.61 11.17 12.03 10.16 11.62 11.49 10.32 10.93 12.29 10.38
Ac 0.68 0.76 0.52 0.59 0.77 0.85 0.80 0.79 0.80 0.86 0.74
* Total Fe analysed as FeO.
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Table 1f: Clinopyroxene formulae on the basis of six oxygens (basaltic komatiites).

R0Q95-2-1 ROQ95-2-2 R0Q95-2-3a ROQ95-2-3b ROQ95-2-3C ROQ-95-2-4 ROQ95-2-5 ROQ95-2-6a1 ROQ95-2-6a2 ROQ95-2-6b1 ROQ95-2-6b2
Si 1.932 1.883 1.956 1.912 1.918 1.929 1.936 1.929 1.922 1.915 1.923
Al (iv) 0.068 0.117 0.044 0.088 0.082 0.071 0.064 0.071 0.078 0.085 0.077

At (vi) 0.022 0.054 0.016 0.034 0.034 0.025 0.025 0.027 0.021 0.042 0.034
Fe (3+) 0.041 0.050 0.028 0.037 0.045 0.043 0.036 0.044 0.053 0.032 0.035
Cr 0.012 0.004 0.007 0.014 0.011 0.010 0.009 0.010 0.012 0.010 0.009
Ti 0.010 0.020 0.006 0.015 0.011 0.011 0.009 0.009 0.012 0.013 0.012
Fe(2+) 0.149 0.188 0.200 0.184 0.173 0.160 0.157 0.183 0.150 0.177 0.169
Mn 0.006 0.006 0.008 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005
Mg 0.961 0.895 1.054 0.945 0.900 0.949 0.954 0.994 0.971 0.940 0.937
Ca 0.801 0.785 0.680 0.766 0.818 0.797 0.803 0.726 0.780 0.778 0.799
Na 0.013 0.014 0.010 0.013 0.016 0.014 0.012 0.014 0.013 0.013 0.012
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Total 4.013 4.016 4.009 4.012 4.014 4.014 4.012 4.014 4.017 4.010 4.011

ROQ95-2-6C1 ROQ95-2-6c2 ROQ95-2-6d1 ROQ95-2-6d2 ROQ95-12A1a ROQ95-12A1b ROQ95-12A1C ROQ95-12A1d ROQ95-12A2a ROQ95-12A2b ROQ95-12A2C
Si 1.939 1.899 1.955 1.928 1.884 1.873 1.883 1.895 1.875 1.870 1.888
Al (iv) 0.061 0.101 0.045 0.072 0.116 0.127 0.117 0.105 0.125 0.130 0.112

Al (vi) 0.031 0.039 0.013 0.028 0.055 0.069 0.069 0.065 0.070 0.071 0.064
Fe (3+) 0.023 0.051 0.030 0.036 0.051 0.027 0.038 0.026 0.040 0.046 0.033
Cr 0.009 0.011 0.007 0.011 0.008 0.013 0.007 0.007 0.009 0.007 0.006
Ti 0.009 0.016 0.008 0.010 0.017 0.021 0.015 0.016 0.017 0.019 0.017
Fe (2+) 0.191 0.170 0.186 0.194 0.141 0.189 0.177 0.168 0.163 0.183 0.161
Mn 0.006 0.006 0.006 0.006 0.005 0.005 0.006 0.005 0.006 0.006 0.005
Mg 0.983 0.939 1.010 1.006 0.842 0.842 0.833 0.845 0.847 0.849 0.849
Ca 0.741 0.770 0.740 0.708 0.882 0.825 0.851 0.863 0.844 0.817 0.860
Na 0.013 0.015 0.010 0.012 0.015 0.016 0.015 0.015 0.015 0.017 0.014
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Total 4.007 4.016 4.009 4.011 4.016 4.008 4.012 4.008 4.013 4.015 4.010
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Table 1f continued:

R0Q95-12A3a ROQ95-12A3b ROQ95-12A3C Average
Si 1.866 1.870 1.874 1.906
Al (iv) 0.134 0.130 0.126 0.094

Al (vi) 0.061 0.072 0.065 0.044
Fe (3+) 0.054 0.036 0.047 0.039
Cr 0.009 0.007 0.008 0.009
Ti 0.022 0.022 0.019 0.014
Fe (2+) 0.160 0.195 0.168 0.173
Mn 0.005 0.006 0.006 0.006
Mg 0.829 0.825 0.834 0.913
Ca 0.861 0.832 0.850 0.799
Na 0.016 0.016 0.017 0.014
K 0.000 0.000 0.000 0.000
Total 4.017 4.011 4.015 4.012

Table 2: Synopsis of clinopyroxene end-member percent ranges for rocks of the SRG.

Rock Type Wo (%) En (%) Fs (%)

Ultramafic Komatiite 38.51 - 39.68 51.81-52.61 7.21 - 8.01

Komatiite 36.64 - 44.39 41.84-51.51 9.39-17.26

Basaltic Komatiite 34.36-45.57 43.05 - 53.22 9.94 -12.62
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Table 4c: Representative clinopyroxene compositions from Gorgona komatiites. 
(data compiled from Aitken and Echeverria, 1984)

GOR-156 GOR-126
Type 3 komatiite  Type 2A komatiite

Oxides (wt %) ________ 1__________ 2 1 2  3 4
SI02 50.00 49.60 49.10 48.50 46.30 45.90
Ti02 0.85 0.67 0.49 0.49 0.90 1.14
AI203 4.90 4.70 8.60 9.80 10.90 11.40
Cr203 0.82 0.47 0.35 0.31 0.22 0.18
FeO* 8.20 8.50 7.80 8.60 7.50 7.60
MnO 0.15 0.14 n.d n.d n.d n.d
MgO 13.90 14.60 18.40 17.60 12.20 11.50
CaO 21.50 20.20 15.00 14.40 22.30 22.70
Na20 n.d n.d n.d 0.29 n.d n.d
Total 100.30 99.00 99.74 100.00 100.20 100.50

Si 1.856 1.863 1.790 1.768 1.717 1.703
Al (iv) 0.144 0.137 0.210 0.232 0.283 0.297

Al (vi) 0.070 0.072 0.160 0.189 0.193 0.202
Fe (3+) 0.004 0.020 0.020 0.040 0.051 0.039
Cr 0.024 0.014 0.010 0.009 0.006 0.005
Ti 0.024 0.019 0.013 0.013 0.025 0.032
Fe (2+) 0.251 0.247 0.217 0.221 0.181 0.196
Mn 0.005 0.004 0.000 0.000 0.000 0.000
Mg 0.769 0.818 1.000 0.957 0.674 0.636
Ca 0.855 0.813 0.586 0.562 0.886 0.902
Na 0.000 0.000 0.000 0.020 0.000 0.000
K 0.000 0.000 0.000 0.000 0.000 0.000
TOTAL 4.001 4.006 4.006 4.013 4.016 4.012

* Total Fe analysed as FeO. 
n.d. = not detected.
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Table 5b: Microprobe average analyses and atomic proportions of Ca-clinopyroxenes in alkali basalts. 
(data from Leterrier et al., 1982)

site: Oceanic islands Intracontinental

Oxides (wt %) N80 N48 N38 N61
Si02 49.09 47.51 48.16 45.16
TI02 1.62 2.87 1.77 2.64
AI203 3.94 6.24 5.88 7.71
Cf203 0.34 0.40 0.17 0.19
FeO* 9.75 6.70 7.67 8.34
MnO 0.22 0.12 0.38 0.17
MgO 13.03 13.20 13.42 12.02
CaO 21.36 22.35 21.65 22.86
Na20 0.41 0.54 0.67 0.64
Total 99.76 99.93 99.77 99.73

Si 1.8400 1.7630 1.7870 1.6870
Al (iv) 0.1600 0.2370 0.2130 0.3130
Al (vi) 0.0260 0.0380 0.0480 0.0330
Ti 0.0460 0.0810 0.0490 0.0740
Cr 0.0100 0.0120 0.0050 0.0060
Fe (3+) 0.0190 0.0700 0.1170 0.1880
Fe (2+) 0.2320 0.1380 0.1200 0.0840
Mn 0.0070 0.0040 0.0120 0.0050
Mg 0.7280 0.7340 0.7460 0.6720
Ca 0.8580 0.8890 0.8610 0.9150
Na 0.0300 0.0390 0.0480 0.0460
Total 3.9560 4.0050 4.0060 4.0230

* Total Fe analysed as FeO.
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Table 6: Laser ablation (ICP-MS) trace element analyses (averaged) of clinopyroxenes in SRG komatiitic rocks; 
__________whole rock REE composition and calculated augite composition in equilibrium with melt.__________
Trace ultramafic komatiite komatiite basaltic komatiite
elements (WP-00-8) (ROQ-95-21A) ROQ-95-21B ROQ-95-2 ROQ-95-12A
Rb 0.965 0.680 0.772 0.716 0.894
Sr 17.349 11.119 10.544 8.189 11.653
Th 0.048 0.024 0.027 0.016 0.017
Nb 0.275 0.130 0.148 0.121 0.155
La 0.520 0.172 0.195 0.381 0.603
Ce 1.970 0.584 0.579 1.252 2.198
Pr 0.451 0.122 0.136 0.273 0.483
Nd 2.600 1.528 1.671 1.885 3.363
Zr 13.590 4.295 5.019 10.158 20.192
Hf 0.825 0.308 0.300 0.508 1.040
Sm 2.242 0.827 0.806 1.030 1.512
Ti* 2831 1347 1724 2412 3845
Eu 0.826 0.179 0.223 0.393 0.576
Gd 2.907 0.750 0.996 1.456 1.803
Tb 0.617 0.198 0.220 0.284 0.324
Dy 4.573 1.384 1.479 1.803 2.160
Y 23.039 7.370 9.522 9.715 12.493
Er 2.555 1.128 0.838 0.929 1.338
Yb 2.274 1.211 1.054 0.909 1.063
Lu 0.363 0.160 0.165 0.179 0.143

REE whole rock calculated whole rock calculated whole rock calculated whole rock calculated whole rock calculated
(PPm) composition augite composition augite composition augite composition augite composition augite
La 0.34 0.036 2.20 0.23 2.56 0.268 2.62 0.274 1.84 0.193
Ce 0.97 0.122 5.34 0.669 6.22 0.779 7.69 0.964 5.85 0.734
Pr 0.16 - 0.80 - 0.90 - 1.20 - 0.97 -

Nd 0.85 2.243 4.02 1.153 4.47 1.281 6.43 1.843 5.01 1.436
Sm 0.31 0.148 1.34 0.64 1.43 0.684 2.05 0.979 1.67 0.797
Eu 0.12 0.065 0.44 0.246 0.49 0.274 0.67 0.376 0.61 0.337
Gd 0.42 0.252 1.90 1.133 2.03 1.207 2.45 1.459 2.05 1.221
Tb 0.07 - 0.30 - 0.34 - 0.40 - 0.34 -

Dy 0.51 0.317 2.16 1.345 2.31 1.437 2.56 1.592 2.21 1.374
Er 0.39 0.246 1.41 0.895 1.52 0.964 1.39 0.883 1.20 0.763
Yb 0.34 0.206 1.25 0.749 1.27 0.765 1.36 0.817 1.20 0.721
Lu 0.05 0.03 0.19 0.106 0.19 0.109 0.21 0.118 0.17 0.095
*: Ti values obtained by conversion from microprobe wt % values to ppm.

Note:
Fujimaki et al. (1984) 
did not determine the 
pertition coefficients 
of Pr and Tb.
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