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Abstract

Efficient Continuous Runge-Kutta Methods for Asymptotically Correct Defect
Control

by

Hanan Drfoun

Mono-Implicit Runge-Kutta (MIRK) methods and continuous MIRK (CMIRK)
methods, are used in the numerical solution of boundary value ordinary differential
equations (ODEs). One way of assessing the quality of the numerical solution is
to estimate its maximum defect, which is the amount by which the solution fails to
satisfy the ODE. The standard approach is to perform two point sampling of the defect
on each subinterval of a mesh which partitions the problem domain to estimate the
maximum defect. However, the location of the maximum defect on each subinterval
typically varies from subinterval to subinterval, and from problem to problem. Thus
sampling at only two points typically leads to an underestimate of the maximum
defect.

In this thesis, we will derive a new class of CMIRK interpolants for which the
location of the maximum defect on each subinterval is the same over all subintervals
and problems.

Date: August 8, 2017
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Chapter 1

Introduction

Experimental and theoretical science has had a long history, but over the last 50-60

years computational science has also become a significant avenue of investigation. Al-

most every area of science, e.g., chemistry, biology, astronomy, engineering, etc., now

has a computational component. Computational science is based on mathematical or

computational models, which often involve a system of ordinary differential equations

(ODEs). Such equations describe how a system will change with time. Since these

equations are usually too complicated to be solved by hand, it is necessary to use

numerical methods to solve them.

We will consider boundary value ordinary differential equations (BVODEs) which

are systems of ODEs with boundary conditions imposed at two or more distinct

points [2]. Some examples of difficult problems that arise in the study of real world

phenomena in different areas of science that involve BVODEs are:

• Shock Wave in a one-dimensional nozzle flow, see example (1.17) in [2] (SWAVE

problem)

– ODE:

y′′(t) =

( 1
2

+ γ
2
− εA′(t)

εA(t)

)
y′(t)− y′(t)

εA(t)y2(t)

1



2

− A′(t)

εA2(t)y(t)

(
1− γ − 1

2
y2(t)

)
.

(1.1)

t: normalized downstream distance. y(t): normalized velocity. A(t): area

of nozzle at t. ε: inverse of Reynolds number.

– Boundary conditions: y(0) = 0.9129, y(1) = 0.375.

• Swirling flow between two rotating coaxial disks, see example (1.20) in [2]

(SWIRL-III problem)

– ODEs:

εg′′(t) = f ′(t)g(t)− f(t)g′(t),

εf ′′′′(t) = −f(t)f ′(t)− g(t)g′(t)),

(1.2)

f ′(t), g(t), f(t): radial, angular, and axial velocities.

– Boundary conditions:

f(0) = f(1) = f ′(0) = f ′(1) = 0,

g(0) = Ω0, g(1) = Ω1.

Angular velocities, Ω0 and Ω1. ε: viscosity.
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The process of obtaining a numerical solution to a BVODE involves computing

an approximate solution at a set of mesh points, {ti}Ni=0, that partition the problem

domain [44] using a numerical method such as Runge-Kutta (RK) method. This so-

lution is called a discrete numerical solution. Each region, [ti, ti+1], of the problem

domain is called a subinterval. Continuous numerical methods [29] such as contin-

uous RK are used to augment the discrete solution over each subinterval to yield

a continuous numerical solution, over the entire problem domain. One class of RK

methods that commonly used to provide a discrete solution to a system of BVODEs

is called mono implicit RK (MIRK) methods. A MIRK scheme is of order p if it has

error O(hp), ans it has stage order q where q ≤ p if its coefficients satisfy a set of q

conditions called stage order conditions [28].

Although one can derive a MIRK method of any desired order, the resultant method

can have at most stage order 3 [7]. This can be an issue when the method is applied

to a stiff ODE because the order of the method can drop to its stage order. Thus,

for example, even a 6th order method can behave like a 3rd order method. This is

called order reduction [13]. Generalized MIRK (GMIRK) methods are extensions of

MIRK schemes that allow the schemes to have a higher stage order. GMIRK schemes

allow us to increase the number of coefficients associated with certain stages of the

method that limit its stage order. These methods will not suffer from order reduction

when applied to stiff ODEs. However, the GMIRK schemes have a greater number

of implicit stages, and this increases the cost per subinterval associated with using

these schemes above what is required for the use of a MIRK scheme.
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For BVODEs, when the number of the implicit stages increases, the size of the

non-linear system that must be solved changes. Rather than needing to solve a non-

linear system of size n(N + 1) associated with yi, i = 0, ..., N , the computation will

require the solution of a non-linear system of size n(N + 1) + l · n ·N where n is the

number of ODEs, N is the number of subintervals, and l is the number of stages that

are implicitly defined [13].

One way to assess the quality of an approximate solution is to examine the amount

by which that solution fails to satisfy the BVODE; this is called the defect [15, 17,

23, 32, 34]. In a defect control framework, we need to estimate the maximum defect

of the numerical solution on each subinterval. The user of the software provides a

tolerance and the software adaptively chooses a sequence of meshes so that for the

final accepted numerical solution, the estimated maximum defect is less than the

user-provided tolerance; this is called defect control [21, 25].

The location of the maximum defect of a numerical solution on each subinterval

generally varies from subinterval to subinterval, and from problem to problem [20].

It is computationally expensive to evaluate the defect at a large number of points in

order to find the maximum defect for each subinterval. The hope is to sample the

defect at only a small number of points on each subinterval but nonetheless obtain a

good estimate of the maximum defect on each subinterval.

BVP SOLVER 2 [25, 38] is a software package for the numerical solution of BVODEs

that has an option for defect control. It uses just two point sampling to estimate the
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maximum defect on each subinterval with the hope that one of them is close to the

location of the true maximum defect. In [20], it was shown that the two point sam-

pling approach is not reliable, and in that paper a new approach was considered that

led to better estimation of the maximum defect. The new approach estimates the

maximum defect using only one defect sample point per subinterval. This leads to

what is known as Asymptotically Correct Defect Control (ACDC).

The approach considered in [20] was only for the sixth order case (i.e., for the case

where the numerical solution has an error that is O(h6), where h is the subinterval

size) and it employed an algorithm that relied upon constructing a new continuous

approximate solution using a Hermite-Birkhoff interpolant based on the previously

computed continuous numerical solution, i.e., a boot-strapping process [20]. We dis-

cuss this approach later in the thesis.

The main purpose of this thesis is to describe the development of families of Runge-

Kutta methods that provide ACDC while being more efficient than those based on

Hermite-Birkhoff interpolants.

This thesis is organized as follows. In Chapter 2, BVODEs are discussed. MIRK

schemes and the associated Continuous Mono-Implicit Runge-Kutta (CMIRK) schemes

are presented. We also present Runge-Kutta order conditions, continuous Runge-

Kutta order conditions, and Runge-Kutta stage order conditions that are used to

derive MIRK methods and CMIRK methods. The idea of defect control, the ACDC

property, the derivation of the Hermite-Birkhoff interpolants via a boot-strapping
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approach, and the idea of a validity check are also explained.

Chapter 3 first describes standard CMIRK schemes from orders 1 to 5 and the

issue with these numerical methods regarding maximum defect estimation. It also

provides numerical experiments and results obtained by applying standard CMIRK

schemes to some test problems. In addition, this chapter discusses the boot-strapping

approach for orders 4 and 5 and identifies an issue with the approach (namely, that

the resultant interpolant uses more evaluations of the right hand side of the ODE

than may be necessary). Finally, numerical experiments and results associated with

applying the boot-strapping approach are provided.

Chapter 4 considers our proposed solution to the issue identified with the boot-

strapping approach. In particular, we derive new CMIRK methods of orders 4 and

5 that directly have the ACDC property and that are more efficient than the boot-

strapping approach in terms of the number of evaluations of the right hand side of the

ODE. Also, we discuss numerical experiments and give results obtained by applying

these new fourth and fifth orders CMIRK schemes to some test problems.

Next, in Chapter 5, a comparison between ACDC schemes that use the boot-

strapping approach and the new ACDC CMIRK schemes, for orders 4 and 5, based

on results obtained by applying these schemes to some test problems, is considered.

Chapter 6 first describes standard sixth order CMIRK schemes and provides nu-

merical results obtained by applying these schemes to solve several test problems.
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In addition, this chapter discusses the sixth order boot-strapping approach and pro-

vides numerical results associated with applying this approach. We then consider

new sixth order ACDC CMIRK schemes and new sixth order continuous generalized

ACDC MIRK (CGMIRK) schemes.

Finally, Chapter 7 gives the conclusions from this thesis and suggestions for future

work.



Chapter 2

Ordinary Differential Equations, Runge-Kutta Methods and

Asymptotically Correct Defect Control

2.1 Ordinary Differential Equations

An ODE is an equation that involves a function of one independent variable (e.g.,

time) and one or more derivatives of that function with respect to that independent

variable. ODEs arise in mathematical models in many areas of science and engineer-

ing.

2.1.1 Boundary value ODES

The type of ODE that we consider in this thesis is called a BVODE. BVODEs are

systems of ODEs with boundary conditions imposed on the solution at two or more

distinct points [2]. A BVODE may not have a solution, or may have a finite number

of solutions, or may have infinitely many solutions. Many problems, arising in a wide

variety of application areas, give rise to mathematical models which involve BVODEs.

These problems rarely have closed form solutions and computational methods are

often used to estimate their approximate solution [1, 2, 3, 4, 37]. Many methods are

available to carry out such computations in a robust, efficient, and reliable manner

8
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[2, 6, 44].

In this thesis, we will assume non-linear two-point BVODEs written in first order

system form with coupled boundary conditions, of the form,

y′(t) = f(t, y(t)), g(y(a), y(b)) = 0, (2.1)

where t ∈ [a, b], y : R→ Rn, f : R× Rn → Rn, and g : Rn × Rn → Rn.

2.2 Runge-Kutta Methods

Runge-Kutta (RK) methods are numerical methods which are popular for solving

systems of BVODEs (2.1) [11, 41, 44]. Let the problem interval [a, b] be subdivided

by a mesh {ti}Ni=0, with a = t0 < t1 < · · · < tN = b. Through use of the RK methods,

we get a discrete numerical solution, yi ≈ y(ti), i = 0, . . . , N , by applying Newton’s

method to solve a nonlinear system of equations consisting of the boundary conditions

and n more equations for each subinterval which depend on the RK scheme.

For a RK method, for the ith subinterval, [ti−1, ti], where yi is an approximation to

the exact solution, y(t), evaluated at the point ti, and where hi = ti − ti−1, we define

an equation of the form

φi = yi+1 −

(
yi + hi

s∑
r=1

brkr

)
, (2.2)



10

where the stages are given by

kr = f

(
ti + crhi, yi + hi

s∑
j=1

arjkj

)
, r = 1, 2, . . . , s. (2.3)

The coefficients of this method are given in a Butcher tableau of the form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

.

The above tableau is sometimes condensed to:

c A

bT
,

where c = (c1, c2, ..., cs)
T , b = (b1, b2, ..., bs)

T , and A is the s by s matrix whose (i,j)th

component is aij. Also, we usually require c = Ae, where e is the vector of l’s of

length s. This is equivalent to requiring cr =
∑s

j=1 arj. Interpolants for Runge-Kutta

methods have also been developed; see, e.g., [33].
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2.3 Mono Implicit Runge-Kutta (MIRK) Methods

The MIRK methods [8, 9, 12, 22, 26, 30, 39, 43] are a subclass of the well-known

implicit RK methods [2] and have application in the efficient numerical solution of

systems of BVODEs [7, 10]. A significant property of this class of methods is that,

for the discrete numerical solutions obtained by the use of BVODEs, the stage com-

putations are explicit in yi and yi+1.

When the RK scheme is a MIRK scheme, the set of n equations associated with

the ith subinterval has the form, [21]:

φi = yi+1 −

(
yi + hi

s∑
r=1

brkr

)
, (2.4)

where

kr = f

(
ti + crhi, (1− vr)yi + vryi+1 + hi

r−1∑
j=1

xrjkj

)
, r = 1, 2, . . . , s. (2.5)

Note that each stage depends only on yi, yi+1, and previously defined stages. The

method is defined by the number of stages, s, the coefficients, {vr}sr=1 and {xrj}r−1,sj=1,r=1,

and the weights {br}sr=1. The abscissa, {cr}sr=1, are defined by cr = vr +
∑r−1

j=1 xrj.
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The coefficients of a MIRK method are usually presented in a tableau of the form,

c1 v1 0 0 . . . . . . 0

c2 v2 x21 0 . . . . . . 0

...
...

...
. . .

...

...
...

...
. . .

...

cs vs xs1 xs2 . . . xs,s−1 0

b1 b2 . . . . . . bs

,

which is sometimes condensed to the form

c v X

bT
,

where v = (v1, v2, ..., vs)
T , b = (b1, b2, ..., bs)

T , and X is the s by s strictly lower

triangular matrix whose (i,j)th component is xij. It can be shown that the MIRK

method (2.4), (2.5) is equivalent to the general RK method (2.2), (2.3), with A =

X + vbT [19].

2.3.1 Order conditions for MIRK methods

A MIRK method is of order p if the numerical solution of the BVODE, obtained

by solving (2.4), (2.5) together with the boundary conditions g(y0, yN) = 0 satisfies

|y(ti) − yi| = O(hp), where y(ti) is the exact solution evaluated at ti [7]. A MIRK

method of order p is derived by requiring its coefficients to satisfy a set of equations



13

called order conditions [7]. The order conditions for MIRK methods as presented in

[28] are as follows:

MIRK methods of first order, must have

bT e = 1, (2.6)

where e is a vector of 1’s of length s.

The order conditions for order 2 are

bT e = 1, bT c =
1

2
. (2.7)

The order conditions for third order are

bT e = 1, bT c =
1

2
, bT c2 =

1

3
, bT

(
Xc+

v

2

)
=

1

6
, (2.8)

where

cl =

[
cl1, cl2, ..., cls

]T
. (2.9)

The order conditions for fourth order are (2.8) and

bT c3 =
1

4
, bT c

(
Xc+

v

2

)
=

1

8
, bT

(
Xc2 +

v

3

)
=

1

12
, bT

(
X
(
Xc+

v

2

)
+
v

6

)
=

1

24
.

(2.10)
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Table 2.1: Number of order conditions for MIRK methods of orders p = 1, ..., 8.

p 1 2 3 4 5 6 7 8
number of order conditions 1 2 4 8 17 37 85 200

It is obvious from Table 2.1 that the number of order conditions that a MIRK scheme
must satisfy increases rapidly with the increasing order of the MIRK scheme.

2.4 Continuous Mono Implicit Runge-Kutta (CMIRK) Methods

After the discrete solution is obtained using a computation based on a MIRK

scheme, a CMIRK scheme can be used on each subinterval to augment the discrete

solution to obtain a C1 continuous approximate solution over the whole problem

domain. A CMIRK scheme applied on the subinterval [ti, ti+1], is given, for 0 ≤ θ ≤ 1,

by

u(ti + θhi) = yi + hi

s∗∑
r=1

br(θ)kr, (2.11)

with the kr’s defined as in (2.5). In addition to the coefficients which define its stages,

the scheme is defined by the weight polynomials, {br(θ)}s
∗
r=1, which are polynomials

in θ.

If the stages of the MIRK scheme can be stored and then reused by the CMIRK

scheme, this makes the scheme more efficient. Thus there is an advantage to deriving

CMIRK schemes with s stages identical to those of the MIRK scheme used before it.

In this case the MIRK scheme is said to be “embedded” within the CMIRK scheme.

In [28], optimal MIRK schemes, and optimal CMIRK schemes that have the optimal

MIRK schemes embedded, are derived.
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2.4.1 Continuous order conditions for CMIRK methods

A CMIRK method as defined in (2.11) is of order p if for the continuous numerical

solution of the ODE, at t = ti + θh, we have

max
0≤θ≤1

|y(ti + θh)− u(ti + θh)| = O(hp), (2.12)

where y(ti + θh) is the exact solution to the ODE evaluated at ti + θhi.

A pth order CMIRK scheme is derived by requiring its coefficients and weight

polynomials to satisfy a set of continuous versions of the MIRK order conditions [11].

In addition, in order for the associated interpolant to have C1 continuity, the weight

polynomials must also satisfy certain continuity requirements [42].

For example, the continuous versions of the order conditions that are used to derive

a standard fourth order CMIRK method are (compare with (2.10))

bT (θ)e = θ, bT (θ)c = θ2

2
, bT (θ)c2 = θ3

3
, bT (θ)

(
Xc+ v

2

)
= θ3

6
, bT (θ)c3 = θ4

4
,

bT (θ)c
(
Xc+ v

2

)
= θ4

8
, bT (θ)

(
Xc2 + v

3

)
= θ4

12
, bT (θ)

(
X
(
Xc+ v

2

)
+ v

6

)
= θ4

24
.

(2.13)

The number of order conditions for CMIRK methods are the same as for MIRK

schemes of the same order.
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2.4.2 Stage order conditions for MIRK and CMIRK methods

Another set of conditions that can optionally be applied to a MIRK method or a

CMIRK method are called stage order conditions. A pth order MIRK or CMIRK

method is said to have stage order q (q ≤ p) if its coefficients satisfy the stage order

conditions [28]

Xcj−1 +
v

j
=
cj

j
, j = 1, . . . , q. (2.14)

In [7], it is proved that the maximum stage order for a pth order MIRK method is

min{p, 3}.

When a MIRK or CMIRK method has higher stage order, the number of order

conditions is reduced. The number of order conditions for each order as given in

Table 2.1, is made under the assumption that the stage order of the method is one;

these numbers decrease rapidly with increasing stage order. For example, the number

of order conditions associated with MIRK or CMIRK schemes reduces to the following

number of order conditions, given in Table 2.2, when the MIRK or CMIRK schemes

have stage order three.

Table 2.2: Number of order conditions for MIRK or CMIRK methods that have stage
order three for orders p = 1, ..., 8.

p 1 2 3 4 5 6 7 8
number of order conditions 1 2 3 4 6 10 18 34

It is thus helpful to have MIRK and CMIRK methods with as high a stage order as

possible, because the number of the order conditions that the method has to satisfy
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is lower when it has a higher stage order. This means that the number of stages,

kr, required by the method will be lower (since the number of stages required by the

method is related to the number of order conditions). See [28] for examples of MIRK

methods of different orders.

2.5 Defect Control and the Maximum Defect Estimation Process

A common way to measure the quality of the continuous approximate solution of a

BVODE is by computing its defect. The defect or residual, δ(t), is a continuous func-

tion over the problem interval that measures the amount by which a C1 continuous

numerical solution fails to satisfy the BVODE. The defect on the ith subinterval, δi(t),

is computed by substituting the continuous numerical solution, ui(t) ≡ u(ti + θhi)

(2.11), into the BVODE; this gives

δi(t) = u′i(t)− f(t, ui(t)). (2.15)

The strategy of a defect control solver is to adaptively choose a mesh such that, for

the final accepted numerical solution, an estimate of the maximum defect over the

entire problem domain is bounded by a user-provided tolerance. It is a fundamental

requirement, therefore, that a defect control based solver be able to obtain an accurate

and efficient estimate of the maximum defect on each subinterval. We can easily

compute δ(t) at any point in the domain; however the bigger challenge is to determine,

in an efficient manner, the maximum value of the defect on each subinterval.
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When a standard CMIRK interpolant is employed for u(t), the usual approach is

to simply sample the defect at a small number of points on each subinterval with the

hope that one of the points will be close enough to the location of the true maximum

defect. In order for the maximum defect estimation process to be reasonably efficient,

the number of points employed in estimating the defect must be kept reasonably

small. While the software package BVP SOLVER 2 employs two point sampling

of the defect, there is no particular justification that either of the sampling points

selected will be the equal to or even close to the location of the maximum defect.

It was shown in [20] that the true maximum defect in some cases can exceed the

estimated maximum defect by more than an order of magnitude. Thus, the software

may accept a numerical solution for which the maximum defect is in fact substantially

larger than the user-provided tolerance. As well the underestimation of the maximum

defect can impact negatively on the overall performance of the computation because

the mesh selection algorithm will not have access to a good profile of the defect over

the subintervals of the mesh.

Recall that the continuous solution approximation on the ith subinterval, ui(t), is

based on a CMIRK scheme (2.11). The continuous solution approximation on the ith

subinterval, ui(t), is an approximation to the exact solution, zi(t), of the local initial

value problem

z′i = f(t, zi), zi(ti) = yi, t ∈ [ti, ti+1]. (2.16)
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For a method of order p, the continuous local error of ui(t) on the ith subinterval is

[6]

ui(t)− zi(t) = O(hp+1
i ). (2.17)

Similarly, the derivative of this numerical solution satisfies [6]

u′i(t)− z′i(t) = O(hpi ), (2.18)

since the variables t and θ are related by the equations t = ti + θh ⇒ θ = 1
h
(t − ti)

and dθ
dt

= 1
h
. Hence the right hand side of (2.18) is reduced by a factor of h.

Recall that the defect of the numerical solution, ui(t), on the ith subinterval has

the form

δi(t) = u′i(t)− f(t, ui(t)). (2.19)

Taking advantage of the fact that zi(t) is the exact solution of (2.16), (2.19) can be

written as

δi(t) = u′i(t)− f(t, ui(t)) + f(t, zi(t))− z′i(t). (2.20)

A slight rearranging of (2.20) gives

δi(t) = u′i(t)− z′i(t)− (f(t, ui(t))− f(t, zi(t))) . (2.21)

Assuming a Lipschitz condition [2] on f , the second term in (2.21) then can be seen

to be of O(hp+1
i ) (see(2.17)) and the defect can thus be written as
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δi(t) = u′i(t)− z′i(t) +O(hp+1
i ). (2.22)

The leading term in the defect (2.22) is thus O(hpi ) from (2.18). Furthermore the

leading order term in the defect can be seen to be equal to the leading order term in

the error for u′i(t).

When ui(t) is based on a CMIRK scheme, the leading error term is known from the

theory of Runge-Kutta methods [5]. On the ith subinterval the defect can be expressed

in an expansion that is related to the local error expansion of the approximation

solution. It has the form,

δi(t) =

(
ρ∑
j=0

qj(θ)Fj

)
hpi +O(hp+1

i ), (2.23)

where p is the order of the Runge-Kutta scheme, the qj(θ)’s are polynomials of degree

p that are the derivatives of the unsatisfied continuous order conditions for order p+1.

These depend on the CMIRK but are independent of the problem or hi. The Fj’s are

elementary differentials [6] which depend only on the problem and ρ+1 is the number

of elementary differentials of (p + 1)st order. As hi → 0, it is evident from (2.23)

that the value of the defect will approach a linear combination of the qj(θ) values,

where the coefficients of this linear combination are the elementary differentials, Fj.

Therefore, the location of the maximum will vary from subinterval to subinterval and

from problem to problem. This means that on any given subinterval, we cannot make

an a priori determination of the location of the maximum value of the leading term
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of the defect.

For example, consider the SWAVE problem (1.1) using a standard fourth order

CMIRK scheme. In order to observe how the defect behaves on each subinterval,

we plot the absolute scaled defect of each subinterval mapped on to [0,1] on the

same graph. We obtain the scaled defect by dividing the defect, which is computed

across each subinterval at many points, by the maximum defect on that subinterval.

This ensures that the maximum scaled defect, on each subinterval is 1. See Figure 2.1.

 

 

 

 

 

 

Figure 2.1: A plot of the absolute scaled defect obtained by applying a standard
4th order CMIRK scheme (3.9) with N=100 to the test problem SWAVE (1.1) with
ε = 0.1. The location of the maximum defect varies from subinterval to subinterval.

2.6 Hermite - Birkhoff Interpolants Derived Via a Bootstrapping

Process

In the previous section we saw that the standard approach for obtaining an accu-

rate estimate of the maximum defect using a standard CMIRK scheme is either not

efficient (if we sample the defect at a large number of points on each subinterval)
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or (usually) not accurate (if we sample the defect at a small number of points on

each subinterval). In [20], the authors describe one approach in which an interpolant

with a greatly simplified expression for the leading order term in the defect is derived.

Starting with a standard CMIRK scheme, they employ a boot-strapping algorithm de-

veloped in [18] to derive a special type of interpolant expressed in a Hermite-Birkhoff

form [18]. This special interpolant yields a defect for which the location of the maxi-

mum defect on each subinterval can be determined (at least asymptotically) in an a

priori manner. The maximum defect of each subinterval has the same location for

different subintervals and problems; see Figure 2.2 for an example. The estimate of

the maximum defect obtained in this case is said to be asymptotically correct. A

numerical scheme that uses defect control based on an asymptotically correct esti-

mate of the maximum defect is known as an Asymptotically Correct Defect Control

(ACDC) scheme. For this case, the leading order term in the defect expansion is a

multiple of a single polynomial in θ.
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Figure 2.2: A plot of the absolute scaled defect obtained by applying a 4th order
Hermite-Birkhoff (2.24) scheme with N=100 to the test problem SWAVE (1.1) with
ε = 0.1. The absolute scaled defect has the same shape on almost every subinterval,
and thus the location of the maximum defect is the same on almost every subinterval.

In [14], Ellis derived boot-strap interpolants which provide an asymptotically cor-

rect estimate of the maximum defect of the continuous numerical solution.

The asymptotically correct quality possessed by the Hermite-Birkhoff interpolants

is a consequence of the simplification of the expression in (2.23). Based on earlier

work in [16], Enright and Muir [20] derived a sixth order Hermite-Birkhoff interpolant

that gives an asymptotically correct maximum defect estimate property using the

bootstrapping approach. This led to an interpolant for which the highest order term

in the defect expansion is a multiple of a single polynomial in θ. This implies that

one point sampling for estimating the maximum defect is then possible.

The general form of a Hermite-Birkhoff scheme on the subinterval [ti, ti+1] , with

0 ≤ θ ≤ 1 is:
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ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 + hi

s̃∗∑
r=1

b̃r(θ)kr, (2.24)

where the kr’s have the same general form as (2.5), d0(θ), d1(θ), {b̃r(θ)}s̃
∗
r=1, are

polynomials in θ, and s̃∗ is the total number of required stages. The determination of

the required stages and weight polynomials as described in [20], is done by requiring

the interpolant (2.24) and its derivative to satisfy certain interpolation conditions at

a number of points within the ith subinterval. This process is detailed in sections

3.3.1, 3.3.2 and 6.2 of this thesis, during the derivation of fourth, fifth and sixth order

Hermite-Birkhoff schemes. The leading order term in the defect expansion, using a

Hermite-Birkhoff scheme, is a multiple of a single polynomial in θ, namely d′1(θ) [20].

It is a relatively straightforward process to convert the Hermite-Birkhoff form of

ũ(t) to its CMIRK equivalent. By substituting for y
i+1

using the discrete formula

y
i+1

= y
i
+ hi

s∑
r=1

brkr, (2.25)

in (2.24) and noting the interpolation condition d0(θ) + d1(θ) = 1, the CMIRK form

of ũ(t) (2.24) can be obtained:



25

ũi(ti + θhi) = y
i
+ hi

s̃∗∑
r=1

(brd1(θ) + b̃r(θ))kr. (2.26)

However, it is pointed out in [20] that the lack of an explicit dependence on yi+1

in (2.26) means that ũ(t) may have discontinuities that are of the size of the Newton

tolerance used to determine the {y
i
}Ni=0 values. (The reason for this discontinuity is

that (2.25) is not solved exactly, only to within the Newton tolerance; see [20] for

further details.) The above substitution introduces an additional error of O(hp+1)

associated with the error for yi+1 from the discrete formula. On the other hand, since

ũ(t) in (2.24) has an explicit dependence on k1 = f(ti, yi) and k2 = f(ti+1, yi+1), the

interpolant and its first derivative will be continuous across each internal mesh point.

2.7 Validity Check

It is important to monitor the accuracy and robustness of the one point defect

sampling process by checking the value of the defect estimate at an additional point

known as a validity check sampling point. This sample point is a point where the

value of the defect should be half the value of the maximum defect. Thus, the

defect of the interpolant ũi(t) is also computed at a second predetermined spot within

each subinterval. The auxiliary validity check process was discussed in [20], where

it is observed that the successful defect estimation rate of the sixth order Hermite-

Birkhoff for the final converged mesh was around 83% for a collection of test problems.

Closer examination revealed that the subintervals where the estimation failed were
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relatively large and thus the associated computation wasn’t within the asymptotic

regime for the formula. Hence the error contribution from the higher order terms was

significant enough to interfere with the dominance of the leading order term in the

defect expansion. The validity check provides an additional layer of confidence for

the defect sampling and control process.



Chapter 3

Implementations of Standard CMIRK Schemes For Orders

1-5 and Fourth and Fifth Order Hermite-Birkhoff

Interpolants

In this chapter, we will implement some standard CMIRK schemes for orders 1-

5 and apply them to several test problems. For orders 1-3, we will see that there

are standard CMIRK schemes that naturally lead to ACDC schemes. For orders 4

and 5, we will see that the standard CMIRK schemes do not lead to ACDC schemes.

Therefore, for orders 4 and 5 we will consider the use of Hermite-Birkhoff interpolants

in order to obtain ACDC schemes.

3.1 Implementations of Standard CMIRK Schemes For Orders 1-5

Using Scilab, a powerful numerical computing environment for engineering and

scientific applications [45] we implemented standard MIRK schemes, (2.4), (2.5), of

orders 1 to 5 and applied them to several test problems in order to obtain a discrete

numerical solution, {yi}Ni=0, on a mesh of points that partition the problem domain

into subintervals. The discrete numerical solution is obtained by applying MIRK

methods, to get a set of nonlinear equations that are solved using a Newton iteration

27
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(using the Scilab fsolve function) with a default tolerance 10−10. We then augment

the discrete solution with a continuous numerical solution, ui(t), using a standard

CMIRK scheme, (2.11), of the same order as the MIRK scheme, over each subinterval.

In order to assess the quality of the continuous numerical solution, we then evaluate

the defect, δ(t), using (2.15), and plot the absolute scaled defect for each subinterval

mapped onto [0,1].

We sampled the defect at a hundred points within each subinterval of a uniform

mesh of a hundred subintervals, i.e., N=100, h=0.01, where N is the number of

subintervals, h is the subinterval size, and the problem interval, [a,b], is [0,1]. We

also found the maximum value of the defect samples on each subinterval, and then

plotted the absolute scaled defect mapped onto [0,1] for each subinterval. The scaling

involved dividing each defect sample by the maximum defect, which implies that

the absolute scaled defect values will be in the range [0,1]. This process requires

substantial computing time and thus would not be a practical way of computing the

maximum defect on each subinterval, but it allows us to see what shape the absolute

scaled defect has on each subinterval, thus allowing us to determine if the scheme has

the ACDC property. We can also determine the location of the maximum defect on

each subinterval from this plot.

3.1.1 Test problems

We will consider numerical experiments on the following BVODEs which have been

converted to systems of first order BVODE systems where necessary:



29

1. A linear BVODE [2]:

Y ′(x) = AY (x) +Q(x),

with boundary conditions:

Y

0

1

 =

 0

0

 ,

where

A =

 0 λ

λ 0

 ,
and

Q(x) =

 0

λcos2(Πx) + 2
λ
Π2cos(2Πx)

 .

(3.1)

2. A simple nonlinear BVODE [40]:

w′′(x) =
3

2
w2(x),

with boundary conditions

w(0) = 4, w(1) = 1.
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(3.2)

3. SWAVE problem: (1.1)

4. SWIRL-III problem: (1.2)

3.2 Numerical experiments

3.2.1 Standard first order CMIRK scheme

We consider the standard two stage, first order, stage order one, CMIRK scheme

(CMIRK211), which has the tableau,

0 0 0 0

1 1 0 0

b1(θ) b2(θ)

, (3.3)

where b1(θ) = −θ(θ2 − θ − 1) and b2(θ) = θ2(θ − 1), and which has the discrete

one-stage, first order, stage order one MIRK scheme (Euler’s method) (MIRK111)

embeded within it; this discrete scheme has the tableau

0 0 0

1

. (3.4)

We applied the above MIRK, CMIRK pair to the SWAVE problem (1.1), and obtained

a plot of the absolute scaled defect for each subinterval (mapped onto [0,1]) shown in

Figure 3.1.
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It is clear that this CMIRK scheme has the ACDC property, since almost all the

absolute scaled defect plots are the same. This happens because the leading order

term in the defect expansion is a multiple of a single polynomial in θ. And this hap-

pens because any first order CMIRK scheme has only one unsatisfied order condition,

namely
(
bT (θ)c − θ2

2

)
, associated with second order, appearing in the leading order

term of the local error expansion. Then the leading order term in the expansion

of the defect is a multiple of the derivative of this polynomial; we plot it in Figure

3.2. From Figure 3.1, we observe that the maximum defect occurs at θ ≈ 0.5 for each

subinterval. We can explicitly verify that this is correct. The unsatisfied second order

condition is bT (θ)c− θ2

2
= θ2(θ − 1)− θ2

2
= θ3 − 3

2
θ2 for the specific CMIRK scheme

we are considering. Its derivative is 3θ2− 3θ. The maximum value of this polynomial

will occur where its derivative is zero, i.e., when 6θ − 3 = 0 ⇒ θ = 1
2
; see Figure 3.2.

 

 

 

 

 

 

Figure 3.1: A plot of the absolute scaled defect obtained using CMIRK211 with
N=100 on the test problem (1.1) with ε = 0.1.
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Figure 3.2: A plot of the absolute derivative of the unsatisfied second order condition,
bT (θ)c− θ2

2
.

We see from Figure 3.1 that the scaled defect has the same shape and in particular

the same location for the maximum defect over almost all subintervals. There are a

small number of subintervals where the shape of the absolute scaled defect is different.

We consider this later in this chapter.

3.2.2 Standard second order CMIRK scheme

We consider the standard two stage, second order, stage order two CMIRK scheme

(CMIRK222) taken from [28], (also known as the continuous trapezoidal scheme). It

has the tableau,

0 0 0 0

1 1 0 0

b1(θ) b2(θ)

, (3.5)
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where b1(θ) = −1
2
θ(θ − 2) and b2(θ) = 1

2
θ2, and it has the MIRK222 (trapezoidal)

scheme embedded within it; the MIRK222 scheme has this tableau

0 0 0 0

1 1 0 0

1
2

1
2

. (3.6)

We apply the MIRK222/CMIRK222 pair to the SWAVE problem (1.1), the linear

problem (3.1), the SWIRL-III problem (1.2) and the simple nonlinear problem (3.2),

and plot the absolute scaled defect for each subinterval (mapped onto [0,1]); see Fig-

ures 3.3, 3.5, 3.6 and 3.7. We observe that the absolute scaled defect has the same

shape on almost every subinterval and for all four problems. This is because the

leading order term in the defect expansion is a multiple of a single polynomial in θ.

This happens because any second order CMIRK scheme that satisfies the stage order

two conditions has only one unsatisfied order condition,
(
bT (θ)c2 − θ3

3

)
(of order 3),

appearing in the leading order term of the local error expansion. Then the leading

order term in the expansion of the defect will be a multiple of the derivative of this

polynomial. From Figures 3.3, 3.5, 3.6 and 3.7, we see that the maximum defect using

this scheme is located at θ ≈ 0.5 for each subinterval and all of the problems.
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Figure 3.3: A plot of the absolute scaled defect obtained from applying CMIRK222,
with N=100 to the test problem SWAVE (1.1) with ε = 0.1.

We can predict this location of the maximum defect and the shape of the defect

on each subinterval. As mentioned previously, the derivative of the unsatisfied order

condition
(
bT (θ)c2 − θ3

3

)
will appear in the leading order term in the expansion of

the defect. For the specific CMIRK scheme we are considering, this polynomial is

d
dθ

( θ
2

2
− θ3

3
) = θ − θ2. Its maximum will occur where its derivative is zero, i.e., where

1− 2θ = 0⇒ θ = 1
2
; see Figure 3.4.

 

 

 

 

 

 

 

Figure 3.4: A plot of the absolute derivative of the unsatisfied order condition for
order 3, bT (θ)c2 − θ3

3
.
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Figure 3.5: A plot of the absolute scaled defect obtained from applying CMIRK222
with N=100 to the test linear problem (3.1) with λ = 1.

 

 

 

 

 

 

 

Figure 3.6: A plot of the absolute scaled defect obtained from applying CMIRK222
with N=100 to the test problem SWIRL-III (1.2) with ε = 0.01.

 

 

 

 

 

 

 

Figure 3.7: A plot of the absolute scaled defect obtained from applying CMIRK222
with N=100 to the simple nonlinear test problem (3.2).
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From the above figures, we observe that the location of the maximum defect is

the same over all subintervals and problems except for a few cases. By plotting the

non-scaled defect over the whole problem domain, [0,1], using CMIRK222 applied to

the SWIRL-III problem (1.2), (see Figure 3.8), and displaying the maximum defect

of each subinterval, we investigated the subintervals that have defects with different

shapes from the usual case. In particular, we found that the 19th, 49th, 50th, 51th, 52th

and 82th subintervals have different shapes from others. However, we also found that

for these subintervals the maximum defect is much smaller than the maximum defect

of the other 94 subintervals. That is, the subintervals where the defect has a different

shape are also subintervals where the defect is much smaller than the overall maxi-

mum defect, and therefore it is less important to obtain an accurate estimate of the

maximum defect on these subintervals.

 

 

 

 

 

 

 

Figure 3.8: A plot of the absolute non-scaled defect obtained from applying
CMIRK222 with N=100 to the test problem SWIRL-III (1.2) with ε = 0.01. The
subintervals where the defect has a different shape are also cases where the maximum
defect is much smaller.
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3.2.3 Standard third order CMIRK scheme

We consider a three stage, second order, stage order three CMIRK scheme (CMIRK333),

which has the tableau,

0 0 0 0 0

1 1 0 0 0

1
3

7
27

4
27

−2
27

0

b1(θ) b2(θ) b3(θ)

, (3.7)

where b1(θ) = θ(θ − 1)2, b2(θ) = 1
4
θ2(−1 + 2θ) and b3(θ) = −3

4
θ2(−3 + 2θ). This

scheme has the MIRK333 scheme embedded within it; the MIRK333 scheme has the

tableau,

0 0 0 0 0

1 1 0 0 0

1
3

7
27

4
27

−2
27

0

0 1
4

3
4

. (3.8)

We apply the MIRK333/CMIRK333 pair to the SWAVE problem (1.1). We plot

the absolute scaled defect in Figure 3.10. We observe that the absolute scaled de-

fect has the same shape on all subintervals. The maximum defect using this scheme

appears to occur at θ ≈ 0.74 for each subinterval. This is because the leading order

term in the defect expansion is a multiple of a single polynomial in θ. This happens

because any 3rd order CMIRK scheme that has stage order three has only one un-

satisfied order condition
(
bT (θ)c3 − θ4

4

)
(associated with 4th order) which appears in
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the leading order term of the local error expansion. We can predict the shape of the

absolute scaled defect on each subinterval since it will be a multiple of the derivative

of
(
bT (θ)c3− θ4

4

)
, i.e., d

dθ

(
θ2

4
(−1 + 2θ)− 1

27

(
3
4
θ2(−3 + 2θ)

)
− θ4

4

)
= −1

3
θ+ 4

3
θ2− θ3. Its

maximum will occur where its derivative, −1
3

+ 8
3
θ−3θ2, is zero⇒ θ = 0.7384168123;

see Figure 3.9.

 

 

 

 

 

 

 

Figure 3.9: A plot of the absolute derivative of the unsatisfied order condition for
order 4.

 

 

 

 

 

 

Figure 3.10: A plot of the absolute scaled defect obtained from applying CMIRK333
with N=100 to the test problem SWAVE (1.1) with ε = 0.1.
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3.2.4 Standard fourth order CMIRK scheme

Recall that the maximum stage order of a MIRK or CMIRK scheme is three. We

consider a four stage, 4th order, stage order three CMIRK scheme (CMIRK443) taken

from [28], which has the tableau,

0 0 0 0 0 0

1 1 0 0 0 0

1
2

1
2

1
8

−1
8

0 0

2
5

2
5

17
125

− 13
125

− 4
125

0

b1(θ) b2(θ) b3(θ) b4(θ)

, (3.9)

where

b1(θ) = − 1

12
θ(3θ − 4)(5θ2 − 6θ + 3), b2(θ) =

1

6
θ2(5θ2 − 6θ + 2),

b3(θ) = −2

3
θ2(3θ − 2)(5θ − 6), and b4(θ) =

125

12
θ2(θ − 1)2.

This scheme has embedded within it the discrete MIRK343 scheme [28], which has

the tableau

0 0 0 0 0

1 1 0 0 0

1
2

1
2

1
8
−1

8
0

1
6

1
6

2
3

. (3.10)
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We apply the MIRK343/CMIRK443 pair to the SWAVE problem (1.1) and the

SWIRL-III problem (1.2). The plots of the absolute scaled defect are given in Figures

3.11 and 3.12. We note that the location of the maximum defect changes from subin-

terval to subinterval and that the scaled defect does not have the same shape on each

subinterval. The location of the maximum defect varies from subinterval to subinter-

val and over the two problems. This happens because the leading order term in the

defect expansion depends on a varying linear combination of two polynomials. This

happens because any fourth order CMIRK scheme that satisfies stage order three has

a leading order term in its local error expansion that depends on the two unsatisfied

order conditions
(
bT (θ)c4 − θ5

5

)
and

(
bT (θ)(Xc3 + v

4
)− θ5

20

)
associated with 5th order.

This results in a leading order term in the defect expansion of the form (2.23) with

ρ = 1 that depends on a varying linear combination of two different polynomials in

θ. Thus, it is impossible to determine a priori where the maximum defect will occur

for each subinterval.

 

 

 

 

 

 

Figure 3.11: A plot of the absolute scaled defect obtained from applying CMIRK443
with N=100 to the test problem SWAVE (1.1) with ε = 0.1.
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Figure 3.12: A plot of the absolute scaled defect obtained from applying CMIRK443
with N=100 to the test problem SWIRL-III (1.2) with ε = 0.01.

However, when applying the MIRK343/CMIRK443 pair to the linear problem (3.1),

or the simple nonlinear problem (3.2), we found that the absolute scaled defect plots

- see Figures 3.13 and 3.14- were the same on all subintervals. This happens because

the leading order term in the defect expansion is a multiple of a single polynomial

in θ due to the simplicity of these two problems. However, a software package that

implements defect control cannot detect if the problem is going to be sufficiently

simple that the expansion of the local error will be a multiple of a single polynomial.

For each of these simple test problems, we examine the unsatisfied order condi-

tions for 5th order to see if the shape of the absolute scaled defects we observe in

Figures 3.13 and 3.14 matches the shape of derivatives of either of these unsatis-

fied order conditions. The derivative of the first order condition
(
bT (θ)c4 − θ5

5

)
, i.e.,

d
dθ

(
bT (θ)c4 − θ5

5

)
= 1

5
θ − 11

10
θ2 + 19

10
θ3 − θ4. Its maximum will occur at d

dθ
(1
5
θ − 11

10
θ2 +
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19
10
θ3 − θ4) = 1

5
− 11

5
θ+ 57

10
θ2 − 4θ3 = 0⇒ θ = 0.8428127370; see Figure 3.15 where we

see that the plot of this polynomial has almost the same shape as the absolute scaled

defect shown in Figure 3.13. The derivative of the other unsatisfied order condition(
bT (θ)(Xc3+ v

4
)− θ5

20

)
, i.e., d

dθ

(
bT (θ)(Xc3+ v

4
)− θ5

20

)
= −1

4
θ2+ 1

2
θ3− 1

4
θ4. Its maximum

will occur at d
dθ

(−1
4
θ2 + 1

2
θ3 − 1

4
θ4) = −1

2
θ + 3

2
θ2 − θ3 = 0⇒ θ = 0.5; see Figure 3.16

where we see that the plot of this polynomial has a similar shape to the absolute

scaled defect shown in Figure 3.14.

 

 

 

 

 

 

Figure 3.13: A plot of the absolute scaled defect obtained from applying CMIRK443
with N=100 to the test linear problem (3.1) with λ = 1.
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Figure 3.14: A plot of the absolute scaled defect obtained from applying CMIRK443
with N=100 to the simple nonlinear test problem (3.2).

 

 

 

 

 

 

 

Figure 3.15: A plot of the absolute first unsatisfied order condition for order 5.

 

 

 

 

 

 

 

Figure 3.16: A plot of the absolute second unsatisfied order condition for order 5.



44

3.2.5 Standard fifth order CMIRK scheme

Recall that the maximum stage order of a fifth order CMIRK method is three. We

consider a six stage, 5th order, stage order three, CMIRK scheme (CMIRK653) taken

from [28], which has the tableau,

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

c3 v3 x31 x32 0 0 0 0

c4 v4 x41 x42 0 0 0 0

c5 v5 x51 x52 x53 x54 0 0

14
25

14
25

x61 x62 x63 x64 x65 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

, (3.11)

where the coefficients for the first five rows of the tableau are given in the next tableau

of the discrete five stage, 5th order MIRK scheme (MIRK553) (3.12), and

x61 = −28017913
√

393

4515625000
− 493827103

22578125000
, x62 =

37817373

2187500000
− 745481

√
393

19687500000
,

x63 =
13007794215933

92082812500000
+

686727625023
√

393

92082812500000
,

x64 = −2408972902336

9694346953125
− 2652451648

√
393

5816608171875
,

x65 =
4506347288003

40301953125000
− 10198807509

√
393

13433984375000
,

b1(θ) =
(42919

√
393 + 726581)

279890843022336
θ(1853738880 θ4 − 3898264641 θ3
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−67451925
√

393θ3 + 1702187994 θ2 + 176781154
√

393θ2

+1127678925 θ − 160912047
√

393θ − 1037557668 + 61288332
√

393),

b2(θ) = −(−19675275 + 559079
√

393)

52326786664728576
θ2(4250789760 θ3 − 5448163857 θ2

+177236475
√

393θ2 + 1009672582 θ − 284790018
√

393θ

+702696666 + 128060898
√

393),

b3(θ) = −(11675241621 + 610860615
√

393)

23449186109440
θ2(13440 θ3 − 35583 θ2

−75
√

393θ2 + 156
√

393θ + 32044 θ − 10500− 84
√

393),

b4(θ) =
(5288000

√
393− 38154000)

364664379807
θ2(13440 θ3 − 35583 θ2 − 75

√
393θ2

+156
√

393θ + 32044 θ − 10500− 84
√

393),

b5(θ) = −(948114929207 + 39148987645
√

393)

169641265393978560
θ2(2297220 θ3 + 294525

√
393θ2

−10931079 θ2 − 612612
√

393θ + 15563192 θ − 7225680 + 329868
√

393),

b6(θ) =
(1944296875 + 59765625

√
393)

119925757952
(θ − 1)2θ2(896 θ − 1241 + 51

√
393).
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This scheme has embedded within it the discrete MIRK553 scheme which has the

tableau

0 0 0 0 0 0 0

1 1 0 0 0 0 0

− 5
28

+
√
393
84

v3 x31 x32 0 0 0

17
20

v4 x41 x42 0 0 0

125
224

+
√
393
224

v5 x51 x52 x53 x54 0

b1 b2 b3 b4 b5

, (3.12)

where

v3 =
229

686
− 101

√
393

6174
, x31 = − 6409

16464
+

1097
√

393

49392
,

x32 = − 2027

16464
+

299
√

393

49392
, v4 =

3757

4000
, x41 =

153

8000
, x42 = − 867

8000
,

v5 =
237704435

314703872
+

1823343
√

393

314703872
, x51 =

223029279

10699931648
− 36659445

√
393

10699931648
,

x52 = − 1758793

629407744
− 682877

√
393

629407744
, x53 =

164181897

3862233088
+

9504189
√

393

3862233088
,

x54 = − 725872015625

2815085142016
+

2028935875
√

393

2815085142016
,

b1 = − 19

272
− 11

√
393

816
, b2 =

3035

28224
+

187
√

393

84672
,

b3 =
43425027

132009920
+

2257089
√

393

132009920
, b4 =

998000

21897819
− 550000

√
393

65693457
,

b5 =
5993083

10195920
+

25961
√

393

10195920
.

We apply the MIRK553/CMIRK653 pair to the SWAVE problem (1.1) and the

SWIRL-III problem (1.2). The plot of the absolute scaled defect is given in Figures
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3.17 and 3.18. The location of the maximum defect varies from subinterval to subin-

terval and from problem to problem. This is because any fifth order CMIRK scheme

that satisfies stage order three has four unsatisfied order conditions appearing in a

varying linear combination in the leading order term of the local error expansion.

These polynomials are (bT (θ)c5 − θ6

6
),
(
bT (θ)(Xc4 + v

5
)− θ6

30

)
,
(
bT (θ)c(Xc3 + v

4
)− θ6

24

)
and

(
bT (θ)(X(Xc3 + v

4
) + v

20
)− θ6

120

)
. This implies that the leading order term of the

defect expansion (2.23) will be a varying linear combination of four polynomials (the

derivatives of the above unsatisfied order conditions).

 

 

 

 

 

 

Figure 3.17: A plot of the absolute scaled defect obtained from applying CMIRK653
with N=100 to the test problem SWAVE (1.1) with ε = 0.1.
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Figure 3.18: A plot of the absolute scaled defect obtained from applying CMIRK653
with N=100 to the test problem SWIRL-III (1.2) with ε = 0.01.

3.3 Implementations of Hermite-Birkhoff interpolants

Since the standard 4th and 5th order CMIRK schemes do not lead to ACDC, we

consider Hermite-Birkhoff interpolants (2.24) of orders four and five, and their appli-

cation to the SWAVE (1.1) and SWIRL-III (1.2) problems.

3.3.1 A Fourth Order Hermite-Birkhoff Interpolant

In [14], a fourth order Hermite-Birkhoff (H-B) scheme was developed using the

standard fourth order CMIRK interpolant (3.9) as a basis. The fourth order H-B

scheme uses yi, yi+1, k1, k2, and two additional stages, k5, k6, constructed using

the boot-strapping algorithm described in [18]. The extra stages, associated with

the abscissa values c5 = 86
100

and c6 = 93
100

, are based on evaluations of the standard

CMIRK scheme; they have the form,

k4+j = f(ti + c4+jhi, ui(ti + c4+jhi)), (3.13)
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where j = 1, 2.

The Hermite-Birkhoff interpolant then has the form,

ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 (3.14)

+hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃5(θ)k5 + b̃6(θ)k6

)
,

where d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃5(θ), and b̃6(θ) are weight polynomials of degree five,

obtained from the interpolation conditions, ũi(ti) = yi, ũi(ti+1) = yi+1, ũ
′
i(ti) = k1,

ũ′i(ti+1) = k2, ũ
′
i(ti+c5hi) = k5, ũ

′
i(ti+c6hi) = k6. This gives

d0(θ) = 1− 11997
1024

θ2 + 12949
512

θ3 − 20925
1024

θ4 + 375
64
θ5,

d1(θ) = 11997
1024

θ2 − 12949
512

θ3 + 20925
1024

θ4 − 375
64
θ5,

b̃1(θ) = θ − 35442229
8189952

θ2 + 28704301
4094976

θ3 − 41250325
8189952

θ4 + 5375
3968

θ5,

b̃2(θ) = −2291427
100352

θ2 + 3838251
50176

θ3 − 8579075
100352

θ4 + 199625
6272

θ5,

b̃5(θ) = −47953125
1078784

θ2 + 74828125
539392

θ3 − 155453125
1078784

θ4 + 78125
1568

θ5,

b̃6(θ) = 8734375
145824

θ2 − 14359375
72912

θ3 + 31234375
145824

θ4 − 234375
3038

θ5.

We next apply the above 4th order H-B interpolant (3.14) to the SWAVE problem

(1.1) and the SWIRL-III problem (1.2). (The standard 4th order MIRK/CMIRK pair

considered earlier are applied first; then we compute the 4th order H-B interpolant as

described above). The plots of the absolute scaled defects are given in Figures 3.19

and 3.20. The location of the maximum defect is the same for all subintervals and

both problems, and it occurs at θ ≈ 0.23.
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Since ui(t) is a fourth order CMIRK scheme, each evaluation of this scheme as

well as the stages k2, k5, and k6 (with a Lipschitz assumption on f) has an error

that is O(h5i ). Therefore the error contributions of the terms hik2, hik5, and hik6 are

O(h6i ) while the yi and k1 terms are considered exact and thus contribute no data

error to ũi(t). We note also from standard interpolation theory, the interpolation

error associated with ũi is O(h6i ). Thus the term d1(θ)yi+1 contributes the largest

error of O(h5i ) to the new interpolant ũi(t). The continuous local error is therefore

ũi(t)− zi(t) = d1(θ)Cihi
5 +O(h6i ), (3.15)

where Ci is associated with the data error for yi+1, and from (2.22) the defect of ũi(t)

satisfies

δ̃(t) = ũ′i(t)− z′i(t) +O(h5i ) = d′1(θ)Cih
4
i +O(h5i ). (3.16)

Therefore as hi becomes sufficiently small, the location of the maximum defect on

each subinterval for any problem will coincide with the extremum of the polynomial

d′1(θ); the local maximum of d′1(θ) = 11997
512

θ − 38847
512

θ2 + 20925
256

θ3 − 1875
64
θ4. Its max-

imum will occur where its derivative (11997
512
− 38847

256
θ + 62775

256
θ2 − 1875

16
θ3) is zero ⇒

θ = 0.2313271928; see Figure 3.21.
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Figure 3.19: A plot of the absolute scaled defect obtained by applying the 4th order
Hermite-Birkhoff scheme with N=100 to the test SWAVE problem (1.1) with ε = 0.1.

 

 

 

 

 

 

 
Figure 3.20: A plot of the absolute scaled defect obtained by applying the 4th order
Hermite-Birkhoff scheme with N=100 to the test problem SWIRL-III (1.2) with ε =
0.01.

 

 

 

 

 

 

 

Figure 3.21: A plot of d′1(θ) for the 4th order Hermite-Birkhoff interpolant (3.15).
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3.3.2 A Fifth Order Hermite-Birkhoff Interpolant

We derive a fifth order H-B interpolant by applying the same process that was used

by Enright and Muir to derive the sixth order H-B interpolant in [20], and by Ellis

in [14] to derive the fourth order H-B interpolant. The fifth order H-B interpolant

is based on the standard fifth order CMIRK interpolant (3.11). The fifth order H-B

interpolant uses yi, yi+1, k1, k2, and three additional stages, k7, k8, k9, constructed

using the boot-strapping algorithm described in [18]. The extra stages associated

with the abscissa values c7 = 7
100

, c8 = 14
100

and c9 = 86
100

, are based on evaluations of

the standard CMIRK scheme; they have the form,

k6+j = f(ti + c6+jhi, ui(ti + c6+jhi)), (3.17)

where j = 1, 2, 3.

The H-B interpolant has the form,

ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 (3.18)

+hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃7(θ)k7 + b̃8(θ)k8 + b̃9(θ)k9

)
,

where d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃7(θ), b̃8(θ), and b̃9(θ) are weight polynomials of

degree six, obtained from the interpolation conditions, ũi(ti) = yi, ũi(ti+1) = yi+1,

ũ′i(ti) = k1, ũ
′
i(ti+1) = k2, ũ

′
i(ti+c7hi) = k7, ũ

′
i(ti+c8hi) = k8, and ũ′i(ti+c9hi) = k9. This

gives
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d0(θ) = 1− 147
199
θ2 + 99414

8557
θ3 − 472650

8557
θ4 + 621000

8557
θ5 − 250000

8557
θ6,

d1(θ) = 147
199
θ2 − 99414

8557
θ3 + 472650

8557
θ4 − 621000

8557
θ5 + 250000

8557
θ6,

b̃1(θ) = θ − 767698
59899

θ2 + 3564741697
54088797

θ3 − 2483339900
18029599

θ4 + 2236098500
18029599

θ5 − 2183875000
54088797

θ6,

b̃2(θ) = 13349
795801

θ2 − 29658871
102658329

θ3 + 4325550
2575657

θ4 − 852548500
239536101

θ5 + 1546375000
718608303

θ6,

b̃7(θ) = 1000000
51429

θ2 − 6806000000
46440387

θ3 + 57000000
166453

θ4 − 5000000000
15480129

θ5 + 5000000000
46440387

θ6,

b̃8(θ) = −2546875
359394

θ2 + 42757609375
486799173

θ3 − 77402328125
324532782

θ4 + 39244375000
162266391

θ5 − 40937500000
486799173

θ6,

b̃9(θ) = −1203125
4056018

θ2 + 3704984375
784839483

θ3 − 84653921875
3662584254

θ4 + 60891875000
1831292127

θ5 − 80000000000
5493876381

θ6.

We apply the above fifth order H-B interpolant (3.19) to the SWAVE problem (1.1)

and the SWIRL-III problem (1.2). The plot of the absolute scaled defects are given

in Figures 3.22 and 3.23. The location of the maximum defect is the same for all

subintervals and both problems, and it occurs at θ ≈ 0.58.

Similar to the 4th order case, it can be shown that

δ̃(t) = ũ′i(t)− z′i(t) +O(h6i ) = d′1(θ)Cih
5
i +O(h6i ). (3.19)

We can therefore predict the location of the maximum defect since it will oc-

cur at the maximum of the derivative of d1(θ), i.e., at the maximum of d′1(θ) =

294
199
θ − 298242

8557
θ2 + 1890600

8557
θ3 − 3105000

8557
θ4 + 1500000

8557
θ5. Its maximum will occur where its

derivative (294
199
− 596484

8557
θ+ 5671800

8557
θ2− 12420000

8557
θ3 + 7500000

8557
θ4) is zero⇒ θ = 0.580173236;

see Figure 3.24.
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Figure 3.22: A plot of the absolute scaled defect obtained from applying the 5th order
Hermite-Birkhoff scheme with N=60 to the test SWAVE problem (1.1) with ε = 0.1.

 

 

 

 

 

 

 

Figure 3.23: A plot of the absolute scaled defect obtained from applying the 5th

order Hermite-Birkhoff scheme with N=60 to the test problem SWIRL-III (1.2) with
ε = 0.01.

 

 

 

 

 

 

 

Figure 3.24: A plot of d′1(θ) for the 5th order Hermite-Birkhoff interpolant (3.19).



Chapter 4

Derivations of ACDC CMIRK Schemes for Orders 4 and 5

The use of a standard MIRK/CMIRK scheme, followed by the use of a Hermite-

Birkhoff interpolant, provides a continuous numerical solution that leads to ACDC.

An advantage of this approach is that it is quite general. However, a disadvantage is

that the total number of stages that are used can be greater than necessary. In this

chapter, we will consider an alternative approach to obtaining a continuous numerical

solution that leads to ACDC. The idea is to directly obtain CMIRK schemes that

lead to ACDC by deriving schemes that have only one unsatisfied order condition of

the next highest order so that the leading order term in the local error expansion is

a multiple of a single polynomial in θ (namely, the one unsatisfied order condition).

We will refer to a CMIRK scheme that directly leads to ACDC as an ACDC CMIRK

scheme.

4.1 Derivation of a Fourth Order ACDC CMIRK scheme

Some preliminary work in the derivation of a 4th order ACDC CMIRK scheme was

considered in [14]. In [14], Ellis derived a new fourth order CMIRK scheme through

the direct approach of satisfying all but one of the continuous order conditions for

the next highest order in order to simplify the expression in (2.23). In this thesis, we
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will expand upon this idea to derive new CMIRK schemes that lead to ACDC.

To directly derive a fourth order CMIRK scheme that leads to an asymptotically

correct defect estimate, we start by embedding the discrete MIRK343 (3.10) in a

family of five stage, fourth order, stage order three CMIRK schemes with stage order

vector, SOV = (4, 4, 3, 3, 4), which means that we impose stage order 4, 4, 3, 3, 4 on

the first, second, third, fourth and fifth stages, respectively. The resulting Butcher

tableau is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

−1
8

0 0 0

c4 v4 x41 x42 x43 0 0

c5 v5 x51 x52 x53 x54 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

, (4.1)

where x41, x42, and x43 are given in terms of c4, v4, due to the imposition of the stage

order 3 conditions, and x51, x52, x53, and x54 are given in terms of c5, v5, due to the

imposition of the stage order 4 conditions.

We then require that the weight polynomials satisfy the standard fourth order

continuous order conditions: b(θ)T e = θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
and b(θ)T c3 = θ4

4
,

and one of the two unsatisfied fifth order continuous order conditions, b(θ)T c4 = θ5

5
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and b(θ)T (Xc3 + v
4
) = θ5

20
. (There are nine unsatisfied fifth order conditions if we

consider a 4th order scheme that has only stage order one. The imposition of the

stage order three conditions effectively reduces the number of fifth order conditions

from the nine to multiples of just two: b(θ)T c4 = 1
5
θ5 and b(θ)T

(
Xc3 + v

4

)
= 1

20
θ5.)

After solving the four fourth order conditions plus the first of the fifth order con-

ditions, i.e., b(θ)T c4 = 1
5
θ5, using the five weight polynomials b1(θ), b2(θ), ..., b5(θ),

we are left with the four free parameters, c4, v4, c5, v5. By (arbitrarily) choosing

c4 = v4 = 1/4 and c5 = v5 = 3/4, we obtain an example of a 4th order ACDC CMIRK

method (CMIRK543-I) (which was derived in [14]):

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

−1
8

0 0 0

1
4

1
4

2
16

− 1
16

− 1
16

0 0

3
4

3
4
− 1

128
− 13

128
− 5

64
3
16

0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

, (4.2)

where

b1(θ) =
1

90
θ(90− 375θ + 700θ2 − 600θ3 + 192θ4),
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b2(θ) =
1

90
θ2(−45 + 220θ − 360θ2 + 192θ3),

b3(θ) =
2

15
θ2(−45 + 190θ − 240θ2 + 96θ3),

b4(θ) = − 8

45
θ2(−45 + 130θ − 135θ2 + 48θ3),

b5(θ) = − 8

45
θ2(−15 + 70θ − 105θ2 + 48θ3).

An alternative approach is to start with the same CMIRK scheme (4.1), and apply

the four 4th order continuous order conditions and the second of the fifth order con-

tinuous order conditions b(θ)T
(
Xc3 + v

4

)
= 1

20
θ5. This gives another example of this

type of method, again with four free parameters c4, v4, c5, v5. Choosing the four free

parameters c4 = v4 = 1/3 and c5 = v5 = 2/3, gives another 4th order ACDC CMIRK

method (CMIRK543-II):
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0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

−1
8

0 0 0

1
3

1
3

11
81

− 7
81

− 4
81

0 0

2
3

2
3

1
81

− 8
81

−20
81

27
81

0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

, (4.3)

where

b1(θ) = − 1

120
θ(−120 + 360θ − 350θ2 + 45θ3 + 54θ4),

b2(θ) = − 1

120
θ2(−30 + 190θ − 225θ2 + 54θ3),

b3(θ) = − 4

15
θ2(15 + 5θ − 45θ2 + 27θ3),

b4(θ) =
27

40
θ2(10− 10θ − 5θ2 + 6θ3),

b5(θ) =
27

40
θ3(10− 15θ + 6θ2).
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We discovered that when we choose values for the free coefficients of CMIRK543-I

to be the same as the values for the free coefficients of CMIRK543-II we obtain the

same CMIRK543 method in each case. That is, starting with the CMIRK family (4.1)

with SOV=(4,4,3,3,4) and deriving a CMIRK method by imposing the four 4th order

continuous order conditions and either of the 5th order conditions leads to the same

family of ACDC CMIRK schemes. Future work will investigate why this happens.

4.2 Numerical Experiments with CMIRK543-I

When applying CMIRK543-I (4.2) to solve the SWAVE problem (1.1) and the

SWIRL-III problem (1.2), we obtain continuous numerical solutions for which, for

most of the subintervals, the maximum defects occur in the same location; see Figures

4.2 and 4.3. For most subintervals, the defects are multiples of the same polynomial

and we can predict what the polynomial is. It will be the derivative of the lone

unsatisfied 5th order condition; see Figure (4.1). This happens because the leading

order term in the local error expansion will be a multiple of the lone unsatisfied order

condition, and the leading term in the defect is a multiple of the derivative of the

leading term in the local error expansion.
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Figure 4.1: A plot of the absolute derivative of the lone unsatisfied 5th order condition
b(θ)T (Xc3 + v

4
) = 1

20
θ5 for the CMIRK543-I.

For most subintervals, the location of the maximum defect does not depend on the

subinterval or the problem. From an inspection of Figures 4.2 and 4.3 the location

of the maximum defect for CMIRK543-I is at θ ≈ 0.44. We can predict the location

of this maximum by finding the maximum of the derivative of the unsatisfied order

condition, b(θ)T (Xc3 + v
4
) = 1

20
θ5, shown in Figure 4.1. For CMIRK543-I, this poly-

nomial is − 1
64
θ(θ − 1)(4θ − 3)(10θ − 1), and its maximum is at θ = 0.4473760769.

 

 

 

 

 

 

Figure 4.2: A plot of the absolute scaled defect obtained from applying the
CMIRK543-I scheme with N=100 to the SWAVE problem (1.1) with ε = 0.1.
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 Figure 4.3: A plot of the absolute scaled defect obtained from applying the
CMIRK543-I scheme with N=100 to the SWIRL-III problem (1.2) with ε = 0.01.

4.3 Derivation of a Fifth Order ACDC CMIRK scheme

We derive a fifth order CMIRK scheme that directly gives the ACDC property, and

has the discrete optimal MIRK553 (3.12) scheme embedded within it. The discrete

scheme has the stage order vector SOV = (5, 5, 3, 3, 5). We will require all additional

stages of the CMIRK scheme to have stage order 5. We will require the scheme to

satisfy the six fifth order conditions that must be satisfied in order to obtain a 5th

order CMIRK scheme that has stage order 3, b(θ)T e = θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
,

b(θ)T c3 = θ4

4
, b(θ)T c4 = θ5

5
, and b(θ)T (Xc3 + v

4
) = θ5

20
. We will also require the scheme

to satisfy three out of the four sixth order conditions (when a CMIRK scheme has

stage order 3, there are 4 conditions of order six.)

By substituting the stage order four condition, C4 = Xc3+ v
4
− c4

4
, and b(θ)T c4 = θ5

5
,

we can transform the fifth order condition b(θ)T (Xc3 + v
4
) = θ5

20
into bT (θ)C4 = 0.

The four sixth order conditions are: bT (θ)c5 = θ6

6
, bT (θ)(Xc4 + v

5
) = θ6

30
, bT (θ)c(Xc3 +
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v
4
) = θ6

24
, and bT (θ)(X(Xc3 + v

4
) + v

20
) = θ6

120
. By substituting the stage order five

condition, C5 = Xc4 + v
5
− c5

5
, and bT (θ)c5 = θ6

6
, we can transform the sixth order

condition bT (θ)(Xc4 + v
5
) = θ6

30
into bT (θ)C5 = 0. By substituting the stage order

four condition, C4, and bT (θ)c5 = θ6

6
, we can transform the sixth order condition

bT (θ)c(Xc3 + v
4
) = θ6

24
into bT (θ)cC4 = 0. By substituting the stage order four

condition, C4, and bT (θ)(Xc4 + v
5
) = θ6

30
, we can transform the sixth order condition

bT (θ)(X(Xc3 + v
4
) + v

20
) = θ6

120
into bT (θ)XC4 = 0.

If we were to simply impose all nine conditions (the six 5th order conditions and

three of the four 6th order conditions) the CMIRK scheme would require 9 stages.

Our goal is to derive a scheme with as few stages as possible. Here we derive a family

of fifth order, stage order three CMIRK schemes with eight stages, CMIRK853, with

SOV = (5, 5, 3, 3, 5, 5, 5, 5). The resulting Butcher tableau is
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0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

c3 v3 x31 x32 0 0 0 0 0 0

c4 v4 x41 x42 0 0 0 0 0 0

c5 v5 x51 x52 x53 x54 0 0 0 0

c6 v6 x61 x62 x63 x64 x65 0 0 0

c7 v7 x71 x72 x73 x74 x75 x76 0 0

c8 v8 x81 x82 x83 x84 x85 x86 x87 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ)

, (4.4)

where the coefficients for the first five rows of the tableau are given in the tableau of

the embedded discrete (MIRK553) scheme (3.12).

As mentioned earlier, the sixth, seventh and eighth stages are required to satisfy

the stage order five conditions. After imposing these stage order conditions on stages

six, seven and eight, we get x61, x62, x63, x64 and x65 in terms of c6 and v6, and x72,

x73, x74, x75 and x76 in terms of c7, v7 and x71, and x83, x84, x85, x86 and x87 in terms

of c8, v8, x81 and x82. We then require that the weight polynomials and remaining

nine free coefficients, c6, v6, c7, v7, x71, c8, v8, x81 and x82 be chosen to satisfy the

six fifth order continuous order conditions: b(θ)T e = θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
,

b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
and bT (θ)C4 = 0 , and three of the four unsatisfied sixth

order continuous order conditions, bT (θ)c5 = θ6

6
, bT (θ)C5 = 0, bT (θ)cC4 = 0, and
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bT (θ)XC4 = 0.

The three sixth order conditions we choose to be satisfied are: bT (θ)c5 = θ6

6
,

bT (θ)C5 = 0, and bT (θ)cC4 = 0. Since the third and fourth stages have only stage

order three while the other stages have stage order 5, C4 and C5 have all zero entries

except for positions 3 and 4. By requiring b3(θ) and b4(θ) to be zero identically, it

follows that the fifth order condition, bT (θ)C4 = 0, and the sixth order conditions

bT (θ)C5 = 0 and bT (θ)cC4 = 0 will be automatically satisfied. This leaves us with

the six conditions, b(θ)T e = θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
,

and bT (θ)c5 = θ6

6
, to be satisfied. Therefore, the total number of stages that we will

need is eight.

We use the six weight polynomials b1(θ), b2(θ), b5(θ), b6(θ), b7(θ), b8(θ) to satisfy

these six order conditions. This leaves us with the nine free parameters mentioned

earlier. By choosing values for them, as indicated in the following tableau, we obtain

an example of a 5th order ACDC CMIRK method as follows:
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0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

c3 v3 x31 x32 0 0 0 0 0 0

c4 v4 x41 x42 0 0 0 0 0 0

c5 v5 x51 x52 x53 x54 0 0 0 0

c6 v6 x61 x62 x63 x64 x65 0 0 0

c7 v7 x71 x72 x73 x74 x75 x76 0 0

c8 v8 x81 x82 x83 x84 x85 x86 x87 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ)

, (4.5)

where the coefficients for the first five rows of the tableau are given in the tableau of

the embedded discrete (MIRK553) scheme (3.12), and

c6 =
1

2
, v6 =

1

2
, x61 = − 495

73984

√
393− 1229

73984
, x62 =

3121

150528
− 143

451584

√
393,

x63 =
316130859

2112158720
+

16758009

2112158720

√
393, x64 = −19261875

82725094
+

295625

744525846

√
393,

x65 =
73074419

924430080
− 1223791

924430080

√
393

c7 =
1

2
−
√

7

14
, v7 =

1

2
−
√

7

14
, x71 =

3

112
+

9
√

7

1960
,

x72 = − 3555

38416
+

11

19208

√
393 +

3509

48404160

√
393
√

7− 60211

16134720

√
7,
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x73 =
34702587

27491065840

√
393 +

50869782

1718191615
+

2446484931

769749843520

√
7

+
520529229

3848749217600

√
393
√

7,

x74 = − 295625

1669100426

√
393 +

173356875

1669100426
+

211880625

5841851491

√
7− 3251875

52576663419

√
393
√

7,

x75 = − 8136237

111022240

√
393 +

112728633

111022240
+

124233703

1165733520

√
7− 14610453

1942889200

√
393
√

7,

x76 =
13365

186592

√
393− 202095

186592
− 479613

3265360

√
7 +

24079

3265360

√
393
√

7,

c8 =
87

100
, v8 = c8 =

87

100
, x81 =

2707592511

1000000000000
− 1006699707

√
7

1000000000000
,

x82 = − 51527976591

1000000000000
− 1006699707

√
7

1000000000000
,

x83 =
325267263831243581523

31728937870000000000000
+

14587453893841540569

31728937870000000000000

√
393

+
2262384450385281729

4532705410000000000000

√
7 +

121801009211392563

4532705410000000000000

√
393
√

7,

x84 =
9977027915179

919708398000000

√
7− 459372549779

24832126746000000

√
393
√

7− 3678014263866527

45985419900000000
+

169346904196327

1241606337300000000

√
393,

x85 = − 2143419845411741

60690000000000000
− 984609766854493

8670000000000000

√
7 +

101060638539809

8670000000000000

√
393
√

7−

788117416154783

60690000000000000

√
393,

x86 =
122326924577

11900000000000

√
393− 1075079202067

11900000000000
− 284341779579

29750000000000

√
393
√

7+

4778781424469

29750000000000

√
7,
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x87 = − 4822701365224561

85509000000000000

√
7 +

10441137625184357

42754500000000000

− 4864579879858699

2308743000000000000

√
393
√

7 +
2435992347982193

1154371500000000000

√
393,

and

b1(θ) =
1

1669731840
(−875− 125

√
7 + 7

√
393 +

√
393
√

7)θ(9068115θ + 326250
√

7

−18270
√

393 + 2610
√

393
√

7 + 1401140θ2
√

7− 18853800θ2 + 21598710θ3

−12900384θ4 + 3136000θ5 − 2283750− 5415θ
√

393
√

7− 983820θ3
√

7− 83720θ2
√

393

+60270θ3
√

393 + 56175θ
√

393− 969195θ
√

7 + 268800θ4
√

7 + 4740θ2
√

393
√

7

−1500θ3
√

393
√

7− 16800θ4
√

393),

b2(θ) = − 1

154103040
(−693 + 99

√
7− 7

√
393 +

√
393
√

7)(−5284160θ + 39270θ2
√

393

−16800θ3
√

393− 163125
√

7 + 10177230θ2 − 9137184θ3 + 3136000θ4 + 268800θ3
√

7

−647820θ2
√

7− 31360θ
√

393 + 2740θ
√

393
√

7 + 1141875− 1500θ2
√

393
√

7

+537380θ
√

7 + 9135
√

393− 1305
√

393
√

7)θ2,

b3(θ) = 0,

b4(θ) = 0,
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b5(θ) =
1

435817403280
(−14220361

√
7 + 176130429

√
393
√

7− 4314649619

−142217201
√

393)(−37450θ + 3610θ
√

7 + 9135− 1305
√

7 + 62790θ2

−3555θ2
√

7− 48216θ3 + 1200θ3
√

7 + 14000θ4)θ2,

b6(θ) = − 1

435120

√
7(−13 +

√
393)(−5509392θ3 + 134400θ3

√
7 + 24885θ2

√
393

−25270θ
√

393 + 1870θ
√

393
√

7 + 7355985θ2 + 1141875− 163125
√

7− 4522910θ

+9135
√

393− 1305
√

393
√

7− 407910θ2
√

7 + 428630θ
√

7 + 1568000θ4

−750θ2
√

393
√

7− 8400θ3
√

393)θ2,

b7(θ) = − 7

591572160
(−66745 + 20351

√
7− 1939

√
393 + 821

√
393
√

7)(163125

+1305
√

393− 646130θ − 3610θ
√

393 + 1050855θ2 + 3555θ2
√

393− 787056θ3

−1200θ3
√

393 + 224000θ4)θ2,

b8(θ) =
3906250

1091762011055079
(−452473− 6475

√
393 + 87350

√
7 + 1250

√
393
√

7)

(−59430θ − 350θ
√

393 + 111300θ2 + 420θ2
√

393− 96264θ3 − 168θ3
√

393 + 31360θ4

+13125− 1875
√

7 + 105
√

393− 15
√

393
√

7 + 5990θ
√

7 + 30θ
√

393
√

7− 6915θ2
√

7

−15θ2
√

393
√

7 + 2688θ3
√

7)θ2.

(We could choose bT (θ)XC4 = 0 instead of choosing bT (θ)cC4 = 0, but that

will require one more stage. We cannot choose bT (θ)C5 = 0 to be unsatisfied because
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bT (θ)XC4 = 0 depends on it. If we consider the original forms of the order conditions

and do not force any of the weight polynomials to be zero, then bT (θ)XC4 = 0 cannot

be satisfied because C43x53+C44x54 will not equal zero, and this will lead to a CMIRK

scheme with nine stages.)

4.4 Numerical Experiments with CMIRK853

The results of applying CMIRK853 (4.5) to the SWAVE problem (1.1) and the

SWIRL-III problem (1.2) are shown in Figures 4.4 and 4.5.

The location of the maximum defect is the same for most of the subintervals and

for both problems. It occurs at θ ≈ 0.14 within each subinterval.

 

 

 

 

 

 

 

Figure 4.4: A plot of the absolute scaled defect obtained from applying the CMIRK853
scheme with N=60 to the SWAVE problem (1.1) with ε = 0.1.
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Figure 4.5: A plot of the absolute scaled defect obtained from applying the CMIRK853
scheme with N=60 to the SWIRL-III problem (1.2) with ε = 0.01.

We can predict the shape of this absolute scaled defect and the location of the

maximum. They are obtained from the derivative of the lone unsatisfied sixth or-

der condition bT (θ)XC4 mentioned earlier. This derivative is plotted in Figure

4.6. It is −0.6232140220θ(0.07546573673θ3 − 0.2366997140θ2 + 0.2106057408θ −

0.05113623823)(−1 + θ), and its maximum is at θ = 0.1440679896.

 

 

 

 

 

 

 

Figure 4.6: A plot of the absolute derivative of the lone unsatisfied 6th order condition,
bT (θ)XC4.



Chapter 5

A Comparison Between Hermite-Birkhoff Interpolants and

ACDC CMIRK Schemes For Orders 4 and 5

In this chapter, we will compare ACDC CMIRK schemes with Hermite-Birkhoff

interpolants for 4th and 5th orders applied to the SWAVE (1.1) and SWIRL-III (1.2)

problems.

5.1 Comparing 4th Order Schemes

We apply the 4th order ACDC CMIRK543-I scheme and the 4th order Hermite-

Birkhoff interpolant to the SWAVE (1.1) and SWIRL-III (1.2) problems where we

require the schemes to achieve approximately the same maximum defect. This is

done by using a different number of subintervals, N, for each scheme. The results are

presented in Tables 5.1 and 5.2. The processor is lntel(R) Core(TM) i5-3337U CPU

@ 1.80GHz 1.80 GHz. The operating system is Windows 8.1. The version of Scilab

is 5.5.1.

In the above tables we note that the CMIRK543-I scheme is more accurate than

the 4th Order H-B interpolant since it is able to solve both problems to the same

72
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Table 5.1: A comparison between the 4th order Hermite-Birkhoff interpolant and the
4th order ACDC CMIRK scheme CMIRK543-I applied to the SWAVE problem. The
time to solve the problem for each method is given in seconds.

Scheme maximum defect N time (seconds)
4th order Hermite-Birkhoff interpolant 2.6 × 10−6 100 3.8
4th Order ACDC CMIRK543-I scheme 2.6 × 10−6 92 2.9

Table 5.2: A comparison between the 4th order Hermite-Birkhoff interpolant and the
4th order ACDC CMIRK scheme CMIRK543-I applied to the SWIRL-III problem.
The time to solve the problem for each method is given in seconds.

Scheme maximum defect N time (seconds)
4th order Hermite-Birkhoff interpolant 4.8 × 10−6 99 11.2

ACDC CMIRK543-I 4.8 × 10−6 84 7.8

accuracy as the H-B interpolant using fewer subintervals. As well the CMIRK543-I

uses fewer stages (5 vs. 6) than the H-B interpolant. These two effects lead to the

CMIRK543-I scheme using less computational time than the H-B interpolant.

5.2 Comparing 5th Order Schemes

We apply the 5th order ACDC CMIRK853 scheme and the 5th order Hermite-

Birkhoff interpolant to the SWAVE (1.1) and SWIRL-III (1.2) problems where we

require the schemes to achieve approximately the same maximum defect. The results

are presented in Tables 5.3 and 5.4.
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Table 5.3: A comparison between the 5th order Hermite-Birkhoff interpolant and the
5th order ACDC CMIRK scheme CMIRK853 applied to the SWAVE problem. The
time to solve the problem for each method is given in seconds.

Scheme maximum defect N time (seconds)
5th order Hermite-Birkhoff interpolant 4 × 10−7 57 3.878125

ACDC CMIRK853 4 × 10−7 61 3.596875

Table 5.4: A comparison between the 5th order Hermite-Birkhoff interpolant and the
5th order ACDC CMIRK scheme CMIRK853 applied to the SWIRL-III problem. The
time to solve the problem for each method is given in seconds.

Scheme maximum defect N time (seconds)
5th order Hermite-Birkhoff interpolant 4 × 10−7 59 10.640625

ACDC CMIRK853 4 × 10−7 66 11.134375

The ACDC CMIRK853 scheme is less accurate than the H-B interpolant and there-

fore requires more subintervals to obtain the same accuracy. For the SWAVE prob-

lem, the CMIRK853 scheme is still faster due to the fact that it uses fewer stages

(8 vs. 9) per subinterval. However, for the SWIRL-III problem, despite using fewer

stages per subinterval (8 vs. 9), the overall computational cost for the CMIRK853

scheme is larger than the cost for the H-B interpolant. Future work will optimize

the CMIRK853 to be more accurate, by choosing the free coefficients to minimize the

leading order term in the local error expansion for the scheme.



Chapter 6

Investigation of 6th Order Standard CMIRK Schemes,

Hermite-Birkhoff Interpolants, and ACDC CMIRK and

CGMIRK Schemes

In this chapter, we will consider a standard sixth order CMIRK scheme, a sixth

order Hermite-Birkhoff interpolant and several sixth order ACDC CMIRK schemes.

We also consider several ACDC CGMIRK schemes.
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6.1 A Standard Sixth Order CMIRK Scheme

We consider an eight stage, 6th order, stage order three, CMIRK scheme (CMIRK863)

taken from [28], which has the tableau,

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1
2
−
√
21
14

1
2
− 9

√
21

98
x31 x32 0 0 0 0 0 0

1
2

+
√
21
14

1
2

+ 9
√
21

98
x41 x42 0 0 0 0 0 0

1
2

1
2

x51 x52 x53 x54 0 0 0 0

1
2

1
2

x61 x62 x63 x64 0 0 0 0

1
2
−
√
7

14
1
2
−
√
7

14
x71 x72 x73 x74 x75 x76 0 0

87
100

87
100

x81 x82 x83 x84 x85 x86 x87 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ)

, (6.1)

where

x31 =
1

14
+

√
21

98
, x32 = − 1

14
+

√
21

98
, x41 =

1

14
−
√

21

98
, x42 = − 1

14
−
√

21

98
,

x51 = − 5

128
, x52 =

5

128
, x53 =

7
√

21

128
, x54 = −7

√
21

128
,

x61 =
1

64
, x62 = − 1

64
, x63 =

7
√

21

192
, x64 = −7

√
21

192
,

x71 =
3

112
+

9
√

7

1960
, x72 = − 3

112
+

9
√

7

1960
, x73 =

3
√

7
√

3

112
+

11
√

7

840
,
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x74 = −3
√

7
√

3

112
+

11
√

7

840
, x75 =

88
√

7

5145
, x76 = −18

√
7

343
,

x81 =
2707592511

1000000000000
− 1006699707

√
7

1000000000000
,

x82 = − 51527976591

1000000000000
− 1006699707

√
7

1000000000000
,

x83 = − 610366393

75000000000
+

7046897949
√

7

1000000000000
+

14508670449
√

7
√

3

1000000000000
,

x84 = − 610366393

75000000000
+

7046897949
√

7

1000000000000
− 14508670449

√
7
√

3

1000000000000
,

x85 = − 12456457

1171875000
+

1006699707
√

7

109375000000
,

x86 =
3020099121

√
7

437500000000
+

47328957

625000000
, x87 = −7046897949

√
7

250000000000
,

and where

b1(θ) = − 1

2112984835740
θ(1450

√
7 + 12233)(800086000 θ5 − 2936650584 θ4

+63579600
√

7θ4 − 201404565
√

7θ3 + 4235152620 θ3 + 232506630
√

7θ2

−3033109390 θ2 + 1116511695 θ − 116253315
√

7θ − 191568780

+22707000
√

7),

b2(θ) = −−10799 + 650
√

7

29551834260
θ2(24962000 θ4 + 473200

√
7θ3 − 67024328 θ3

+66629600 θ2 − 751855
√

7θ2 + 236210
√

7θ − 29507250 θ + 5080365

+50895
√

7),
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b3(θ) = b4(θ) =
49

64
b5(θ),

b5(θ) =
4144 + 800

√
7

2231145
θ2(14000 θ4 − 48216 θ3 + 1200

√
7θ3 + 62790 θ2 − 3555

√
7θ2

+3610
√

7θ − 37450 θ + 9135− 1305
√

7),

b6(θ) = −−24332 + 2960
√

7

1227278493
(θ − 1)2θ2(−1561000 θ2 + 2461284 θ + 109520

√
7θ

−86913
√

7− 979272),

b7(θ) = −49
√

7

63747
(θ − 1)2θ2(20000 θ2 − 20000 θ + 3393),

b8(θ) = − 1

889206903
(θ − 1)2θ2(35000000000 θ2 − 35000000000 θ + 11250000000).

This scheme has embedded within it a discrete MIRK563 scheme [28] which has the

tableau

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2
−
√
21
14

1
2
− 9

√
21

98
1
14

+
√
21
98
− 1

14
+
√
21
98

0 0 0

1
2

+
√
21
14

1
2

+ 9
√
21

98
1
14
−
√
21
98
− 1

14
−
√
21
98

0 0 0

1
2

1
2

− 5
128

5
128

7
√
21

128
−7
√
21

128
0

1
20

1
20

49
180

49
180

16
45

. (6.2)

We apply the MIRK563/CMIRK863 pair to the SWAVE problem (1.1) and the

SWIRL-III problem (1.2). The plots of the absolute scaled defect are given in Fig-

ures 6.1 and 6.2. We note that the location of the maximum defect changes from
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subinterval to subinterval and over the two problems and that the absolute scaled

defect does not have the same shape on each subinterval. This happens because the

leading order term in the defect expansion depends on a varying linear combination

of eight polynomials. This happens because any sixth order CMIRK scheme that

satisfies stage order three has a leading order term in its local error expansion that

depends on the eight unsatisfied order conditions for order 7 which are:

bT (θ)
(
X
(
X
(
Xc3 +

v

4

)
+

v

20

)
+

v

120

)
− θ7

840
, (6.3)

bT (θ)
(
X
(
Xc4 +

v

5

)
+

v

30

)
− θ7

210
, (6.4)

bT (θ)
(
X
(
c
(
Xc3 +

v

4

))
+

v

24

)
− θ7

168
, (6.5)

bT (θ)
(
Xc5 +

v

6

)
− θ7

42
, (6.6)

bT (θ)c
(
X
(
Xc3 +

v

4

)
+

v

20

)
− θ7

140
, (6.7)

bT (θ)c
(
Xc4 +

v

5

)
− θ7

35
, (6.8)
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bT (θ)c2
(
Xc3 +

v

4

)
− θ7

28
, (6.9)

bT (θ)c6 − θ7

7
. (6.10)

Thus, it is impossible to determine a priori where the maximum defect will occur for

each subinterval and for each problem.

 

 

 

 

 

 

Figure 6.1: A plot of the absolute scaled defect obtained by applying CMIRK863
with N=50 to the test problem SWAVE (1.1) with ε = 0.1.
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Figure 6.2: A plot of the absolute scaled defect obtained by applying CMIRK863
with N=50 to the test problem SWIRL-III (1.2) with ε = 0.01.

However, when applying the MIRK563/CMIRK863 pair to the linear problem (3.1),

or the simple nonlinear problem (3.2), we found that the scaled defect plots - see Fig-

ures 6.3 and 6.4 - were the same on all subintervals. This happens because the leading

order term in the defect expansion is a multiple of a single polynomial in θ. However,

we cannot determine a priori if a given problem is going to have an expansion of the

local error that will be a multiple of a single polynomial.

 

 

 

 

 

 

Figure 6.3: A plot of the absolute scaled defect obtained by applying CMIRK863
with N=40, to the linear test problem (3.1) with λ = 1.
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Figure 6.4: A plot of the absolute scaled defect obtained by applying CMIRK863
with N=50, to the simple nonlinear test problem (3.2).

6.2 A Sixth Order Hermite-Birkhoff Interpolant

In [20], a sixth order Hermite-Birkhoff scheme was developed using a standard sixth

order CMIRK interpolant (6.1) as a basis. The sixth order Hermite-Birkhoff scheme

uses yi, yi+1, k1, k2, and four additional stages constructed using the boot-strapping

algorithm described in [18]. The extra stages, associated with the abscissa values,

c9 = 7
100

, c10 = 14
100

, c11 = 86
100

and c12 = 93
100

, are based on evaluations of the basic

CMIRK scheme and have the form,

k8+j = f(ti + c8+jhi, ui(ti + c8+jhi)), (6.11)

where j = 1, 2, 3, 4. In (6.11), ui is the CMIRK scheme.

The sixth order Hermite-Birkhoff interpolant has the form,
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ũi(ti + θhi) = d0(θ)yi + d1(θ)yi+1 (6.12)

+hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃9(θ)k9 + b̃10(θ)k10 + b̃11(θ)k11 + b̃12(θ)k12

)
,

where d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃9(θ), b̃10(θ), b̃11(θ) and b̃12(θ) are weight poly-

nomials of degree seven, obtained from the interpolation conditions, ũi(ti) = yi,

ũi(ti+1) = yi+1, ũ
′
i(ti) = k1, ũ

′
i(ti+1) = k2, ũ

′
i(ti+c9hi) = k9, ũ

′
i(ti+c10hi) = k10,

ũ′i(ti+c11hi) = k11, and ũ′i(ti+c12hi) = k12. The application of these interpolation con-

ditions gives

d0(θ) =
1

2379157
(150000000θ5 − 225000000θ4 + 68955000θ3 + 3022500θ2

+4758314θ + 2379157)(−1 + θ)2,

d1(θ) = − 1

2379157
θ2(−4114971 + 67668314θ − 359887500θ2 + 668955000θ3

−525000000θ4 + 150000000θ5),
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b̃1(θ) =
1

1398594579921
θ(57682725000000θ4 − 116263550000000θ3

+74099888682500θ2 − 16034537281875θ + 1398594579921)(−1 + θ)2,

b̃2(θ) =
1

1398594579921
θ2(−1 + θ)(57682725000000θ4 − 114467350000000θ3

+71405588682500θ2 − 14105490083125θ + 883120980546),

b̃9(θ) = − 500000

110488971813759
θ2(25671000000θ3 − 50402285000θ2

+29834968760θ − 4700220651)(−1 + θ)2,

b̃10(θ) =
15625

21384962286534
θ2(145692000000θ3 − 266121140000θ2

+135113668880θ − 11988758061)(−1 + θ)2,

b̃11(θ) =
15625

21384962286534
θ2(145692000000θ3 − 170954860000θ2

+39947388880θ − 2695770819)(−1 + θ)2,
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b̃12(θ) = − 500000

110488971813759
θ2(25671000000θ3 − 26610715000θ2

+6043398760θ − 403463109)(−1 + θ)2.

We apply the above sixth order Hermite-Birkhoff interpolant (6.12) to the SWAVE

problem (1.1). The plot of the scaled absolute defect is given in Figure 6.5. The

location of the maximum defect is the same for almost all subintervals; it occurs at

θ ≈ 0.5.

Similar to the 4th order case, it can be shown that

δ̃(t) = ũ′i(t)− z′i(t) +O(h7i ) = d′1(θ)Cih
6
i +O(h7i ), (6.13)

where d′1(θ) is a polynomial of degree six.

Thus, we can predict the location of the maximum defect since it will occur at the

maximum of d′1(θ) = − 2
2379157

θ(−4114971+67668314θ−359887500θ2+668955000θ3−

525000000θ4 +150000000θ5)−1/2379157θ2(67668314−719775000θ+2006865000θ2−

2100000000θ3 + 750000000θ4). The maximum of the polynomial will occur where its

derivative, 265482
76747

− 406009884
2379157

θ+ 4318650000
2379157

θ2− 13379100000
2379157

θ3 + 15750000000
2379157

θ4− 6300000000
2379157

θ5),

is zero ⇒ θ = 0.5; see Figure 6.6.
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Figure 6.5: A plot of the absolute scaled defect obtained from applying the 6th order
Hermite-Birkhoff scheme with N=30 to the SWAVE test problem (1.1) with ε = 0.1.

 

 

 

 

 

 

 

Figure 6.6: A plot of d′1(θ) for the 6th order Hermite-Birkhoff interpolant (6.13).

6.3 Derivation of a 13 Stage, Sixth Order ACDC CMIRK Scheme

We derive a sixth order ACDC CMIRK scheme that has the discrete MIRK563 (6.2)

scheme embedded within it. The discrete scheme has the stage order vector SOV = (6,

6, 3, 3, 3). We will require all additional stages of the CMIRK scheme to have stage

order 6, except for the sixth stage which we require to have stage order five. We also

require the scheme to satisfy the 10 order conditions (associated with a sixth order
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CMIRK scheme of stage order 3) as well as 7 out of the 8 order conditions associated

with seventh order (that appear in the leading order term in the expansion of the

local error for a sixth order scheme). The 10 sixth order conditions are (b(θ)T e = θ,

b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)(xc3 + v

4
) = θ5

20
, bT (θ)c5 =

θ6

6
, bT (θ)(Xc4 + v

5
) = θ6

30
, bT (θ)c(Xc3 + v

4
) = θ6

24
, and bT (θ)(X(Xc3 + v

4
) + v

20
) = θ6

120
).

The 8 seventh order conditions are:

bT (θ)
(
X
(
X
(
Xc3 +

v

4

)
+

v

20

)
+

v

120

)
− θ7

840
, (6.14)

bT (θ)
(
X
(
Xc4 +

v

5

)
+

v

30

)
− θ7

210
, (6.15)

bT (θ)
(
X
(
c
(
Xc3 +

v

4

))
+

v

24

)
− θ7

168
, (6.16)

bT (θ)
(
Xc5 +

v

6

)
− θ7

42
, (6.17)

bT (θ)c
(
X
(
Xc3 +

v

4

)
+

v

20

)
− θ7

140
, (6.18)

bT (θ)c
(
Xc4 +

v

5

)
− θ7

35
, (6.19)
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bT (θ)c2
(
Xc3 +

v

4

)
− θ7

28
, (6.20)

bT (θ)c6 − θ7

7
. (6.21)

We can rewrite several of the above order conditions as follows:

(By substitution of (6.15) and C4 into (6.14)), (6.14) ⇒ bT (θ)XXC4 = 0,

(By substitution of (6.17) and C5 into (6.15)), (6.15) ⇒ bT (θ)XC5 = 0,

(By substitution of (6.17) and C4 into (6.16)), (6.16) ⇒ bT (θ)XcC4 = 0,

(By substitution of C6 into (6.17)), (6.17) ⇒ bT (θ)C6 = 0,

(By substitution of (6.19) and C4 into (6.18)), (6.18) ⇒ bT (θ)cXC4 = 0,

(By substitution of (6.21) and C5 into (6.19)), (6.19) ⇒ bT (θ)cC5 = 0,

(By substitution of (6.21) and C4 into (6.20)), (6.20) ⇒ bT (θ)c2C4 = 0,

where C4 is stage order four condition, C4 = Xc3 + v
4
− c4

4
, C5 is stage order five

condition, C5 = Xc4 + v
5
− c5

5
, and C6 is stage order six condition, C6 = Xc5 + v

6
− c6

6
.

A less efficient CMIRK scheme for this case would have the number of stages equal

to the number of order conditions that need to be satisfied. As mentioned above,

in this case, it would appear that the 10 + 7 = 17 order conditions will require the

method to have 17 stages. Our goal is to derive a method with a smaller number

of stages. Here we derive a family of sixth order, stage order three, ACDC CMIRK

schemes with 13 stages (CMIRK1363) with SOV = (6, 6, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6,

6). The Butcher tableau is
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0 0 0 0 0 ... 0 0 0 0 0 0 0

1 1 0 0 0 ... 0 0 0 0 0 0 0

c3 v3 x31 x32 0 ... 0 0 0 0 0 0 0

c4 v4 x41 x42 0 ... 0 0 0 0 0 0 0

c5 v5 x51 x52 x53 ... 0 0 0 0 0 0 0

c6 v6 x61 x62 x63 ... 0 0 0 0 0 0 0

c7 v7 x71 x72 x73 ... 0 0 0 0 0 0 0

c8 v8 x81 x82 x83 ... x87 0 0 0 0 0 0

c9 v9 x91 x92 x93 ... x97 x98 0 0 0 0 0

c10 v10 x101 x102 x103 ... x107 x108 x109 0 0 0 0

c11 v11 x111 x112 x113 ... x117 x118 x119 x1110 0 0 0

c12 v12 x121 x122 x123 ... x127 x128 x129 x1210 x1211 0 0

c13 v13 x131 x132 x133 ... x137 x138 x139 x1310 x1311 x1312 0

b1(θ) b2(θ) b3(θ) ... b7(θ) b8(θ) b9(θ) b10(θ) b11(θ) b12(θ) b13(θ)

,

(6.22)

where the coefficients for the first five rows of the tableau are given in the tableau of

the embedded discrete (MIRK563) scheme (6.2).

As mentioned earlier, we will assume the scheme has the SOV = (6, 6, 3, 3, 3, 5, 6,

... , 6). Thus, the 6th stage is required to satisfy the stage order five conditions, and
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the 7th to 13th stages are required to satisfy the stage order six conditions. Imposing

the appropriate stage order conditions on stages six, seven, ..., thirteen, we get

x61, x62, x63, x64 and x65 in terms of c6 and v6,

x71, x72, x73, x74, x75 and x76 in terms of c7 and v7,

x81, x82, x83, x84, x86 and x87 in terms of c8, v8 and x85,

x91, x92, x96, x97, x98 and v9 in terms of c9, x93, x94 and x95,

x101, x102, x106, x107, x108, and x109 in terms of c10, v10, x103, x104 and x105,

x111, x112, x116, x117, x118, and x119 in terms of c11, v11, x113, x114, x115 and x1110,

x121, x122, x126, x127, x128, and x129 in terms of c12, v12, x123, x124, x125, x1210 and x1211,

x131, x132, x136, x137, x138, and x139 in terms of c13, v13, x133, x134, x135, x1310, x1311

and x1312.

In addition to the ten sixth order conditions, the seven seventh order conditions

which we choose to be satisfied are: (6.15) - (6.21). That is, we choose to leave (6.14)

unsatisfied.

Since the third, fourth and fifth stages have only stage order three and the remaining

stages have at least stage order five, the third, fourth, and fifth positions of C4 and C5

are the only ones that are non-zero. Therefore, in order to satisfy the order conditions

bT (θ)C4 = 0, bT (θ)cC4 = 0, bT (θ)C5 = 0, bT (θ)cC5 = 0, and bT (θ)c2C4 = 0, we

choose the weight polynomials b3(θ), b4(θ), and b5(θ) to be identically zero.

Since the third, fourth and fifth stages have only stage order three, and the sixth

stage has only stage order five, the third, fourth, fifth, and sixth positions of C6 are
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non-zero; since the rest of the stages have stage order six, the remaining positions

of C6 are zero. Therefore, in order to satisfy the order condition bT (θ)C6 = 0, we

choose the weight polynomial b6(θ) to be identically zero.

In order for the remaining order conditions bT (θ)XC4 = 0, bT (θ)XC5 = 0,

bT (θ)XcC4 = 0, bT (θ)cXC4 = 0 to be satisfied, we need to choose b7(θ), b8(θ), and

xi,3, xi,4, and xi,5 equal zero, where i = 9, ..., 13.

We are then left with the seven quadrature order conditions b(θ)T e = θ, b(θ)T c = θ2

2
,

b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 = θ6

6
, and bT (θ)c6 = θ7

7
. We then

require the remaining weight polynomials to satisfy them; that is, b1(θ), b2(θ), b9(θ),

... ,b13(θ), (seven polynomials) are used to satisfy the seven quadrature conditions.

After solving the 17 order conditions, and choosing values for the 21 free parameters

as below, we obtain an example of such a method. The structure of the tableau is as in

(6.22). Recall that the coefficients for the first five rows of the tableau are given in the

tableau of the embedded discrete (MIRK563) scheme (6.2).The remaining coefficients

are

c6 =
1

4
, v6 =

1

4
, x61 =

51

1024
, x62 = − 15

1024
, x63 =

49

1536
+

21

1024

√
21,

x64 =
49

1536
− 21

1024

√
21, x65 = − 19

192
,

c7 =
1

100
, v7 =

1

100
, x71 =

1102868613

125000000000
, x72 = − 30295683

62500000000
,



92

x73 =
289590147

1250000000000

√
21− 2145735823

1250000000000
,

x74 = − 289590147

1250000000000

√
21− 2145735823

1250000000000
,

x75 = − 103425487

31250000000
, x76 = − 15580323

9765625000
,

c8 =
3

100
, v8 =

3

100
, x81 =

9220007819

50000000000
, x82 = − 12491798419

14850000000000
,

x83 =
10588528959211

290843750000000
+

71579882096219

6980250000000000

√
21,

x84 =
10588528959211

290843750000000
− 71579882096219

6980250000000000

√
21,

x85 = 0, x86 = − 9836391797

140625000000
, x87 = − 824493889

4422686400
,

c9 =
1

20
, v9 = − 1011

377840000
, x91 =

12766043

755680000
, x92 =

5350837

13062231072000
,

x93 = 0, x94 = 0, x95 = 0,

x96 =
8690353

224436960000
, x97 = − 13420175

1077297408
, x98 =

14683675

322524224
,

c10 =
1

2
, v10 =

1

2
, x101 = −155431

72
, x102 = − 988673

13136904
,

x103 = 0, x104 = 0, x105 = 0,

x106 = −111845

19008
, x107 =

246015625

57024
, x108 = −252578125

76824
, x109 =

2076125

1824
,

c11 =
3

4
, v11 =

3

4
, x111 = −67111

48
, x112 = − 29913

324368
,
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x113 = 0, x114 = 0, x115 = 0,

x116 = −113959

33792
, x117 =

94140625

33792
, x118 = −864453125

409728
, x119 =

7058125

9728
,

x1110 = 0,

c12 =
3

5
, v12 =

3

5
, x121 = −801451

375
, x122 = − 220567

2534125
,

x123 = 0, x124 = 0, x125 = 0,

x126 = −92203

16500
, x127 =

563225

132
, x128 = −10386350

3201
, x129 =

212941

190
,

x1210 = 0, x1211 = 0,

c13 =
1

5
, v13 =

1

5
, x131 = −1102486

1125
, x132 = − 6281114

205264125
,

x133 = 0, x134 = 0, x135 = 0, x136 = −216617

74250
,

x137 =
3494825

1782
, x138 = −14395100

9603
, x139 =

148421

285
, x1310 = 0, x1311 = 0,

x1312 = 0,

and where

b1(θ) =
1

756
θ(756− 11718θ + 66332θ2 − 178269θ3 + 248472θ4 − 173600θ5 + 48000θ6),
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b2(θ) =
1

4256
θ2(−126 + 2520θ − 14693θ2 + 35784θ3 − 39200θ4 + 16000θ5),

b3(θ) = 0,

b4(θ) = 0,

b5(θ) = 0,

b6(θ) = 0,

b7(θ) = 0,

b8(θ) = 0,

b9(θ) = − 8000

829521
θ2(−1890 + 13860θ − 40845θ2 + 59556θ3 − 42700θ4 + 12000θ5),

b10(θ) = − 4

567
θ2(−378 + 7308θ − 38787θ2 + 80556θ3 − 72800θ4 + 24000θ5),

b11(θ) = − 64

14553
θ2(−126 + 2492θ − 14091θ2 + 32508θ3 − 32900θ4 + 12000θ5),

b12(θ) =
125

33264
θ2(−630 + 12320θ − 67515θ2 + 147672θ3 − 140000θ4 + 48000θ5),

b13(θ) =
125

66528
θ2(−1890 + 32760θ − 125895θ2 + 209496θ3 − 162400θ4 + 48000θ5).

We can predict the shape of the defect for this scheme and the location of the

maximum defect for each subinterval. The defect will be a multiple of the derivative

of the one unsatisfied order condition (6.14); see Figure 6.7. The maximum defect

on each subinterval will occur where the second derivative of the unsatisfied order

condition is zero. The maximum is at θ = 0.5416525443.
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Figure 6.7: A plot of the absolute derivative of the lone unsatisfied 7th order condition
for CMIRK1363 (6.22).

6.4 Direct Derivation of an 11 Stage Sixth Order ACDC CMIRK

Scheme

Here we derive a stage order 3, sixth order ACDC CMIRK scheme that does not

have the discrete MIRK563 (6.2) scheme embedded within it. The application of the

stage order three conditions gives 10 order conditions for 6th order. There are also 8

order conditions associated with 7th order that appear in the local error expansion for

this scheme. We require the scheme to satisfy the ten sixth order conditions (b(θ)T e =

θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)(xc3+ v

4
) = θ5

20
, bT (θ)c5 =

θ6

6
, bT (θ)(Xc4 + v

5
) = θ6

30
, bT (θ)c(Xc3 + v

4
) = θ6

24
, and bT (θ)(X(Xc3 + v

4
) + v

20
) = θ6

120
) as

well as seven out of the eight seventh order conditions (6.14) - (6.21). The seven 7th

order conditions we choose to satisfy are (6.15) - (6.21). That is, (6.14) will remain

unsatisfied.
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A less efficient CMIRK scheme for this case would have a number of stages equals

to the number of order conditions, i.e., 17. Our goal is to derive a method with fewer

stages. Here we derive a family of sixth order, stage order three CMIRK schemes

with 11 stages, CMIRK1163, for which we impose stage order six on all but the 3rd,

4th 5th and 6th stages. The corresponding Butcher tableau is

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

c3 v3 x31 x32 0 0 0 0 0 0 0 0 0

c4 v4 x41 x42 x43 0 0 0 0 0 0 0 0

c5 v5 x51 x52 x53 x54 0 0 0 0 0 0 0

c6 v6 x61 x62 x63 x64 x65 0 0 0 0 0 0

c7 v7 x71 x72 x73 x74 x75 x76 0 0 0 0 0

c8 v8 x81 x82 x83 x84 x85 x86 x87 0 0 0 0

c9 v9 x91 x92 x93 x94 x95 x96 x97 x98 0 0 0

c10 v10 x101 x102 x103 x104 x105 x106 x107 x108 x109 0 0

c11 v11 x111 x112 x113 x114 x115 x116 x117 x118 x119 x1110 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ) b9(θ) b10(θ) b11(θ)

,

(6.23)

The stage order vector for this scheme will be (6,6,3,4,5,5,6,...6). After imposing

the appropriate stage order conditions on the 11 stages, this gives
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v3, x31, and x32 in terms of c3,

v4, x41, x42, and x43 in terms of c4,

v5, x51, x52, x53 and x54 in terms of c5,

x61, x62, x63, x64 and x65 in terms of c6 and v6,

v7, x71, x72, x74, x75 and x76 in terms of c7, and x73,

v8, x81, x82, x85, x86 and x87 in terms of c8, x83, and x84,

x91, x92, x95, x96, x97, and x98 in terms of c9, v9, x93, and x94,

x102, x105, x106, x107, x108, and x109 in terms of c10, v10, x101, x103, and x104,

x111, x112, x115, x116, x117, and x118 in terms of c11, v11, x113, x114,x119 and x1110.

The scheme has b3(θ), b4(θ), b5(θ), b6(θ) identically equal to zero. With b3(θ) =

b4(θ) = b5(θ) = b6(θ) = 0, and applying some extra conditions on some of the free

coefficients, namely, x73 = x83 = x84 = x93 = x94 = x103 = x104 = x113 = x114 = 0,

and requiring c7 to satisfy x73 × C53 + x74 × C54 = 0, we are able to satisfy the

ten non-quadrature order conditions, bT (θ)(xc3 + v
4
) = θ5

20
, bT (θ)(Xc4 + v

5
) = θ6

30
,

bT (θ)c(Xc3 + v
4
) = θ6

24
, bT (θ)(X(Xc3 + v

4
) + v

20
) = θ6

120
, bT (θ)

(
X
(
Xc4 + v

5

)
+ v

30

)
− θ7

210
,

bT (θ)
(
X
(
c
(
Xc3 + v

4

))
+ v

24

)
− θ7

168
, bT (θ)

(
Xc5 + v

6

)
− θ7

42
, bT (θ)c

(
X
(
Xc3 + v

4

)
+ v

20

)
−

θ7

140
, bT (θ)c

(
Xc4 + v

5

)
− θ7

35
, bT (θ)c2

(
Xc3 + v

4

)
− θ7

28
. This implies that the only remain-

ing order conditions will be the seven quadrature conditions b(θ)T e = θ, b(θ)T c = θ2

2
,

b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 = θ6

6
, and bT (θ)c6 = θ7

7
. We

then require that the associated weight polynomials and the remaining free coef-

ficients, c3, c4, c5, c6, v6, c8, c9, v9, c10, v10, x101, c11, v11, x119, and x1110, be chosen to

satisfy these conditions.
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After solving the 17 order conditions, and choosing values for the 15 free parameters

as given below, we obtain an example of such a method.

The coefficients values are:

c3 =
1

4
, v3 =

5

32
, x31 =

9

64
, x32 = − 3

64
,

c4 =
3

4
, v4 =

81

128
, x41 =

3

256
, x42 = − 21

256
, x43 =

3

16
,

c5 =
1

2
, v5 =

1

2
, x51 =

1

24
, x52 = − 1

24
, x53 =

1

6
, x54 = −1

6
,

c6 =
1

7
, v6 =

1

7
, x61 =

3365

50421
, x62 = − 793

50421
, x63 =

2752

50421
,

x64 = − 1280

50421
, x65 = − 1348

16807
,

c7 =
1

2
+

1

14

√
13, v7 =

1339

33614

√
13 +

4657

33614
, x71 = − 117

33614

√
13 +

1143

33614
,

x72 = − 117

33614

√
13− 801

67228
, x73 = 0, x74 = 0,

x75 =
648

16807

√
13 +

12312

84035
, x76 =

27

140
,

c8 =
3

7
, v8 =

4743

16807
+

1440

16807

√
13, x81 =

1720

50421
− 328

50421

√
13,

x82 = − 1024

50421
− 328

50421

√
13, x83 = 0, x84 = 0,
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x85 =
1536

84035
− 3072

218491

√
13, x86 =

4

35
, x87 = − 16

273

√
13,

c9 =
2

7
, v9 =

2

7
, x91 = − 1831

111132
+

1411

111132

√
13, x92 = − 23657

889056
+

1411

889056

√
13,

x93 = 0, x94 = 0, x95 = −1016

1715
+

11288

66885

√
13,

x96 =
7433

15120
− 1411

15120

√
13, x97 = −1411

2268
+

1411

9828

√
13, x98 =

4633

6048
− 1411

6048

√
13,

c10 =
4

7
, v10 =

4

7
, x101 = 0, x102 = − 803

15120
+

37

15120

√
13,

x103 = 0, x104 = 0, x105 = −176

105
+

592

1365

√
13,

x106 = − 461

2520
+

37

360

√
13, x107 =

185

54
− 703

702

√
13, x108 =

1045

336
− 37

48

√
13,

x109 = −971

210
+

37

30

√
13, c11 =

1

8
, v11 =

1

8
, x111 =

948535

42467328
+

277487

42467328

√
13,

x112 = − 3791095

339738624
+

277487

339738624

√
13, x113 = 0, x114 = 0,

x115 = − 455

2048
+

277487

3194880

√
13,

x116 =
13596863

56623104
− 13596863

283115520

√
13, x117 = −13596863

42467328
+

13596863

184025088

√
13,

x118 =
32958527

113246208
− 13596863

113246208

√
13, x119 = 0, x1110 = 0,

The weight polynomials are

b1(θ) = − 1

25920
θ(−7 +

√
13)(−46830θ − 559090θ5 + 762342θ4 − 541275θ3
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+214690θ2 + 164640θ6 + 5040 + 720
√

13− 5970θ
√

13 + 22710θ2
√

13− 43260θ3
√

13

+39690θ4
√

13− 13720θ5
√

13),

b2(θ) =
1

907200
θ2(7 +

√
13)(−5040− 720

√
13 + 59080θ + 7480θ

√
13− 277725θ2

−28455θ2
√

13 + 643860θ3 + 46452θ3
√

13− 734020θ4 − 27440θ4
√

13 + 329280θ5),

b3(θ) = 0,

b4(θ) = 0,

b5(θ) = 0,

b6(θ) = 0,

b7(θ) = − 343

754920
θ2(−115 + 33

√
13)(−720 + 7960θ − 34065θ2 + 69216θ3 − 66150θ4

+23520θ5),

b8(θ) = −343146880(−1 +
√

13)(−1680− 240
√

13 + 18200θ + 2280θ
√

13− 75495θ2

−7365θ2
√

13 + 147756θ3 + 9324θ3
√

13− 136220θ4 − 3920θ4
√

13 + 47040θ5)θ2,

b9(θ) =
343

21600
θ2(−3 +

√
13)(−1260− 180

√
13 + 12670θ + 1570θ

√
13− 47250θ2

−4395θ2
√

13 + 84210θ3 + 4998θ3
√

13− 72030θ4 − 1960θ4
√

13 + 23520θ5),

b10(θ) =
343

216000
θ2(1 +

√
13)(−630− 90

√
13 + 7070θ + 890θ

√
13− 30975θ2
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−3090θ2
√

13 + 64890θ3 + 4326θ3
√

13− 64190θ4 − 1960θ4
√

13 + 23520θ5),

b11(θ) =
32768

93578625
θ2(−21 + 4

√
13)(−5040− 720

√
13 + 35560θ + 4120θ

√
13

−108675θ2−9345θ2
√

13+170520θ3 +9408θ3
√

13−133770θ4−3430θ4
√

13+41160θ5).

We can predict the shape of the defect for this scheme and the location of the max-

imum defect for each subinterval. The defect will be the derivative of the unsatisfied

order condition, (6.14); see Figure 6.8. The maximum defect of each subinterval will

occur where the second derivative of the unsatisfied order condition is zero. It will

be at θ = 0.8978781493.

 

 

 

 

 

 

 

Figure 6.8: A plot of the absolute derivative of the lone unsatisfied 7th order condition
(6.14) for CMIRK1163 (6.23).
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6.5 Derivations of Continuous Generalized ACDC MIRK (CGMIRK)

Schemes

Here we derive sixth order continuous generalized ACDC MIRK (CGMIRK) schemes

that have discrete GMIRK [13] schemes embedded within them. As mentioned ear-

lier in this thesis, GMIRK schemes are extensions of MIRK schemes to allow them

to have a stage order higher than three.

6.5.1 ACDC CGMIRK1064

We derive a sixth order continuous ACDC CGMIRK scheme that has the discrete

GMIRK564 [13] scheme embedded within it. The discrete scheme has the stage order

vector SOV = (4, 4, 4, 4, 4), and the tableau:

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
3
− 5

27
4
27

1
27

1
3

0 0

2
3

8
27

2
27
− 1

27
1
3

0 0

1
2
−5

8
25
128

11
128

81
128

27
128

0

11
120

11
120

27
40

27
40
− 8

15

. (6.24)

We will require all additional stages of the CGMIRK scheme to have stage order

6, except for the sixth stage which we will require to have stage order five. To obtain

a 6th order CGMIRK method with the ACDC property, we first require it to satisfy

all the order conditions up to and including the sixth order. As well, we need it to
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satisfy all the order conditions for 7th order except one. The application of stage

order four to the order conditions leaves 7 order conditions for 6th order. These are

b(θ)T e = θ, b(θ)T c = θ2

2
, b(θ)T c2 = θ3

3
, b(θ)T c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 = θ6

6
,

bT (θ)(Xc4 + v
5
) = θ6

30
. There are 4 order conditions for order 7. These are:

bT (θ)c6 = θ7

7
, bT (θ)

(
Xc5+ v

6

)
= θ7

42
, bT (θ)

(
X(Xc4+ v

5
)+ v

30

)
= θ7

210
, bT (θ)c

(
Xc4+

v
5

)
= θ7

35
.

The 6th stage is required to satisfy the stage order five conditions and the 7th to

10th stages are required to satisfy the stage order six conditions. This gives

x61, x62, x63, x64 and x65 in terms of c6 and v6,

x71, x72, x73, x74, x75 and x76 in terms of c7, and v7,

x82, x83, x84, x85, x86 and x87 in terms of c8, v8, and x81,

x93, x94, x95, x96, x97, and x98 in terms of c9, v9, x91, and x92,

x104, x105, x106, x107, x108, and x109 in terms of c10, v10, x101, x102, and x103.

We then require the scheme to satisfy the 7 sixth order conditions plus 3 out

of the 4 seventh order conditions. There are thus four ways to derive an ACDC

CGMIRK1064. One way is to require the scheme to satisfy all of the seventh order

conditions except bT (θ)
(
X
(
Xc4 + v

5

)
+ v

30

)
= θ7

210
.

This will require the scheme to have ten stages. After solving the 10 order condi-

tions, and choosing values for the free parameters as indicated below, we obtain an

example of such a method, which has the tableau:
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0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

1
3
− 5

27
4
27

1
27

1
3

0 0 0 0 0 0 0

2
3

8
27

2
27

− 1
27

1
3

0 0 0 0 0 0 0

1
2
−5

8
25
128

11
128

81
128

27
128

0 0 0 0 0 0

c6 v6 x61 x62 x63 x64 x65 0 0 0 0 0

c7 v7 x71 x72 x73 x74 x75 x76 0 0 0 0

c8 v8 x81 x82 x83 x84 x85 x86 x87 0 0 0

c9 v9 x91 x92 x93 x94 x95 x96 x97 x98 0 0

c10 v10 x101 x102 x103 x104 x105 x106 x107 x108 x109 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ) b9(θ) b10(θ)

.

(6.25)

The coefficients for the first five rows of the tableau are given in the tableau of

the embedded discrete (GMIRK564) scheme (6.24). The remaining coefficients are

c6 =
7

9
, v6 =

7

9
, x61 =

749

26244
, x62 = − 2023

26244
, x63 =

91

2916
,

x64 = − 497

2916
, x65 =

1232

6561

c7 =
1

7
, v7 =

1

7
, x71 =

211927

3294172
, x72 =

1441

470596
,
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x73 =
82053

470596
, x74 =

170019

470596
,

x75 = −223984

588245
, x76 = −1830519

8235430
,

c8 =
1

8
, v8 =

1

8
, x81 = 0, x82 = − 70441

2097152
,

x83 = −4925907

8388608
, x84 = −2174067

2883584
,

x85 =
12859

16384
, x86 =

26499879

83886080
, x87 =

252827701

922746880
,

c9 =
1

99
, v9 =

1

99
, x91 = 0, x92 = 0,

x93 =
36096876011

619904625120
, x94 =

36916530077

1108079517402
, x95 = − 136481169608

2615222637225
,

x96 = − 59028342107

3596977454400
, x97 = −168197679098267

613705578868800
, x98 =

80253382221824

319580206268895
,

c10 =
9

100
, v10 =

9

100
, x101 = 0, x102 = 0,

x103 = 0, x104 =
27100294231563

178750000000000
, x105 = − 5183586602831

37890625000000
,

x106 = − 19265735985937623

178600000000000000
, x107 =

22323527177885661

50600000000000000
,

x108 = − 63914817644

149169921875
, x109 =

885639052363337613

11021140000000000000
,

The weight polynomials are

b1(θ) =
1

35984685240
θ(35984685240− 2287426200846θ + 36724642148860θ2
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−256137119121165θ3 + 793863795390276θ4 − 886047560944008θ5

+323697115209600θ6),

b2(θ) =
1

26742618580860
θ2(−1717162713 + 144583059685θ − 2538126911835θ2

+17857957009395θ3 − 50660428946334θ4 + 35876800000800θ5),

b3(θ) = 0,

b4(θ) =
7371

951975800
θ2(−54 + 4540θ − 79185θ2 + 550236θ3 − 1516792θ4 + 950400θ5),

b5(θ) = 0,

b6(θ) = − 59049

6663830600
θ2(−54 + 4540θ− 79185θ2 + 550236θ3− 1516792θ4 + 950400θ5),

b7(θ) =
16807

14582365304400
θ2(−3747257262 + 300053565770θ − 4155506462205θ2

+19299922472418θ3 − 24433468289076θ4 + 9404365291200θ5),

b8(θ) = − 16384

318364506915
θ2(−183648276 + 14583280540θ − 193403520735θ2

+849386368716θ3 − 1058431837818θ4 + 404841531600θ5),

b9(θ) = − 313826716467

154453479314789200
θ2(−32791878 + 615001230θ − 4532752695θ2

+14413590222θ3 − 16229561644θ4 + 5951572800θ5),

b10(θ) =
12500000000

2395947606140907
θ2(−1570548+121464860θ−1390723995θ2+5499719772θ3
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−6643890354θ4 + 2509483680θ5).

We can predict the shape of the defect for this scheme and the location of the max-

imum defect for each subinterval. The defect will be the derivative of the unsatisfied

order condition (6.14); see Figure 6.9. The maximum defect of each subinterval will

occur where the second derivative of this unsatisfied order condition is zero. It will

be at θ = 0.6881326764.

 

 

 

 

 

 

 

Figure 6.9: A plot of the absolute derivative of the lone unsatisfied 7th order condition
(6.14) for CGMIRK1064.

6.5.2 ACDC CGMIRK765

We derive a sixth order continuous generalized ACDC CGMIRK scheme that has

the discrete GMIRK565 [13] scheme embedded within it. The discrete scheme has
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the stage order vector SOV = (5, 5, 5, 5, 5), and the tableau:

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
5
− 79

625
52
625

2
625

14
75

4
75

0

4
5

704
625

− 2
625
− 52

625
− 4

75
−14

75
0

1
2

1
2

7
256

− 7
256

125
768

−125
768

0

1
16

1
16

125
432

125
432

8
27

. (6.26)

We will require all additional stages of the CGMIRK scheme to have stage order

6. To obtain a CGMIRK method with the ACDC property, we require it to satisfy

the sixth order conditions plus all order conditions for order seven except one. The

application of the stage order five conditions leaves 6 order conditions for 6th order

which are

bT (θ)e = θ, bT (θ)c = θ2

2
, bT (θ)c2 = θ3

3
, bT (θ)c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 =

θ6

6
. There are 2 order conditions for order 7 which are bT (θ)c6 = θ7

7
, bT (θ)

(
Xc5 +

v
6

)
= θ7

42
.

The 6th and 7th stages are required to satisfy the stage order six conditions. After

imposing these conditions on stages six and seven we obtain c6, x61, x62, x63, x64 and

x65 in terms of v6, and x71, x72, x73, x74, x75 and x76 in terms of c7, and v7.

We then require the scheme to satisfy the 7 sixth order conditions as well as 1

out of the 2 seventh order conditions. There are thus two ways to derive an ACDC

CGMIRK765. One way is to require the scheme to satisfy the seven quadrature
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order conditions which are bT (θ)e = θ, bT (θ)c = θ2

2
, bT (θ)c2 = θ3

3
, bT (θ)c3 =

θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 = θ6

6
, and bT (θ)c6 = θ7

7
, and we will call this CGMIRK765-

I. The other way is to require the scheme to satisfy the six 6th order quadrature order

conditions given above, as well as the 7th order condition bT (θ)
(
Xc5 + v

6

)
= θ7

42
; we

will call this scheme CGMIRK765-II.

In either case, the scheme will be required to have seven stages. After solving the 7

order conditions, and choosing values for the free parameters as indicated below, we

obtain an example of an CGMIRK765-I method, presented in the following tableau:

CGMIRK765-I with v6 = 2
5
, c7 = 3

4
, v7 = 3

4
:

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1
5
− 79

625
52
625

2
625

14
75

4
75

0 0 0

4
5

704
625

− 2
625

− 52
625

− 4
75

−14
75

0 0 0

1
2

1
2

7
256

− 7
256

125
768

−125
768

0 0 0

2
5

2
5

183
5000

− 117
5000

317
1800

− 223
1800

− 368
5625

0 0

3
4

3
4

333
32768

− 843
16384

16375
147456

− 44875
294912

559
2304

− 2625
16384

0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ)

, (6.27)

where the coefficients for the first five rows of the tableau are from the tableau of the

embedded discrete (GMIRK565) scheme (6.26), and where
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b1(θ) =
1

1008
θ(1008− 6594θ + 22106 ∗ t2 − 41727θ3 + 44814θ4 − 25550θ5 + 6000θ6),

b2(θ) =
1

1008
θ2(−1008 + 8120θ − 27069θ2 + 45108θ3 − 37100θ4 + 12000θ5),

b3(θ) = − 125

33264
θ2(−5040 + 27160θ − 63945θ2 + 78036θ3 − 48300θ4 + 12000θ5),

b4(θ) = − 125

3024
θ2(−630 + 4970θ − 16065θ2 + 25662θ3 − 19950θ4 + 6000θ5),

b5(θ) = − 8

189
θ2(−1008 + 7448θ − 21987θ2 + 31584θ3 − 22050θ4 + 6000θ5),

b6(θ) =
125

1764
θ2(−630 + 4445θ − 12390θ2 + 16947θ3 − 11375θ4 + 3000θ5),

b7(θ) =
512

4851
θ2(−336 + 2632θ − 8421θ2 + 13272θ3 − 10150θ4 + 3000θ5).

We can predict the shape of the defect for this scheme (CGMIRK765-I) and the

location of the maximum defect for each subinterval. The defect will be a multiple

of the derivative of the unsatisfied order condition; see Figure 6.10. The maximum

defect of each subinterval will occur where the second derivative of the unsatisfied

order condition is zero. It will be at θ = 0.9191047218.
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Figure 6.10: A plot of the absolute derivative of the lone unsatisfied 7th order condition
for CGMIRK765-I.

An example of a CGMIRK765-II method is given in the following tableau:

CGMIRK765-II with v6 = 2
5
, c7 = 1

4
, v7 = 1

4
:

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1
5
− 79

625
52
625

2
625

14
75

4
75

0 0 0

4
5

704
625

− 2
625

− 52
625

− 4
75

−14
75

0 0 0

1
2

1
2

7
256

− 7
256

125
768

−125
768

0 0 0

2
5

2
5

183
5000

− 117
5000

317
1800

− 223
1800

− 368
5625

0 0

1
4

1
4

1581
32768

− 219
16384

26375
147456

− 24875
294912

71
2304

− 2625
16384

0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ)

. (6.28)

The coefficients for the first five rows of the tableau are from the tableau of the

embedded discrete (GMIRK565) scheme (6.26). The weight polynomials are
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b1(θ) = − 1

376
θ(−376 + 2121θ − 6033θ2 + 9112θ3 − 6903θ4 + 2050θ5),

b2(θ) =
1

20304
θ2(7824− 51496θ + 135291θ2 − 159684θ3 + 69400θ4)),

b3(θ) =
125

20304
θ2(1200− 7160θ + 16425θ2 − 16284θ3 + 5800θ4),

b4(θ) = − 125

10152
θ2(165− 1055θ + 2655θ2 − 2937θ3 + 1150θ4),

b5(θ) =
128

1269
θ2(174− 1010θ + 2223θ2 − 2082θ3 + 700θ4),

b6(θ) = − 125

10152
θ2(2220− 11930θ + 23865θ2 − 20622θ3 + 6500θ4),

b7(θ) = − 256

1269
θ2(−48 + 136θ − 93θ2 − 48θ3 + 50θ4).

We can predict the shape of the defect for this scheme (CGMIRK765-II) and the

location of the maximum defect for each subinterval. The defect will be a multiple

of the derivative of the unsatisfied order condition; see Figure 6.11. The maximum

defect of each subinterval will occur where the second derivative of the unsatisfied

order condition is zero. It will be at θ = 0.9257407006.
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Figure 6.11: A plot of the absolute derivative of the lone unsatisfied 7th order condition
for CGMIRK765-II.

We also considered the case where we chose the free coefficients for CGMIRK765-

I and CGMIRK765-II to be the same. In this case, the weight polynomials of the

two schemes are different; however, they lead to the same shape for the derivative of

the lone unsatisfied order condition in each case, and thus the same location for the

maximum defect.

6.5.3 ACDC CGMIRK666

We derive a sixth order continuous ACDC CGMIRK scheme that has the discrete

GMIRK666 [13] scheme embedded within it. The discrete scheme has the stage order
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vector SOV = (6, 6, 6, 6, 6, 6), and it has the tableau:

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1
3
−23

81
23
243

20
729

−2
9

7
45

2048
3645

0

2
3
−56

81
32
243

47
729

1
9

22
45

2048
3645

0

1
4
− 299

1024
783
8192

231
8192

−2187
8192

6561
40960

21
40

0

3
4
− 567

1024
987
8192

435
8192

729
8192

21141
40960

21
40

0

29
360

29
360

27
200

27
200

64
225

64
225

. (6.29)

The application of stage order six leads to 6 order conditions for 6th order which are

bT (θ)e = θ, bT (θ)c = θ2

2
, bT (θ)c2 = θ3

3
, bT (θ)c3 = θ4

4
, bT (θ)c4 = θ5

5
, bT (θ)c5 =

θ6

6
. There is 1 order condition for order 7 which is bT (θ)c6 = θ7

7
.

Thus, this CGMIRK will already have the ACDC property because there is only

one unsatisfied continuous order condition for order seven. After embedding the

GMIRK666 (6.29), we require the scheme to satisfy the 6 sixth order continuous

quadrature order conditions.

This will require the scheme to have only six stages because it has to satisfy only

the six sixth order continuous quadrature order conditions. We then obtain the

ACDC CGMIRK666 scheme with the GMIRK666 embedded. The resulting scheme

will have the same coefficients as the discrete method presented in the tableau (6.29).

The continuous weight polynomials are:
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b1(θ) = − 1

360
θ(−360 + 1950θ − 5240θ2 + 7365θ3 − 5184θ4 + 1440θ5),

b2(θ) =
1

360
θ2(180− 1180θ + 3045θ2 − 3456θ3 + 1440θ4),

b3(θ) = − 27

200
θ2(180− 940θ + 1815θ2 − 1536θ3 + 480θ4),

b4(θ) =
27

200
θ2(90− 560θ + 1335θ2 − 1344θ3 + 480θ4),

b5(θ) =
64

225
θ2(90− 410θ + 735θ2 − 594θ3 + 180θ4),

b6(θ) = − 64

225
θ2(30− 190θ + 465θ2 − 486θ3 + 180θ4).

We can predict the shape of the defect for this scheme (CGMIRK666) and the lo-

cation of the maximum defect for each subinterval. The defect will be the derivative

of the unsatisfied order condition (bT (θ)c6 = θ7

7
); see Figure 6.12. The maximum

defect of each subinterval will occur where the second derivative is zero. It will be at

θ = 0.07286456136 or θ = 0.9271354386.
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Figure 6.12: A plot of the absolute derivative of the lone unsatisfied 7th order condition
for CGMIRK666.

6.6 Comparing 6th Order Schemes

Table 6.1 shows the number of stages for the different 6th order ACDC schemes

discussed in this chapter. Implementations for 6th order ACDC CMIRK and ACDC

CGMIRK schemes is left for future work.

Table 6.1: A comparison of the number of stages for the 6th Order Hermite-Birkhoff
interpolant, the 6th Order ACDC CMIRK schemes, and the 6th Order ACDC CG-
MIRK schemes.

Scheme Number of stages
6th order Hermite-Birkhoff interpolant 12

ACDC CMIRK1363 13
ACDC CMIRK1163 11

ACDC CGMIRK1064 10
ACDC CGMIRK765 7
ACDC CGMIRK666 6
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We note that while the CGMIRK schemes use fewer stages, the computation of

these stages is more expensive because some of the stages are defined implicitly in

terms of each other and thus the solution of a non-linear system to determine these

stages is required.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we discussed methods that involve defect control for solving BVODEs.

We reviewed some of the background literature for standard CMIRK schemes and

Hermite-Birkhoff interpolants. Then, numerical results were presented showing plots

of the absolute scaled defect to allow observation of the location of the maximum

defect for each subinterval for standard CMIRK schemes and Hermite-Birkhoff (H-B)

interpolants on BVODEs. These results showed that standard CMIRK schemes, for

orders 4, 5 and 6, do not, in general, lead to defects for which the location of the

maximum defect on each subinterval and for each problem is the same. This means

that asymptotically correct defect control (ACDC) is not possible. These results also

showed that H-B interpolants can be constructed that do have the ACDC property.

After that, ACDC CMIRK methods of orders 4 and 5 were developed by requir-

ing the methods to satisfy all but one of the order conditions for one higher order.

This means that the method will have a defect for which the leading order term in

the defect expansion will be a multiple of a single polynomial corresponding to the

118
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derivative of the lone unsatisfied order condition. We then provided numerical experi-

ments that show that these ACDC CMIRK methods indeed have the ACDC property.

We also compared the efficiency of the order 4 and 5 H-B interpolants and ACDC

CMIRK methods. Finally, we investigated standard CMIRK, H-B, ACDC CMIRK,

and ACDC CGMIRK methods for 6th order.

7.2 Future Work

The main direction of future work is to implement the ACDC CMIRK methods

within the BVP-SOLVER-2 [4] software package. A second direction for future work

is to optimize the ACDC CMIRK schemes. The idea in choosing the coefficients

optimally is to try to make the factor in the local error expansion that depends

on those coefficients as small as possible. A third direction for future work is to

investigate the reason why when we choose the free coefficients to be the same in the

ACDC CMIRK543-I and ACDC CMIRK543-II schemes we obtain the same scheme.

A similar question to consider would be why when we choose the free coefficients to

different in the ACDC CGMIRK765-I and ACDC CGMIRK765-II schemes we obtain

different schemes, but with the same shape for the defect. A fourth direction for

future work is to develop Scilab implementations for the ACDC CMIRK1363, ACDC

CMIRK1163, and ACDC CGMIRK schemes, so that we can conduct numerical testing

of these schemes.
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