
CLASSICAL-THEORETICAL

FOUNDATIONS OF COMPUTING

(a concise textbook)

Stavros Konstantinidis, PhD
Professor of Computing Science

Saint Mary’s University

http://cs.smu.ca/~stavros/

Saint Mary’s University
May 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Saint Mary's University, Halifax: Institutional Repository

https://core.ac.uk/display/354998822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

Many of the information technology products that we enjoy in our
times are founded on theoretical tools of computing science. Some of
these tools are presented in this concise textbook at an introductory
level. In particular, we discuss basic concepts in the classical areas
of formal languages, logic, and coding and information theory. We
call these areas classical as they provided a lot of basic tools in the
first few decades of the evolution of computing science. Of course in
later stages of this evolution, people developed or utilized additional
theoretical tools (such as fuzzy sets and fuzzy logic, neural networks
and string distances) that are not covered here. However, the clas-
sical tools are so basic that they continue to be of importance at
present and most likely in the foreseeable future as well.

Readers are expected to have some basic background in computer
programming (in a high level language) and discrete mathematics
(e.g., the concepts of set, function and relation, mathematical proof,
etc.). This background knowledge is normally acquired after com-
pleting a couple of first year related courses in a typical Canadian
university. Then, completing a course based on the material of this
textbook will provide one with a basic understanding of the following.

• The existence of unsolvable computing problems.

• The role of formal logic in representing and deducing knowl-
edge.

• The paradigm of declarative programming via the Prolog lan-
guage.

• The role of grammars in specifying the syntax of programming
expressions.

• The role of automata in recognizing programming expressions
and communication languages.

• The role of codes in communicating information.

• The complexity involved in trying to solve certain important
computing problems.

The author invites any comments and corrections that could im-
prove this work – see the author’s website for contact information.

GLOSSARY

Sets:
N = {1, 2, 3, 4, . . .} = positive integers = natural numbers
N0 = {0, 1, 2, 3, 4, . . .} = nonnegative integers
R = real numbers
B = {T,F} = Boolean/truth values

Abbreviations:
iff = “if and only if”. Used with two statements: A iff B means that
statements A and B are either both true, or both false.

Some Greek letters:
α = alpha
β = beta
γ = gamma, Γ = capital gamma
δ = delta, ∆ = capital delta
ε = epsilon
θ = theta, Θ = capital theta
λ = lambda, Λ = capital lambda
µ = mu
π = pi, Π = capital pi
σ = sigma, Σ = capital sigma
ϕ = phi, Φ = capital phi
ω = omega, Ω = capital omega.

Description/Computing methods Corresponding Languages
CFG= Context Free Grammars context free
CSG= Context Sensitive Grammars context sensitive
DFA= Determ. Finite Automata regular
DPDA= Det. Pushdown Automata deterministic context free
TM= (Determ.) Turing Machines recursively enumerable
NFA= Nondeterm. Finite Automata regular
NPDA= Nondet. Pushd. Automata context free
NTM= Nondeterm. Turing Machines recursively enumerable
REX= Regular Expressions regular
UNG= Unrestricted Grammars recursively enumerable
Decision Turing Machines recursive

Contents

0 INTRODUCTION 7
0.1 What and why . 7
0.2 Review of Discrete Mathematics Concepts 8

0.2.1 Sets . 8
0.2.2 Functions . 9
0.2.3 Cardinalities of Infinite Sets 11
0.2.4 Relations and Graphs 14

1 LANGUAGES & UNDECIDABILITY: Introduction 18
1.1 Alphabet, Words (or strings) 18
1.2 Formal Languages . 23
1.3 Undecidable Problems 27
1.4 Introduction to Context-free Grammars 30

2 PROPOSITIONAL LOGIC (Boolean Algebra) 34
2.1 The language of Propositions (syntax) 34
2.2 Semantics (meaning) of Propositions 35
2.3 Truth tables, Equivalence, Consequence, Model 38
2.4 Laws of Propositional logic 41
2.5 Formal Deduction: Inference rules, Proofs 48
2.6 Normal forms and Resolution Proving 52
2.7 A Note on logic-based expert systems 55

3 PREDICATE LOGIC (First Order Logic) 57
3.1 The language of Predicate Formulas: syntax 57
3.2 Semantics (meaning) of Formulas 59
3.3 Formal Deduction: More Inference rules 65
3.4 ∃-free Prenex Normal Form 70
3.5 Unification and Resolution 72

4 INTRODUCTION TO PROLOG 75

5 REGULAR LANGUAGES & AUTOMATA 82
5.1 Regular Expressions (REXs) 82
5.2 UNIX Regular Expressions 85
5.3 Finite Automata (DFAs, NFAs) 88
5.4 Deterministic Automata (DFAs) 90
5.5 Nondeterministic Automata (NFAs) 91

5

5.6 A simple DFA Implementation 96
5.7 NFA Implementation in Prolog 97
5.8 Basic Theorems on Automata and λ-NFAs 99
5.9 REX matching via NFA membership 104
5.10 Sequential Transducers 108

6 CODING & INFORMATION THEORY 112
6.1 Coding Systems . 112
6.2 Basic Code Properties 116

6.2.1 Unique decodability 116
6.2.2 Prefix property 117
6.2.3 Error detection 119
6.2.4 Error correction 123

6.3 Information Theory 125
6.3.1 Entropy and Average codeword length 129

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA134
7.1 Non-regular languages 134
7.2 Back to Context-free Languages 135
7.3 Context-sensitive & Unrestricted Grammars 137
7.4 Pushdown Automata 140
7.5 Implementing PDAs in Prolog 144

8 TURING MACHINES & UNDECIDABILITY 146
8.1 Turing Machines (TMs) 146
8.2 Recursively enumerable languages 149
8.3 Decidable Problems / Recursive Languages 152
8.4 Undecidable problems / Non-recursive languages . . . 154

9 COMPUTATIONAL COMPLEXITY 158
9.1 Polynomial Complexity 158
9.2 Decision problems of unknown time-complexity 160
9.3 NP-completeness . 161

10 APPENDIX: various proofs 164

6

0 INTRODUCTION 7

0 INTRODUCTION

0.1 What and why

As noted in the Preface, we shall study basic concepts in the clas-
sical areas of formal languages, logic, and coding and information
theory. Next we give a quick summary of the uses of these areas.

• Uses of formal language tools.

1. Defining the precise syntax of the set of valid expressions/words
that are important in some application (e.g., in programming
languages, data communications, user input interfaces, mathe-
matical software).

2. Testing the correctness of, and generally processing, the ex-
pressions/words of some application (e.g., compiling programs,
decoding transmitted data, processing natural language sen-
tences).

3. In pattern matching: e.g., finding a certain word in some text
possibly allowing a few spelling errors.

4. Understanding the limits of computing: are there computing
problems that cannot be solved?

• Uses of logic tools.

1. Boolean expressions in programming languages.

2. Theoretical foundation for realizing computing hardware.

3. Program specification and correctness.

4. Knowledge representation and natural language processing.

5. Automated inference and reasoning (expert systems).

• Uses of coding and information theory tools.

1. Error control in data communications and storage.

2. Data compression.

3. Machine learning and data analysis.

0 INTRODUCTION 8

0.2 Review of Discrete Mathematics Concepts

In this section we review the basic mathematical concepts set, func-
tion, relation and graph. Moreover, we discuss the concept of cardi-
nality for infinite sets.

0.2.1 Sets

• Set. A set is an unordered collection of distinct entities. Here
are a few examples of finite sets:

∅ = {} = the empty set.
B = {T,F} = the set of Boolean values,
{Halifax, Sydney, Truro} = {Truro, Halifax, Sydney}.

Ex. 0.1 (Infinite sets).

N = {1, 2, 3, . . .} (the positive integers = natural numbers)

N0 = {0, 1, 2, 3, . . .} (the nonnegative integers)

R = set of real numbers. E.g., 3,−3, 3
7
,
√
7, π,−2.67

(−3.4,∞) = {x | x ∈ R and x > −3.4}.

• Subset. We write A ⊆ B to indicate that A is a subset of B, which
means that, if x ∈ A then x ∈ B (possibly A = B). For example,
N0 ⊆ R. To indicate that A is a proper subset of B we write A ⊂ B,
or A (B. The empty set is a subset of every set, that is, ∅ ⊆ A for
all sets A.

• Basic set operations. The three basic set operations are:

A ∪B = {x | x ∈ A or/and x ∈ B} (set union)

A ∩B = {x | x ∈ A and x ∈ B} (set intersection)

A−B = A \B = {x | x ∈ A and x /∈ B} (set difference)

Ex. 0.2. For every two sets A and B, we have
A ∪B = B ∪A, A ∩B = B ∩A
A = A ∪A = A ∩A = A ∪ ∅
A ∩ ∅ = A−A = ∅
If A ⊆ B then A ∩B = A, A ∪B = B, A−B = ∅.

0 INTRODUCTION 9

• Power Set and Cartesian (cross) product. For any set A,
its power set is 2A = the set of all subsets of A, including ∅ and A.
For any sets A,B, their Cartesian (or cross) product is the set of all
(ordered) pairs of elements from the two sets, that is,

A×B = {(a, b) | a ∈ A, b ∈ B}.

• Cardinality of finite set. |A| = the number of elements in A.
We have that

|A×B| = |A| · |B| and |2A| = 2|A|.

Ex. 0.3. Let A = {−1, 2, 5}. Then |A| = 3,

2A = {∅, {−1}, {2}, {5}, {−1, 2}, {−1, 5}, {2, 5}, A}

and

A×A = {(−1,−1), (−1, 2), (−1, 5), (2,−1),
(2, 2), (2, 5), (5,−1), (5, 2), (5, 5)}.

• Method INF1: Show that a subset M of N0 is infinite. It is
sufficient to show that no integer is the largest element of the given
set M . That is, for any positive integer n we pick, there is an element
of M that is larger than n.

Ex. 0.4. Show that the set of all even natural numbers is infinite.

Solution. Pick any positive integer n. Then, 2n is an even natu-
ral number greater than n. Hence, there are infinitely many even
numbers. 2

0.2.2 Functions

• Function f : A → B. Is a mapping associating to each element
a ∈ A exactly one element in B, called the image of a and denoted
by f(a). The set A is called the domain of f . Note that:

- different a’s can have the same image;
- some b ∈ B might not be the image of any a.

0 INTRODUCTION 10

Ex. 0.5. Let Prov be the set of provinces of Canada and let City
be the set of Canada’s cities. We can define the function

cap: Prov → City

such that cap(P) is the capital city of the province P . For example,
cap (Ontario) = Toronto. This is an example of a finite function,
that is, the set of pairs (P, cap (P)) is finite.

Ex. 0.6. The function f : R → R with f(x) = x2 is an example of
an infinite function.

• Method INF2: Show that a set X is infinite. There are many
ways. When possible, we show that X contains another set Y which
we know is infinite. Another way is to define a function f : X → N0

that assigns a certain value f(x) to every element x of X, and show
that the set of values {f(x) | x ∈ X} is infinite (that is, these values
constitute an infinite subset of N0).

Ex. 0.7. Show that the set Circle of all circles is infinite. Use
the fact that, for every number x, there is a circle whose radius is of
length x.

Solution. To every circle C, we assign the length r(C) of the radius
of C. As there is a circle of radius n, for every positive integer n,
the set of all values r(C) includes all positive integers N. Hence,
{r(C) | C ∈ Circle} is infinite and, therefore, also the set Circle
is infinite. 2

• One-to-one, onto, bijective functions. A function f : A → B
is called 1-1 (one-to-one), or injective, when all the a’s in the domain
A have different images, that is, if a1 6= a2 then f(a1) 6= f(a2). The
function cap defined in Ex. 0.5 is 1-1. The function f is called onto,
or surjective, when all b’s are images of a’s, that is, for every b ∈ B
there is an a ∈ A such that b = f(a). The function cap is not onto,
as there are elements in City that are not capitals of any province.
The function is called bijective if it is both, 1-1 and onto.

• Order of magnitude of a function f : N → (0,+∞). Here we
are interested in comparing real functions on N in terms of the order

0 INTRODUCTION 11

of magnitude of their values. In particular, we want to express the
order of magnitude of the function f in terms of basic functions like

log n,
√
n, n, n2, nk, 2n.

For example, for f(n) = 5n2 + 7n, we understand that the term n2

has the highest order of magnitude and we can write f(n) = O(n2).
In other words, f is a quadratic-bounded function. In general, we
write f(n) = O(g(n)) to mean that there is a constant c > 0 such
that f(n) ≤ cg(n). For example, we verify 5n2 + 7n = O(n2) as
follows:

5n2 + 7n ≤ 5n2 + 7n2 = 12n2.

Of course, as n2 ≤ 2n, we can also write f(n) = O(2n), which is
an overestimate for the order of magnitude of f . If we have that
f(n) = O(g(n)) and g(n) = O(f(n)) then we write f(n) = Θ(g(n))
and we say that the two functions have the same order of magnitude.
For example, 5n2 + 7n = Θ(n2).

0.2.3 Cardinalities of Infinite Sets

We now extend the concept of cardinality to infinite sets1. The
main result here is that there are infinite sets whose cardinalities
are different! The set N0 of nonnegative integers has the smallest
infinite cardinality, which is denoted as ℵ0 (aleph zero), that is,

|N0| = ℵ0.

• Comparing cardinalities of sets. Let A and B be two sets, and
let f : A→ B.

1. If f is 1-1 (one-to-one) then we write |A| ≤ |B|, or |B| ≥ |A|.

2. If f is onto then we write |B| ≤ |A|, or |A| ≥ |B|.

3. If f is bijective then |A| = |B|.
1Although our treatment of these concepts is not thorough from a mathe-

matical point of view, it allows one to compare correctly the cardinalities of two
sets.

0 INTRODUCTION 12

As usual, |A| < |B| means that |A| ≤ |B| and |A| 6= |B|, which
implies that there is no onto function from A to B, and there is no
1-1 function from B to A.

Ex. 0.8. Consider the case where f is 1-1. Then f is able to assign a
different b ∈ B to each a ∈ A, which means that |A| ≤ |B|. Similarly,
if f is onto then every b ∈ B is the value f(a) of some a ∈ A, which
means that A has to contain at least one element for each b, that is,
|B| ≤ |A|. For example, if f is 1-1 and A = {3, 7, 28} then the set B
must contain the values f(3), f(7), f(28), which are all different as
f is 1-1. Hence, |B| ≥ |A|. This applies also to the case where A is
infinite.

Ex. 0.9. In the case of infinity, there exist situations that are im-
possible with finite sets. In particular, we can have a situation where
a proper subset of a set S has the same cardinality as S ! For exam-
ple, let B be the set of all even positive integers and let A = N. As B
is a subset of A, we have that |B| ≤ |A|. On the other hand, as the
function f : A → B with f(n) = 2n is 1-1, we have that |A| ≤ |B|.
Hence, |A| = |B|. Similarly, we have that

|N| = |N0|.

Another instance of this phenomenon is that the real interval (0, 1)
has the same cardinality as that of the entire set of real numbers.

Definition 0.1. Let A be a set.

1. If |A| ≤ |N0| then A is called countable (or enumerable).

2. If |A| = |N0| then A is called countably infinite.

3. If |A| > |N0| then A is called uncountable.

The fact that a set A is countable means that, in principle, we
can enumerate all the elements of A in the form of a sequence2

x0, x1, x2, . . . such that we can say that x0 is the first one and, in
general, xi+1 is the successor of xi. On the other hand, when the
set is not countable then there is no way to arrange all elements of

2Indeed, A countable means that there is an onto function g : N0 → A, which
implies that A = {g(0), g(1), g(2), . . .}.

0 INTRODUCTION 13

the set in a sequence such that we can tell what the successor of a
given x ∈ A is. The next fundamental result gives two examples of
uncountable sets.

Theorem 0.1. (Cantor’s Theorem) The set of real numbers is un-
countable, that is, |R| > |N0|. Moreover, the reals have the same
cardinality as the set of all subsets of N0, that is, |2N0 | = |R|.
The cardinality of the real numbers is called the continuum.

• Proof of |R| > |N0|. It is sufficient to show that the real interval
(0, 1) is not a countable set. We assume for the sake of contradiction
that (0, 1) is countable. Then we can enumerate all numbers in that
interval as x(0), x(1), x(2), As each number t in the interval has
an infinite decimal representation 0.t0t1t2 · · ·, we can enumerate all
the elements of (0, 1) as follows:

x(0) = 0.x
(0)
0 x

(0)
1 x

(0)
2 · · ·

x(1) = 0.x
(1)
0 x

(1)
1 x

(1)
2 · · ·

x(2) = 0.x
(2)
0 x

(2)
1 x

(2)
2 · · ·

. . .

Now consider all the diagonal digits x
(0)
0 , x

(1)
1 , x

(2)
2 , . . . and define a

number t = 0.t0t1t2 · · · such that each digit ti is chosen to be different

from 0, 9 and x
(i)
i . Then, the number t must be in (0, 1) and, by the

assumption, t must be equal to the number x(j) for some index j ∈ N,
that is,

t = 0.t0t1t2 · · · = 0.x
(j)
0 x

(j)
1 x

(j)
2 · · · .

There is a contradiction, however, when we recall that the digit tj is

different from the digit x
(j)
j . Hence, the real interval (0, 1) must be

uncountable.
2

• Method COUNT1: Show that a set X is countable. We
are given the description of the set X. If the set is finite then it’s
countable. Else, we prepare an infinite empty array, and we explain
how to insert each element of X into an empty entry of the array:

0 1 2 3 · · ·
x0 x1 x2 x3 · · ·

0 INTRODUCTION 14

The array indexes correspond to the elements of N0 and the method
of inserting the elements ofX into the array corresponds to a function
f : X → N0. As each element of X goes to a different entry the
function f is one-to-one and, therefore, X is countable. Note that,
in general, not all entries of the array must be filled. Moreover,
sometimes it might be convenient to index the array with a start
index other than 0. For example, we might use an array whose entries
are indexed as 5, 6, 7, 8,

Ex. 0.10. Is the set of integers Z countable? Recall,

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Solution. We insert all the elements of Z into an array:

0 1 2 3 4 5 6 · · ·
0 1 −1 2 −2 3 −3 · · ·

We insert 0 into entry 0. Then 1,−1 go to the next two entries, 2,−2
to the next entries, and so on. More formally, each positive integer
n is inserted into the entry 2n− 1, and each negative −n into entry
2n. Hence, Z is countable. 2

0.2.4 Relations and Graphs

• Relation. A relation R on two sets A,B is a subset of A × B.
The fact that (a, b) ∈ R is intended to say that a and b are related
according to R. For example, let Dept be a set of departments and
Emp be a set of employees. We can define a relation

WorksFor ⊆ Emp × Dept

such that (E,D) ∈WorksFor iff employee E works for department
D. An alternate notation for (a, b) ∈ R is R(a, b), which is normally
read as R(a, b) is true . In this case, R is viewed as a function
from A × B into the set of truth values B = {T,F}. For example,
if WorksFor(E,D) is true then E works for department D. This
notation is also used with sets. For example, Emp(E) means that
E ∈Emp, that is, E is an employee. In general we can have relations

0 INTRODUCTION 15

on more than two sets. For example, let Date be the set of all dates.
We can have a relation

WorksForSince ⊆ Emp × Dept × Date

such that (E,D, T) ∈WorksForSince means that employee E has
been working for department D since date T . In general if a relation
is a subset of A1 × · · · × An, the cross product of n sets, then we
say that the relation is of arity n, or that it is an n-ary relation.
In particular, if n = 1 we have a unary relation, if n = 2 we have a
binary relation, and if n = 3 we have a ternary relation.

• Binary Relation R on A. This is a subset of A × A. This
type of relation relates two elements of the same set. For example,
the relation “<” on the set R of real numbers is the “less than”
relation such that (x, y) ∈ “<”, or < (x, y), or x < y, means that the
number x is less than y. Some particular types of a relation R are
the following.

• If (a, a) ∈ R for all a, then R is reflexive. For example, the
relation “⊆” on sets is reflexive, as every set is a subset of
itself.

• If (a, a) /∈ R for all a, then R is irreflexive. For example, the
relation “<” on R is irreflexive.

• If (b, a) ∈ R, whenever (a, b) ∈ R, then R is symmetric. For
example, the relation “is sibling of” on people is symmetric.

• If (b, a) /∈ R, whenever (a, b) ∈ R and a 6= b, then R is
antisymmetric. For example, the relation “<” on R is anti-
symmetric.

• If (a, c) ∈ R, whenever (a, b), (b, c) ∈ R, then R is transitive.
For example, the relation “⊆” on sets is transitive.

• If R is transitive, irreflexive, and such that exactly one of
(a, b) ∈ R and (b, a) ∈ R is true for all a and b, then R is
called a (strict) total order. For example, the relation “<” on
R is a (strict) total order.

0 INTRODUCTION 16

E1

E2 E3 E4

E5 E6

Figure 1: Graph representation of the relation Superv.

q0 q1 q2
x

∗

x

Figure 2: A labeled graph.

• Directed graph representation of R ⊆ A×A. We use a vertex
(node) for each a ∈ A and an edge (arc) between two nodes a and
b iff (a, b) ∈ R. For example, let Superv ⊆ Emp × Emp be the
supervisor relation between employees, that is, (E1, E2) ∈Superv
means that E1 is the (direct) supervisor of E2. If

Superv = {(E1, E2), (E1, E3), (E1, E4), (E4, E5), (E4, E6)}
then we can represent this relation using the graph of Fig. 1.

• Graph concepts. A path in a graph R is a finite sequence

(a0, a1), (a1, a2), . . . , (an−1, an)

of consecutive edges in R. For example, (E1, E4), (E4, E6) is a path in
the graph of Fig. 1. A labeled graph (or weighted graph) is a relation
G ⊆ A×L×A where A is the set of nodes and L is the set of labels
(digits, symbols, etc.). An edge of G is a triple (a, ℓ, b) ∈ A×L×A,
and a path of G is a finite sequence of consecutive edges:

(a0, ℓ1, a1), (a1, ℓ2, a2), . . . , (an−1, ℓn, an).

0 INTRODUCTION 17

In this case, the label of the path is the sequence ℓ1, ℓ2, . . . , ℓn of the
labels appearing in the path. For example,

(q0, x, q1), (q1, ∗, q2), (q2, x, q1), (q1, ∗, q2), (q2, x, q1)

is a path in the labeled graph in Fig. 2

• Reflexive and transitive closure of a relation R ⊆ A × A.
This is another binary relation on A:

R∗ = {(a, b) | b = a, or there is a path (a0, a1), . . . , (an−1, an)
in the graph of R with n ≥ 2, a0 = a, an = b}.

For example, (E1, E1) and (E1, E5) are in Superv∗, but (E2, E5) is
not.

Exercises

Ex. 0.11. Use Method COUNT1, the array method, to show that
the following set is countable

{ 1
n
| n ∈ N0, n ≥ 2} ∪ {

√
7,−12, 6.47}.

Ex. 0.12. Use Method COUNT1, the array method, to show that
the following set is countable.

{√n | n ∈ N, n ≥ 2, n 6= 5}.

Ex. 0.13. Consider the relation Mult ⊆ N× N such that (m,n) ∈
Mult if m is a multiple of n, that is, m = pn for some p ∈ N. For
example, (15, 3) ∈Mult, but (17, 3) /∈Mult. Is the relation Mult
finite? Reflexive? Symmetric? Transitive?

Ex. 0.14. Consider all paths from q0 to q1 in Fig. 2. For example,

(q0, x, q1), (q1, ∗, q2), (q2, x, q1)

is such a path. Is the set of these paths finite or infinite?

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 18

1 LANGUAGES & UNDECIDABILITY: In-
troduction

In the introductory section we talked briefly about the role of for-
mal language theory in the field of computing. In this section we
introduce a few basic elements of formal languages and establish the
fact that there are computing problems that are not solvable by any
means.

1.1 Alphabet, Words (or strings)

An alphabet is a nonempty set Σ whose elements are called symbols,
or letters. Here are some examples of alphabets:

- Σ2 = {0, 1}, B = {T,F} (binary alphabets)
- Σq = {0, 1, . . . , q − 1} (q-ary alphabet)
- {a, c, g, t} (the DNA alphabet)
- {a, b, c, . . . , z} ∪ {A,B, . . . , Z} (the English alphabet).
- Σcalc = {0, 1, . . . , 9, (,),+, ∗,−, /} (alphabet for simple calculators)

•Word or String (over Σ). A finite sequence of symbols from Σ.
For example:

- 00110, 0, 11 are words over Σ2

- accgtt, aaaa are DNA words
- coat, ctrl, www are words over the English alphabet.
- (2 + 27) ∗ 14, (12 ∗+()78 are words over the alphabet Σcalc.

Words are used to represent the various types of data that can be
processed by computing devices. For example, decimal numbers are
words over the alphabet Σ10, genes of an organism are words over
the DNA alphabet, etc.

• Length |w| of word w. Is the number of symbols in w. For
example,

|01001| = 5, |acggtac| = 7, |a| = 1.

• i-th symbol of w. We write w(i) for the i-th symbol of a word w.
For example, if w = accgt then w(1) = a and w(4) = g. Moreover,
for every word w we have

w = w(1) · · ·w(|w|).

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 19

•Word concatenation. For words u and v, uv is the word that
consists of the symbols of u followed by the symbols of v. For exam-
ple, if u = 011 and v = 0001 then uv = 0110001.

• Empty word λ. The word containing no symbols. As we cannot
see it, we use the special symbol λ. It has the properties

|λ| = 0, wλ = λw = w, for all words w.

• All words. The set of all words is denoted by Σ∗. The set of all
nonempty words is denoted by Σ+, that is, Σ+ = Σ∗ − {λ}

• More notation on words. For any n ∈ N0 and w ∈ Σ∗, (w)n is
the word consisting of n copies of w. If σ is a single symbol then we
write σn instead of (σ)n. For example

(011)3 = 011011011.

Note that w0 = λ. We write (w)R for the reversal of the word w,
that is, if w is of length n then (w)R = w(n) · · ·w(1). For example,

(00111)R = 11100.

Ex. 1.1. Show that the set of lengths of all words is infinite.

Solution. The set in question is {|w| | w ∈ Σ∗}, which is a subset of
N0. We use Method INF1 in Section 0.2.1. Pick any positive integer
n. We have to find a word whose length is greater than n. Obviously
σn+1 is such a word, where σ is any letter. Hence, the set of all word
lengths is infinite. 2

• Equal words. Two words u, v are equal if, |u| = |v| and u(i) =
v(i) for every index i.

Ex. 1.2. Find all solutions of the word equation x1x = 10x01 over
the alphabet Σ2 = {0, 1}.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 20

Solution. The lengths of the left- and right-hand side words of the
equation must be equal:

|x1x| = |10x01|,

which is equivalent to 2|x|+1 = |x|+4; hence, the length of x must
be 3, that is, x = x(1)x(2)x(3). If we align the two sides of the
equation we get:

x(1) x(2) x(3) 1 x(1) x(2) x(3) =
1 0 x(1) x(2) x(3) 0 1 =
1 0 1 0 1 0 1

This implies that the symbol x(2) must be 0 and 1, which is impos-
sible. Hence the set of solutions is ∅. 2

Ex. 1.3. Find all solutions of the word equation 0x1 = 01x over the
alphabet Σ2 = {0, 1}.

Solution. Here we test a few cases for x based on the length of x.
For example, if |x| = 0, that is x is empty, then the left-hand side
is 0λ1 = 01 and the right-hand side is 01λ = 01, so the equation is
satisfied for x = λ. Similarly if |x| = 1, that is x is a single symbol
σ ∈ Σ, then the equation becomes 0σ1 = 01σ and is satisfied when
x = σ = 1. In general, if the length of x is ℓ ≥ 2, then the two sides
of the equation align as follows:

0 x(1) x(2) x(3) · · · x(ℓ) 1 =
0 1 x(1) x(2) · · · x(ℓ− 1) x(ℓ) =
0 1 1 1 · · · 1 1.

Hence, the equation is satisfied when x = 1ℓ. So the set of solutions
is {1ℓ | ℓ ∈ N0}. 2

Ex. 1.4. Show that the set Σ∗ of all words is infinite.

Solution. The length function | · | : Σ∗ → N0 assigns the length |w| to
each word w ∈ Σ∗. By Ex. 1.1, the set of all word lengths is infinite
and, therefore, Σ∗ must be infinite as well – see also Method INF2
in Section 0.2.1. 2

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 21

• A total order on words: the radix order. Let Σ = {a1, . . . , aq}
be an alphabet. We can define a total order on the set Σ∗ of all words
provided that we have agreed on a certain total order ‘≺’ on the al-
phabet Σ, say

a1 ≺ a2 ≺ · · · ≺ aq.

Then, for any two different words w,w′ we have that w ≺ w′ if and
only if either w is shorter than w′, that is |w| < |w′|; or the words
have the same length and w comes before w′ in the lexicographic
order determined by the order ‘≺’ in Σ, that is, |w| = |w′| and
σ ≺ σ′, where σ and σ′ are the first corresponding letters on which
the two words differ. For example, if Σ = {a, b} and a ≺ b, then Σ∗

is ordered as follows

λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .

This order is called radix because if we interpret each letter ai of the
alphabet as a nonzero digit 1, 2, . . . , q then every word is mapped to
a unique positive integer in radix (q+1). In particular, if Σ = {a, b}
and we interpret a as 1 and b as 2, then every word in Σ∗ represents
a ternary (radix 3) number with nonzero digits. For example, bab
represents the number 2×32+1×31+2×30 = 23. This 1-1 mapping
of words into the nonnegative integers N0 shows that the set of all
words is countable: |Σ∗| ≤ |N0| – where we have assumed that the
empty word maps to zero. Moreover, as the set of all words is infinite,
and N0 is the smallest infinite set, we also have |N0| ≤ |Σ∗|. Hence,
we have established the following result.

Theorem 1.1. The set of all words is countable. More specifically,

|Σ∗| = |N0|

Exercises of Section 1.1

Ex. 1.5. Find all solutions of the word equation x01110101 =
10x110x over the alphabet Σ2 = {0, 1}.

Ex. 1.6. Find all solutions of the word equation xy = 10 over the
alphabet Σ2 = {0, 1}.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 22

Solution. We have that |x| + |y| = 2, so either both lengths |x|, |y|
are 1, or one of them is 2 and the other one is 0. If both lengths are
1 then x = 1 and y = 0. If one of the words has length zero then
the other one must be equal to 10. Hence, the set of solutions is
{(1, 0), (λ, 10), (10, λ)}, where each pair in the set shows the values
of x and y. 2

Ex. 1.7. Find all solutions of the word equation x11y1 = 001111
over the alphabet Σ2 = {0, 1}.

Ex. 1.8. Find all solutions of the word equation x01(x)R = 10x1
over the alphabet Σ2 = {0, 1}. Hint: Recall, (x)R is the reverse of
x, so |(x)R| = |x|.

Ex. 1.9. Find all solutions of the word equation yx0x = 1x(y)R

over the alphabet Σ2 = {0, 1}.

Ex. 1.10. Use Ex. 1.3 as a guide to find all solutions of the word
equation x01 = 10x over the alphabet Σ2 = {0, 1}. Hint: First try
the simple cases where |x| = 0 and |x| = 1. Then, distinguish two
cases: |x| even, and |x| odd. In each case, work as in Ex. 1.3. The
set of solutions should be

{(01)ℓ1 | ℓ ∈ N0}.

Ex. 1.11. Find all solutions of the word equation x011x01 =
10x110x over the alphabet Σ2 = {0, 1}. Hint: The first |x| + 2
symbols in the left- and right-hand sides of the equation must be
equal. This implies that every solution to this equation must also be
a solution to the equation in Ex. 1.10

Ex. 1.12. Find all solutions of the word equation x010 = 0y over
the alphabet Σ2 = {0, 1}.

Solution. The words in the two sides of the equation must have the
same lengths:

|x010| = |0y|, which implies |y| = |x|+ 2.

Now we test a few cases based on the length of x. If |x| = 0 then
010 = 0y and, therefore, y must be 10. So in this case there is one
solution (x, y) = (λ, 10). If the length of x is ℓ ≥ 1 we have:

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 23

x(1) x(2) · · · x(ℓ) 0 1 0 =
0 y(1) · · · y(ℓ− 1) y(ℓ) y(ℓ+ 1) y(ℓ+ 2)

Here the symbols x(2), . . . , x(ℓ) must be equal to y(1), . . . , y(ℓ − 1)
and no other constraint is required. Hence the set of solutions is

{(λ, 10)} ∪ {(0w,w010) | w is any word}

2

1.2 Formal Languages

A (formal) language is any set of words, that is, any subset of Σ∗.
A language can be finite or infinite. Here are some examples, of
languages over the alphabet {a, b}:

{aa, ba, bba, ba43}, {awbb | |w| ≥ 65}, {a, b}∗ − {λ, a, b, aa}.

If L is a language and w ∈ L then we say that w is an L-word.

• Do not confuse the concepts. Be sure to distinguish the dif-
ferent concepts introduced so far. A word/string consists of symbols
from the alphabet Σ, unless it is the empty word λ. A language is a
set consisting of words, unless it is the empty set ∅. The expression
λ denotes the empty word and is different from the expression {λ},
which is the set consisting of the empty word and, therefore, {λ} 6= ∅.

• Some Language operations. Assume K,L are two languages.
As K,L are sets, we can apply the basic set operations: K ∪ L,K ∩
L,K − L. In addition the following language operations are impor-
tant.

• Complement: L = Σ∗ − L

• Concatenation: KL = {uv | u ∈ K, v ∈ L}

• Power: Ln = {u1 · · · un | each ui is in L} : consists of any n
concatenated elements from L. Note that L0 = {λ}

• Kleene Closure: L∗ = L0 ∪ L1 ∪ L2 ∪ · · · = ⋃∞
i=0 L

i: consists
of zero or more concatenated elements from L. Moreover, we
have the operation

L+ = L∗ − {λ}.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 24

Note that L∗ always contains the empty word λ. In particular,
we have that

∅∗ = {λ}.

• Reversal: LR = {(u)R | u ∈ L}

Note that, in general, the concatenation operation is not commuta-
tive, that is, KL 6= LK. Also, if L is not empty then L+ is an infinite
language.

Ex. 1.13. Consider the languages K,L over the DNA alphabet
{a, c, g, t}:

K = {aicctj | i ≥ 0, j ≥ 1}, L = {gka | k ≥ 0}.

For each of the following languages, give an example of a word in (if
possible), and of a word not in (if possible) the language.

1. K
2. L
3. KL
4. LK
5. K3

6. LK∗L2

Solution.
1. In: cct, aacct, Out: λ, a, cc,
2. In: a, ga, gga, Out: g, gg, c, t,
3. In: ccta, acctga, Out: λ, a, t,
4. In: acct, aacct, Out: λ, t, a,
5. In: cctcctcct, Out: λ, a, t,
6. In: aaa, gacctgaga, Out: λ, t, a, 2

• Property of concatenation. For any languages K,L,L′ we have

K(L ∩ L′) ⊆ KL ∩KL′ and K(L ∪ L′) = KL ∪KL′.

We show the case of the union ∪:
x ∈ K(L ∪ L′) iff
x = uv, for some u ∈ K and v ∈ L ∪ L′ iff
x = uv, for some u ∈ K, and v ∈ L or v ∈ L′ iff

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 25

x = uv, for some u ∈ K and v ∈ L, or u ∈ K and v ∈ L′ iff
x ∈ KL or x ∈ KL′ iff
x ∈ KL ∪KL′.

Note that there are examples of languages such that KL ∩ KL′ is
not a subset of K(L ∩ L′).

• Every language is countable. As every language is a subset of
Σ∗, and Σ∗ is a countable set, we get the following corollary.

Corollary 1.2. Every language is countable.

• Method COUNT2: Show that a set X is countable. Here
we use the above corollary as follows. We choose a set of names (= a
language) L and explain how to give a unique name to each element
of X. This would show that X is countable because the assignment
of unique names is simply a 1-1 mapping of X into a countable set.

Ex. 1.14. To show that Z is countable using the above method,
observe that each integer x ∈ Z, with x 6= 0, can be assigned a
unique digital word of the form

sd1 · · · dm,

where s is the sign of x and the di’s are the digits of x without
leading zeros. If x is zero then it gets assigned the word 0. Hence, Z
is countable.

Exercises of Section 1.2

Ex. 1.15. Consider again the languages K,L in Ex. 1.13. Indicate
whether each of the following statements is true or not:

1. acc ∈ K
2. KL ⊆ LK
3. aaccta ∈ (K ∪ L)∗

4. aacctaa ∈ (K ∪ L)∗

5. K ∩ L = ∅
6. K ⊆ L+K
7. K ∩ LK = ∅
8. K ∩ LK is infinite.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 26

Solution. FALSE, FALSE, TRUE, etc. 2

Ex. 1.16. Consider the languages A = {0, 10, 11} and B = Σ∗ −
{λ, 1, 01} over the binary alphabet {0, 1}. Indicate whether each of
the following statements is true or not:

1. A ⊆ B
2. A∗ ⊆ B
3. A+ ⊆ B
4. A+{1} − {01} ⊆ B
5. AB ∩BA = ∅

Ex. 1.17. Show that, for any languages K,L,L′ we have

K(L ∩ L′) ⊆ KL ∩KL′.

Show an example of K,L′, L such that KL ∩KL′ 6⊆ K(L ∩ L′).

Ex. 1.18. Use Method COUNT2 to show that the set of all rational
numbers is countable. Use Ex. 1.14 as a guide. Recall, a number is
rational if it can be written in the form m/n, where m is an integer
and n is a positive integer.

Ex. 1.19. Consider the labeled graph in Fig. 2. Use Method
COUNT2 to show that the set of all paths from q0 to q1 is countable.

Ex. 1.20. Use Method COUNT2 to show that the set of all finite
languages is countable.

Solution. To simplify matters we consider the case of the alphabet
Σ = {a, b} – the general case can be handled analogously. Consider
all the finite languages over this alphabet, and define the total order
on that alphabet:

a ≺ b.

This order can be extended to the radix order between any two words
– see Section 1.1. Thus, for example, we have that ab ≺ abb ≺ bba.
Now define the alphabet Σ# = Σ ∪ {#}, where # is a new symbol.
We use Method COUNT 2. To each finite language

L = {w1, w2, . . . , wn} with w1 ≺ w2 ≺ · · · ≺ wn,

we assign the string sL = w1#w2# · · ·wn# in Σ∗
#, where sL = λ if

L = ∅. Thus, sL is the concatenation of all words in L using # as a
separator, where the words appear in the radix order. One can verify
that each finite language L gets assigned a unique string sL. 2

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 27

1.3 Undecidable Problems

In this section we establish the fact that some computing problems
are not solvable. Informally, a computing problem is a question about
any given data, with a well defined set of possible answers, such that
the question is to be answered by some computing machine. The
data could be an integer, a text, a digital image, a list of integers,
etc. In any case, the concept of “word” as defined in Section 1.1 is
sufficient for representing data.

• Decision Problems. Consider an alphabet Σ. A decision prob-
lem is a question about any given word in Σ∗ such that there are
only two possible answers: {YES, NO}. The given word is called the
input word, or input string, and the answer is called the return value.
Obviously, a decision problem is specified completely if we describe
the set of all YES words, that is, all input words for which the an-
swer is YES. Formally, a decision problem is simply a language L.
The language L contains exactly the YES input words. As every
language defines a decision problem, we have that

the set of ALL decision problems = 2Σ
∗

.

Ex. 1.21. [Pattern-Matching] Consider a word p called the pattern.
The problem is to decide whether a given text t contains the pattern
p. This problem is important in search engines, for instance, where
p is a keyword and the text t is an internet page, and we want to
know whether the page is relevant (i.e., contains the keyword). So
the decision problem is

Input = a word t (the text)
Return = YES if t contains the word p; NO otherwise.

Mathematically this decision problem is defined by the language

Lpm = {xpy | for some x, y ∈ Σ∗}.

Indeed, note that for each input t the return value is YES iff t ∈ Lpm.

Ex. 1.22. [Primality testing] Every nonnegative integer can be
represented as a binary word, and every binary word w represents
a nonnegative integer num(w), where we assume that num(λ) =
0. The primality testing problem is to determine whether a given

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 28

nonnegative integer is prime, that is, to solve the following decision
problem

Input = a binary word w
Return = YES if num(w) is a prime number; NO otherwise.

Mathematically this decision problem is defined by the language

Lpt = {w | num(w) is a prime number}.

• Uncountably many problems/languages. We said before that
the set of all decision problems is 2Σ

∗

. As the set Σ∗ of all words has
cardinality equal to |N0| and the set 2N0 is uncountable, it follows
that the set of all problems is uncountable as well.

• Programming Language and Decision Programs. In Com-
puting Science we solve problems by designing algorithms that are
implemented as programs in some programming language. Ulti-
mately, these programs are executed by computing machines, which
return the desired answers. A programming language is a set of
words, which are the possible programs of the language. Here we ig-
nore the rules defining the syntax of these programs and we assume
that a program P acts as a function that takes any word w as input
and returns some value P (w), following instructions contained in P .
Moreover, we focus on decision programs. A decision program is a
program P that, on any given input w, returns YES or NO without
producing any output3, that is, P (w) ∈ {YES, NO}.

• Decidable/Solvable Problems. A problem L is called decidable,
or computable, or solvable, if there is a (decision) program P that
solves L, that is, for any input word w,

P (w) =

{

YES, if w ∈ L;
NO, if w /∈ L.

Equivalently, we can write L = {w ∈ Σ∗ | P (w) = YES}. We also
say that the program P decides (or computes, or solves) the problem
L. In anticipation of the types of languages that we shall see later,

3We assume that producing any output, in the sense of displaying externally
a word, does not contribute to the decision that needs to be made.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 29

we note that when the decidable problem L is viewed as a language
then it is called a recursive language.

• Undecidable/unsolvable problems. Consider any program-
ming language. The big question that arises now is whether there
are undecidable problems, that is, problems L for which no programs
P exist deciding L.

Corollary 1.3. There exists no programming language that com-
putes all problems. In particular, there are undecidable problems with
respect to any programming language.

The above result can be proved using Theorems 0.1 and 1.1. The
proof is based on a simple counting argument: being a language, the
set of programs is countable, whereas the set of decision problems is
equal to 2Σ

∗

, which is uncountable; that is, there are more problems
than programs! Although this result is fundamental, it gives us no
concrete examples of undecidable problems. One of the objectives
of formal language theory is to provide the tools for addressing this
question. In particular, we shall see later several problems that are
undecidable.

• Undescribable Entities. Using again a counting argument, it
turns out that there are problems that are not even describable!
More specifically, suppose we want to describe formally entities of
interest (problems, numbers, languages, etc) using some language
whose words are called descriptions. Let X be the set of entities. A
description method for X is an onto function

L : D → X

such that D is a language, which is the description language of the
method. As L is onto4, every entity in X has at least one description
in D. The next statement concerns the case where X is the set of
all decision problems. Then, X is uncountable and there can be no
language D and description method from D onto X.

Corollary 1.4. There exists no language that describes all problems.
In other words, there are undescribable problems with respect to any
language.

4This implies that |X| ≤ |D|.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 30

Exercises of Section 1.3

Ex. 1.23. Let EP be the set of paragraphs that can be written in the
English language. Is the set EP countable? Explain why there are
real numbers that cannot be described with any English paragraph.

Ex. 1.24. We say that a real number x is computable if there is a
program Px that takes as input a positive integer n and returns the
integral part of x followed by the first n decimal digits of x. Explain
why there are real numbers that are not computable.

1.4 Introduction to Context-free Grammars

An important method for describing certain languages is the method
of Context-free Grammars (CFGs). These objects involve two alpha-
bets:

Σ = the alphabet of ordinary symbols (terminal alphabet).
V = the alphabet of variables or nonterminals.

A variable is a capital English letter (A,B,C, . . .), possibly with a
numeric subscript (A1, B5, . . .).

• Context-free Rule. This is an expression of the form β → w,
where β is a variable and w is a word in (Σ ∪ V)∗. When a string in
(Σ∪V)∗ is of the form xβy we can apply the rule β → w by replacing
the variable β with w:

xβy ⇒ xwy.

For example, we can apply the rules X → 01 and Y → 0 to the string
1XX0Y as follows:

1XX0Y ⇒ 1X010Y ⇒ 1X0100.

• Context-free Grammar G. Is defined by an expression of the
form “SG; rules(G)” such that SG is a special variable (the start
variable), and rules(G) is a list of context-free rules

rules(G) = β1 → w1; β2 → w2; . . . ;βn → wn.

When the particular grammar G is understood we can omit the G
from SG and simply write S for the start symbol of G. When two or

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 31

more rules have the same left-hand side, as in “β → w1;β → w2; . . .”,
we can group them together using the shorthand notation

β → w1|w2| · · · ,

where ‘|’ means ‘or’, that is, β can be replaced with w1, or w2, or...

• Language generated (=described) by Context-free Gram-
mar G. The language generated by G is

L(G) = {u ∈ Σ∗ | SG ⇒ z1 ⇒ · · · ⇒ zn ⇒ u, for some n ≥ 0},

that is, L(G) consists of all terminal words u that can be generated
when we start with the start variable SG and apply a sequence of
one or more rules, one at a time. Note that, in general, the word u
can be generated in many different ways.

Ex. 1.25. [Nonnegative integers] The grammar

NN = “S;S → SS;S → 0|1| · · · |9 ”

generates all nonnegative integers, that is, L(NN) = {0, 1, , . . . , 9}+.
For example, here is one way to generate the number 638

S ⇒ SS ⇒ SSS ⇒ 6SS ⇒ 63S ⇒ 638.

Ex. 1.26. [Arithmetic Expressions] We want to represent the lan-
guage of all valid arithmetic expressions involving nonnegative in-
tegers, the operators +, *, and parentheses. Here is a context-free
grammar

AE = “S; S → (S) | S + S | S ∗ S | SNN; rules(NN)”.

For example, the expression 3 ∗ (638 + 2) is in L(AE) because it can
be generated by the grammar AE as follows

S ⇒ S∗S ⇒ S∗(S)⇒ S∗(S+S)⇒ SNN∗(S+S)⇒ · · · ⇒ 3∗(638+2)

• The class of context-free languages. Let CFG be the set of all
context free grammars with respect to a certain terminal alphabet.

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 32

Each of these grammars G describes a language L(G). Taking all
these languages together defines the class of context-free languages:

L(CFG) = {L(G) | G is in CFG}.

• Do not confuse the concepts. A word (or string) is a finite
sequence of zero or more symbols. A language is a set of zero or
more words; it can be finite or infinite. A class of languages is a
set whose elements are languages. A context-free grammar G is an
expression that describes a language L(G).

Exercises of Section 1.4

Ex. 1.27. Explain why every finite language is context-free.

Solution. Let F = {w1, . . . , wn} be any finite language. We need a
context-free grammar that generates this language. Here it is:

S; S → w1 | w2 | · · · | wn.

In case F is empty (thus, n = 0 above) the grammar has no rules.
2

Ex. 1.28. Let Σ2 = {0, 1}. Write grammars for generating each of
the following languages.

1. Σ∗
2.

2. Σ∗
2{010}Σ∗

2 = {u010v | u, v ∈ Σ∗
2}.

3. {0n1m | n ≥ 2,m ≥ 0}.

4. {0n1n | n ∈ N0}.

5. {w | w contains no 111} = Σ∗
2 − Σ∗

2{111}Σ∗
2.

Solution.

1. ALL = “S; S → λ | 0 | 1 | SS”

2. S; S → SALL010SALL; rules(ALL)

3. S; S → 00ZN ; Z → λ | 0Z; N → λ | 1N

1 LANGUAGES & UNDECIDABILITY: INTRODUCTION 33

2

Ex. 1.29. Modify the grammar in Ex. 1.25 to generate all integers
with an optional sign. For example, -13, 27, +27, 0, -32, etc.

Ex. 1.30. Write a grammar to generate all decimal numbers with
an optional sign and an optional decimal point. For example, -13,
27.89, +27.09, 0, -32.11, .57, etc. If the decimal point is present then
there must be at least one digit following the decimal point.

Ex. 1.31. For each of the following decision problems, describe the
language corresponding to that problem. Use a context-free grammar
to describe the language. Recall the language that corresponds to a
decision problem is the set of all input words for which the answer
is YES. Assume that the alphabet is {a, b}.

1. Input: a word w.
Return: YES, if w contains only a’s (if any); NO, otherwise.

2. Input: a word w.
Return: YES, if w contains at least two b’s; NO, otherwise.

3. Input: a word w.
Return: YES, if w contains the same number of a’s and b’s;
NO, otherwise.

Solution. The grammar for the language of the second problem is

S; S → TbTbT ; T → λ | aT | bT.

The grammar for the language of the third problem is

S; S → λ | aSb | bSa | SS.

2

We note that proving that a certain grammar generates a given lan-
guage might be a difficult task. A rigorous proof of correctness for
the grammar generating the third language in the above example can
be found in [23].

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 34

2 PROPOSITIONAL LOGIC (Boolean Al-
gebra)

Propositional Logic is the simplest logic system and involves the
following:

• A formal language whose words are called propositions (or
Boolean expressions). A proposition is intended to express a
statement about a real world situation.

• Semantics: a method that assigns to every proposition a value
in {T, F}, which is called a truth value. One way to realize
this method is by using truth tables. Semantics tells us when a
proposition can be logically derived from another proposition.

• Formal deduction (inference rules): This is a syntactic method
for deducing new true propositions from a set of existing ones.
It turns out that the concepts of deduction by inference rules
and by semantics are equivalent.

2.1 The language of Propositions (syntax)

The language of propositions involves constants, (logical) variables,
parentheses, and the following special connective symbols (or opera-
tors):
¬: not, negation
∧: and, conjunction
∨: or, disjunction
→: implication, conditional, only if
↔: bi-conditional, iff

Definition 2.1. The language Prop of propositions (or proposi-
tional formulas) is generated by the following grammar:

P ; (the start symbol)

P → T | F; (constants: true, false)

P → L | LL; (logical variables)

L → a | b | · · · | y | z;
P → (P ∧ P) | (P ∨ P) | (¬P) | (composite propositions)

(P → P) | (P ↔ P)

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 35

If more variable symbols are needed, we shall use subscripts: p1, q5,
We shall use Var to denote the set of all variables.

Ex. 2.1. Here are a few propositions.

T, F, p, q, r, ar, be, (p ∨ r), (p ∧ (¬q)), ((¬ar)→ (be↔ ch)).

The following strings are not propositions

p(q), ar ∨ ∧T.

• Omitting parentheses. As in the case of algebraic expressions
we shall omit parentheses to simplify propositions. In doing so, we
shall use the following precedence of operations:

¬, {∧,∨}, {→,↔},

where the sets indicate operations of equal precedence. Moreover, we
shall use the left to right order for multiple operations of the same
precedence. For example, ¬p ∧ q ∧ r → s ∨ p is a shorthand for

((((¬p) ∧ q) ∧ r)→ (s ∨ p)).

2.2 Semantics (meaning) of Propositions

Propositions are syntactic objects that can be used to represent state-
ments about the real world. Depending on the context, these state-
ments could be true or false. In particular, depending on the values
assigned to the variables involved, a proposition would evaluate to
T (true), or F (false).

• Valuation. Is a function

val : Var→ {T,F}

assigning truth values to the variables. In practice the particular
assignment of values depends on the meaning we give to the variables
with respect to a real world application – see examples further below.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 36

• Evaluating propositions. A valuation val is extended from Var
to Prop as follows:

val (T) = T;

val (F) = F;

val (¬β) = T iff val (β) = F;

val (α ∧ β) = T iff val (α) = val (β) = T;

val (α ∨ β) = F iff val (α) = val (β) = F;

val (α→ β) = F iff val (α) = T and val (β) = F;

val (α↔ β) = T iff val (α) = val (β).

To evaluate a proposition γ, first we look at the structure of γ in
terms of the grammar rules one can use to generate it – see Defini-
tion 2.1. For example, let

γ = (p ∨ q) ∧ r.

One can start generating γ using the grammar rule P → P ∧P . So γ
has the structure α∧β, where α = p∨q and β = r. Thus val (γ) = T
iff val (p∨ q) = T and val (r) = T. Then, val (p∨ q) = T iff at least
one of val (p), val (q) is true. Thus, we conclude that val (γ) = T iff
val (p) = val (r) = T and/or val (q) = val (r) = T.

• Giving meaning to variables. A proposition (of the language
Prop) is intended to express a statement about some real world sit-
uation. This is achieved by giving meaning to the variables involved
in the proposition. We shall write

α : “statement”

to indicate that α means whatever the “statement” says. Clearly the
meaning we give to our variables determines a certain valuation val ,
that is, the assignment of truth values to these variables.

Ex. 2.2. Consider the following variables

p : “it’s cold outside” q : “I’m wearing a coat”.

This meaning determines a valuation val and, therefore, also the
value of p ∧ q, whose meaning is “it’s cold outside and I’m wearing

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 37

a coat”. Note that one could give a different meaning to p, q. For
example,

p : “I like cookies” q : “I like milk”.

This meaning corresponds to a new valuation val ′. Obviously, it
could be the case that val (p ∧ q) 6= val ′(p ∧ q).

One could still wonder about the actual values of p and q. The
desired meaning refers to a particular person and, possibly, to a
particular time. Thus, with the first meaning referring to the author
of this textbook at the time of writing this sentence, we note that it
neither was cold outside nor was he wearing a coat and, therefore,
val (p) = val (q) = F. On the other hand, with the second meaning
referring to the same person, we have that val ′(p) = val ′(q) = T.

Ex. 2.3. [Program Specification] Read numbers and compute their
sum. Read up to 100 numbers, or until a zero is read.
Logical specification: Define a proposition stop that will be used as
a stopping condition for the loop that is required to solve the above
problem. The loop will have the form

do {
statements

} while (¬ stop);

Consider the propositional variables
p : “100 numbers were read” and q : “a zero was read”

Then stop = (p ∨ q) and the loop becomes

do {
read a number n
add n to sum

} while (¬(p ∨ q));

Implementation in Java/C++: Use the programming variable count
to count the numbers read and the programming variable n for the
last number read. Then p : “(count==100)” and q : “(n==0)”, and
the implementation is as follows:

sum = 0; count = 0;

do {
cin >> n;

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 38

count = count + 1;

sum = sum + n;

} while (! ((count==100) || (n==0)));

Ex. 2.4. [Implication] Let p : “it’s raining” and q : “there are
clouds in the sky”. Each of these propositional variables can be true
or false depending on the time and place they refer to. In reality we
know that, always, if it’s raining then there are clouds in the sky.
Hence, the proposition p → q is true. Note that the proposition
p→ q is true even if p is false (that is, it is not raining); in this case
the truth value of q is irrelevant and could be either true or false.

Ex. 2.5. [Bi-conditional] Let px : “the number x is greater than
5” and qx : “the number x+1 is greater than 6”. Depending on the
actual value of x, each of these variables can be true or false, but
we know that they always have the same truth value. Hence, the
proposition px ↔ qx is true. Now let rx : “the number x is greater
than 7”. If x = 6, then p6 and r6 have different truth values, so
(p6 ↔ r6) would be false.

2.3 Truth tables, Equivalence, Consequence, Model

The possible truth values of a proposition can be determined based
on the combinations of values of the variables occurring in the propo-
sition. To this end, we construct a truth table as follows:

1. In the first row, write the different variables followed by the
propositions that will be evaluated.

2. Then, in the column below the variables, list all the possible
combinations of truth values for these variables (there should
be one row for each combination of values). Note that if the
propositions involve n different variables then there are 2n pos-
sible combinations of truth values.

3. Then, for each row, compute the truth values of the proposi-
tions.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 39

p q ¬p (¬p) ∨ q p→ q (¬p) ∧ (p→ q)

T T F T T F

T F F F F F

F T T T T T

F F T T T T

Note that every row in a truth table corresponds to a valuation
function val . For example, the second row of the above table corre-
sponds to the valuation val such that

val (p) = T, val (q) = F.

• Equivalence. Two propositions α, β are called (logically) equivalent
if they always have the same truth values for every combination of
values for their variables. Another way to put it is that val (α) =
val (β) for every possible valuation val . In this case we write

α ≡ β.

For example, in the above truth table we see that the propositions
p→ q and (¬p) ∨ q are equivalent.

• Tautology, satisfiability, model. A proposition α is called a
tautology, if

α ≡ T,

that is, all values in the truth column of α are T. In other words,
val (α) = T for all valuations val . A proposition is called a contradiction
if

α ≡ F,

that is, all values in the truth column of α are F. A set of propositions
A is satisfiable if there is a valuation val that makes every proposition
in A true, that is, val (α) = T for all α ∈ A. In this case, we say
that val is a model of A.

• Logic puzzles. In a logic puzzle we are given a few statements
about a certain event. The problem is to find out the truth about the
event in question. In such cases we attempt to express the problem
in propositional logic as follows: First , identify the propositional

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 40

variables and their meaning based on the given statements. Then ,
using logical connectives, combine the variables, to form a set of
propositions corresponding to the given statements. Then , compute
a model for the set of propositions, and use this model to find the
desired answers.

Ex. 2.6. Police have investigated the murder case and are convinced
of the following statements. At least one of Arthur, Betty, Charles is
guilty. In particular, at least one of Betty and Charles must be guilty,
and if Betty is guilty then also Charles must be guilty. Moreover, if
Arthur is guilty then neither of Betty and Charles can be guilty.

Solution. Consider the following variables

ar : “Arthur is guilty”
be : “Betty is guilty”
ch : “Charles is guilty”

Using the statements in the problem we need to find a model for the
following set of propositions:

{ar ∨ be ∨ ch, be ∨ ch, be→ ch, ar → ¬be ∧ ¬ch}.

If we use the method of truth tables we will find that there are exactly
two models for the above set:

Model val 1 with val 1(ar) = F and val 1(be) = val 1(ch) = T.
Model val 2 with val 2(ar) = val 2(be) = F and val 2(ch) = T.

In both models, we have that Arthur is not guilty and that Charles
is guilty. Betty is guilty in val 1 and not guilty in val 2, but we have
no information which model to choose. So we only arrest Charles.
2

• (Logical) Consequence. A proposition β is said to be a (logical)
consequence of α, if the value of β is true whenever the value of α
is true, that is, val (α) = T implies val (β) = T, for all possible
valuations val . In this case we write

α |= β.

For example p is a (logical) consequence of p ∧ q. This can be seen
if we construct the truth table for p ∧ q. Moreover, this makes sense

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 41

informally, when we note that if “p and q are both true” then p alone
must be true. Another example of consequence is the following

α ∧ (α→ β) |= β.

The concept of logical consequence is extended to sets of proposi-
tions. In particular, if A = {α1, . . . , αn} is a set of propositions, the
notation

A |= β

means that β is a consequence of α1 ∧ · · · ∧ αn. Note that when α
and β are logical consequences of each other then they are equivalent,
and vice versa; that is,

α ≡ β iff (α |= β and β |= α).

Ex. 2.7. [Argument validation] We are given a set of statements,
called premises, about some topic, and a particular statement, called
the conclusion, and we want to know whether the conclusion is cor-
rect, that is, it follows logically from the premisses. Using the tools
of this section, we can translate the premisses into a set A of proposi-
tions, and the conclusion into a proposition β, and then test whether

A |= β.

To test the above, we make a truth table that includes all propositions
involved, and we look for valuations (rows) in which all propositions
of A are true. If β is true in all of those valuations then the conclusion
is indeed correct. If there is at least one valuation (row) in which
all propositions in A are true and β is false, then the conclusion is
incorrect.

2.4 Laws of Propositional logic

The concept of equivalence, ≡, allows one to rewrite a proposition in
a different, but equivalent, form. Here we look at some equivalences
that we call laws of propositional logic. This is similar to the case
of algebraic laws that allow one to manipulate algebraic expressions.
For example, the analog of the algebraic expression x · (y + z) =
x · y + x · z in logic is

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ).

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 42

The above law says that whenever α∧(β∨γ) appears in some propo-
sition δ and we replace it with (α∧ β)∨ (α∧ γ) then the proposition
δ will have the same truth value. This situation is described in the
next theorem.

Theorem 2.1. (Replacability) Let α, β be two equivalent proposi-
tions, namely α ≡ β. For every proposition δ, if δ′ results by re-
placing some (not necessarily all) occurrences of α in δ with β, then
δ′ ≡ δ.

Proof. We use the method of structural induction on δ, that is,
we prove the statement for the case where δ is simple (T, F, or a
variable) and then for the case where it is composite. So if δ is
simple then α must be the only component of δ, that is, δ = α.
Then, replacing α with β gives δ′ = β and, therefore, δ ≡ δ′, as
required.

Now suppose that δ is composite, that is, of one of the forms
δ1 ∧ δ2, δ1 ∨ δ2, δ1 → δ2, δ1 ↔ δ2, ¬δ1, such that the statement holds
for the simpler components δ1, δ2 of δ. If we substitute β for some
occurrences of α in δ, then these substitutions will occur in δ1 and/or
δ2 and we get δ′ of the form δ′1 ∧ δ′2, δ

′
1 ∨ δ′2, etc. By the induction

hypothesis, δ1 ≡ δ′1 and δ2 ≡ δ′2. Then one can verify that also δ ≡ δ′

in all cases. For example, val (δ1 ∧ δ2) = T iff val (δ1) = val (δ2) =
T iff val (δ′1) = val (δ′1) = T iff val (δ′1 ∧ δ′2) = T.

Here are a few more laws:

Negation:
¬(¬α) ≡ α

Single proposition:
α ∨ (¬α) ≡ T (excluded middle)
α ∧ (¬α) ≡ F (contradiction)
α ∧ α ≡ α ∨ α ≡ α (idempotence of ∧ and ∨)
Constants:
α ∨T ≡ T
α ∨ F ≡ α
α ∧T ≡ α
α ∧ F ≡ F.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 43

Commutativity :
α ∧ β ≡ β ∧ α
α ∨ β ≡ β ∨ α.

Associativity :
α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ
α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ

Distributivity :
α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ)
α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ).

DeMorgan’s laws:
¬(α ∧ β) ≡ (¬α) ∨ (¬β)
¬(α ∨ β) ≡ (¬α) ∧ (¬β).
Conditionals:
α→ β ≡ ¬α ∨ β
α↔ β ≡ (α→ β) ∧ (β → α)
α↔ β ≡ (α ∧ β) ∨ (¬α ∧ ¬β)
α→ β ≡ ¬β → ¬α (contrapositive law)

Subsumption:
(α ∨ β) ∧ α ≡ α.

Exercises of Sections 2.2–2.4

Ex. 2.8. Is the language Prop of all propositions finite, or infinite?
Is it countable?

Ex. 2.9. Translate each of the following natural language sentences
into propositions of Prop, the propositional logic language, using
appropriately the indicated variables. State explicitly the meaning
of each variable.

1. Either Harper or Ignatieff wins the election, but not both.
(ha, ig)

2. Oscar will not date Anna unless he breaks up with Mona first.
(da, br)

3. Adele and Virginia will go to the beach only if they can rent
a car. (ad, vi, re)

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 44

4. If a number is a positive integer, then it is divisible by 11 iff
the alternating sum of its digits is divisible by 11. (po, di, su)

5. A necessary condition for a number to be prime is that it is
neither divisible by 5 nor is it an even integer larger than 2.
(pr, di, ev)

6. A sufficient condition for the continuation of Martha’s ca-
reer is that her shares do not lose value and that her jail cell is
fashionably decorated. (ca, lo, de)

7. Nobody can run so fast, unless they are trained. Well, Theodore
is not trained. (ru, tr)

8. If the floor is wet and you bounce the ball on the floor, then
the ball gets wet. (fl, bb, ba)

9. My watch works only if its battery works. (ww, bw)

10. At least one of Helen, Bert and Tom likes chocolate, but not
all of them. (he, be, to)

Solution.

1. (ha ∨ ig) ∧ ¬(ha ∧ ig), where ha : “Harper wins the election”,
ig : “Ignatieff wins the election”.

2. da→ br, where br : “Oscar breaks up with Mona”, da : “Oscar
will date Anna”.

3. ad ∧ vi → re, where ad : “Adele will go to the beach”, vi :
“Virginia will go to the beach”, re : “Adele and Virginia can
rent a car”.

4. po→ (di↔ su), where po : “the number is a positive integer”,
di : “the number is divisible by 11”, su : “the alternating sum
of the number’s digits is divisible by 11”.

5. pr → (¬di∧¬ev), where pr : “the number is prime”, di : “the
number is divisible by 5”, ev : “the number is even and larger
than 2”.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 45

6. ¬lo ∧ de → ca, where ca : “Martha’s career will continue”,
lo : “Martha’s shares lose value”, de : “Martha’s jail cell is
fashionably decorated”.

7. (ru → tr) ∧ ¬tr, where ru: “Theodore can run so fast”, tr:
“Theodore is trained”. We note here that (ru → tr) has a
more restricted meaning than the given phrase “Nobody can
run so fast, unless they are trained”. However, we have to
specialize “nobody” to “Theodore” as we are forced to use only
two variables.

2

Ex. 2.10. Consider the following propositional variables:

p: “last number read is zero”
r: “the last two numbers read are equal”

Write a logical specification for the problem of reading numbers until
a zero is read or until the last two numbers read are equal. Then, give
an implementation in Java/C++ – show clearly the implementation
of p, r.

Solution. Here is the logical specification:

do {
read a number

} while (¬(p ∨ r));

Here is the implementation:

curr = 0;

do {
prev = curr;

cin >> curr;

} while (!((curr==0) || (prev==curr)));

Note that p : “(curr==0)” and r : “(prev==curr)”. Recall that
programming languages evaluate the part r of an expression (p||r) iff
the expression p is false. Hence, in this exercise, (prev==curr) will
be evaluated iff curr is nonzero. Moreover, if curr is nonzero and
also the first number read, then prev must be zero, so the loop will
not terminate (as required). 2

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 46

Ex. 2.11. Consider the propositional variables

d : “at least one digit has been read before the char. last read”
nd : “a non-digit character was last read”
ns : “a non-space character was last read”

Use these propositional variables to write a logical specification (in
the form of a do-while loop) for the following problem: Read the
digits of a number skipping any space characters in the beginning.
Stop reading, if a non-digit character is read after some digit was
read, or a non-digit and non-space character is read. Then implement
your specification in Java/C++ (show clearly the implementation of
d, nd, ns). You can assume that there is a function isdigit(ch) that
returns true/false depending on whether the character ch is a digit.

Ex. 2.12. Arthur, Betty, Charles and Dorothy are the only murder
suspects. Their testimonies are as follows:

- Arthur said ‘if Betty is guilty then also Dorothy is.’
- Betty said ‘Arthur is guilty but Dorothy is not’
- Charles said ‘I am not a liar, but Arthur and/or Dorothy are’
- Dorothy said ‘if Arthur is not guilty then Charles is guilty’

We want to find out all guilty suspects if possible. We use the fol-
lowing assumption:

• A person tells the truth iff the person is not guilty.

Solution. We use the following propositional variables:

ar : “Arthur is not guilty” : “Arthur tells the truth”
be : “Betty is not guilty” : “Betty tells the truth”
ch : “Charles is not guilty” : “Charles tells the truth”
do : “Dorothy is not guilty” : “Dorothy tells the truth”

We have to find the models of the following set of propositions
{

β1 = ar ↔ (¬be→ ¬do),
β2 = be↔ ¬ar ∧ do,
β3 = ch↔ ch ∧ (¬ar ∨ ¬do),
β4 = do↔ (ar → ¬ch)

}.
We use the truth table in the figure. As we are looking for rows in
which all values of the four propositions are true, we ignore any rows

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 47

do ar be ch β1 β2 β3 β4

T T T T T F

T T T F T F

T T F T F

T T F F F

T F T T F

T F T F F

T F F T T F

T F F F T F

F T T T T F

F T T F T F

F T F T T T T T

F T F F T T T F

F F T T F

F F T F F

F F F T F

F F F F F

Figure 3: Truth table for Ex. 2.12

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 48

in which the value F appears. We see there is exactly one model in
which only Arthur and Charles are guilty. 2

Ex. 2.13. This is the same as the previous exercise, except that the
assumptions now are as follows:

1. If a person is not guilty then the person tells the truth (the
converse might not hold here).

2. Betty is not guilty.

Ex. 2.14. Read Ex. 2.7 and test whether the following argument
is correct. Premisses: If ghosts exist, they make their presence
known. If a ghost makes its presence known, or you dream of a
ghost, then you get scared. Conclusion: If ghosts exist, then you
get scared.

Note: When you translate the above statements into propositions
use only four logic variables: ex, kn, dr, sc.

2.5 Formal Deduction: Inference rules, Proofs

Here we look at the concept of formal deduction that allows us to
derive (deduce/prove) a new proposition (a theorem) α from a set
Γ of given propositions, called assumptions. This derivation process
uses the available inference rules. An inference rule,

A ⊢ β,

consists of a finite set of propositions A, called the premises, and
a proposition β called the conclusion. This rule is also written by
listing the elements of A one per line, then a horizontal line, and then
the conclusion β. We can now define the concept “(formal) proof of
Γ ⊢ α.” This is a finite sequence of propositions

α1

α2

· · ·
αn

such that (i) αn = α, that is, the last proposition is the theorem that
we prove, and (ii) every αk, with 1 ≤ k ≤ n, is either an assumption
in Γ, or the conclusion αk of some inference rule A ⊢ αk, where

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 49

A ⊆ {α1, . . . , αk−1}, that is, each element of A is one of the earlier
propositions αi with i < k. When we show that Γ ⊢ α we say that α
is deducible or provable from Γ.

• The list of inference rules.

IR01 Modus ponens: α→ β, α ⊢ β

IR02 ↔ introduction: α→ β, β → α ⊢ α↔ β

IR03 ↔ elimination: α↔ β, β ⊢ α and α↔ β, α ⊢ β

IR04 Case analysis: α ∨ β, α→ γ, β → γ ⊢ γ

IR05 ∧ introduction: α, β ⊢ α ∧ β

IR06 ∧ elimination: α ∧ β ⊢ α and α ∧ β ⊢ β

IR07 ∨ introduction: α ⊢ α ∨ β and α ⊢ β ∨ α

IR08 Contradiction: α,¬α ⊢ F

IR09 ¬ introduction: α→ F ⊢ ¬α

IR10 ¬ elimination: ¬α→ F ⊢ α

IR11 Tautology: ⊢ T

IR12 Deduction rule: ⊢ α → β, applicable if there is already a
proof of “Γ, α ⊢ β”.

The Deduction rule is used when we want to prove a proposition of
the form

α→ β.

In this case, we do a separate proof of β by assuming α (in addition to
any propositions in Γ). This proof is normally included as a subproof
of the original proof. This is indicated by a line containing the word
“SUB:” and then the sequence of propositions (starting with α and
ending with β) that constitute the subproof – see the examples below.

Ex. 2.15. [Modus tollens] Give a formal proof of Modus tollens:

α→ β,¬β ⊢ ¬α

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 50

Solution. Strategy: To prove ¬α we shall use rule IR09, which re-
quires to prove α → F, which requires to use IR12 (the deduction
rule), which requires a subproof of α ⊢ F.

1. α→ β given
2. ¬β given
3. SUB: α subproof for α ⊢ F
4. β Modus ponens: lines 1,3
5. END F Contradiction rule: lines 2,4
6. α→ F Deduction rule: line 3
7. ¬α ¬ Introduction: line 6

2

Ex. 2.16. Give a formal proof of α ⊢ α.

Solution.
1. α given
This is the proof; the given assumption is already the conclusion. 2

Ex. 2.17. Give a formal proof of ⊢ α→ α. You can assume α ⊢ α.

Solution.
1. α→ α Deduction rule: on Example α ⊢ α. 2

• Do not confuse α → β and α ⊢ β. The notation α → β is a
proposition, that is, a word in the language Prop of Propositional
Logic. The notation α ⊢ β is a natural language expression that says
“β is provable from α.”

Theorem 2.2. (Soundness and Completeness)
– If Γ ⊢ α then Γ |= α (soundness).
– If Γ |= α then Γ ⊢ α (completeness).

This theorem asserts that (i) Formal Deduction is sound, that is, it
proves only propositions that are semantically correct, and (ii) For-
mal Deduction is complete, that is, every semantically correct propo-
sition is formally provable/deducible. In other words, the concepts
of “logical consequence” and “formal deducibility” are equivalent.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 51

Exercises of Section 2.5

Ex. 2.18. Give a formal proof of α ⊢ ¬¬α

Solution. To prove ¬¬α we shall use rule IR09, which requires to
prove ¬α → F, which requires to use IR12 (the deduction rule),
which requires a subproof of ¬α ⊢ F.

1. α given
2. SUB: ¬α subproof for ¬α ⊢ F
3. END F Contradiction: lines 1,2
4. ¬α→ F Deduction rule: line 2
5. ¬¬α ¬ Introduction: line 4

2

Ex. 2.19. Give a formal proof of ¬¬α ⊢ α

Ex. 2.20 (Transitivity). Give a formal proof of

p→ q, q → r ⊢ p→ r

Solution. To prove p → r we shall use the Deduction rule, that is,
in addition to the assumptions p → q, q → r we shall assume p and
then prove r (in a subproof):

1. p→ q given
2. q → r given
3. SUB: p subproof for p ⊢ r
4. q Modus ponens: lines 1,3
5. END r Modus ponens: lines 2,4
6. p→ r Deduction rule: line 3

2

Ex. 2.21. Give a formal proof of F ⊢ α
Note: This says that, if we use false in our assumptions, then we can
prove any proposition! Hint: Try to prove ¬α→ F.

Ex. 2.22. Give a formal proof of ¬α ⊢ α→ β.

Ex. 2.23. Give a formal proof of α ∨ β ⊢ β ∨ α

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 52

Solution. Strategy: Let γ = β ∨α. We are going to show α→ γ and
β → γ, and then apply the “case analysis” rule.

1. α ∨ β given
2. SUB: α subproof for α ⊢ β ∨ α
3. END β ∨ α ∨-introduction: line 2
4. α→ β ∨ α Deduction rule: line 2
5. SUB: β subproof for β ⊢ β ∨ α
6. END β ∨ α ∨-introduction: line 5
7. β → β ∨ α Deduction rule: line 5
8. β ∨ α Case analysis: lines 1,4,7

2

Ex. 2.24. Give a formal proof of ¬α ∧ ¬β ⊢ ¬(α ∨ β)
Hint: Try a subproof of (α ∨ β) ⊢ F.

Ex. 2.25. Give a formal proof of ¬(α ∨ β) ⊢ ¬α ∧ ¬β

Ex. 2.26 (Non-provable proposition). Show that there is no
formal proof of

p ∨ q ⊢ p ∧ q.

Solution. By the theorem of soundness and completeness, it is suffi-
cient to show that

p ∨ q 6|= p ∧ q,

that is, there exists a valuation val that makes p ∨ q true and p ∧ q
false. Well, here it is: let val be such that val (p) = T and val (q) =
F. 2

Ex. 2.27. Show that there is no formal proof of p→ q, q ⊢ q → p

2.6 Normal forms and Resolution Proving

The concepts of proving or inferring new knowledge from existing
one are of central importance in the field of Artificial Intelligence. In
particular, many expert systems rely on these concepts and require
efficient methods of applying the concepts to real world applications.
The method of resolution is a formal proof method that allows one
to test a hypothesis h based on a set A of facts. The facts and

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 53

the hypothesis are expressed as propositions and we wish to know
whether

A ⊢ h,

that is, h is provable from A. In resolution proving, there is only one
inference rule: resolution. Moreover, every proposition must be in
conjunctive normal form.

• Conjunctive normal form. A literal is a logical variable, or the
negation of a variable such as p, ¬p, etc. A proposition α is said to be
in CNF (conjunctive normal form), if α is a conjunction of clauses,
where a clause is a disjunction of literals; that is, α is of the form
α1 ∧ · · · ∧ αn and each αi is of the form ℓ1 ∨ · · · ∨ ℓm with each ℓj
being a literal. For example, the proposition

(¬p ∨ q) ∧ (¬p ∨ r)

is in CNF and consists of two clauses: ¬p ∨ q and ¬p ∨ r. The
complement of a literal ℓ is denoted by ℓ̄ and is equal to ¬p, if ℓ is
the variable p, or p if ℓ is ¬p.

Theorem 2.3. Every proposition is equivalent to one in CNF.

Ex. 2.28. Using the laws of propositional logic we show how p →
(q ∧ r) can be written in CNF:

p→ (q ∧ r) ≡ ¬p ∨ (q ∧ r)

≡ (¬p ∨ q) ∧ (¬p ∨ r)

• Resolution. This is an inference rule that can be used to test
whether A ⊢ h, where all propositions involved are in CNF. First
note that

A ⊢ h iff the set A ∪ {¬h} is unsatisfiable.

Let C be the set of all clauses that appear in A ∪ {¬h}. Then,

A ∪ {¬h} is unsatisfiable iff C is unsatisfiable.

We attempt to resolve any two clauses c1, c2 ∈ C and, if this is
possible, we add the resolvent in C. Here, we say that two clauses

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 54

c1, c2 can resolve if they contain two complementary literals ℓ and ℓ̄
and, in this case, the resolvent is the clause containing the literals of
c1 and c2 except for ℓ, ℓ̄. For example, the resolvent of p ∨ ¬q and
r∨¬p∨s is ¬q∨r∨s. If c1 and c2 happen to be single complementary
literals then their resolvent is F. The process terminates when F is
obtained, or no two clauses in C can be resolved. In the former case
we know that C is unsatisfiable, which implies that the hypothesis h
is correct.

Ex. 2.29. Recall in Ex. 2.6 we had the following set of propositions:

{ar ∨ be ∨ ch, be ∨ ch, be→ ch, ar → ¬be ∧ ¬ch}.

We want to test whether any of ar, be, ch is provable from this set.
For example, to test ch we add the proposition ¬ch into the set and
compute the set of clauses corresponding to the propositions. So we
get the following clauses:

ar ∨ be ∨ ch, be ∨ ch, ¬be ∨ ch, ¬ar ∨ ¬be, ¬ar ∨ ¬ch,¬ch.

The resolution process can be as follows:

1. be ∨ ch (given)
2. ¬be ∨ ch (given)
3. ¬ch (given)
4. ¬be (resolution on 2,3)
5. be (resolution on 1,3)
6. F (resolution on 4,5)

We can also perform resolution by arranging the clauses involved as
a tree:

be ∨ ch ¬ch ¬be ∨ ch
\ / \ /
be ¬be

\ /
F

Hence, ch must be true.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 55

2.7 A Note on logic-based expert systems

As mentioned in the introductory paragraph of Section 2.6, formal
deduction methods are applicable in the area of expert systems, in
particular, rule based expert systems. In this context, a rule is a
proposition of the form

α→ β

such that α represents a condition that must be satisfied in order
to make the decision β, or take the action β. For example, α could
mean “you have adequate savings” and β could mean “you should
invest in stocks”. The system involves three sets:

R = a set of rules,
D = a set of possible decisions/actions (usually variables),
F = a set of facts about a particular case (usually literals).

Testing whether the action d ∈ D is appropriate for the case F means
deciding whether

R ∪ F ⊢ d,

or, equivalently, whether the set R ∪ F ∪ {¬d} is unsatisfiable (here
we assume that already R ∪ F is satisfiable). This question can be
answered using resolution if we convert the set R∪F ∪ {¬d} into an
equivalent set of clauses.

Exercises of Sections 2.6, 2.7

Ex. 2.30. Use the laws of Propositional Logic to show how

(p ∧ q) ∨ r → s

can be written equivalently in CNF.

Ex. 2.31. Prove the following claim, which we used to establish the
correctness of Resolution.

A ⊢ h iff the set A ∪ {¬h} is unsatisfiable.

Ex. 2.32. Translate the following statements into rules:

1. Your income is adequate iff it is steady and above the minimum
income.

2 PROPOSITIONAL LOGIC (BOOLEAN ALGEBRA) 56

2. If you have adequate savings and an adequate income then you
should invest in stocks.

3. If you have no adequate savings then you should invest in sav-
ings.

4. If you have adequate savings but no adequate income then your
investment should be a combination of stocks and savings.

Use the variables

mi : “your income is above the minimum income”,
si : “your income is steady”,
ai : “your income is adequate”,
as : “you have adequate savings”,
st : “you should invest in stocks”,
sv : “you should invest in savings”,
co : “you should invest in a combination of stocks and savings”.

Convert the set of rules into an equivalent set C of clauses. Then
consider the facts F = {si,as,¬mi} and use resolution to show that,
in this case, the person should invest in a combination of stocks and
savings.

Ex. 2.33. Use resolution to prove the transitivity of implication –
see Ex. 2.20

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 57

3 PREDICATE LOGIC (First Order Logic)

Propositional logic is the basic logic for formal specification and mod-
eling of logic problems, but it does not provide a mechanism for deal-
ing with situations involving an unbounded number of entities. For
example, we would like to express a general statement of the form
“every human is mortal,” which could be applied to any particular
human using the rule Modus Ponens. More specifically, we would
like to have ‘propositions’ of the form h(u) : “u is human” and m(u)
: “u is mortal,” and to be able to apply Modus Ponens for the human
Socrates as follows:

h(u)→ m(u), h(Socrates) ⊢ m(Socrates).

To be able to do this in propositional logic we would need to have
an unbounded number of variables of the form sh : “Socrates is
human” and sm : “Socrates is mortal” (that is, two new variables
for each person). Predicate Logic (aka First Order Logic) addresses
this limitation by using a richer language.

3.1 The language of Predicate Formulas: syntax

The language of predicate logic involves constants, variables, func-
tion and relation names, as well as quantifiers, parentheses and the
connective symbols of propositional logic. More specifically:

• CONSTANTS = a set of names5: names of objects, digital
words such as 235, people or places such as tom, everest, etc.

• FUNCTIONS = a set of function names: f, g, h, height,

capital, etc.

• RELATIONS = a set of relation (or predicate) names: F, G, H,
P, Q, R, IsCapital, Takes, GreaterThan, etc. The relation
name == is special and will be used to denote equality. We
also have the constant relation names T and F.

• VARIABLES = a set of variables: u, v, w, x, y, z (possibly with
subscripts).

5Our syntax here is a little loose. We do assume though that the first letters
of names are in lower case.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 58

• QUANTIFIERS: ∀ (for all, for every, for each) and ∃ (there
exists, there is, for some).

• Parentheses and connectives as in Propositional Logic.

Every function and every relation name has a certain arity, which is
the number of parameters it accepts – see below. Arity 0 have only
the constant relations T and F. Next we define the concepts term
and atom, which are necessary to arrive at the definition of formula.

• Term. Any expression that can be formed by the following rules
(and only these):

– Every constant is a term

– Every variable is a term

– If f is a function name of arity n and t1, . . . , tn are terms then
f(t1, . . . , tn) is a term.

• Atom (atomic formula). This is the simplest kind of formula:
R(t1, . . . , tn), where R is any relation name of some arity n and
t1, . . . , tn are terms. The special relation ‘==’ is used with two terms:
== (t1, t2) or (t1 == t2).

Definition 3.1. A formula is any expression that can be formed by
the following rules (and only these):

• Every atom is a formula.

• If β is a formula then (∀xβ) and (∃xβ) are formulas.

• If α and β are formulas then (¬α), (α ∨ β), (α ∧ β), (α →
β), (α↔ β) are formulas.

Ex. 3.1. The following expressions are formulas:

∃xParent(x, tom),
Parent(u, tom),
∀x (Human(x)→Mortal(x)),
GreaterThan(height(u), 50).

The following expressions are not formulas:

∃Human(x),
Parent(Human(u), tom).

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 59

• Notation. An expression of the form β(t) denotes a formula in
which possibly the term t occurs. In this case, the expression β(s)
denotes the formula that results when we replace all occurrences of t
in β(t) with s. A similar notation is the following: If β is a formula
and t, s are terms then β[t← s] is the formula that results when we
replace in β every occurrence of t with s.

• Bound and Free variable occurrences. In a formula of the
form ∀xβ(x) or ∃xβ(x), we say that any occurrence of the variable
x in β(x) is a bound occurrence. If a variable occurrence, say u, is
not a bound occurrence then it is a free variable occurrence. For
example, in the formula ∃xParent(x, u), x has a bound occurrence
and u has a free occurrence. In order to simplify the presentation,
in the sequel, we shall use the symbols u, v, w for variables with only
free occurrences and the symbols x, y, z for variables with only bound
occurrences.

• Special Notation. Many authors separate the quantifier and the
rest of a formula using ‘:’, that is, ∀x : β(x). Moreover, when R is a
unary relation, many authors use the notation

∀x ∈ R : β(x) as a shorthand for ∀x (R(x)→ β(x)).

A similar notation is used with the existential quantifier ∃:

∃x ∈ R : β(x) is a shorthand for ∃x (R(x) ∧ β(x)).

• Sentence. Any formula containing no free occurrences of vari-
ables is called a sentence. For example, the formula

∃xParent(x, tom)

is a sentence. The formula Parent(u, tom) is not a sentence because
it contains a free occurrence of the variable u .

3.2 Semantics (meaning) of Formulas

For the semantics of formulas, we are required to specify the follow-
ing.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 60

1. A universe U , which is a nonempty set whose elements are
usually called entities.

2. The meaning of the constants, function and relation names
with respect to the universe U .

3. An assignment of values in U to the free variables.

The first requirement is simple: we pick the universe for which
we are interested in expressing statements and performing reasoning.

The third requirement is also simple: we pick a value assignment
σ such that σ(w) is the value in U of the free variable w – this value
could be a person, a number, etc.

The rigorous approach for the second requirement is to pick a
meaning function (an interpretation) I assigning meaning to con-
stants, function and relation names. For example, for the constant
50 (which is a string), the meaning I(50) could be the number fifty
(which is a concept and an element of the chosen universe U).6 Here,
however, we simplify matters by hiding the function I and specifying
the meaning of a constant either implicitly by using a meaningful
name for that constant, or explicitly with the ‘:’ notation, which
was also used for the meaning of Propositional variables. In either
case, we make the convention that writing a constant c is the same
as writing the meaning of c. We apply the same convention also to
function and relation names7. Thus, when not given explicitly, the
meaning of the constant 50 is the number fifty, or we could write
explicitly 50 : “the number fifty”.

• Functions and Relations/Predicates. The meanings of rela-
tion names and function names will be relations and functions on the
elements of U . An n-ary relation R is a set of tuples (e1, . . . , en) of
elements in U . For example, we can have the unary relation name
Person and the binary relation name Taller such that

Person(u): “u is a person”, Taller(u, v): “u is taller than v”.

6Of course it is possible, for whatever reason, to assign the meaning “my car”
to the constant 50 and evaluate formulas based on that meaning!

7For example, the meaning of some function name log of arity 1 is a function
I(log) : U → U . Again, however, we assume that log is both the name and the
meaning of the function.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 61

Then, the meaning of the formula

Person(p1) ∧ Person(p2) ∧ Taller(p1, p2)

is “person p1 is taller than person p2”.
An n-ary function f associates, to each tuple (e1, . . . , en) of ele-

ments in U , a value f(e1, . . . , en) in the universe U . For example, we
can use the unary function name father such that

father(u) : “the father of u.”

Thus, if p is a person in U then father(p) is another person in U ,
the father of p.

• Valuation. In order to assign values to terms and formulas, we use
a valuation val that involves the universe U , the value assignment σ,
and the meaning we have chosen for constants, function and relation
names.

• Value of a term. The value of a term t is always an entity in the
chosen universe U , that is, val (t) ∈ U . In particular, the value of
a constant c is the meaning of c in U . Based on the convention we
made earlier, we simply write val (c) = c. The value of a free variable
u is σ(u), that is, val (u) = σ(u). The value of a term f(t1, . . . , tn)
is

val (f(t1, . . . , tn)) = f(val (t1), . . . , val (tn)).

• Truth value of an Atomic Formula. A relation name R of
some arity n refers to a relation that is a subset of Un = U × · · ·×U .
With this in mind, we have that val (R(t1, . . . , tn)) = T iff the tuple
(val (t1), . . . , val (tn)) is in R. The case of the equality “==” is
special: it refers to the relation {(e, e) | e ∈ U}; that is, val (t1 ==
t2) = T iff (val (t1), val (t2)) ∈ {(e, e) | e ∈ U} iff val (t1) = val (t2).
We note here that “=” is the symbol for equality in the English
language, which is used as a metalanguage to explain the meaning of
the symbols (such as ‘==’) and expressions in the formal language
of Predicate Logic!

• Truth value of a Composite formula. We have that

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 62

val (∀xβ(x)) = Tiff for every entity e ∈ U , it is val (β(e)) = T.

val (∃xβ(x)) = Tiff for some entity e ∈ U , it is val (β(e)) = T
iff there exists e ∈ U with val (β(e)) = T.

The rules for the rest of the composite formulas are exactly as in
Propositional Logic. For example, val (α ∧ β) = T iff val (α) =
val (β) = T.

We note that we have abused the notation above by using the
expression val (β(e)) = T with e ∈ U , as e is not an element of the
formal language of Predicate Logic. The rigorous approach is to write
val (β(u)) = T, where u is any unused free variable (not in β(x)) with
σ(u) = e. Here, however, we settle with this non-rigorous approach
without compromising the presentation of subsequent concepts.

• Equivalence, Consequence, Satisfiability, Model. These con-
cepts exist in Predicate Logic exactly as in Propositional Logic. For
example, the notion of equivalence of two formulas α, β is as follows:

α ≡ β iff val (α) = val (β), for every valuation val .

Also, the notion of consequence is as follows: “A |= β” iff, for every
valuation val , when val (α) is true for all α ∈ A then also val (β)
must be true. Two important equivalences are

∃xβ(x) ≡ ¬(∀x¬β(x))
∀xβ(x) ≡ ¬(∃x¬β(x)).

As usual, when val (α) = T for every α ∈ A, we say that val is a
model of the set of formulas A, or that A is satisfiable.

• No truth tables. Unfortunately the method of truth tables can-
not be extended to evaluate arbitrary formulas.

Ex. 3.2. Consider the predicate (relation) names P, R, M, L with
arities 1, 2, 1, 1, respectively, and a universe in which these predicates
have the following meaning

P(u) : “u is a person”
R(u, v) : “u reads story v”
M(v) : “v is a mystery story”
L(v) : “v is a love story”.

Consider also the following statements.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 63

β1 : “There are some people who read mystery stories.”

β2 : “Everybody who reads mystery stories also reads love stories.”

β3 : “There are some people who read love stories.”

β4 : “Peter reads love stories.”

β5 : “Nobody reads love stories.”

1. Use the given predicates (and no others) and the given meaning
to translate the five statements into Predicate Logic sentences
β1, . . . , β5.

2. Explain whether or not {β1, β2} |= β3.

3. Explain whether or not {β1, β4} is satisfiable.
Reminder: Recall that, in general, a given set of formulas can have
different semantics depending on the meaning we assign to the pred-
icates and terms involved in these formulas.

Solution.

1. The required formulas are:

β1 = ∃x∃y (P(x) ∧M(y) ∧R(x, y))

= ∃x ∈ P ∃y ∈M : R(x, y).

β2 = ∀x∀y : P(x) ∧M(y) ∧R(x, y)→ ∃z(L(z) ∧R(x, z)).

= ∀x ∈ P ∀y ∈M : R(x, y)→ ∃z(L(z) ∧R(x, z)).

β3 = ∃x∃y (P(x) ∧ L(y) ∧R(x, y))

= ∃x ∈ P ∃y ∈ L : R(x, y).

β4 = ∃y ∈ L : R(peter, y).

β5 = ¬ ∃x ∈ P ∃y ∈ L : R(x, y).

≡ ∀x ∈ P ∀y ∈ L : ¬R(x, y).

2. We have to show that, for every valuation val, if val (β1) =
val (β2) = T then also val (β3) = T.
Indeed, no matter what val is, β1 says that there are two
entities e1 ∈ P and e2 ∈ M such that (e1, e2) ∈ R. If we use
e1, e2 in β2, we get that (e1, e2) ∈ R implies (e1, e3) ∈ R for
some entity e3 ∈ L. Thus, there are entities e1 ∈ P and e3 ∈ L
such that (e1, e3) ∈ R; that is, val (β3) = T.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 64

3. It is sufficient to give an example of some valuation where both
β1 and β4 are true. We can say that with the meaning given
above the two formulas are indeed true, as there are people who
read mystery stories and some specific person corresponding to
the constant Peter reads love stories. Another example could be
as follows: P(u) : “u is a real number”, M(u) : “u is an integer”,
L(u) : “u is a nonnegative integer”, R(u, v) : “u < v”, peter :
“5”. Then β1 and β4 mean that “there is a real number that
is smaller than some integer, and that 5 is smaller than some
nonnegative integer”. Obviously, this is correct and, therefore,
the two formulas are again true.

2

Ex. 3.3. A main objective of Predicate Logic is to allow us to
formally specify a universe and its properties. For example, it is pos-
sible to specify the universes containing exactly two elements using
the sentence

β = ∃x1∃x2(¬(x1 == x2) ∧ ∀x(x == x1 ∨ x == x2)).

According to the semantics of formulas, if val is any model of β
involving some universe U , that is val (β) = T, then there are two
entities e1, e2 ∈ U , which are different, and every element e ∈ U
is equal to e1 or e2. Obviously, this means that the universe must
contain exactly two elements.

• An impossibility of specification. The question that arises here
is whether it is possible, for any desired type of universe, to write
a formula β that specifies exactly this type of universe – recall, in
the previous example, this was possible for universes having exactly
two elements. In other words whether the formula β is satisfiable
(true) exactly in a universe of the desired type. The next theorem
implies that it is impossible to write a formula that is satisfiable only
in universes that are uncountable – for instance, in the universe of
real numbers.

Theorem 3.1. (Löwenheim and Skolem) Let A be a set of for-
mulas. If A is satisfiable then A is satisfiable in some countable
universe.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 65

Exercises of Section 3.2

Ex. 3.4. Give a formula that is true exactly when the universe
involved consists of at most two elements.

Solution. We give two solutions. One where the formula is a sen-
tence (involves no free variables) and one where the formula is not a
sentence:

β1 = ∃x1∃x2∀x(x == x1 ∨ x == x2)

β2 = ∀x(x == u ∨ x == v)

When the first formula is true in a universe U then there are two
elements in U (possibly the same) such that each element in U is
equal to one of these two elements. Thus, U must contain at most
two elements. The second formula involves free variables so we need
to consider the possible values of these variables. Any valuation val
would give to u, v two different values, or the same value, in U ; that
is, val (u) and val (v) are two (possibly the same) elements in U . So
the formula says that every element of the universe is equal to val (u)
or to val (v). Thus, no matter what val is, the universe must have
at most two different elements. 2

Ex. 3.5. [Nonempty sequence] Consider the following constant and
predicate:

first : “the first element of the sequence”

Next(u, v) : “u is the successor of v”

Use only the above names to write sentences as follows.

β1 : “any element is either first or the successor of an element”

β2 : “the first element is not the successor of any element”

β3 : “if x is the successor of y then y is not the successor of x”

β4 : “the sequence is finite”

3.3 Formal Deduction: More Inference rules

The concept of inference rule and proof in Propositional Logic also
applies here. Again we assume that proofs and rules are applied with
respect to a, possibly empty, set Γ of assumptions (formulas) that
are assumed to be true. We have the following additional inference
rules that deal with quantifiers and the equality predicate:

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 66

IR13 Universal instantiation: ∀xβ(x) ⊢ β(t), where t is any term.

IR14 Universal introduction: β(u) ⊢ ∀xβ(x), where u is any free
variable that does not occur in any open8 assumption.

IR15 ∃-introduction: β(t) ⊢ ∃xβ′(x), where t is any term and β′(x)
results if we replace some occurrences of t in β with x.

IR16 ∃-elimination: α(u) → β,∃xα(x) ⊢ β, where u is any free
variable that does not occur in any open assumption or in β.

IR17 β(t1), (t1 == t2) ⊢ β′(t2), where t1, t2 are any terms and β′(t2)
results if we replace some occurrences of t1 in β with t2.

IR18 ⊢ (t == t), for any term t.

Ex. 3.6. We go back to the discussion in the beginning of Sec-
tion 3 regarding the extra capabilities of Predicate Logic compared
to Propositional Logic. For any term t (e.g., t = socrates), we prove
that

∀x (Human(x)→Mortal(x)), Human(t) ⊢ Mortal(t),

that is, if every human is mortal and t is human, then t must be
mortal.

1. ∀x (Human(x)→Mortal(x)) given
2. Human(t) given
3. Human(t)→Mortal(t) ∀-instantiation: line 1
4. Mortal(t) Modus ponens: lines 2,3

Ex. 3.7. Here is a formal proof of
∀x(α(x)→ β(x)) ⊢ ∀xα(x)→ ∀xβ(x):

1. ∀x(α(x)→ β(x)) given
2. α(u)→ β(u) ∀-instantiation: line 1: u not in α(x)→ β(x)
3. SUB: ∀xα(x) subproof for ∀xα(x) ⊢ ∀xβ(x)
4. α(u) ∀-instantiation: line 3
5. β(u) Modus ponens: lines 2,4

8Every assumption is considered open until the end of the proof or subproof
for which the assumption is used.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 67

6. END ∀xβ(x) ∀-introduction: line 5
7. ∀xα(x)→ ∀xβ(x) Deduction rule: line 3

Ex. 3.8. Here is a formal proof of (t1 == t2) ⊢ (t2 == t1):

1. t1 == t2 given
2. t1 == t1 Rule IR18
3. t2 == t1 Rule IR17: lines 2, 1

• Basic Theorems. The theorems of Replaceability and, Soundness
and Completeness, also hold in the case of Predicate Logic. Thus,
any formula β that can be formally deduced (proved) from our as-
sumptions Γ, that is Γ ⊢ β, is also a logical consequence of Γ: Γ |= β.
Conversely, for any formula β that is a logical consequence of Γ there
is a formal proof of β using the assumptions in Γ.

• Gödel’s Incompleteness Theorem. The semantics of Predicate
Logic does not provide an algorithmic method for establishing the
truth of a formula from the given assumptions Γ. The problem here
is that, unlike the case of Propositional Logic, there are infinitely
many possible universes9 and valuations one has to consider. On
the other hand, formal deduction is a purely syntactic system and
one would hope that there exists a program that decides whether or
not a given formula is provable from Γ. This question was raised by
David Hilbert in the beginning of the 20th century, using as Γ a set
of standard mathematical formulas about the nonnegative integers.
In other words the question was whether there exists a program that
would be able to prove all mathematical theorems about numbers
– a rather scary thought for professional mathematicians! In 1931,
Kurt Gödel showed that this is not possible:

Theorem 3.2. If the set of assumptions Γ is consistent10 and suffi-
ciently rich (e.g. includes the basic statements of arithmetic) then Γ

9In fact, uncountably many.
10Consistency of a set of formulas Γ means that Γ cannot prove both, a formula

and its negation.

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 68

is incomplete, that is, there is a sentence δ such that neither δ nor
¬δ is provable from Γ:

Γ 6⊢ δ and Γ 6⊢ ¬δ.

A sentence like the δ above is called independent of Γ. People have
now discovered several independent statements. The important is-
sue here is that Γ could be the standard assumptions (axioms) of
mathematics and that there are statements whose truth value is in-
dependent of formal mathematics! It is interesting to note that very
few people initially understood the importance of the incompleteness
theorem. It is said that John von Neumann (recall the von Neumann
architecture of computers) was among the first who grasped the im-
portance of this result.

The phenomenon of incompleteness in formal mathematics has
been explained in [3] in terms of complexity. Roughly speaking,
each sentence has a complexity value, which is a positive integer and
indicates how difficult it is to describe the sentence. It turns out that,
for every formal mathematical system, there is a positive integer N
such that the system cannot prove any sentence of complexity greater
than N .

• Proof idea of Gödel’s Incompleteness Theorem. We use
[21] as a reference. There are four main parts in the proof. First ,
Gödel assigned a unique ID to every formula β, which is called the
Gödel number of β and denoted as gid(β). With this technique it
is possible for a formula α to refer to a formula β via the number
gid(β). Second – this was a really ingenious part – he managed to
define a predicate Provable(u) such that

Provable(u) : “There exists a proof for the formula
whose Gödel number is u”.

Third , he showed that there is a sentence δ such that

Γ ⊢ ¬δ ↔ Provable(gid(δ)).

The fourth part concludes the proof using contradiction twice as
follows: (i) If Γ ⊢ δ then δ is provable and, by definition of Prov-
able(), we have Γ ⊢ Provable(gid(δ)). But, by definition of δ, it
follows that Γ ⊢ ¬δ, which contradicts the consistency of Γ. Hence,

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 69

Γ 6⊢ δ. (ii) Now if Γ ⊢ ¬δ then, by definition of δ, it follows that Γ ⊢
Provable(gid(δ)), and then, by definition of Provable(), we have
Γ ⊢ δ, which contradicts the consistency of Γ. Hence, Γ 6⊢ ¬δ.
2

We now know that, for a given finite set Γ of formulas (assump-
tions/axioms), the language of all formulas that are provable from Γ
is not recursive – see the terminology of Section 1.3. In other words,
we have the following theorem.

Theorem 3.3. The following problem is undecidable.
Input: set of formulas Γ and formula β.
Return: YES/NO, depending on whether β is provable from Γ.

Exercises of Section 3.3

Ex. 3.9. Give a formal proof of ∀xα(x) ⊢ ∃xα(x)

Ex. 3.10. Give a formal proof of ∀x∀yβ(x, y) ⊢ ∀y∀xβ(x, y)

Solution.

1. ∀x∀yβ(x, y) given
2. ∀yβ(u, y) ∀-instantiation: line 1: u not in Γ, β(x, y)
3. β(u, v) ∀-instantiation: line 2: v not in Γ, β(u, y)
4. ∀xβ(x, v) ∀-introduction: line 3
5. ∀y∀xβ(x, y) ∀-introduction: line 4

2

Ex. 3.11. Give a formal proof of α→ ∀xβ(x) ⊢ ∀x(α→ β(x))

Solution.

1. α→ ∀xβ(x) given
2. SUB: α subproof for α ⊢ β(u): u not in α, ∀xβ(x)
3. ∀xβ(x) Modus ponens: lines 1,2
4. END β(u) ∀-instantiation: line 3
5. α→ β(u) Deduction rule: line 2
6. ∀x(α→ β(x)) ∀-introduction: line 5

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 70

2

Ex. 3.12. Give a formal proof of ¬∀xβ(x) ⊢ ∃x¬β(x)

Ex. 3.13. Show that there exists no formal proof of

⊢ ∀x∀y : P (x, y)→ P (y, x)

Hint: Use the theorem of Soundness and Completeness and the no-
tion of (logical) consequence in Predicate Calculus.

3.4 ∃-free Prenex Normal Form

Definition 3.2. A formula is in prenex normal form if it is of the
form

Q1x1Q2x2 · · ·Qnxn β,

where each Qi is a quantifier and the formula β is quantifier free.

A formula with no quantifiers is regarded as a trivial case of a
prenex normal form.

• Algorithm for prenex normal form. Any formula can be con-
verted to an equivalent one in prenex normal form, as follows:

1. Convert the formula to an equivalent one containing no con-
nectives → and ↔.

2. Move all negations inward such that, in the end, no double
negations exist and each single negation appears in front of an
atomic formula.

3. If necessary, rename bound variables such that no two quanti-
fiers refer to variables with the same name.

4. Move all quantifiers to the front of the formula.

The above method can be made possible using the following laws:

For step 1:
α→ β ≡ ¬α ∨ β
α↔ β ≡ (α→ β) ∧ (β → α)
α↔ β ≡ (α ∧ β) ∨ (¬α ∧ ¬β)

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 71

For step 2:
¬¬α ≡ α
¬∃xα(x) ≡ ∀x¬α(x)
¬∀xα(x) ≡ ∃x¬α(x)

For step 3:
Qxα(x) ≡ Qy α(y) (the name of a variable is immaterial)

For step 4:
α ∧Qxβ(x) ≡ Qx (α ∧ β(x)), x not occurring in α
α ∨Qxβ(x) ≡ Qx (α ∨ β(x)), x not occurring in α
Q1xα(x) ∧Q2yβ(y) ≡ Q1xQ2y (α(x) ∧ β(y))
Q1xα(x) ∨Q2yβ(y) ≡ Q1xQ2y (α(x) ∨ β(y))
∀xα(x) ∧ ∀xβ(x) ≡ ∀x (α(x) ∧ β(x))
∃xα(x) ∨ ∃xβ(x) ≡ ∃x (α(x) ∨ β(x))
∀x∀y α(x, y) ≡ ∀y ∀xα(x, y)
∃x∃y α(x, y) ≡ ∃y ∃xα(x, y)

Ex. 3.14. Conversion to prenex normal form:

∀x : L(x)→ ¬∀yM(x, y)

≡ ∀x : ¬L(x) ∨ ¬∀yM(x, y)

≡ ∀x : ¬L(x) ∨ ∃y¬M(x, y)

≡ ∀x∃y : ¬L(x) ∨ ¬M(x, y)

• ∃-free prenex normal form. A sentence is in ∃-free prenex nor-
mal form, if it is in prenex normal form and contains no existential
quantifiers. The method of Skolem functions allows one to convert a
sentence α to a sentence α′ in ∃-free prenex normal form such that
α is satisfiable iff α′ is. The main idea is that if α is of the form
∀x1 · · · ∀xn∃xβ(x) then one can replace all occurrences of x with the
term f(x1, . . . , xn), where f is a new function symbol.

• Algorithm for ∃-free prenex normal form. Step 1: Transform
the given sentence into a sentence α1 in prenex normal form. Let i =
1. Step 2: Repeat until all the existential quantifiers are removed:
Assume αi is of the form

αi = ∀x1 · · · ∀xn∃xβ(x)

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 72

If n = 0 then αi is of the form ∃xβ(x) and we define αi+1 to be the
sentence β(c) that results when we replace all x’s in β(x) with a new
constant c. If n > 0 then we define

αi+1 = ∀x1 · · · ∀xnβ(f(x1, . . . , xn)),

where β(f(x1, . . . , xn)) is the sentence obtained from β(x) by replac-
ing all x’s in β(x) with f(x1, . . . , xn) such that f is a new function
symbol. Increase i by 1.

Ex. 3.15. The sentence in prenex normal form that was obtained in
the previous example can be converted to the following one in ∃-free
prenex normal form

∀x : ¬L(x) ∨ ¬M(x, f(x)).

3.5 Unification and Resolution

The concept of literal that was defined in Propositional Logic is also
defined here as follows: a literal is an atomic formula or the negation
of an atomic formula. Then the concept of a clause is the same as in
Propositional Logic: a disjunction of literals.

• Clauses. As in propositional logic, using laws of predicate logic,
it is possible to obtain from a given sentence h a set Ch of clauses
such that h is satisfiable iff Ch is. Then we have that, for a given set
A = {α1, . . . , αn} of sentences (assumptions) and a given sentence h
(the hypothesis), A ⊢ h iff the set

C¬h ∪ Cα1
∪ · · · ∪ Cαn

is not satisfiable. To show that a set of sentences is not satisfiable
we can use resolution, which requires the concept of resolving two
clauses. However, in predicate logic, resolving of clauses takes place
via unification.

• Unification. We say that two atomic formulas β1, β2 can unify
(or are unifiable) if we can substitute terms for some variables in
β1, β2 that would make the two atomic formulas identical. In this pro-
cess, all occurrences of the same variable must be substituted by the
same term. For example, the atoms Dad(x, mike) and Dad(doug,

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 73

y) can unify via the substitution [x←doug, y ←mike]. We note that
although this definition of unification is not rigorous, it is adequate
for our purposes.

• Resolution. We say that two clauses c1, c2 can resolve if they
contain two complementary literals ℓ and ℓ̄ such that the atoms in
ℓ and ℓ̄ can unify. In this case, the resolvent of c1, c2 is the clause
containing the literals of both except for ℓ, ℓ̄. If c1 and c2 happen
to contain only ℓ, ℓ̄ then their resolvent is F. The resolution process
is now the same as in propositional logic. We start with a set of
clauses; in each step we resolve two clauses, and we terminate when
F is obtained or when no two clauses can be resolved. In the former
case, we have that the original set of clauses is not satisfiable.

Ex. 3.16. If

¬H(x, z) ∨ ¬Dad(x,mike) ∨Mom(z,mike),
¬Mom(pat, y) ∨Dad(doug, y)

are two of the given clauses, we can use the substitution [x ←
doug, y ← mike] for the literals ¬Dad(x,mike) and Dad(doug, y),
to obtain the resolvent

¬H(doug, z) ∨Mom(z,mike) ∨ ¬Mom(pat,mike).

Exercises of Sections 3.4, 3.5

Ex. 3.17. Convert the following formula to one in ∃-free prenex
normal form.

¬Bottom(mybook)↔ ∃xBelow(x,mybook).

Ex. 3.18. Use resolution to prove that everybody has a grandparent,
provided that everybody has a parent. Use only one predicate:

P (u, v) : “u is a parent of v”.

Solution. We wish to prove

∀x∃yP (y, x) ⊢ ∀x∃y∃z : (P (z, y) ∧ P (y, x)).

For this, it is sufficient to prove that the set

{∀x∃yP (y, x), ¬∀x∃y∃z : (P (z, y) ∧ P (y, x))}

3 PREDICATE LOGIC (FIRST ORDER LOGIC) 74

is unsatisfiable. Before we use resolution, we must convert the above
sentences into ∃-free prenex form and then into clauses. The two
sentences in ∃-free prenex form will be as follows

{∀x : P (f(x), x), ∀y ∀z : (¬P (z, y) ∨ ¬P (y, c))}.

The two clauses are obtained by simply dropping the quantifiers:

{P (f(x), x), ¬P (z, y) ∨ ¬P (y, c)}.

Resolution will work as follows:

1. P (f(x), x), given
2. ¬P (z, y) ∨ ¬P (y, c), given
3. ¬P (z, f(c)), resolve 1,2 using [x← c, y ← f(c)]
4. F, resolve 1,3 using [x← f(c), z ← f(f(c))]

Hence, the two clauses are unsatisfiable, as required. 2

Ex. 3.19. Consider the following predicates

G(w) : “w is a ghost”

U(w) : “w is unhappy”

H(w) : “w is a house in the village”

Lives(u,w) : “u lives in w”

Use only the above names to write sentences as follows.

β1 : “No ghost is happy”

β2 : “There is a house in this village where only ghosts live”

β3 : “There is an unhappy resident in this village”

Use resolution to prove β3, assuming β1 and β2.

Ex. 3.20. Consider the sentences in Ex. 3.2. Use resolution to prove
β3, assuming β1 and β2.

4 INTRODUCTION TO PROLOG 75

4 INTRODUCTION TO PROLOG

• PROgramming in LOgic. Unlike imperative languages like
C/C++ and Java, Prolog is a declarative language (in its philos-
ophy), which means that the programmer states/declares what the
question is, but not not how to compute the answer. A Prolog pro-
gram is a set A of Prolog formulas. Usually the “execution” of A can
have one of the two following forms:

1. Input: an atomic formula q with no variables.
Output: "yes", if A ⊢p q. "no", otherwise.

2. Input: an atomic formula q(X) with variable(s).
Output: "X=c1;· · · X=ck", if there are constants c1,. . .,ck such
that A ⊢p q(ci) for all i. "no", otherwise.

In either of the above cases, the input is called a query. The expres-
sion A ⊢p q means that Prolog’s inference mechanism can prove q
from A, or that q succeeds. If this is not the case then we say that q
fails. Note that, if q succeeds then the atomic formula q is provable
also in the sense of predicate logic, that is, A ⊢ q, which implies that
q is true. On the other hand, there is no mechanism in Prolog to infer
that q is false in the logical sense. This situation is a consequence of
the limitation of Prolog formulas – see below.

• Prolog formulas and programs. Recall from Section 2.5 that
the general problem of deciding, for given formula q and assumptions
A, whether A ⊢ q, that is q is provable from A in Predicate Logic,
is undecidable. For this reason, Prolog permits to use only a cer-
tain subset of the predicate formulas. In particular, Prolog does not
implement the logical negation connective ‘¬’ and does not support
functions. Prolog allows two types of formulas:

• Atomic formulas without variables, called facts, such as
male(tom) and mother(sally,tom).

• Clauses of the form “β :- α1, . . . , αn” where β and each αi is
an atomic formula possibly containing variables. Any variables
occurring in the clause are assumed to be universally quantified.
The above clause represents the formula

α1 ∧ · · · ∧ αn → β

4 INTRODUCTION TO PROLOG 76

with any quantifiers omitted. The atomic formula β is called
the head of the clause.

A Prolog program A consists of a set of facts and a set of rules. A
rule is a sequence of consecutive clauses with the same head, and
describes the possible ways to prove the head of the clauses that
constitute the rule. For this reason, the common head is called the
goal of the rule. Given a query q, if q is a fact in the program A
then q succeeds. Else Prolog tries to “match” q with the goal β of
some clause “β :- α1, . . . , αn”. In this case, q would succeed if all the
subgoals α1, . . . , αn succeed. If q = q(X) involves a variable X then
Prolog would try to find all constants in the formulas of the program
A for which the query succeeds. Moreover, Prolog will perform the
same process for all the clauses that appear in the rule whose goal
is β.

• Some syntax rules of GNU Prolog.

• Prolog is case-sensitive.

• Comments start with /* and end with */. There are also line
comments that start with ‘%’ and end at the end of the line.

• Only the names of variables start with capital letters.

• Constants can be numbers or atoms. The most frequent atoms
are those that start with a lower case letter or are strings be-
tween single quotes.

• All facts having the same predicate name must be written in
consecutive lines, and similarly, all clauses of the same rule
must be written in consecutive lines. For example, in the fol-
lowing program the three parent facts are written in consecu-
tive lines.

Ex. 4.1. This is an example of a Prolog program from [8].

parent(mary,john).

parent(ann,mary).

parent(mary,susan).

female(mary).

4 INTRODUCTION TO PROLOG 77

mother(X,Y) :- parent(X,Y), female(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

The program consists of four facts and three rules such that the third
rule consists of two clauses. The second rule consists of one clause,
which would be written in Predicate Logic as follows

∀x∀y ∀z (Parent(x, z) ∧Parent(z, y)→ Grandparent(x, y)).

When the query grandparent(ann, john) is given to Prolog, it sees
that this query is not one of the four available facts. So Prolog tries
to use the clause

grandparent(X,Y) :- parent(X,Z), parent(Z,Y)

by substituting ann for X and john for Y, and then trying to satisfy
the subgoals parent(ann,Z) and parent(Z,john). Both of these
subgoals succeed when mary is substituted for Z.

• The predicates write and is. Consider evaluating an arithmetic
expression such as 3*5-2. Prolog can perform this evaluation via the
predicate is that takes two parameters, a variable and the expression
to be evaluated. The predicate is assigns the value of the expression
to the variable and succeeds. For example,

X is 3*5-2, write(X)

assigns the value 13 to X, prints X, and succeeds. Note that attempt-
ing to use write(3*5-2) would simply print the expression 3*5-2.

Ex. 4.2. The following rule can be used to print many copies of
some expression E.

writeCopies(_, 0).

writeCopies(E, N) :- N>0, write(E), M is N-1,

writeCopies(E, M).

•Watch out for infinite computations! The way clauses are
structured affects how Prolog attempts to answer a given query q(X),

4 INTRODUCTION TO PROLOG 78

that is, how Prolog searches through the clauses for the values c of
X that would make q(c) succeed. If the clauses are not written care-
fully, then the search could end up in an infinite loop. For example,
the following program might seem clear from a purely logical point
of view.

edge(1,2).

edge(2,1).

edge(2,3).

edge(3,4).

path(X,X).

path(X,Z) :- edge(X,Y), path(Y,Z).

The program specifies a graph with four edges and then defines when
a path exists between two vertices. In particular, there is always an
(empty) path from X to X, and a path from X to Z exists, if there is
an edge from X to some Y and a path from Y to Z. Unfortunately, the
query

path(1,3)

would cause Prolog to perform an infinite search. This is because
Prolog would first try to satisfy edge(1,Y) and path(Y,3) using Y=2,
and then path(2,3) using the subgoals edge(2,Y) and path(Y,3)

with Y=1; then it would attempt to satisfy path(1,3), which is the
same as the original query! We refer the reader to [2], or any other
Prolog book, for more details on Prolog’s search mechanism.

• The cut, ‘!’, predicate. There are cases where a particular clause
“β :- α1, . . . , αn” of a certain rule is processed, and we want to tell
Prolog that no other clause of the rule should be processed. In this
case, we use the predicate ‘!’, called cut, as one of the subgoals,
say αi, of the clause. This predicate always succeeds when reached
and, in this case, Prolog will not process another clause of the rule.
Moreover, if the current processing of the clause fails, then no subgoal
appearing in the clause before the cut (i.e. before αi) will be tried
again with some different values for variables.

Ex. 4.3. A good example of the cut predicate is given in Prolog
Tutorial 8 at

http://www.cs.nuim.ie/~jpower/Courses/PROLOG/

4 INTRODUCTION TO PROLOG 79

grade(N, first) :- N>=70.

grade(N, two_1) :- N<70, N>=63.

grade(N, two_2) :- N<63, N>=55.

grade(N, third) :- N<55, N>=50.

grade(N, pass) :- N<50, N>=40.

grade(N, fail) :- N<40.

“While this will work, it is a little inefficient. The query grade(75,G)
will answer G=first as expected but, once this has been satisfied,
Prolog will go back to look for any other solutions. In order to do
this it will process all of the other options, failing during the body
of the rule in each case....To eliminate useless backtracking from the
above, (and taking advantage of Prolog’s order of execution) we can
rephrase the program as:”

grade(N,first) :- N>=70, ! .

grade(N,two_1) :- N>=63, ! .

grade(N,two_2) :- N>=55, ! .

grade(N,third) :- N>=50, ! .

grade(N,pass) :- N>=40, ! .

grade(N,fail) :- N<40.

In many cases the cut predicate is used in connection with the pred-
icate ‘fail’, which always fails when reached. A clause of the form

β :- α1, . . . , αm, !, fail.
tells Prolog that, if all αi’s have succeeded, then (i) the clause fails,
and (ii) no other clause with the same head will be processed.

Ex. 4.4. [Cut-Fail] A useful rule that tells us whether two expres-
sions are different is the following.

different(X, X) :- !, fail.

different(_, _).

The query different(ann,tom) succeeds as follows. Prolog first
attempts to match the query with the head of the first clause:

different(X, X)

As X cannot be assigned both ann and tom, this match fails and
then Prolog attempts to match the query with different(,).
This clause matches any values for the two anonymous variables ‘ ’.

4 INTRODUCTION TO PROLOG 80

On the other hand, the query different(ann,ann) fails as follows.
Prolog first matches the query with different(X, X) and then at-
tempts to satisfy the subgoals !, fail. The subgoal ! succeeds but
tells Prolog not to try another clause after it processes the current
one. However, the subgoal fail fails and, therefore, the query fails
as well.

• List Processing. A list in Prolog is a finite sequence of elements
and is denoted using an expression of the form

[e1, e2, . . . , en]

where each ei is a variable, a number, an atom, or a list. If n = 0
then the list is empty: []. Else, the element e1 is called the head
of the list, and the remainder [e2, ..., en] is the tail of the list (which
could be empty). The Prolog expression [H|T] denotes a nonempty
list whose head is H and whose tail is T. The following built-in List
Processing Predicates are available in GNU-Prolog. The notation
pred/n means that the predicate pred takes n parameters.
(see http://www.gprolog.org/manual/gprolog.html)

append/3

delete/3,

last/2

length/2

max list/2, min list/2, sum list/2

member/2,

nth/3

reverse/2

setof/3

sublist/2

Ex. 4.5. Here is an implementation for the predicate
member(X,L) : “X is an element of the list L”:

member(H,[H|]).

member(X,[|T]) :- member(X,T).

The first clause says that H is a member of any list whose head is
H. The second clause says that X is a member of any list whose tail
contains X.

4 INTRODUCTION TO PROLOG 81

Ex. 4.6. The formula setof(X, α, L) succeeds when α is a for-
mula involving the variable X, and the list L consists of all unique
values of X satisfying α. For example,

setof(X, parent(mary,X), L)

succeeds when the list L is the set of mary’s children.

• The predicate name. This is useful when we want to convert a
Prolog atom (especially a string) to the list of characters that con-
stitute this atom. In particular we have that name(S, L) succeeds
exactly when L is the list of ASCII codes of the characters appearing
in S. For example, the query

name(’3ab4’, [51,97,98,52]).

succeeds.

Ex. 4.7. The following rules implement the predicate

scratchA(S, T)

that is true when the string T results by replacing every ‘A’ in the
string S with ‘X’.

scratchLA([], []).

scratchLA([A|L], [X|M]) :- A=65, X=88, scratchLA(L,M).

scratchLA([B|L], [Y|M]) :- B=\=65, Y=B, scratchLA(L,M).

scratchA(S, T) :- name(S, L), scratchLA(L, M), name(T, M).

This works as follows. The clause name(S, L) computes the ASCII
list L corresponding to S and then the clause scratchLA(L, M) works
with ASCII lists. The ASCII codes of the characters ‘A’ and ‘X’ are
65 and 88, respectively. In the end, the clause name(T, M) converts
the ASCII list M to the string T.

5 REGULAR LANGUAGES & AUTOMATA 82

5 REGULAR LANGUAGES & AUTOMATA

5.1 Regular Expressions (REXs)

Recall from Section 1.3 that a description method for a set of entities
X is an onto function

L : D → X

such that D is the language used to describe the entities in X. We
are interested again in describing languages, that is, X is a class of
languages. This is important because a language could be infinite,
but a description is always a finite string. Already we have seen the
description method of context-free grammars:

L(G) = the language described (generated) by G.

This method defines the class L(CFG) of context-free languages.
Here we define the class of regular languages, which are described
by certain simple expressions that resemble algebraic expressions.
Let’s recall first some examples of operations on languages K,L:

K ∪ L
KL
Ln

L∗

KL5(K ∪ {λ}) = KL5K ∪KL5.

• Regular expressions (REXs). We assume a fixed, but arbitrary
alphabet Σ. A regular expression is a string over the alphabet Σ ∪
{(,),+,∗ ,∅, λ}, where we assume that the symbols in {(,),+,∗ ,∅, λ}
are not in Σ. More specifically the set REX of regular expressions is
defined by the following grammar:

R; (the start variable)

R → ∅ | λ | σ (for all σ ∈ Σ)

R → (R∗) | (R+R) | (RR)

Here are some examples of regular expressions:

∅, (0∗), ((0 + 1)∗), ((01) + (1∗)).

5 REGULAR LANGUAGES & AUTOMATA 83

As in the case of algebraic expressions we shall omit parentheses to
simplify the expressions. In doing so, we shall use the same prece-
dence of operations as in arithmetic expressions, that is, ∗, catena-
tion, ‘+’. Thus, 01 + 1∗ is a shorthand for ((01) + (1∗)).

• Regular Languages. A regular expression r describes a language,
denoted L(r), as follows:

1. if r = ∅ then L(r) = ∅

2. if r = λ then L(r) = {λ}

3. if r = σ then L(r) = {σ}

4. if r = t∗ then L(r) = (L(t))∗

5. if r = (r1r2) then L(r) = L(r1)L(r2)

6. if r = (r1 + r2) then L(r) = L(r1) ∪ L(r2)

A regular language is defined to be any language that can be de-
scribed by a regular expression, that is, L is regular if there is a
regular expression r such that L = L(r).

• Extending Regular Expressions. It is customary to allow the
following two notational extensions to regular expressions:

1. For any k ≥ 0 and regular expression r, rk specifies the lan-
guage L(r)k consisting of all the words of the form w1 · · ·wk,
with each wi ∈ L(r).

2. For any regular expression r, r+ specifies the language L(r)∗
without the empty word λ, that is, L(r+) = L(r∗)− {λ}.

• The class of Regular languages. Recall REX is the set of
all regular expressions with respect to a certain alphabet Σ. Each
of these expressions r describes a language L(r). Taking all these
languages together defines the class of regular languages:

L(REX) = {L(r) | r is in REX}.

5 REGULAR LANGUAGES & AUTOMATA 84

Ex. 5.1. Let Σ = {0, 1}. Is the language

{00w1n | |w| = 5, n ∈ N0}

regular? The answer is yes by using the regular expression 00(0 +
1)51∗. Indeed, we have:

L(00(0 + 1)51∗) =
L(0)L(0)L((0 + 1)5)L(1∗) =
{0}{0}({0} ∪ {1})5{1}∗ =
{00}{0, 1}5{1}∗ =
{00w1n | |w| = 5, n ∈ N0}.

• Equivalent Regular Expressions. Two regular expressions r1, r2
could be different, namely r1 6= r2, but they could describe the same
language, namely L(r1) = L(r2). In this case we write

r1 ≡ r2.

Here is a list of useful equivalences

r1 + r2 ≡ r2 + r1

r∗r ≡ rr∗ ≡ r+

λ+ r+ ≡ r∗

r(r1 + r2) ≡ rr1 + rr2

λr ≡ rλ ≡ r

(r∗)∗ ≡ r∗

r∗r∗ ≡ r∗

∅+ r ≡ r +∅ ≡ r

∅∗ ≡ λ

Ex. 5.2. We show that r(r1 + r2) ≡ rr1 + rr2:

L(r(r1 + r2)) =
L(r)(L(r1) ∪ L(r2)) =
{uv | u ∈ L(r), v ∈ L(r1) ∪ L(r2)} =
{uv | u ∈ L(r), v ∈ L(r1)} ∪ {uv | u ∈ L(r), v ∈ L(r2)} =
L(rr1) ∪ L(rr2) =
L(rr1 + rr2).

5 REGULAR LANGUAGES & AUTOMATA 85

5.2 UNIX Regular Expressions

http://www.gnu.org/software/grep/doc/grep.html

The UNIX operating system provides an implementation of regular
expressions, which has been adopted by other operating systems as
well. Here we shall give a partial definition of UNIX regular expres-
sions. First, we define the sets

CH = all characters except the new line character
SP = special chars = . [] \ * + ? ^ - $ " | ()

• Definition (partial). A UNIX regular expression p is a string
over the alphabet CH, and has the following characteristics:

1. If p contains no special characters then p represents the word p.

2. If p contains \σ, where σ is any character in CH, and \σ does
not occur between any pair [], then \σ represents the character
σ. In this case we say that σ is quoted.

3. If p contains [C], where C is a character class, then [C] repre-
sents the set of all characters specified by C. In particular, C is
any string of characters other than], unless] occurs at the be-
ginning of C, and represents exactly the set of these characters
except in the following special cases:

- a caret ^ in the beginning of C specifies the set of all char-
acters that are not in the part of C following ^.

- a hyphen - between two characters σ1 and σ2 is used to
specify the range of characters from σ1 to σ2, according
to the ASCII order.

4. If p contains the character ‘.’ outside of any pair [], then
this character represents the set CH (i.e., the period character
matches any character in CH).

5. If p contains q* outside of any pair [], where q is a single char-
acter or an expression of the form (r) or [r], then q* represents
the set of words that can be formed by concatenating zero or
more words from the set represented by q.

5 REGULAR LANGUAGES & AUTOMATA 86

6. If in the above rule we have that p contains q+, then we have
one or more concatenations of words from the set represented
by q. Similarly, if p contains q?, then q? represents zero or one
word from the set of words represented by q.

7. If p contains (q|r) outside of any pair [], then (q|r) represents
all words represented by q union those represented by r.

• Command egrep. UNIX regular expressions are used in egrep:

egrep "p" F egrep "^p" F

egrep "p$" F egrep "^p$ F

where F is a text file, and p is a UNIX regular expression.

1. In the form "p", egrep prints all lines of F containing a string
of the form specified by p (that is, a string that belongs to the
language described by p).

2. In the form "^p", egrep prints all lines starting with a string
that belongs to the language described by p.

3. In the form "p$", egrep prints all lines ending with a string
that belongs to the language described by p.

4. In the form "^p$", egrep prints all lines that are equal to a
string that belongs to the language described by p.

Ex. 5.3. Here are some egrep examples.

egrep "bb" F: prints all lines in F containing the string bb.

egrep "^a.*3$" F: prints all lines in F starting with a and ending
with 3.

egrep "" F: prints all lines in F

• Command sed. sed -r ’s/E/str/[g]’ F

Here E is a UNIX regular expression, str is a string, g is an optional
flag, and F is a text file. The command works as follows:

5 REGULAR LANGUAGES & AUTOMATA 87

while NOT at end of file F {

get next line L from F;

if (L contains a string t matching E) {

modify L by replacing the first t with str, OR all

occurrences of t if the flag g is present;

output the modified line L;

}

else output the line L;

}

Notes: 1. If str contains &, then sed replaces & with the string t
that matched the regular expression E.
2. When a set of overlapping strings in L matches E, then sed selects
the longest match.
3. Instead of the three delimiters /.../.../ one can use "..."..."

Ex. 5.4.

sed -r ’s/ +/ /g’ F: outputs all lines of F with sequences of one
or more spaces replaced with one space.

sed -r ’s/^./ &/’ F: outputs all lines of F with the nonempty
ones indented by 2 spaces.

Exercises of Sections 5.1, 5.2

Ex. 5.5. Show that the following language over the alphabet Σ2 =
{0, 1} is regular

{x0ny(10)m | x ∈ Σ∗
2 ∧ y ∈ Σ+

2 ∧ n,m ≥ 120}.

Ex. 5.6. Give regular expressions describing the following lan-
guages.

All words w ∈ {a, b}∗ whose length is even.

All words w ∈ {a, b}∗ containing exactly one occurrence of ab.

All words w ∈ {a, b, c}∗ containing no occurrence of ab.

Ex. 5.7. Indicate whether each of the following statements is cor-
rect.

r1(r1 + r2)
∗ + r2(r1 + r2)

∗ ≡ (r1 + r2)
+

5 REGULAR LANGUAGES & AUTOMATA 88

r∗1 + r∗2 ≡ r∗2 + r∗1

r∗1 + r∗2 ≡ (r1 + r2)
∗

r + r ≡ r

Ex. 5.8. Give egrep expressions to (i) print all lines in the file F

containing a string of two or more consecutive b’s; (ii) print all the
empty lines in F.

Solution.
egrep "b(b)+" F

egrep "^$" F 2

Ex. 5.9. Give an egrep expression to print from the file F each line
that consists of a, possibly signed, integer allowing spaces before and
after the integer.

Ex. 5.10. Show that every finite language is regular.

Solution. Let F be a finite language. If F is empty then it is de-
scribed by the regular expression r = ∅, that is, F = L(r). If F
is not empty then F = {u1, . . . , un}, for some n ∈ N. In this case,
consider the regular expression r = u1 + u2 + · · ·+ un. Then

L(r) = L(u1) ∪ · · · ∪ L(un) = {u1} ∪ · · · ∪ {un} = F.

Thus, F = L(r) for some regular expression r and, therefore, F is a
regular language. 2

5.3 Finite Automata (DFAs, NFAs)

Finite automata constitute another method for describing languages.
Informally, we define a finite automaton by drawing a labeled graph
(state transition diagram). Such a graph consists of a set of nodes,
called states, and a set of edges between states, called transitions.
Each transition is labeled with a letter of the alphabet. One of the
states is special and called the start, or initial state. This is denoted
using a short incoming arrow without an origin state. Some of the
states are called final, or accepting, and denoted by double lines. The
automaton represents the set of all words that are formed along the
paths of the graph from the start state to a final state. These words

5 REGULAR LANGUAGES & AUTOMATA 89

0 1 2
a a

a, b

Figure 4: A finite automaton accepting {aa}Σ∗.

constitute the language accepted, or recognized, by the automaton.
The automaton in Fig. 4 accepts the language {aa}{a, b}∗. For ex-
ample, the word aaba is accepted because it is formed by the labels
a, a, b, a in the path

(0, a, 1), (1, a, 2), (2, b, 2), (2, a, 2) (1)

such that the path begins with the initial state 0 and ends with 2,
which is a final state. On the other hand, aba is not accepted, as
there is no path from state 0 to a final state having a, b, a as labels.

• Automata as computing machines (or decision programs).
The important aspect of an automaton M is that it can be viewed as
a computing machine that processes input words and decides whether
or not to accept these words. In particular, given any input word w =
σ1 · · · σn at the initial state q0, the automaton reads (or consumes)
each symbol σ1, σ2, . . . by following the available transitions

(q0, σ1, q1), (q1, σ2, q2), . . .

This computation ends when all symbols are read, or there are no
available transitions that can be used to read the entire input – this
happens, for instance, when the automaton in Fig. 4 processes the
input aba. In the former case (when all input symbols are read) we
have a computation as shown in (1) above when the input is aaba.
In this case, as the last state in the computation is a final state, the
automaton M accepts aaba, or we can say that M returns YES:

M(aaba) = YES.

On the other hand, it is easy to see that M(aba) = NO.

5 REGULAR LANGUAGES & AUTOMATA 90

0 1 2

sink

a a

b
b

a, ba, b

Figure 5: Complete automaton accepting {aa}Σ∗.

5.4 Deterministic Automata (DFAs)

A finite automaton is called deterministic if no state has two dif-
ferent transitions with the same letter going out of the state. The
automaton in Fig. 4 is deterministic. In practice, this means that
there is always exactly one path in the automaton that one can use
to recognize a word of the language.

• Complete automaton. This is an automaton in which, for each
state, every letter of the alphabet appears on a transition from this
state. The automaton of Fig. 4 is not complete. We can complete an
automaton without affecting the language it recognizes by introduc-
ing a sink state (or trap state) and transitions to it from all other
states with the missing alphabet letters. This is shown on Fig. 5.

• Rigorous definition. A (complete) deterministic finite automa-
ton (DFA) is a 5-tuple M = (Q,Σ, q0, δ, F) such that

Q is a finite nonempty set of states,
Σ is an alphabet,
q0 ∈ Q is the start state,
F ⊆ Q is the set of final (accepting) states, and
δ : Q× Σ→ Q is the transition function.

The transition function δ takes as input a state q and a letter σ,
and returns the next state δ(q, σ). The closure δ∗ of δ extends δ by
mapping a state and a word to a state such that:

δ∗(q, λ) = q and δ∗(q, σx) = δ∗(δ(q, σ), x),

that is, δ∗(q, w) returns the state that will be reached after the word
w has been read starting at state q. The language L(M) accepted,

5 REGULAR LANGUAGES & AUTOMATA 91

0 1 42 3
a b b b

a, b a, b

Figure 6: Nondeterministic automaton accepting Σ∗abbbΣ∗.

or recognized, by M is

L(M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Ex. 5.11. For the automaton of Fig. 5, the transition function δ is
as follows:

δ =

a b
0 1 sink
1 2 sink
2 2 2
sink sink sink

We have: δ(0, a) = 1 = δ∗(1, λ) and δ∗(0, aaba) = δ∗(1, aba) =
δ∗(2, ba) = δ∗(2, a) = δ∗(2, λ) = 2.

• The class of DFA languages. The class of DFA languages con-
sists of all languages that are accepted by deterministic finite au-
tomata:

L(DFA) = {L(M) |M is a DFA}.

5.5 Nondeterministic Automata (NFAs)

Here we allow situations where two or more transitions with the
same label go out of one state. Thus, at such a state, when the next
letter of the input word matches two or more transitions the au-
tomaton works nondeterministically, that is, it chooses/guesses one
transition and continues from there. Moreover, we assume that for
every input word w, if there is at least one accepting path (from the
start state to a final state), then the automaton will always guess an
accepting path for w!

5 REGULAR LANGUAGES & AUTOMATA 92

Ex. 5.12. Consider the word abbb, which we consider to be a pat-
tern, and another longer word t, which we consider to be a text. The
question is whether the pattern abbb occurs in the text t. Note that
the set of all words containing the pattern abbb is equal to

Σ∗abbbΣ∗.

Thus, our question is equivalent to whether the given text t is an
element of Σ∗abbbΣ∗. A nondeterministic automaton accepting the
language Σ∗abbbΣ∗ is given in Fig. 6.

• Rigorous definition. A (nondeterministic) finite automaton (NFA)
is a 5-tuple M = (Q,Σ, q0, T, F) such that

1. Q is a finite nonempty set of states,

2. Σ is an alphabet,

3. q0 ∈ Q is the start state,

4. F ⊆ Q is the set of final (accepting) states,

5. T is the finite set of transitions, where a transition is a triple
(p, σ, q) ∈ Q× Σ×Q.

A transition (p, σ, q) specifies that the automaton can go from state
p to state q when the current input symbol is σ. In this case, we say
that the automaton reads, or consumes, the symbol σ. A computa-
tion of the automaton is a sequence of transitions of the form

(p0, σ1, p1), (p1, σ2, p2), . . . , (pn−1, σn, pn).

If p0 is the start state and pn is a final state then we have an accepting
computation. The language L(M) accepted, or recognized, by M is
the set of all words w = σ1 · · · σn such that the word is formed in
the transitions of an accepting computation of M , as shown above.
In this case we say that the automaton returns YES on input w. In
general, we have M(w) ∈ {YES, NO} such that

M(w) = YES iff M has an accepting computation on input w.

5 REGULAR LANGUAGES & AUTOMATA 93

Ex. 5.13. We show three different computations of the NFA in
Fig. 6 on the same input word abbbaabbb such that the first two are
accepting computations.

1st comput. 2nd comput. 3rd comput.

0, a, 1 0, a, 0 0, a, 0

1, b, 2 0, b, 0 0, b, 0

2, b, 3 0, b, 0 0, b, 0

3, b, 4 0, b, 0 0, b, 0

4, a, 4 0, a, 0 0, a, 0

4, a, 4 0, a, 1 0, a, 0

4, b, 4 1, b, 2 0, b, 0

4, b, 4 2, b, 3 0, b, 0

4, b, 4 3, b, 4 0, b, 0

accept accept reject

• The class of NFA languages. The class of NFA languages con-
sists of all languages that are accepted by deterministic finite au-
tomata:

L(NFA) = {L(M) |M is a NFA}.

• Method: Designing DFAs. Given a language L, we want to
design a DFA recognizing L. One approach is to assign a certain
meaning to each state of the DFA such that the transitions can be
defined by simply preserving the meaning of the states. In many
cases, the meaning of a state is the set of words accepted when the
state is viewed as final. For example, a DFA accepting all words over
{a, b} with an even number of a’s has two states:

ev : “all words with even number of a’s”
od : “all words with odd number of a’s”

such that ev is the only final state. The transition function is very
simple:

δ(ev, a) = od, δ(ev, b) = ev, δ(od, a) = ev, δ(od, b) = od.
Equivalently, we can write the above as a set of four transitions:

{(ev, a, od), (ev, b, ev), (od, a, ev), (od, b, od)}.
A state diagram is shown in Fig. 7

5 REGULAR LANGUAGES & AUTOMATA 94

M = ev od

a

a

b b

Figure 7: DFA accepting all words with an even number of a’s.

• Quick Facts.

1. Every finite language is a DFA language.

2. Every DFA can be viewed as an NFA. Thus every DFA lan-
guage is also an NFA language.

3. The language recognized by an automaton is empty iff there is
no path from the start state to a final state.

4. The language recognized by an automaton contains λ iff the
start state is also a final state.

5. The language recognized by an automaton is infinite iff there is
a useful cycle (loop) in the automaton, that is, there is a state
and a path that starts and ends at that sate, such that this
state can be reached from the start state and can reach a final
state.

Exercises of Sections 5.3, 5.5

Ex. 5.14. Draw the state diagram of a DFA accepting all words
over {a, b} having no occurrence of bb.

Ex. 5.15. Draw the state diagram of a DFA accepting all words w
in {a, b}∗ with the following property: each b that occurs in w (if
any) must be followed immediately by at least one a. Note that a
regular expression describing this language is (a+ ba)∗.

Ex. 5.16. Draw the state diagram of a DFA accepting all expres-
sions for decimal integers. These consist of decimal digits with an

5 REGULAR LANGUAGES & AUTOMATA 95

0,0

1,0 2,0 2,1 2,2

2,3

a

a b b

b

a a a

a

0,1 1,1 1,2 1,3

b
a b b

a

b a a

0,2 0,3 sink

b

b b

ba a b

a, b

Figure 8: DFA accepting words with ≥ 2 a’s and ≤ 3 b’s.

optional sign and any number of spaces before and after the integer.
For example, your DFA should accept the following three strings

"+123 " " 34" " -5 "

Ex. 5.17. Draw the state diagram of a DFA accepting all words
over {a, b} containing at least two a’s and at most three b’s.

Solution. We shall use 13 states as follows.
– (i, j) : “i a’s and j b’s were read, with 0 ≤ i ≤ 1, 0 ≤ j ≤ 3”.
– (2, j) : “j b’s and at least 2 a’s were read, with 0 ≤ j ≤ 3”.
– sink : “a sink state”.
– Start state = (0,0).
– Final states = {(2,j): j = 0,1,2,3}.
The set of transitions can be defined easily based on the meaning of
the states. For example, ((1, 2), a, (2, 2) is a transition that says, if
the DFA is at state (1,2) – hence, it has read one a and two b’s –
and the next input is a then the DFA goes to state (2,2). The state
diagram is shown in Fig. 8. 2

Ex. 5.18. Draw the state diagram of a DFA accepting all words
over {a, b} containing an even numbers of a’s and an even number of
b’s.

5 REGULAR LANGUAGES & AUTOMATA 96

Ex. 5.19. Explain why every finite language is a DFA language.

5.6 A simple DFA Implementation

Consider a DFA M = (Q,Σ, q0, δ, F). In our implementation, we
assume that the alphabet is Σ = {0, 1, . . . , n − 1} and the set of
states is Q = {0, 1, . . . ,m − 1}, with 0 being the initial state. The
transition function δ is implemented as a two dimensional (dynamic)
array delta arr[][] such that the value δ(q, i) can be found by
accessing the array entry delta arr[q][i], which takes constant
time O(1), as an array is a random access data structure. Now, if
we wish to run the automaton on some input word t, we shall need
a function run(t). This will access the array once for every letter in
t and, therefore, this takes time O(n), where n is the length of the
input string t. In particular, here is how run(t) works, where the
variable c is used to keep track of the current state.

c = 0;

for (i=0; i<n; i++) c = delta_arr[c][t[i]];

if (c is final) return YES;

else return NO;

An important application of DFAs is in the pattern-matching prob-
lem.

Theorem 5.1. The pattern-matching problem can be decided in time
O(n+ k), where n is the length of the text and k is the length of the
pattern.

Proof idea. Let t be the given text of length n and p be the given
pattern of length k. We assume that both are given as strings (in
the programming sense). Obviously, p occurs in t iff the word t is an
element of the language Σ∗{p}Σ∗. The main steps of the algorithm
are as follows:

1. Construct a DFA M accepting Sigma*{p}Sigma*

2. Run M using t as input

3. If t is accepted return YES, else return NO

From the discussion in this section we know that Step 2 can be per-
formed in time O(n). It can be shown that Step 1 can be performed
in time O(k) – see for example, [4]. 2

5 REGULAR LANGUAGES & AUTOMATA 97

0 1 2
a a

a, b

5.7 NFA Implementation in Prolog

Here the automaton is defined as a set of Prolog facts specifying
the start state, the final states and the transitions. Moreover, it is
convenient to have a predicate states(N) defining the number N of
states in the automaton. Sometimes it might be useful to include
the predicate alphabet(L) defining the alphabet as a list L. The
automaton in the picture is defined as follows:

states(3).

alphabet([a,b]).

start(0).

final(2).

tr([0,a,1]).

tr([1,a,2]).

tr([2,a,2]).

tr([2,b,2]).

• Predicates to run the NFA. We implement words as Prolog
lists. In particular the empty word is implemented as the empty list
[]. Predicate runNFA(W) runs the current automaton on input W.
The predicate accept(Q,W) succeeds when the automaton accepts
the word W when it starts at state Q. The predicate runNFA(F,W)

first reads the file F containing the definition of the automaton and
then tests whether the automaton accepts W.

accept(Q,[]) :- final(Q).

accept(Q,[S|T]) :- tr([Q,S,R]), accept(R,T).

runNFA(W) :- start(Q), accept(Q,W), !.

runNFA(F,W) :- consult(F), runNFA(W).

5 REGULAR LANGUAGES & AUTOMATA 98

• Decision problems. Here are some decision problems considered
in automaton theory.

Emptiness. Given an automaton M , decide whether L(M) = ∅.
Finiteness. Given an automaton M , decide whether L(M) is in-

finite.

Empty word. Given an automaton M , decide whether λ ∈ L(M)

A useful predicate in this context is pathAut(Q1,Q2,N) : “there is
a path of length at most N from state Q1 to state Q2, where N is a
nonnegative integer.” Here is a definition of this predicate.

pathAut(Q1,Q1,N) :- N>=0, !.

pathAut(Q1,Q2,N) :- N>0, tr([Q1,S,Q2]), !.

pathAut(Q1,Q2,N) :- N>1, tr([Q1,S,Q]),

M is N-1,

pathAut(Q,Q2,M), !.

The term N is necessary to bound the amount of computation.

Ex. 5.20. [Empty word] We define the predicate emptyword(F) :
“the language accepted by the automaton defined in the file F con-
tains the empty word”.

emptyword(F) :- consult(F), start(Q), final(Q).

Ex. 5.21. [Emptiness] We define the predicate nonempty(F) :
“the language accepted by the automaton defined in the file F is
not empty”.

nonempty(F) :- consult(F), start(Q), final(R),

states(N), pathAut(Q,R,N), !.

Ex. 5.22. [Finiteness] The following predicates are useful in de-
ciding the finiteness of an NFA language: reachable(Q) : “there is
a path from the start state to state Q,” tofinal(Q) : “there is a path
from state Q to a final state,” useful(Q) :- reachable(Q), tofinal(Q).
It can be shown that the language of an NFA is infinite iff there is a
useful state Q and a path from Q to Q.

reachable(Q) :- start(Q).

reachable(Q) :- tr([P,_,Q]), states(N),

start(Q0), pathAut(Q0,P,N).

...

5 REGULAR LANGUAGES & AUTOMATA 99

M = 0 1 2
a

a a, b

b

M ′ = {0} {0, 1} {1, 2} {1}a b
a

b

a b a

Figure 9: Subset Construction as in Theorem 5.2. The sink
state is omitted.

5.8 Basic Theorems on Automata and λ-NFAs

In this section we state a few basic results of automata theory. In
particular the fact that the classes of NFA, DFA and regular lan-
guages coincide. Thus, we can speak about regular languages with
the understanding that there are three ways to describe these lan-
guages. We also state a few basic results about closure properties
of regular language operations. For example, we show that regular
languages are closed under the intersection operation ∩, that is, for
every regular languages L,L′ we have that L ∩ L′ is a regular lan-
guage.

Theorem 5.2. Every NFA language is a DFA language and vice
versa:

L(DFA) = L(NFA).

Proof. The direction L(DFA) ⊆ L(NFA) is obvious as every DFA is
a particular type of NFA. The direction L(NFA) ⊆ L(DFA) can be

5 REGULAR LANGUAGES & AUTOMATA 100

shown using the Subset Construction as follows. Given NFA

M = (Q,Σ, q0, T, F),

we construct a DFA M ′ = (Q′,Σ, {q0}, δ′, F ′) accepting the same
language. The states ϕ ∈ Q′ of M ′ are subsets of Q. The transition
function δ′ of M ′ is such that δ′(ϕ, σ) is the set of states q in all
transitions of the form (p, σ, q) for every state p ∈ ϕ; that is, the
next state δ′(ϕ, σ) of M ′ consists of all states that can be reached in
M from any state in ϕ with input σ. The final states of M ′ are all the
subsets of Q that contain at least one final state of M . The process
starts with initializing the current state ϕ = {q0}. Then new states
are derived by completing the transitions of the current state, that
is computing δ′(ϕ, σ), for all symbols σ. This process stops when no
new states can be derived. Finally, the resulting DFA gets completed
by adding a sink state.

Theorem 5.3. If L and L′ are NFA languages then so is L ∩ L′.

Proof. As L and L′ are NFA languages, there are NFAs M,M ′ ac-
cepting L,L′, respectively. We construct an NFA M ∩M ′ accepting
L ∩ L′, as follows.

• The states of the automaton M ∩M ′ are pairs (q, q′) of states
from M and M ′, respectively.

• The start state is (q0, q
′
0), made of the start states of M,M ′.

• The final states are all pairs (f, f ′) of final states from the two
NFAs.

• For any two transitions with the same label, (q, σ, p) from M
and (q′, σ, p′) fromM ′, the tuple ((q, q′), σ, (p, p′)) is a transition
of the new automaton.

Fig. 10 demonstrates the above construction.

For the correctness of the construction, we have to show that
the language L(M ∩ M ′) accepted by M ∩ M ′ is exactly L ∩ L′.
Equivalently, we show that a computation of M ∩M ′ accepts a word
σ1 · · · σn iff there are two computations of M and M ′, both accepting
the word σ1 · · · σn.

5 REGULAR LANGUAGES & AUTOMATA 101

M = q0 · · · q p · · · f
σ

M ′ = q′0 · · · q′ p′ · · · f ′σ

M ∩M ′ =

q0, q
′
0 · · · q, q′ p, p′ · · · f, f ′σ

Figure 10: Cartesian Product Construction in Theorem 5.3

So first assume that

P = ((q0, q
′
0), σ1, (q1, q

′
1)), . . . , ((qn−1, q

′
n−1), σn, (qn, q

′
n))

is a computation of M ∩M ′ accepting the word σ1 · · · σn – hence,
both qn and q′n are final states in M and M ′, respectively. By
the above construction, for each transition ((qi−1, q

′
i−1), σi, (qi, q

′
i))

in the computation P, there must be two transitions (qi−1, σi, qi)
and (q′i−1, σi, q

′
i) in M and M ′, respectively. Thus, when we consider

all these transitions for i = 1, . . . , n, we can form

C = (q0, σ1, q1), . . . , (qn−1, σn, qn),

which is an accepting computation of M , and

C′ = (q′0, σ1, q
′
1), . . . , (q

′
n−1, σn, q

′
n),

which is an accepting computation of M ′. Hence, the word σ1 · · · σn
must be in both L = L(M) and L′ = L(M ′), as required.

Conversely, suppose that there are two computations of M and
M ′ accepting the same word σ1 · · · σn. Then, these computations

5 REGULAR LANGUAGES & AUTOMATA 102

have the form of C and C′ shown above. By the construction of
M ∩ M ′, for each pair of transitions (qi−1, σi, qi) and (q′i−1, σi, q

′
i)

in C and C′, respectively, we have that ((qi−1, q
′
i−1), σi, (qi, q

′
i)) is a

transition of M ∩M ′. Hence we can form a computation of M ∩M ′

of the form P shown above such that P accepts the word σ1 · · · σn,
as required.

Note: The type of construction in Theorem 5.3 is known as (Carte-
sian) Product construction.

Theorem 5.4. If L and L′ are NFA languages then so are L and
L′ − L.

Proof idea. We are given automata M,M ′ recognizing L,L′, respec-
tively. If M is not a (complete) DFA, use Theorem 5.2 to make it
so. Then construct the automaton M that is exactly the same as M
except that every final state of M is non-final in M , and vice versa.
We have that

L(M) = L(M).

To show that L′ − L is an NFA language, observe that

L′ − L = L′ ∩ L.

Hence, we can use Theorem 5.3 and the above method to construct
the NFA M ′ ∩M such that

L(M ′ ∩M) = L′ − L.

2

Ex. 5.23. The previous theorems could be useful when designing
automata for languages whose words satisfy multiple constraints. For
example, consider the language L in Ex. 5.15. If we want to describe
all L-words that contain no pattern aaa, then the set of these words is
L−L′, where L′ = Σ∗{aaa}Σ∗. So ifM andM ′ are DFAs accepting L
and L′, respectively, then we can use the above theorem to construct
a DFA for L− L′.

• More closure properties via λ-NFAs. It can be shown that LL′,
L∗ and LR are NFA languages when L and L′ are. The technique

5 REGULAR LANGUAGES & AUTOMATA 103

0 1 2 3
a b b

a

λ

Figure 11: A λ-NFA recognizing the language (λ+ ab)(a+ aab)∗b.

to show this uses an extended type of automaton, the λ-NFA. The
definition is exactly the same as that of NFAs with the additional
capability that some of the transitions could be λ-transitions:

(q, λ, p).

Then, when the automaton is at state q it could go to state p without
reading the next input symbol. Fig. 11 shows an example of a λ-
NFA M accepting the language (λ+ab)(a+aab)∗b. In particular, the
word abab is accepted by M via the following accepting computation:

(0, a, 1), (1, b, 2), (2, a, 0), (0, λ, 2), (2, b, 3).

Note that the 4th transition in the above computation is a λ-transition
where the machine goes to state 2 without reading the next input
symbol b. The next theorem says that λ-NFAs do not accept more
languages than the ordinary NFAs do.

Theorem 5.5. L(λ-NFA) = L(NFA).

Theorem 5.6. If L and L′ are λ-NFA languages then so are L∪L′,
LL′ and L∗.

Proof idea. Consider λ-NFAsM,M ′ accepting L,L′ respectively. We
shall construct λ-NFAs M ∪M ′, MM ′ and M∗ accepting L∪L′, LL′

and L∗, respectively. The construction of M ∪M ′ is very simple: it
is made of M and M ′, a new initial state s and two λ-transitions
from s to the initial states of M and M ′.

The construction of MM ′ is simple as well: it is made of M and
M ′ such that the intial state of MM ′ is that of M , the final states of

5 REGULAR LANGUAGES & AUTOMATA 104

M = q0 · · ·T · · · f

M∗ = s q0 f· · ·T · · ·λ

λ

Figure 12: Construction in Theorem 5.6

MM ′ are those of M ′, and every final state of M has a λ-transition
to the start state of M ′.

The construction of M∗ is as follows – see also Fig. 12: Consider
the automaton M and add a new state s which is the start state
of M∗ and also the only final state of M∗. Add the following λ-
transitions: (s, λ, q0), where q0 is the start state of M , and (f, λ, s)
for every final state of M . 2

Theorem 5.7. If L is a λ-NFA language then so is LR.

Proof idea. Given a λ-NFA M accepting L, we construct a λ-NFA
MR accepting LR as follows – see also Fig. 13: Consider the NFA
M and add a new state s, which is the start state of MR. Reverse
every transition of M : if (q, σ, p) is a transition of M then (p, σ, q)
is added in MR. The start state q0 of M is the only final state of
MR. Add the following λ-transitions: (s, λ, f) for every final state
f of M . One verifies that all words accepted by MR are reverses of
those accepted by M , and vice versa. 2

5.9 REX matching via NFA membership

In this section we establish another fundamental result, that the
class of NFA languages coincides with the class of regular languages.
In other words, for every regular expression r we can construct an
NFA M such that L(M) = L(r) (and vice versa) – see Theorem 5.8.

5 REGULAR LANGUAGES & AUTOMATA 105

M = q0 · · ·T · · · f

MR = s q0 f· · ·T−1 · · ·

λ

Figure 13: Construction in Theorem 5.7

A consequence of this is that the REX matching problem can be
reduced to the NFA membership problem. More specifically, consider
the UNIX command

egrep "r" f

and a line t of the text file f. We want to decide whether the line
‘matches’ the regular expression r, that is, whether t contains a
string that belongs to L(r). This is equivalent to whether

t ∈ L(r′),

where r′ is a regular expression with L(r′) = Σ∗L(r)Σ∗ – for example,
in UNIX, r′ could be equal to “(.*)r(.*)”. So we can convert r′

to an equivalent NFA M and then simply run M on the input t to
decide whether t ∈ L(M).

Theorem 5.8. Every regular language is an NFA language, and vice
versa; that is, L(REX) = L(NFA).

• Proof of L(REX) ⊆ L(NFA). Given a regular expression r, we
construct an NFA M such that L(r) = L(M). By Theorem 5.5, it is
sufficient that M be a λ-NFA. We use structural induction on r:

Induction basis: r is a simple regular expression of the form ∅, λ, or
σ ∈ Σ. In each of these three cases we can construct an equivalent
NFA as shown in Fig. 14.

5 REGULAR LANGUAGES & AUTOMATA 106

∅ : q0 λ : q0 σ : q0 f
σ

Figure 14: Induction basis in Theorem 5.8.

Induction step: r is of the form (t∗), (tt′), or (t+ t′), and we assume
that there are NFAs M,M ′ such that L(M) = L(t) and L(M ′) =
L(t′). We need to show that in each of the three cases there is an
NFA N accepting the language L(r). We have that L(r) = L(M)∗

or L(r) = L(M)L(M ′) or L(r) = L(M) ∪ L(M ′), and the required
NFA N is M∗ or MM ′ or M ∪M ′, as defined in Theorem 5.6. 2

Exercises of Sections 5.7, 5.8, 5.9

Ex. 5.24. Write a Prolog rule test(F,L) that runs the automaton
in the file F on each word w in the list L and prints, for each w,
yes/no depending on whether the automaton accepts w.

Ex. 5.25. Show the product construction of Theorem 5.3 for in-
tersecting the languages of the two automata M and M ′ in Fig. 16.
The first one accepts all words with an even number of a’s and the
second one all words ending with b.

Solution. The required automaton is shown in Fig. 17. 2

Ex. 5.26. What changes would you make to the automaton you
constructed in Ex. 5.25 so that you get a new automaton accepting
the language L(M)− L(M ′)?

Ex. 5.27. Convert the following regular expression to an equivalent
λ-NFA

a∗(aba+ a).

Ex. 5.28. In Theorem 5.6, the automaton M ∪ M ′ contains λ-
transitions. If M and M ′ contain no such transitions then we can
define directly another automaton N accepting L(M) ∪ L(M ′) and

5 REGULAR LANGUAGES & AUTOMATA 107

a : b :0 1
a

2 3
b

ab : 0 1
a

2
λ

3
b

a+ ab : s

0′λ 1′a

0λ 1
a

2
λ

3
b

s′ s
λ

0′λ 1′a

0λ 1
a

2
λ

3
b

λ

λ

Figure 15: Induction step in Theorem 5.8 for r = (a+ ab)∗.

M = 0 1

a

a

b b

M ′ = 0′ 1′

b

a

a b

Figure 16: Two automata.

5 REGULAR LANGUAGES & AUTOMATA 108

M ∩M ′ = 00′ 10′ 11′

01′

a
a

a

b

b
a

b b

Figure 17: Product construction for the automata in Fig. 16.

containing no λ-transitions. This can be achieved using the product
construction in Theorem 5.3 modified as follows: M and M ′ must be
complete NFAs, and the set of final states in the product automaton
N consists of all state pairs (f, f ′) where at least one of f and f ′ is
a final state in M,M ′. Apply this construction on the automata in
Fig. 16. Prove the correctness of the construction using as a guide
the proof of correctness in Theorem 5.3.

5.10 Sequential Transducers

• Motivation. The machines (automata) we have seen so far re-
ceive an input word and return a value in {YES, NO}, that is, they
make a decision whether or not to accept the input word. Here we
are interested in machines that would allow us to model situations
where a given input word is processed and some word is returned.
In particular in data communications, a binary message at the site
of the sender is sent through a channel and arrives at the site of
the receiver such that the channel has possibly changed some of the
bits in the message – transmission errors. For example, the channel
[Sub(1,∞)] permits at most one substitution in any symbol of the
input message, that is, at most one bit in the input word will be
changed (a 0 will become 1, or a 1 will become 0). So if the input
word is 0000 then the output of the channel could be 0000 (no error),
or one of 1000, 0100, 0010, 0001 (one substitution error). Obviously,
a channel behaves in a nondeterministic manner.

• Definition. A (nondeterministic) sequential transducer (NST) is

5 REGULAR LANGUAGES & AUTOMATA 109

like an NFA whose transitions have two labels: input and output.
More formally, an NST is a 6-tuple

M = (Q,Σ,Γ, q0, T, F),

where Q, q0, F are as in the definition of NFAs, Σ and Γ are the input
and output alphabets, respectively, and T is the set of transitions of
the form (p, σ/w, q) such that p, q are states in Q, σ is a symbol in
Σ, and w is a word in Γ∗. A computation of M is a sequence of
transitions of the form

(p0, σ1/w1, p1), (p1, σ2/w2, p2), . . . , (pn−1, σn/wn, pn).

A computation is accepting if p0 is the start state and pn is a final
state. Given an input word u ∈ Σ∗ the transducer returns a word
w ∈ Γ∗, if there is an accepting computation as above such that

u = σ1σ2 · · · σn and w = w1w2 · · ·wn.

In general, as an NST is a nondeterministic machine, for a given
input word there might be zero or more possible return values.

• We have M(u) = the set of possible return values ofM on input
u. Note that if there is no accepting computation on input u
then M(u) = ∅.

Ex. 5.29. Channel [Sub(1,∞)] Fig. 18 shows the channel that per-
mits up to one substitution error in any input word. For example,

[Sub(1,∞)](000) = {000, 100, 010, 001}.

In particular, we have that 010 ∈ [Sub(1,∞)](000) as a result of
substituting the 2nd bit of the input word 000 with 1. The transducer
allows this via the accepting computation

(0, 0/0, 0), (0, 0/1, 1), (1, 0/0, 1)

The meaning of the states is as follows: State 0 means that there
have been no error so far, that is, for each input symbol σ, the
corresponding output is σ. State 1 means that one error has occurred.
Thus, at state 1 there can be no further errors.

5 REGULAR LANGUAGES & AUTOMATA 110

0

0/0, 1/1

1

0/0, 1/1

0/1

1/0

Figure 18: Channel [Sub(1,∞)]. All states are final.

• Deterministic Sequential Transducer. If, for every state p and
input symbol σ, there is at most one transition of the form (p, σ/ ,),
then M is a deterministic sequential transducer (DST) and realizes
a word function. In this case, for each input word w, the set M(w)
contains at most one word. In particular if M(w) contains w′ then
we write M(w) = w′ to mean that M(w) = {w′}. Examples of DSTs
are given in the chapter on coding theory.

• Combinatorial Channel. This is an NST, like the one in Fig. 18,
with the property that, for every accepting input u of M – that is,
M(u) 6= ∅ – we have u ∈M(u). Such a machine models a communi-
cation channel in the sense that when an input word u is transmitted
we receive an output word u′ ∈ M(u). If u′ 6= u then we say that
u was received with errors – note that this is a typical situation in
data communications. Possible errors at a symbol u(i) of the input
word can be: substitution of u(i) by another symbol, deletion of u(i),
insertion of one or more new symbols to the left of u(i). Although we
focus on channels that allow only substitution errors, we do show in
Fig. 19 a channel allowing deletion and substitution errors.

Ex. 5.30. Channels of the form [Sub(m,∞)] are appropriate for
communication languages of some known maximum length. This is
because these channels allow up to m errors no matter how long the
input word is. For infinite languages, however, it is more appropriate
to consider channels of the form [Sub(m, l)] that allow up to m errors
in any segment of length l of the input word. Fig. 20 shows the
channel M = [Sub(1,4)] that permits at most one substitution error
in any segment of length 4 of the input word. For example we have

5 REGULAR LANGUAGES & AUTOMATA 111

0

∀σ : σ/σ

1

∀σ : σ/σ

2

∀σ : σ/σ

∀σ 6= σ′ : σ/σ′

∀σ : σ/λ

∀σ 6= σ′ : σ/σ′

∀σ : σ/λ

Figure 19: Channel [SubDel(2,∞)] allowing two substitu-
tions/deletions in any input message. All states are final.
The shorthand notation “∀σ : σ/λ” indicates a set of transi-
tions between the two states involved, one for each letter σ
of the alphabet.

0

∀σ : σ/σ

1 2 3
∀σ 6= σ′ : σ/σ′ ∀σ : σ/σ ∀σ : σ/σ

∀σ : σ/σ

Figure 20: Channel [Sub(1,4)]. All states are final.

that

M(00000) = {00000, 10000, 01000, 00100, 00010, 00001, 10001}.

Note that 01001 /∈ M(00000) because we cannot have two errors in
a block of four zeros.

• More examples. More transducer examples are given in the chap-
ter on coding theory.

6 CODING & INFORMATION THEORY 112

6 CODING & INFORMATION THEORY

6.1 Coding Systems

• Some motivation. In many applications of information process-
ing, the data words involved need to be encoded into a certain format
that is appropriate for storage or transmission. For example, stor-
ing an English text into a recording device requires encoding English
words into binary words that are specific to the device in question
[14]. Similarly, sending an image over a network requires encoding
the image as a certain binary word (or sequence of binary words)
whose bits are interpreted as signals that can be transmitted over
the network. Fig. 6.1 shows the scenario of communication consid-
ered here.

Definition 6.1. A coding system is a triple (e,D,C) such that D
and C are languages over some possibly different alphabets, and e is
a 1-1 function such that e(D) ⊆ C, that is, the image e(w) of any
w ∈ D must be in C. The language D is called the data language,
the language C is called the communication (or channel) language,
and the function e is called the encoding function.

We shall normally call the words of D data words and the words
of C messages.

•Why 1-1 function? When a data word w ∈ D is encoded as
e(w) ∈ C, there should be no other data word u ∈ D mapped to
the same message: e(u) 6= e(w). This implies that the inverse func-
tion e−1 is well-defined and allows one to decode a message in e(D)
correctly, that is, e−1(e(w)) = w. The function e−1 is called the
decoding function.

• Finite Coding System (e,D,K). When D and K are finite. If
all the words ofD are of the same length then we call it a block coding
system. For example,

(e, {00, 01, 10, 11}, {0, 10, 110, 111})

is a finite block system, where

e : 00 7→ 0, 01 7→ 10, 10 7→ 110, 11 7→ 111.

6 CODING & INFORMATION THEORY 113

Sender

e

w ∈ D

Medium

e(w) ∈ C

e−1

e(w) ∈ C

Receiver

e−1(e(w)) = w ∈ D

Figure 21: The sender and receiver communicate using a com-
mon language D. The communication medium only accepts
messages (words) of some language C. The function e maps
every data word w ∈ D to a message e(w) ∈ C.

0 1 2

1′

0/λ 0/0, 1/10

1/λ
0/110, 1/111

Figure 22: Encoder from {0, 1}2 to {0, 10, 111, 110}.

6 CODING & INFORMATION THEORY 114

0
1

2

3

1/λ 1/1

0/00

0/01

1/1, 0/0

Figure 23: Decoder from {0, 10, 111, 110} to {0, 1}2.

• Finite-state Coding. When the encoding function e can be re-
alized by a deterministic sequential transducer M . In this case, the
transducer M is called an encoder – see Fig. 22. Moreover, if there is
a deterministic sequential transducer M ′ that realizes the decoding
function then the transducer M ′ is called a decoder – see Fig. 23.
Obviously, we have that w′ = M(w) iff w = M ′(w′).

• Homomorphic Block Coding (e∗, (Γm)∗,K∗). Here Γ is an
alphabet and m ≥ 1, and (e,Γm,K) is a coding system. Thus, every
data word consists of zero or more blocks of length m, and K is some
language, such that
– each block v ∈ Γm is mapped to a unique word e(v) ∈ K;
– for every data word v1v2 · · · vn, with each |vi| = m,

e∗(v1v2 · · · vn) = e(v1)e(v2) · · · e(vn).

Moreover, K must be a (uniquely decodable) code, that is, for every
word in K∗, there is a exactly one way to break it as a sequence
of codewords in K – this ensures that (e∗)−1 is well-defined (see
Section 6.2). An example of such a system is (e∗,D∗,K∗), where e,
D, K are as shown in the previous example of a finite coding system.
A decoder for this system is shown in Fig. 24.

Ex. 6.1 (Bit-stuffing Coding). A basic task in data communications
is to identify the beginning (and possibly the end) of a received mes-
sage. This is usually achieved by using a special word, called flag,
at the beginning of the message [20]. Moreover, the message should
not contain any occurrences of the special flag. An example of a flag
is the word 1k+1, for some k ≥ 2. In this case, the data words must

6 CODING & INFORMATION THEORY 115

0

1

2

1/λ

0/01 1/1

1/1, 0/0

0/00

Figure 24: Decoder from {0, 10, 111, 110}∗ to ({0, 1}2)∗.

0 1 2 3

0/0

1/1 1/1 1/1

0/0
0/0

1/10, 0/0

Figure 25: Bit-stuffing encoder with k = 4 (all states final).

be encoded into a binary language whose words contain no run of
k + 1 successive 1s. We define the 1-1 encoding function [BS-k] on
Σ∗
2 = {0, 1}∗ such that:

– [BS-k](w) = the word w′ that results when we read w left-to-right
and insert a 0 immediately after a run of k ones.

– [BS-k]−1(w′) = the word w that results when we read w′ left-to-
right and delete the zero in every subword 1k0 of w′.

An example of this method is shown in Fig. 25. So the coding sys-
tem here is ([BS-k],D,C), where D = Σ∗

2 and C = {w ∈ Σ∗
2 :

w contains no 1k+1}. The decoder for the case of k = 4 is shown in
Fig. 26.
2

6 CODING & INFORMATION THEORY 116

0 1 2 3 4

0/0

1/1

1/1 1/1
0/0 0/0

0/0

1/1

0/λ

Figure 26: Bit-stuffing decoder with k = 4 (all states final).

6.2 Basic Code Properties

Here we introduce a few basic properties of a language K, which is
intended to be used for encoding data. The topic of code properties
is quite large. The interested reader is referred to [10] for further
information on this topic.

6.2.1 Unique decodability

Before providing the formal definition of this section, we give the
motivation via an incorrect example of homomorphic block coding:

(e∗, {a, c, g, t}∗ ,K∗), where K = {0, 01, 10, 11},

and e(a) = 0, e(c) = 01, e(g) = 10, e(t) = 11. Here, the data word
agg is encoded as e∗(agg) = 01010 ∈ K∗. However, the message
01010 ∈ K∗ can be broken into K-words in two different ways:

0, 10, 10 and 01, 01, 0,

which implies that 01010 = e∗(agg) = e∗(cca) and, therefore, (e∗)−1

is not a 1-1 function. The problem here lies on the choice of the
language K, as explained next.

Given a language K and a message w ∈ K+, we say that a word
v ∈ K is a correct first codeword of w, if w ∈ vK∗. For example,
using again K = {0, 01, 10, 11}, we see that in the message w =
01101, the first codeword 01 is not correct because the remainder 101

6 CODING & INFORMATION THEORY 117

is not in K∗. On the other hand, the first codeword 0 is a correct first
codeword of w because the remainder 1101 is in K∗. A language K
is called a (uniquely decodable) code if, for every message w ∈ K+,
there is exactly one correct first codeword of w, that is,

∀u1, u2 ∈ K : w ∈ u1K
∗ ∧ w ∈ u2K

∗ → u1 = u2.

Note that this predicate is equivalent to the condition that every
message w ∈ K+ can be broken into K-words in exactly one way.

Ex. 6.2. The language {0, 01, 10, 11} is not a code:

01010 has two correct first codewords: 0 and 01.

The languages {0, 01, 110} and {0, 01, 11} are codes.

• The decoding problem for a code K. Given a message w ∈
K+, the question is to find the correct first codeword of w, that is,
the correct K-word v1 such that w = v1w1, for some w1 ∈ K∗. In
this case, the remainder w1 is a message in K∗ as well, for which the
correct first codeword, say v2, can also be found. Thus, the message
w will be broken into some K-words v1, . . . , vn and then these will
be decoded as data words: e−1(v1), . . . , e

−1(vn).

• Block codes. A language is a block code if all of its words have
the same length. Obviously, every block code K is indeed a code.
Moreover, the decoding problem here is trivial: If the codewords
of K have length l, then the correct first codeword of any message
w ∈ K+ is simply the block that consists of the first l symbols of w.

6.2.2 Prefix property

The decoding problem for a code K becomes complex when there
are two codewords u, v ∈ K such that v is a prefix of u, that is, u is
of the form vx. For example, in the code {0, 01, 110}, the codeword
0 is a prefix of the codeword 01, and when a message of K+ starts
as

01 · · ·
it is not clear whether the correct first codeword is 0 or 01. This
observation motivates the study of prefix codes.

6 CODING & INFORMATION THEORY 118

Definition 6.2. A language K is called a prefix code, if no word of
K is a prefix of another word of K.

Obviously every message w over a prefix code K can start with
exactly one codeword, which must be the correct first codeword of
w. The code {0, 01, 110} considered above is not a prefix code. On
the other hand, {0, 10, 11} is a prefix code. If K is a block code all
the words of K have the same length, and, therefore, no codeword
is a proper prefix of another codeword. Hence, every block code is a
prefix code.

Theorem 6.1. (Kraft-McMillan inequality) Let Σ be an alphabet of
r symbols. If K = {u1, . . . , un} is a code over Σ then

n
∑

i=1

1

rℓi
≤ 1,

where each ℓi = |ui|. Moreover, for every sequence (ℓ1, . . . , ℓn) of
positive integers satisfying the above inequality, there exists a prefix
code of n codewords whose lengths equal to these integers.

•Why is this important? An important objective of coding the-
ory is to find a code of n, say, words for a certain application such
that the word lengths ℓ1, . . . , ℓn of the code are as small as possible.
This would allow for an efficient communication of the messages of
this code. Now one would think that the best prefix code might not
be as good as certain non-prefix codes in terms of the word length
criterion. However, the above theorem says that this is not the case,
that is, if ℓ1, . . . , ℓn are appropriate code lengths (satisfying the above
inequality) then there is always a prefix code with exactly these word
lengths. Hence, in trying to find a code for an application, if we re-
strict our attention from general codes to prefix codes then we do
not sacrifice anything in terms of efficiency.

• Constructing the Kraft code. We show how to construct the
prefix code K with a given sequence of word lengths (ℓ1, . . . , ℓn)
according to Theorem 6.1. First prepare a complete binary tree of
height ℓn – assuming ℓi ≤ ℓi+1 and ℓn is the largest length. Insert
in every node a unique binary word, starting from the root with the

6 CODING & INFORMATION THEORY 119

λ

0 1

00 01 10 11

100 101 110 111

Figure 27: The Kraft construction for given sequence of word lengths.

empty word and going left to right on each level of the tree such that
the words are used in the radix order:

λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .

Then, initialize the code K to empty, and for each i = 1, . . . , n, do
the following three tasks: (1) Pick the first (left-to-right) node Ni

at level ℓi; (2) Add in K the word contained in the node Ni; (3)
Remove the subtree whose root is the node Ni. Figure 27 shows this
construction for the length sequence (2, 2, 3, 3, 3). The construction
gives the code {00, 01, 100, 101, 110}.

6.2.3 Error detection

A major objective in data communication systems is to process reli-
ably a message that was transmitted via some channel M capable of
introducing substitution errors – see Fig. 28. In this context, error
detection is a fundamental property of the communication language
C. It ensures that, if a word w′ is received via the channel M and
w′ ∈ C, then w′ must be correct, that is, equal to the C-word that
was sent in M . If, however, the received word w′ is not in C then
a transmission error is detected and w′ is not processed. In other
words, the channel cannot turn a C-word to another C-word. For-

6 CODING & INFORMATION THEORY 120

. . .

Channel M

x ∈ C

Error control

w′ ∈M(x)

· · ·

error or x

Figure 28: Refining the action of the medium (channel) in
Fig. 6.1. The channel is called M . The set M(x) consists of
all possible outputs of the channel M on input x. When the
channel M introduces errors in x, the output of the channel
is w′ 6= x. The error control module attempts to detect, or
even correct, errors in x.

mally, C is error detecting for M , if11

∀w′, x : x ∈ C ∧ w′ ∈M(x) ∧ w′ ∈ C → x = w′.

• Testing for error detection. To test whether a finite language
K = {u1, . . . , un} is error detecting for some channel M we can do
the following:

– Compute the sets M(u1),M(u2), . . . ,M(un);
– If there are ui 6= uj with ui ∈M(uj)

then K is not error detecting for M .
– Else K is error detecting for M .

Ex. 6.3. The language K = {11, 011, 101} is error detecting for the
channel M = [Sub(1,3)]:

– M(11) = {11, 01, 10}
– M(011) = {011, 111, 001, 010}

11Recall we assume that the channel M allows only substitution errors and,
therefore, if w′ ∈ M(x) then w′ has the same length as x.

6 CODING & INFORMATION THEORY 121

– M(101) = {101, 001, 111, 100}.

However, K∗ is not error detecting for that channel:

111111 ∈ K3 and 011011 ∈ K2 and 111111 ∈ [Sub(1,3)](011011),

where underlined 0s indicate substitution errors.

• Even parity code En. This is the most famous code for detecting
errors of [Sub(1,∞)], that is, at most one error in any codeword. It
is a binary block code such that each word contains an even number
of 1s. For example, E3 consists of the following codewords

0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111.

In each codeword, the first 3 bits are arbitrary and the 4th bit is
chosen such that the total number of 1s in the codeword is even. In
general the even parity code En is of length n + 1, for some n > 1,
where the first n bits of a codeword in En are arbitrary and the last
bit is either 0 or 1 such that the total number of 1s is even:

En = {ub | |u| = n, ub has an even # of 1s}.

Note that En is error detecting for the channel [Sub(1,∞)] because
if an error occurs in a codeword x then the resulting word w′ has an
odd number of ones and, therefore, w′ cannot be in En.

• n-block encoder into En. This is a deterministic sequential
transducer M that returns, for each input word u of length n, one
output word w in En, that is, M(u) = w. For example, the 3-block
encoder of Figure 29 encodes every data word of length 3 into a
codeword of the even parity code E3.

• Decoder for En. This is a deterministic sequential transducer
that maps the words of En into the corresponding length n data
words. For example, the 4-block decoder of Figure 30 maps every
even parity word ub of E3 into the data word u. If the input word
ub is not of even parity (due to a transmission error) then there is
no output.

6 CODING & INFORMATION THEORY 122

0

1 2

3

0/0

0/0 0/00, 1/11

1′ 2′
1/1

0/0

0/01, 1/10

1/1
1/1

Figure 29: 3-block encoding into E3.

0

1 2 3

4

0/0

0/0 0/0
0/λ

1′ 2′ 3′
1/1

0/0 0/0

1/λ

1/1
1/1

1/1
1/1

Figure 30: 4-block decoding.

6 CODING & INFORMATION THEORY 123

• Hamming distance. Error detection has been studied extensively
for channels of the form [Sub(m,∞)], which permit up to m substi-
tutions in any input word. In this case, the concept of Hamming
distance is important. The Hamming distance between two words
w,w′ of the same length, denoted as Hamm(w,w′), is the number of
corresponding positions in which the words differ. For example,

Hamm(00000, 10010) = 2,

because the words 00000 and 10010 differ in two positions: their 1st
and 4th bits are different. The Hamming distance Hamm(K) of a
block code K is the smallest distance between any two different
words of K.

Theorem 6.2. A block code K is error detecting for the channel
[Sub(m,∞)] iff Hamm(K) > m.

6.2.4 Error correction

Recall that, if the communication language C is error detecting for
the channel M , then an error is detected exactly when a word w′ that
was received via M is not in C. In this case, the original message
x ∈ C must be retransmitted with the hope that this time it will be
received with no errors. If, however, the communication language C
is error-correcting for the channel M , then it is possible to find out
the original message x even when it is received via M with errors.
Formally, C is error correcting for M , if

∀w′ ∀x,w ∈ C : w′ ∈M(x) ∧w′ ∈M(w) → x = w.

Thus, for every received word w′, there is exactly one message in
C that can be received as w′. One can verify that, if C is error
correcting for M , it must be error detecting for M .

• Testing for error correction. To test whether a finite language
K = {u1, . . . , un} is error correcting for a channel M we can do the
following:

– Compute the sets M(u1),M(u2), . . . ,M(un);
– If there are ui 6= uj with M(ui) ∩M(uj) 6= ∅

then K is not error correcting for M .
– Else K is error correcting for M .

6 CODING & INFORMATION THEORY 124

Ex. 6.4. The language K = {11, 011, 101} of Ex. 6.3 is not error
correcting for the channel M =[Sub(1,3)], because 001 ∈ M(011) ∩
M(101). Thus, when the word 001 is received, we know that an error
occurred (as 001 /∈ K), but we cannot correct the error, that is, we
cannot tell whether the original message was 011 or 101.

Theorem 6.3. A block code K is error correcting for the channel
[Sub(m,∞)] iff Hamm(K) > 2m.

• The Hamming Code [7]. Hamming was one of the first to dis-
cover an efficient error correcting code for the channel [Sub(1,7)].
The Hamming code is a binary block code of length 7 such that, in
every codeword, the bits at positions 3,5,6,7 are arbitrary and the
bits at positions 1,2,4 are called parity bits whose values depend on
the values of the arbitrary bits. Formally, the code is as follows:

{p1p2b3p4b5b6b7 | b3, b5, b6, b7 ∈ {0, 1},
p4 + b5 + b6 + b7 =2 0,
p2 + b3 + b6 + b7 =2 0,
p1 + b3 + b5 + b7 =2 0 },

where =2 indicates that the sum of bits is computed modulo 2. When
an unknown codeword u is received via the channel as z, one can
find the unique set [Sub(1,7)](u) containing z, and then decode z as
u. However, here there is a quick method to decode z. Compute
(modulo 2) the sums

c0 = z(4) + z(5) + z(6) + z(7),
c2 = z(2) + z(3) + z(6) + z(7),
c1 = z(1) + z(3) + z(5) + z(7).

Each of these sums is a value in {0, 1}. If the binary word c0c2c1
represents the number zero then there is no error in z. Else, the
error is at the position represented by c0c2c1.

• K vs K∗ substitution error correction. Substitution errors
have the property that they do not alter the start positions of the
codewords in a message. This implies that if a block code K of some
length ℓ is error correcting for the channel [Sub(m, ℓ)] then K∗ is
error correcting for the channel [Sub(m, ℓ)]. Unfortunately, this is
not the case when the channel involves insertions and/or deletions.

6 CODING & INFORMATION THEORY 125

Exercises of Sections 6.1, 6.2

Ex. 6.5. Can you construct a binary prefix code with word lengths

2, 2, 3, 3, 3, 4, 4, 4 ?

2, 2, 3, 4, 4, 4, 4, 4, 4 ?

Explain your answers. When your answer is yes show the required
code.

Ex. 6.6. Let D = {00, 01, 10, 11} = {0, 1}2 and

K = {101, 1021, 1031, 1041}.

We need a finite coding system (e,D,K). Show the diagram of a
3-state encoder for e. Then show the diagram of the corresponding
decoder.

Ex. 6.7. Change your diagrams for the previous exercise such that
the new encoder and decoder will work for a homomorphic block
coding system (e∗,D∗,K∗).

Ex. 6.8. For each of the following languages indicate whether it is
a code, and whether it is a prefix code.

{01, 22, 012, 201}
{1, 20, 21, 012}
{20, 021, 202}

Ex. 6.9. Find the Hamming distance of the code

{0102, 1010, 2221, 0011}.

Is the code error detecting for the channel [Sub(1,4)]? Is it error
correcting for that channel? If not find a subset of this code (as
large as possible) that is error correcting for [Sub(1,4)]. Is the code
error detecting for the channel [Sub(1,3)]?

6.3 Information Theory

•What is it? A theory that provides limits on the efficiency of
coding techniques. It finds applications in data analysis (e.g., bio-
informatics) and machine learning. It is also important from a philo-
sophical point of view as it defines mathematically the concept of
information which is a fundamental concept in human activities.

6 CODING & INFORMATION THEORY 126

• Efficiency of codes – Average word length. Suppose we need
a code to encode n different objects, to which we refer by simply using
the integers 1, 2, . . . , n. There are many codes consisting of n words.
We wish to choose a code K whose words are as short as possible, as
this would allow for an efficient communication of messages in K+.
More specifically, we wish to choose a code K = {v1, . . . , vn} of n
elements such that the average word length of K

ℓ(K) =
|v1|+ · · ·+ |vn|

n

is as small as possible. In many cases each object i ∈ {1, 2, . . . , n}
is used with a known probability p̃(i), which implies that the cor-
responding K-codeword vi occurs in messages with probability p̃(i).
Thus, instead of the term object, we use the term event . More
specifically, we have n events that occur according to a probability
distribution

p̃ = (p̃(1), . . . , p̃(n)),

that is, each number p̃(i) ∈ (0, 1] and
∑n

i=1 p̃(i) = 1. In this more
general scenario, the average word length of K (with respect to) p̃ is

ℓp̃(K) = p̃(1) · |v1|+ · · ·+ p̃(n) · |vn| =

n
∑

i=1

p̃(i)|vi|.

Obviously, if p̃ is the uniform distribution (1/n, . . . , 1/n) then ℓp̃(K) =
ℓ(K). In any case, the objective is to find a code of n words such
that the average word length is as small as possible.

• Recall a simple coding fact. To encode n objects using a binary
block code, the code length must be at least ⌈log n⌉.12 We shall see
that encoding n objects can be done more efficiently if we allow
variable-length codes.

Ex. 6.10. [A motivating example] Consider the following sta-
tistical data about the daily weather conditions in Atlantis:

sunny: 0.3 = 30%
partly cloudy: 0.3 = 30%

12Recall that, for any real number x, ⌈x⌉ is the smallest integer ≥ x. For
example, ⌈2.18 = 3⌉. Of course, if x is an integer then ⌈x⌉ = x.

6 CODING & INFORMATION THEORY 127

overcast: 0.1 = 10%
rain: 0.2 = 20%
snow: 0.1 = 10%

We want to communicate in binary the weather conditions in the last
10,000 days. What is an efficient way to encode this information?

The simplest method is to encode the five events {sunny, partly-
cloudy, overcast, rain, snow} using a block code K1. This means that
the words of K1 must be of length 3 and, therefore, this requires 3
bits per event. Thus, to encode 10,000 events we need a total of
30,000 bits.

Another approach is to use a (variable-length) prefix code instead
of a block code. In particular one can argue that since sunny is a
most frequent event, we can assign to this event the codeword 0 and
then the codewords 100, 101, 110, 111 to the rest of the events. In
this case, the average word length (= average number of bits per
event) is

1× 0.3 + 3× 0.3 + 3× 0.1 + 3× 0.2 + 3× 0.1 = 2.4 bits

and, therefore, we need (on average) 24,000 bits to encode 10,000
events.

The second method is obviously more efficient. We shall see later
in this section whether we can do better than that.

• Definition of Information/Entropy. The most successful ap-
proach to defining mathematically the concept of information was
proposed in [19] by Shannon. In this approach, information exists
in connection with a source of possible events in the sense that
the occurrence of an event brings some information to the observer.
Moreover, the lower the chance of occurrence of an event is, the
higher the information content of that event is.

An (information) source is a function p̃ : E → (0, 1] such that
E is a nonempty finite set, called the set of events, and p̃(i) is the
probability of the event i such that

n
∑

i=1

p̃(i) = 1,

where n is the number of events, that is, n = |E|. For any source
p̃ we shall write Ep̃ for the event set of p̃, but we shall drop the

6 CODING & INFORMATION THEORY 128

subscript p̃ and simply write E instead of Ep̃ if there is no risk of
confusion. Moreover, unless stated otherwise, we shall use positive
integers 1, 2, . . . to denote the events in E = Ep̃. Hence, we can say
that a source p̃ is a probability distribution

p̃ = (p̃(1), . . . , p̃(n)).

Here we shall assume that the source is memoryless13.

Definition 6.3. Let p̃ be an (information) source of n events. The
information content, or entropy, or uncertainty of the event i is
the value (− log p̃(i)), and the information content, or entropy, or
uncertainty of the source is the value

H(p̃) = −
n
∑

i=1

p̃(i) log p̃(i).

Thus, the information content of a source is the average of the in-
formation contents of its events. The unit for measuring information
content is (usually) the bit . This choice comes from our custom of
writing information down in words. Here in particular, suppose we
want to communicate/describe events of the source using a binary
code. When we say that the information content of the source p̃ is,
for instance, 5 bits, it is meant that it takes an average of about 5
bits to describe in binary an event of the source – this interpretation
is justified mathematically in Theorem 6.7.

The quantity H(p̃) can also be interpreted as the amount of uncer-
tainty of the source. To see this, consider the time instance before
the occurrence of the next event. As the next event is one of the
n possible ones, there is some uncertainty as to what the event will
be. This interpretation is consistent with our original one because
at the time instance after the occurrence of the event there is no
uncertainty but there is some information brought by the occurrence
of the event.

Ex. 6.11. Consider again the source (0.3, 0.3, 0.1, 0.2, 0.1) in the
previous example about the daily weather in Atlantis. We compute

13The occurrence of an event does not depend on any of the previous event
occurrences.

6 CODING & INFORMATION THEORY 129

the entropy of this source. We use the facts log(xy) = log x+ log y,
log(1/x) = − log x and log x = logb x/ logb 2:

H = −(3
10

log
3

10
+

3

10
log

3

10
+

1

10
log

1

10
+

2

10
log

2

10
+

1

10
log

1

10
)

= − 6

10
log

3

10
− 2

10
log

1

10
− 2

10
log

2

10

=
6

10
(log 10 − log 3) +

2

10
log 10 +

2

10
(log 10− log 2)

= log 10− 0.6 log 3− 0.2 = 1 + log 5− 0.6 log 3− 0.2

= 0.8 + 2.3219 − 0.6 · 1.58496 = 2.1709...

• Maximum entropy for n-event sources. Consider all possible
sources involving exactly n events, for some fixed n ≥ 2. The source
that maximizes the entropy function is the one with the uniform
probability distribution:

ũn = (
1

n
, . . . ,

1

n
).

It can be shown that H(1/n, . . . , 1/n) = log n. So we have that for
every source p̃

H(p̃) ≤ H(1/n, . . . , 1/n) = log n.

6.3.1 Entropy and Average codeword length

Here we discuss the importance of entropy in evaluating the average
word length of a code. The proof of the next result can be found in
the appendix.

Lemma 6.4. Let K be a code for some source p̃. Then

ℓp̃(K) ≥ H(p̃).

Moreover, there is a prefix code K0 such that ℓp̃(K0) < H(p̃) + 1.

According to the above result, we cannot encode the events of
the source p̃ using a code whose average length is smaller than the
entropy of p̃. On the other hand, we can always encode the events

6 CODING & INFORMATION THEORY 130

of p̃ using a prefix code whose average length is one plus the entropy
of the source! This can be done as follows, given the source

p̃ = (p̃(1), . . . , p̃(n)).

– For each event i, define the Shannon length ℓi = ⌈− log p̃(i)⌉
– Construct the Kraft code K0 with lengths (ℓ1, . . . , ℓn).

In the proof of the above lemma it is shown that

n
∑

i=1

1

2ℓi
≤ 1

and the average length of the constructed Kraft code is indeed smaller
than H(p̃) + 1.

• Huffman coding. Here we consider the question of finding op-
timal (in terms of average word length) codes for a given source p̃.
In particular we present the algorithm of Huffman that is based on
binary trees – the method also applies to higher order trees. The
algorithm is nondeterministic and could result, in general, to differ-
ent codes. Any resulting code, however, has the same average word
length. We note that the Kraft code discussed before is not always
optimal.

1. Input: source p̃ of n events.

2. Construct n tree roots R1, . . . , Rn and assign to each Ri the
value v(Ri) = p̃(i).

3. Choose two trees T1, T2 with smallest root values, and replace
them with one new tree whose root has value v(T1)+v(T2) and
T1, T2 as left and right subtrees.

4. If at least two trees are left, repeat the above step.

5. For each node of the tree, assign the bit 0 to its left edge and
the bit 1 to its right edge.

6. For each leaf node Ri, with i = 1, . . . , n, define e(i) to be the
binary word that is formed along the path from the root of the
tree to Ri.

6 CODING & INFORMATION THEORY 131

0.3 0.3 0.2 0.1 0.1

0.2

0.4

0.6

1.0
0

1

0 1

0

1

0 1

Figure 31: A Huffman tree for the source (0.3, 0.3, 0.2, 0.1, 0.1).

7. Return the code {e(1), . . . , e(n)}.

• Note that all Huffman codes are prefix codes. This is because
each codeword corresponds to a leaf of the tree, that is a node with no
children and, therefore, that codeword cannot be a prefix of another
codeword.

Theorem 6.5. Let p̃ be a source. There is no code for p̃ whose
average word length is smaller than that of some Huffman code for p̃.

Ex. 6.12. Fig. 31 shows a Huffman tree for the Atlantis weather
source (0.3, 0.3, 0.2, 0.1, 0.1) in Ex. 6.10. The code is {00, 01, 10, 110,
111} and has an average word length

2× 0.3 + 2× 0.3 + 2× 0.2 + 3× 0.1 + 3× 0.1 = 2.2 bits.

Thus, the Huffman method has produced a better code than the
ones we tried in the introductory paragraphs of this section – now it
would require 22,000 bits to encode 10,000 weather events of Atlantis.
Of course, as stated in Theorem 6.5, this is the best we can do for
single-event to codeword coding.

6 CODING & INFORMATION THEORY 132

• Entropy of the k-power source. Recall from Ex. 6.10 that the
entropy of the Atlantis weather source is about 2.1709 bits, and the
Huffman algorithm gives a code of average length 2.2 bits. This
suggests the possibility of improving the encoding efficiency for this
source if we somehow change our requirement of assigning one code-
word to one event. More specifically, we can try to define a code
for pairs (i, j) of events. In the case again of the Atlantis weather
source, there are 5× 5 = 25 pairs of events such that the probability
of the 2-event (i, j) is p̃(i)× p̃(j). For example, the probability of the
2-event (sunny, rain) is 0.3 × 0.2 = 0.06. In effect we have defined
the new source p̃2 of 25 events such that

p̃2(i, j) = p̃(i)× p̃(j).

In general, let p̃ be a source and k ≥ 1. The k-power of p̃ is the
source p̃k such that each event in Ep̃k is a sequence (i1, . . . , ik) of
k events from Ep̃, and the probability p̃(i1, . . . , ik) = p̃(i1) · · · p̃(ik).
The following holds.

Lemma 6.6. For every source p̃ and integer k ≥ 1, H(p̃k) = kH(p̃).

The next result follows easily from Lemma 6.4 and the concept of
k-power source.

Theorem 6.7. (Fundamental Coding Theorem) Let C be a code
for the k-sequences of some source p̃. Then

ℓp̃k(C) ≥ kH(p̃).

Moreover, there is a prefix code C0 such that

kH(p̃) ≤ ℓp̃k(C0) < kH(p̃) + 1.

•What does this mean? In order to encode the events of a source
p̃, we need on average no less than H(p̃) bits per event and we can
get close to that limit. In particular, there are cases where we can
encode each single event with a codeword such that the average word
length is exactly H(p̃) bits. If this is not possible, however, we can
find a code Ck for the k-sequences of the source (for some k > 1)
which has an average word length of less than kH(p̃) + 1 bits and,
therefore, this corresponds to H(p̃)+1/k bits per single event. Thus,
as k →∞, we have that 1/k → 0, so the average number of bits per
event tends to H(p̃).

6 CODING & INFORMATION THEORY 133

Exercises of Section 6.3

Ex. 6.13. Here are the statistics for the accuracy of rain prediction
in Wonderland by the weather station [17]:

actual rain actual no-rain
rain prediction 1/12 1/6
no-rain prediction 1/12 2/3

For instance, 1/12 of the time the weather station predicts rain when
in fact it does rain.

1. How often is the weather station correct?

2. Find the amount of uncertainty about the (actual) rain in At-
lantis?

3. Find the amount of uncertainty in the station’s rain predic-
tions.

4. An unemployed listener observed that one would be correct
5/6 of the time by simply always predicting no-rain, and so
the listener applies for a job. Why does the station manager
decline to hire the listener?

Ex. 6.14. Find a Huffman code for the source

(1/4, 1/4, 1/8, 1/8, 1/8, 1/8).

Would we gain anything if we used a code for the k-sequences of this
source, for some k > 1?

Ex. 6.15. Consider the source p̃ = (1/10, 2/10, 7/10). Find the
entropy of the source and the average length of a Huffman code for
that source. Then, construct the Huffman code for the source p̃2 and
find the average length of that code. Did this help?

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 134

7 LANGUAGE TYPES & PUSHDOWN AU-
TOMATA

Recall the description method of regular expressions defines the class
of regular languages. On the other hand, there is no description
method for the set of all languages – see Corollary 1.4. Hence, there
must be languages that are not regular. Using a similar argument we
see that there must be languages that are not context-free. In this
section we discuss briefly the four types (classes) of languages that
constitute the well-known Chomsky hierarchy of languages. Two
of these types we have seen: the regular (or type-3) and context-
free (or type-2) languages. The other two are the context-sensitive
(or type-1) and the unrestricted-grammar (or type-0, or recursively
enumerable) languages.

7.1 Non-regular languages

The language

{anbn | n ∈ N0} = {λ, ab, a2b2, a3b3, . . .}

can be described by a context-free grammar, but according to the
following result it cannot be described by any regular expression or
NFA! The proof can be found in the appendix.

Theorem 7.1. The language {anbn | n ∈ N0} is not regular.

• Guessing that L is non-regular. If L is regular there is an
NFA recognizing L with N , say, states. Then, at any step of its
computation, the NFA can ‘remember’ up to N facts about the part
of the input it has read so far. Thus, it is not possible to have an
NFA for a language that contains arbitrarily long words with two
‘matching’ parts. For example, to recognize anbn, an NFA would
have to remember the number of a’s it has read, so that when the
first b is read, the NFA tries to match the number of b’s.

The language of arithmetic expressions is non-regular because of
the unbounded number of matching parentheses ‘(’, ‘)’ that could
occur in such expressions. Similarly C++ and Java are not regular
languages.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 135

Note that the above explanations are not mathematical proofs.
Proofs of such statements in the mathematical sense are based on the
Pumping Lemma of regular languages, which is omitted here. We
refer the interested reader to [24, 23], for instance. Another method
for non-regularity is described next.

• A method for proving that an infinite L is non-regular.
The method relies on a language K that is known to be non-regular.
First, we assume that the given L is regular. Then, we find a language
L′ that is regular and satisfies K = L∩L′. As the intersection of two
regular languages is regular (recall Theorem 5.3), K must be regular
as well, which is a contradiction. Note The same method applies
if, instead of the intersection ‘∩’, we use another operation such as
union: ‘∪’, set-difference: ‘−’, concatenation, etc.
Ex. 7.1. Using the fact that K = {anbn | n ∈ N0} is not regular,
we show that the language

L = {anbn | n ∈ N0, n ≥ 2}

is not regular as well. Observe that L is equal to K − {λ, ab}.

1. Assume: L is regular.

2. {λ, ab} is regular: recall all finite languages are regular.

3. L ∪ {λ, ab} is regular: by Theorem 5.6 and lines 1, 2.

4. L ∪ {λ, ab} is not regular: by Theorem 7.1.

5. Contradiction: lines 3, 4. Hence L is not regular.

7.2 Back to Context-free Languages

We have seen languages that are not regular and we know that there
are languages that are not context-free. In this section we estab-
lish the relationship between regular and context-free languages, and
show an example of a language that is not context-free.

Theorem 7.2. Every regular language is context-free. Moreover,
there is a context-free language that is not regular. Hence,

L(REX) (L(CFG).

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 136

M = s q =⇒ G = “Xs; Xs → aXs | bXq;
Xq → λ | bXq”

b

a b

Figure 32: Construction in Theorem 7.2: NFA to context-free
grammar.

Proof. The language in Theorem 7.1 is context-free, but not regu-
lar. Next we show that every regular language L is context-free.
More specifically, we assume that L is accepted by some NFA M =
(Q,Σ, s, T, F) and we construct a context-free grammar G such that
L(G) = L(M) = L. The required grammar consists of the following:
(i) variables

{Xq | q ∈ Q},
that is, one variable Xq for each state of M , (ii) start variable Xs,
where s is the start state of M , and (iii) rules

{Xp → σXq | (p, σ, q) ∈ T} ∪ {Xf → λ | f ∈ F},

that is, one rule for each transition (p, σ, q) and one rule for each final
state f . Fig. 32 shows an example of this construction. Now we see
that, for each word w = σ1 · · · σn, there is a computation of M

(s, σ1, q1), (q1, σ2, q2), . . . , (qn−1, σn, qn)

accepting the word w iff there is a derivation of the grammar G

Xs ⇒ σ1Xq1 ⇒ σ1σ2Xq2 ⇒ · · · ⇒ (σ1 · · · σn)Xqn ⇒ σ1 · · · σn

generating the word w. Hence, L(G) = L(M), as required.

The next theorem gives the most famous non context-free language.

Theorem 7.3. There exists no context-free grammar generating the
language

{anbncn | n ∈ N0}.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 137

• Some closure and non-closure properties. Let L,L′ be two
context-free languages. Then
– L ∪ L′ and L∗ are context-free languages.
– L ∩ L′ and L are not necessarily context-free.
– If R is regular then L ∩R is (always) context-free.

7.3 Context-sensitive & Unrestricted Grammars

Here we define another class of languages that properly contains the
class of context-free languages. For this class, we extend the concept
of grammar by allowing, in addition to context-free rules, rules in
which the variable of the rule can be replaced with a word only
if there is a certain pattern to the left and/or to the right of the
variable.

• Context-sensitive rule. This is an expression of the form

α→ β

such that α, β ∈ (Σ ∪ V)∗, that is, α, β are any strings involving
terminal symbols and/or variables, and α contains at least one
variable . Obviously, if α is a single variable, then the rule is simply
a context-free rule. The context-sensitive rule

0X11→ 01011

says that X can be replaced with 10 if there is a 0 on the left of
X and 11 on the right of X. This rule can be applied to strings
containing 0X11. For example,

010X11X11⇒ 0101011X11.

• Context-sensitive grammar (CSG).
This is a quadruple (V,Σ, S,R) such that V , Σ, S, are the alphabet of
variables, the terminal alphabet and the start symbol, as in the case
of CF grammars, and R is a set of context sensitive rules. Moreover,
in every rule α → β we have that |α| ≤ |β|. The possible exception
to that is to have the rule S → λ, in which case S does not occur
in the right side of any rule. As usual, we write L(CSG) for the
class of languages generated by context-sensitive grammars – these
languages are simply called context-sensitive languages.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 138

Ex. 7.2. The language {anbncn | n ∈ N0} is context-sensitive. Here
is a context-sensitive grammar from [15]:

S → λ | T
T → aTBc

T → abc

cB → Bc

bB → bb

When the second rule is applied repeatedly, the grammar generates
equal numbers of a’s, B’s and c’s. Then, the third rule generates one
extra a, a b and a c. However, the B’s have to move to the left of c’s.
This is achieved using the fourth rule. The last rule can be applied
only if there is a b to the left of a B and, when this happens, there
can be no c’s to the left of any b.

• Unrestricted grammar (UNG). This is a quadruple (V,Σ, S,R)
such that V , Σ, S, are the alphabet of variables, the terminal alpha-
bet and the start symbol, as in the case of CF grammars, and R is
a set of context sensitive rules. (Note there is no restriction on the
rules as in the case of context-free, or context-sensitive, grammars.)
The grammar in the previous example is an unrestricted.

• Chomsky Hierarchy of Languages. The following hierarchy of
language classes holds

L(REX) (L(CFG) (L(CSG) (L(UNG).

Each of the various description methods for languages (regular ex-
pressions, context-free grammars, etc) defines a certain class of lan-
guages. A question that arises is whether there are other formal
methods that are capable of describing languages and, in particular,
languages that cannot be described by unrestricted grammars. We
investigate this question in the section on Turing Machines.

Exercises of Sections 7.1–7.3

Ex. 7.3. Draw the state diagram of a DFA accepting the following
language

{(ab)na | n ∈ N0}.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 139

Then, use the method in Theorem 7.2 to construct a context-free
grammar generating the same language.

Ex. 7.4. Is the following language regular? Prove your answer.

{a2nb2n | n ∈ N0}.

Hint: Observe that the given language consists of all words that
belong to the language of Theorem 7.1 and have an even number of
a’s followed by an even number of b’s.

Ex. 7.5. Is the following language regular? Prove your answer.

{wabn | n ∈ N ∧ |w| = n− 1}.

Ex. 7.6. Using the fact that {anbn | n ∈ N0} is not regular, show
that the language

L = {anbm | m ≥ n ≥ 0}

is not regular as well.

Solution. 1. Assume: L is regular.

2. LR = {bman | m ≥ n ≥ 0} is regular: by Theorem 5.7.

3. L′ = {ambn | m ≥ n ≥ 0} is regular: rename a as b and b as a.

4. L ∩ L′ is regular: by Theorem 5.3 and lines 1, 3.

5. L ∩ L′ = {anbn | n ≥ 0}: anbm ∈ L ∩ L′ iff n = m.

6. L ∩ L′ is not regular (the known non-regular language).

7. Contradiction on lines 4, 6.

8. Hence, L is not regular.
2

Ex. 7.7. The language {ww | w ∈ {a, b}∗} is not context-free. Give
a context-sensitive grammar generating this language.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 140

7.4 Pushdown Automata

We describe here a type of finite-state machines that are appropriate
for parsing (recognizing) complex strings such as arithmetic expres-
sions. The machines are called deterministic pushdown automata
(DPDA). We shall omit the general case of nondeterministic push-
down automata (NPDA), but we note that (i) the class of languages
recognized by NPDA is exactly the class of context-free languages,
and (ii) the class of languages recognized by DPDA is a proper subset
of the class of context-free languages.

A (deterministic) PDA

M = (Q,Σ,Γ, q0, F, T)

is an NFA equipped with a stack data structure (a string) where
symbols of the stack alphabet Γ can be pushed (added) on, or popped
(deleted) from, the top of the stack (= beginning of the string),
depending on the current state, current input symbol, and the top
symbol of the stack. Thus, a transition of M is a tuple of the form

(p, σ, t/z, q)

and says that, at state p ∈ Q, if the current input symbol is σ ∈ Σ
and the top stack symbol is t ∈ Γ, then M can replace t with z ∈ Γ∗

and go to state q. Note that replacing the top t of the stack with λ is
equivalent to popping (deleting) from the stack, and replacing t with
a string of the form yt is equivalent to pushing (adding) y on the top
of the stack. The machine is deterministic: given state p, input σ
and top of stack t, there is at most one transition that matches these
characteristics, that is, a transition of the form (p, σ, t/ ,).

As usual, there is a start state q0 and a set F of final states.
Initially, the stack consists of one special bottom symbol $. Moreover
we assume that every input word ends with the special end of input
symbol # that is not in Σ. A computation of M is a sequence of
consecutive transitions

(p0, σ1, t1/z1, p1), (p1, σ2, t2/z2, p2), . . . , (pn−1, σn, tn/zn, pn),

such that when a transition with label “σi, ti/zi” is performed the top
of the stack is ti and the next input symbol is σi. In each transition,
the machine reads the next input symbol and possibly alters the top

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 141

0 1
#, $/$

(, (/((

), (/λ

(, $/($

Figure 33: Deterministic PDA accepting the words of bal-
anced parentheses.

of the stack. The computation is accepting if p0 is the start state
and pn is a final state. The language accepted, or recognized, by M
is the set of all words σ1 · · · σn formed by concatenating the input
labels in an accepting computation of M .

Ex. 7.8. We show a computation of the DPDA in Fig. 33 accepting
the word (())(). We also show the stack contents before each tran-
sition. We use $ for the bottom of the stack, and ^ for the empty
word.

stack transitions

$ 0, (, $ / ($, 0

($ 0, (, (/ ((, 0

(($ 0,), (/ ^, 0

($ 0,), (/ ^, 0

$ 0, (, $ / ($, 0

($ 0,), (/ ^, 0

$ 0, #, $ / $, 1

$ end

• Designing DPDAs. Many simple context-free languages can be
recognized by DPDAs having a few states. For more complex lan-
guages L, a starting point in designing a DPDA could be as follows.
First, find the set Fλ of all possible symbols that appear in the be-
ginning of the words of L. Then, for each symbol σ ∈ Σ, find the
set Fσ of all possible follow-up symbols, that is, the symbols that
immediately follow σ in the words of L. Then use this information
to construct the states and transitions of the DPDA.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 142

0 1 2 3
a, $/a$

a, a/aa b, a/λ

b, a/λ #, $/$

Figure 34: Deterministic PDA accepting {aibi | i ≥ 0}.

Ex. 7.9. Design a DPDA accepting all function calls of the form

f() f(x) f(x,f(x)) f(f(),f(x,f()))

More specifically, we want the function calls generated by the follow-
ing grammar

S; S → f() | f(L); L→ P | P,L; P → x | S

where ‘,’ is part of the terminal alphabet and is used to separate the
parameters in a function call.

Solution. The terminal alphabet is { f x , () }. We observe that
the “follow-up symbols” are as follows:

Fλ : f

Ff : (

F(:) x f

F) :) , #

Fx :) ,

F, : f x

Then, we use this information to design the states and transitions of
the required DPDA – see Fig. 35. 2

• Designing DPDAs (cont’d). The language L for which we want
to design a DPDA could be given via a context-free grammar. Re-
call here that DPDAs cannot recognize all context-free languages. If,
however, we are convinced that the given language L is a DPDA lan-
guage, we can use the rules of the grammar to help us in determining
the possible symbols appearing next to a given σ. In particular we

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 143

λ f ()

x ,

#
f, $/$ (, t/(t), (/λ #, $/$

f, t/t

x, t/t
, , t/t), t/λ

, , t/t

x, t/t

f, t/t

), (/λ

Figure 35: Deterministic PDA accepting function calls.

like to see rules of the form X → σβ. In this process, we try to elim-
inate left recursive rules. These are rules of the form X → Xβ, that
is, the right-hand side of the rule starts with the variable of the left-
hand side. More specifically, we replace all left recursive rules with
a set of rules that are not left recursive such that the new grammar
generates the same language.

• Eliminating left recursion. When we are given a context-free
grammar containing a variable X with left recursive rules, we can
replace them with non left recursive ones as follows. Let

X → Xβ1 | · · · | Xβn

be all the left recursive rules for X, and let

X → α1 | · · · | αm

be all the other rules for X. We introduce a new variable B and
replace all the above rules with the following ones

X → α1 | · · · | αm | α1B | · · · | αmB

B → β1 | · · · | βn | β1B | · · · | βnB.

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 144

Of course this process is meaningful when all αi’s are nonempty. It
can be shown that we can always convert the given grammar to one
with no rules of the form Z → λ, without changing the language it
recognizes except possibly for the empty word [23].

7.5 Implementing PDAs in Prolog

We use an approach similar to that in the Implementation of NFAs –
see Section 5.7. We use $ as the stack bottom symbol. The transition
predicate is tr([Q,β,Z,P,R]) such that Q is the current state, β is a
symbol or the empty word [], Z is the stack top, P is the string that
replaces Z, and R is the next state. Our implementation works also
for nondeterministic PDAs, as it allows one to include λ-transitions.
These are transitions of the form (q, λ, z/p, r) that are implemented
as tr([Q,[],Z,P,R]).

accept(Q, [], _) :- final(Q).

accept(Q,[C|T1],[Z|T2]) :- tr([Q,C,Z,P,R]),

append(P,T2,Y),

accept(R,T1,Y).

accept(Q,T1,[Z|T2]) :- tr([Q,[],Z,P,R]),

append(P,T2,Y),

accept(R,T1,Y).

runPDA(W) :- start(Q), accept(Q,W,[$]), !.

runPDA(F,W) :- consult(F), runPDA(W).

Here is the Prolog description of the DPDA shown in Fig. 34.

states(4).

start(0).

final(0).

final(3).

tr([0, a, $, [a,$], 1]).

tr([1, a, a, [a,a], 1]).

tr([1, b, a, [], 2]).

tr([2, b, a, [], 2]).

tr([2, #, $, [$], 3]).

7 LANGUAGE TYPES & PUSHDOWN AUTOMATA 145

Exercises of Sections 7.4,7.5

Ex. 7.10. Show the computation of the DPDA in Fig. 34 on the
word aabb. Show the stack contents before each transition.

Ex. 7.11. Design a DPDA accepting the language

{anb2n | n ∈ N0}.

Ex. 7.12. Design a DPDA accepting arithmetic expressions involv-
ing only integers, the operations in {+,−, ∗, /} and parentheses. For
example, your DPDA should accept the expressions

-27 -((+35)) (23*(-7+49))/(5-32)

Ex. 7.13. Write the Prolog description of the DPDA shown in
Fig. 33.

8 TURING MACHINES & UNDECIDABILITY 146

8 TURING MACHINES & UNDECIDABI-
LITY

In the 1930’s there were several attempts to give a rigorous mathe-
matical definition of the informal concept of algorithm . The most
successful attempt was made by Alan Turing in [22]. He defined a
set of “machines” that are now called Turing Machines (TMs). A
TM M is deterministic (unless noted otherwise) and accepts a cer-
tain language L(M). Unlike the previous machines we have seen, an
arbitrary TM can be of the type that, for some input word, the com-
putation is infinite, that is, the machine performs transitions forever,
and never returns any value.

Informally, an arbitrary TM can be viewed as a program that
attempts to make a decision on the given input word. The particular
type of decision TMs are exactly those whose computations are finite
for all input words. So, a decision TM can be viewed as a decision
program (see Section 1.3) that always halts and returns an answer in
{YES, NO}, for all possible input words. It is this type of TM that
constitutes the mathematical definition of the concept of algorithm.

8.1 Turing Machines (TMs)

A (deterministic) Turing machine (TM) is a tuple

M = (Q,Σ,Γ, q0, T, F)

such that the following hold.

• Q is a finite nonempty set of states, which includes the start,
or initial, state q0, and F is a subset of Q called the set of final
states.

• The machine has a tape consisting of cells such that the first
cell is on the left end of the tape, and the tape is unbounded
on the right (conceptually, there are infinitely many cells on
the right). Initially, each cell contains the blank symbol B,
except for the cells containing the input word over the input
alphabet Σ, which is written starting on the second cell of the
tape (one input symbol per cell). The alphabet Σ is a subset
of the tape alphabet Γ and B ∈ Γ − Σ. There is a read/write

8 TURING MACHINES & UNDECIDABILITY 147

Head that is placed initially on the second cell of the tape. So
when the input is abbab the initial tape contents are

B a′ b b a bB

where the prime indicates the position of the Head. Concep-
tually, there are infinitely many blank cells following the last
blank cell.

• T is the set of transitions. Each one is of the form (q, t/s, µ, p)
and has the following meaning: if at state q the Head reads
the tape symbol t, then t is replaced with the tape symbol s,
the Head performs the one cell move µ ∈ {Left, Right }, and
the machine goes to state p. As the machine is deterministic,
each state q has at most one transition of the form (q, t/ , ,)
where t is a tape symbol. In particular, there are no transitions
going out of the final states, that is, if f is a final state then
there are no transitions of the form (f, / , ,). We note that
an attempt to move the Head to the left of the first cell would
have no effect, that is, the Head would remain on the first cell.
On the other hand, the Head can always move to the right.

• Language accepted by a TM M .
Given an input word w ∈ Σ∗, a Turing machine M starts at the start
state with the input w and the Head initialized as noted above, and
performs transitions. Then there are three cases:

1. The machine halts at a final state. In this case, we say that
M accepts the input w and returns YES:

M(w) = YES.

2. The machine halts at a non-final state. In this case, we say
that M does not accept (or rejects) w and returns NO:

M(w) = NO.

3. The machine loops, that is, it continuously performs transi-
tions never reaching a final state. In this case, we say that
again M does not accept (or rejects) the input w, but now M
does not return any value:

M(w) =∞.

8 TURING MACHINES & UNDECIDABILITY 148

0 1 2 3

4 5

a/X,R #/#, R B/B, L

X/X,R

a/Y,L

a/a,R Y/Y,R

t/t, L

#/#, L
a/X,R

Figure 36: Turing machine accepting {an#am | n > m ≥ 0}.
The machine loops on certain non-accepted input words.

A computation of M is a sequence of consecutive transitions

(p0, t1/s1, µ1, p1), (p1, t2/s2, µ2, p2), . . . , (pn−1, tn/sn, µn, pn),

such that when a transition with label “ti/si, µi” is performed the
Head is on a cell containing the symbol ti. If p0 is the start state,
pn is a final state, and the computation starts with the tape con-
taining initially some input w ∈ Σ∗, then the computation is called
an accepting computation. Obviously, M accepts a word w iff the
computation of M on input w is accepting.

Definition 8.1. The language L(M) accepted by a TM M is the set
of all input words accepted by M , or equivalently the set of all words
w such that M(w) = YES, or equivalently the set of all words w
such that the computation of M on w is accepting. In mathematical
notation:

L(M) = {w ∈ Σ∗ |M(w) = YES}
= {w ∈ Σ∗ | the computation of M on input w is accepting}

• State diagrams for TMs. As in the case of automata, we shall
draw state diagrams for TMs using the same notation for drawing
states and transitions.

Ex. 8.1. The TM in Fig. 36 accepts input words of the form an#am,
with n > m ≥ 0, where the input alphabet is {a,#}. The tape

8 TURING MACHINES & UNDECIDABILITY 149

alphabet also includes the symbols X,Y . The machine expects to
see first the symbol a, which it replaces with X, and then skips any
a’s and the # until it, either finds a blank in which case it halts at a
final state, or finds an a, which it replaces with Y and goes to state
5 where then goes back left to find more a’s – there should be more
a’s on the left of # than on the right.

Ex. 8.2. Next we show the accepting computation of the TM of
Fig. 36 on input aa#a. Initially, the tape contents are

B a’ a # a B

where B is the blank symbol and ’ indicates the position of the Head
(shown here on the second cell).

Tape Transitions

B a’a # a B 0 a/X,R 1

B X a’# a B 1 a/a,R 1

B X a #’a B 1 #/#,R 2

B X a # a’B 2 a/Y,L 5

B X a #’Y B 5 #/#,L 5

B X a’# Y B 5 a/a,L 5

B X’a # Y B 5 X/X,R 4

B X a’# Y B 4 a/X,R 1

B X X #’Y B 1 #/#,R 2

B X X # Y’B 2 Y/Y,R 2

B X X # Y B’ 2 B/B,L 3

B X X # Y’B halts

Note that if the input is of the form an##x, for some n ∈ N and any
word x, then the machine loops due to the transitions from states 1
to 2 and from 2 to 1. The next computation demonstrates this for
the case where the input is a##.

Tape Transitions

B a’# # B 0 a/X,R 1

B X #’# B 1 #/#,R 2

B X # #’B 2 #/#,L 1

B X #’# B loops...(repeats forever the last 2 transitions)

8.2 Recursively enumerable languages

The next theorem asserts that unrestricted grammars and Turing
machines describe the same class of languages. These languages are

8 TURING MACHINES & UNDECIDABILITY 150

called recursively enumerable.

Theorem 8.1. L(UNG) = L(TM).

•Why called “recursively enumerable” languages? The fol-
lowing theorem explains the use of the terms ‘recursively’ and ‘enu-
merable’. The second term has to do with enumerating, or listing, the
words of the language in question. Of course, we have seen that ev-
ery language is enumerable (= countable) in the mathematical sense.
However, the term ‘recursively’ says that the enumeration is doable
algorithmically – in the first days of computing theory one approach
to defining algorithms was the recursive functions of Kleene [12].

Theorem 8.2. If a language L is recursively enumerable then there
is a program that (ultimately) prints w, for each w ∈ L.

We note that the words of a recursively enumerable language are
printed, in general, in no particular order.
2

People have proposed other formal methods for describing languages
(including nondeterministic TMs – see the next sections). None of
these formal methods can describe languages that are not recursively
enumerable. On the other hand, we know that there exist languages
that are not recursively enumerable (recall, the set of languages is
uncountable and the set of grammars is countable). So the question
is whether we can at least describe informally some non-recursively
enumerable languages.

• Turing Machine Encodings and the Diagonal Language. A
TM M is a mathematical object that can be expressed as a binary
word 〈M〉 using a certain encoding method – we do something similar
with numbers: a number is a mathematical concept which can be
expressed in binary notation. This will allow us to give the encoding
〈M〉 as input to another Turing machine. This idea should not be
surprising. For example a compiler, which is a program, takes as
input a program P and tells us whether P contains any syntax errors.

Theorem 8.3. The following language, called diagonal language, is
not recursively enumerable

Ldiag = {〈M〉 |M is a TM and 〈M〉 /∈ L(M)}.

8 TURING MACHINES & UNDECIDABILITY 151

The above language consists of all TM encodings 〈M〉 such that M
does not accept its own encoding as input!

Proof. By definition of Ldiag, for any TM encoding 〈M〉, we have

〈M〉 ∈ Ldiag ↔ 〈M〉 /∈ L(M). (2)

Assume for the sake of contradiction that Ldiag is recursively enu-
merable, that is, there is a TM Md accepting Ldiag, hence, Ldiag =
L(Md). Then in (2), if we instantiate M as Md we get

〈Md〉 ∈ L(Md)↔ 〈Md〉 /∈ L(Md),

which is a contradiction. Hence, the language Ldiag is not recursively
enumerable.

• Sample Encoding of Turing Machines. Consider the prefix
code14

C = {11, 0m1 | m ∈ N} = (11 + 0+1).

Given a TM M = (Q,Σ,Γ, q0, T, F) we shall encode the states Q,
the tape symbols Γ, and the move symbols {Left, Right} using the
codewords in 0+1. The codeword 11 will be used as a separator. In
particular,
– The start state q0 is encoded as 01.
– The rest of the states are encoded using 001, 0001, etc.
– The blank is encoded as 01.
– The rest of the tape symbols are encoded using 001, 0001, etc.
– Left, Right are encoded as 01, 001, respectively.

If α is any of the above objects, we shall write ᾱ for the codeword
for α. For example, q̄0 = 01 and Right = 001. Each transition
(p, t/s, µ, q) is encoded as p̄t̄s̄µ̄q̄. If the sets of final states and tran-
sitions are

F = {f1, . . . , fm} and T = {(pi, ti/si, µi, qi) | i = 1, . . . , N},

respectively, then we encode the machine M as

〈M〉 = f̄1 · · · f̄m 11 p̄1t̄1s̄1µ̄1q̄1 · · · p̄N t̄N s̄N µ̄N q̄N11,

14Recall a language C is called a prefix code, if no C-word is a prefix of another
C-word, that is, C contains no two distinct words of the form w and wx.

8 TURING MACHINES & UNDECIDABILITY 152

that is, the prefix f̄1 · · · f̄m 11 indicates the final states terminated
with 11, and the rest of the encoding is the list of transitions fol-
lowed by 11. For example, with respect to the TM M in Fig. 36,
assuming that the codewords for states 1, 2, 3 are 001, 0001, 00001,
respectively, for a is 001, for # is 0001, and for X is 00001, then the
first few bits of 〈M〉 are as follows

00001 11 0100100001001001 001001001001001

Using the same notation we can encode any input word w = σ1 · · · σn
as a binary codeword

〈w〉 = σ̄1 · · · σ̄n.
For example, 〈a#a〉 = 0010001001.

• Universal Language / Universal Turing Machine. The fol-
lowing language is of particular importance in computation theory:

L(U) = {〈M〉〈w〉 |M halts on input w}.

This language is called the universal language and consists of all
words of the form 〈M〉〈w〉 such that 〈M〉 is the encoding of a TM
M that halts on input w.

Theorem 8.4. The universal language L(U) is recursively enumer-
able.

The proof of the above theorem is based on the existence of a
TM U accepting the universal language – the machine U is called
universal as well. This machine simulates the execution of any TM
M on any input w, that is,

U(〈M〉〈w〉) = M(w).

The universal machine resembles a modern general purpose computer
that is capable of executing any program on a given input.

8.3 Decidable Problems / Recursive Languages

It is evident that the description of a TM can be viewed as a com-
puter program and, in fact, it appears that TMs constitute the cor-
rect mathematical model for the concept of algorithm. However,

8 TURING MACHINES & UNDECIDABILITY 153

1 2

a/a,R
X/X,R

3

b/b,R
X/X,R

X/X,L
4Y

a/X,R b/X,R

c/X,L

B/B, R

B/B, L

X/X,R

σ/σ,L

Figure 37: Decision Turing machine.

most people expect that an algorithm should behave nicely on all
possible inputs, that is, the algorithm should always halt. For this
reason, we restrict here our attention to TMs that halt on every input
word. These machines formalize the concept of decision algorithm,
or decision program, and can be used to solve decision problems15.

• Decision TMs and Recursive languages. A decision TM is
a Turing machine M that halts on every input w. A language L is
called recursive if it is accepted by a decision TM.

Ex. 8.3. The decision TM in Figure 37 accepts the non-context-free
language L = {anbncn | n ∈ N0}. The input alphabet is Σ = {a, b, c},
and the tape alphabet is Γ = {a, b, c,B,X}. The machine replaces
the 1st a with X and then attempts to do the same with the 1st
b and the 1st c. It goes back to the 1st cell (which is blank – see
transition from state 4 to state 1) and repeats the previous action
until there are no a’s left. If the input is in the given language L
then the machine halts at state Y and every input symbol has been
replaced with an X.

Theorem 8.5. If a language L is recursive then L is recursive.

15Recall that a decision problem is a computing problem with exactly two
possible answers, YES and NO, and that, mathematically, a decision problem is
defined to be a language such that any word in the language corresponds to a
YES-input and any word outside of the language corresponds to a NO-input.

8 TURING MACHINES & UNDECIDABILITY 154

• Decidability and the Church-Turing thesis. Recall from Sec-
tion 1.3, a problem L is decidable if there is a decision program such
that, on every input w, the program returns YES if w is in L, or
returns NO if w is not in L.

Theorem 8.6. 16 A problem L is decidable iff there is a decision
TM accepting L (that is, L is recursive as a language).

In practice, the above theorem says that anything we can decide using
modern computers can also be accepted by decision TMs, and vice
versa! In fact, there has been plenty of evidence that decision TMs
can accept any languages that can be decided by any other means.
For this reason the concept of decision TM is used as a rigorous
mathematical definition for the informal concept of algorithm. This
interpretation of TMs is known as the Church-Turing thesis. Here is
another way to phrase it:

• For any possible algorithmic process that solves a decision prob-
lem, there is a decision TM solving that problem.

8.4 Undecidable problems / Non-recursive languages

Recall again in Section 1.3 we established that there are undecidable
problems (or non-recursive languages) using the counting argument
that there are more decision problems than programs. We shall give
now concrete examples of these objects.

Theorem 8.7. Every recursive language is recursively enumerable.

Recall Theorem 8.3 says that the diagonal language Ldiag is not re-
cursively enumerable. Hence, the above theorem implies that Ldiag

is not recursive either. We give next more examples of non-recursive
languages that are more relevant when viewed as decision problems.

• The Halting problem. The first undecidable problem was dis-
covered by Turing [22]. It is called the Halting problem. In terms
of languages, this is the universal language L(U) and the question is
whether, given 〈M〉 and 〈w〉, the TM M halts on input w. In modern

16The statement of this theorem relies on a mathematical definition of ‘decision
program’. Such a definition can be found, for instance, in [13] under the name
Random Access Turing Machine.

8 TURING MACHINES & UNDECIDABILITY 155

terminology, the input consists of17 a program P and a string w, and
the question is whether the program P will halt on input w, that is,

P (w) 6=∞ ?

(or P contains no reachable infinite loop).

Theorem 8.8. The universal language L(U) is not recursive. Equiv-
alently, the Halting problem is undecidable (or, there is no decision
program that computes the Halting problem).

• Informal Proof18. We argue by contradiction, that is, we assume
there is a decision program H that computes the Halting problem,
that is, H behaves as follows when given a program P and string w:

H(P,w) =

{

YES, if P (w) 6=∞
NO, if P (w) =∞

Now we can use H to make another program D as follows.

D(X) {

while (H(X,X)==YES) do nothing;

return YES;

}

If D is given a program P as input, then D loops exactly when
H(P,P) returns YES. Thus, D behaves as follows

For every program P, D(P) =∞ iff P (P) 6=∞.

Then, if we take P = D, we have that

D(D) =∞ iff D(D) 6=∞

which is impossible. Hence, the program H cannot exist.
2

17To be more precise, the input could also be a string that does not consist of a
program P and string w. However, in this case, we simply agree that the answer
to the problem is YES.

18This proof is not rigorous, as it does not refer to a concrete definition of
decision program. It can be made rigorous, however, if we argue in terms of
decision TMs.

8 TURING MACHINES & UNDECIDABILITY 156

• The Post Correspondence Problem (PCP). This is a surpris-
ingly simple looking problem that is undecidable and has been used
to prove that numerous problems about grammars are undecidable.
A domino is a pair of words (u, v) written vertically:

(

u

v

)

Given a set of at least two dominos the question is whether we can
write a finite sequence of such dominos so that the word formed
on the top part of the dominos is equal to the word formed on the
bottom part. For example, for the following set of dominos

(

a

aa

)

,

(

bb

b

)

,

(

a

bb

)

,

we can see that the answer is YES:
(

a

aa

)(

a

bb

)(

bb

b

)(

bb

b

)

.

Theorem 8.9. The Post Correspondence problem is undecidable.

• The Program Equivalence Problem. Here the input consists
of two programs P1 and P2, and the question is whether, for each
input w, the two programs will return the same value.

Theorem 8.10. The Program Equivalence problem is undecidable.

We note that the above problem remains undecidable even when one
of the programs is fixed, that is, when the input consists of only one
program.

Exercises of Section 8

Ex. 8.4. Show the computation of the Turing machine in Ex. 8.3
on the input word abca.

Ex. 8.5. Draw the state diagram of a decision Turing machine
accepting the language L(a∗b+a∗).

Solution. The machine is shown in Fig. 38. 2

8 TURING MACHINES & UNDECIDABILITY 157

1 2 4

3

b/b,R B/B, L

a/a,R

B/B, L

a/a,R b/b,R

a/a,R

Figure 38: Decision Turing machine accepting L(a∗b+a∗)

Ex. 8.6. Draw the state diagram of a decision Turing machine
accepting the language

{w | w ∈ {0, 1}∗ ∧ w = wR}.

Ex. 8.7. With respect to Fig. 38, assume that
– B, a, b are encoded as 01, 001, 0001 (respectively).
– 1, 2, 3, 4 are encoded as 01, 001, 0001, 00001 (respectively).
– Left, Right are encoded as 01, 001 (respectively).
Show the binary encoding of the TM shown in Fig. 38.

Ex. 8.8. Draw the state diagram of a Turing machine that takes
as input a binary word and replaces the word with its reversal. For
example, if the initial tape contents are B 0 1 B the machine will
change them to B 1 0 B.

Ex. 8.9. Is there a PCP solution for the following set of dominos

(

b

a

)

,

(

a

ab

)

,

(

ba

ab

)

?

9 COMPUTATIONAL COMPLEXITY 158

9 COMPUTATIONAL COMPLEXITY

In this section, we consider only problems that are decidable, that
is, solvable via decision Turing machines. However, now we are in-
terested in the time complexity of decision TM computations, in the
first place, and also in the time complexity of decision problems. The
time for a TM computation is simply the length of the computation,
that is, the number of transitions that occur in the computation.

It turns out that, for some important problems that are decid-
able, nobody has ever come up with Turing machines (algorithms)
to solve these problems efficiently . Efficiency here has to do with
the time and space resources required to compute problems. On the
other hand, if we define nondeterministic Turing machines, NTM s,
these problems can be solved efficiently. So the question then be-
comes whether we can convert efficiently a nondeterministic Turing
machine to an equivalent deterministic one. These considerations are
discussed in the next sections.

9.1 Polynomial Complexity

Let M be a decision TM. For each nonnegative integer n, we define

• T (n) to be the length of the longest computation of M on any
input word of length n. The function T (n) is called the (worst
case) time complexity of M .

In most cases, instead of the exact values of the function T (n), we
are interested in the order of magnitude of this function. We say that
the (worst case) time complexity of a decision problem is O(f(n)), if
there is a decision TM that decides the language of the problem in
time T (n), with T (n) = O(f(n)).

Ex. 9.1. Consider the TM M in Fig. 37. Let w be any input word
of length n. If w does not start with an a then M halts immediately.
If w starts with exactly m a’s, for some m ≥ 1, then w is of the
form amz. Obviously w will be accepted iff z = bmcm. In particular,
for each letter a, the machine M attempts to read the tape contents
from left to right replacing one a, one b, and one c with X, and then
M moves the Head to the left end of the tape. If z is not bmcm then
M would not be able to complete this task and would halt at a non-
final state. Else the machine would read the tape contents two times

9 COMPUTATIONAL COMPLEXITY 159

for each letter a. So the tape content is read ≤ 2m times. In the
end, M could read once again the tape contents to make sure that
only X’s are present. So the tape content is read ≤ 2m+ 1 = O(m)
times. As the tape always contains exactly n non-blank cells, the
machines performs O(n) transitions times O(m), in the worst case.
Moreover, as m ≤ n, we have that, in total, the machine performs
O(n2) transitions on any input of length n, that is, T (n) = O(n2).

• Efficiency = Polynomial complexity. In practice, it is diffi-
cult to give a satisfactory definition of the concept efficient TM (or
algorithm). The most successful definition is via polynomial com-
plexities. In particular, in terms of time, a decision TM is efficient if
the time complexity T (n) of the machine is O(nk), for some constant
nonnegative integer k. This definition makes sense when we realize
that algorithms with exponential time complexities of the form 2n,
or higher, are too expensive in practice. For example, even for a
small input of size n = 40, the number 240 is greater than 1 trillion.
Of course, for a large constant k such as k = 100, an algorithm of
time complexity nk is impractical as well. However, in practice most
known polynomial time algorithms have a small value for k.

Language class P = All problems L for which there is a decision TM
accepting L whose time complexity is O(nk), for some k ∈ N0,
(i.e., polynomially bounded).

Note: Problems in P are also called tractable. Those not in P are
called intractable. Again, recall that, in both cases, the problems are
decidable.

• Important type of question. Given a decidable problem L,
we would like to know whether L is in P (i.e., whether there is an
efficient algorithm to compute the problem).

• An intractable language. Generally it is difficult to find exam-
ples of practical problems that are provably intractable (i.e., not in
P). A somewhat artificial problem is given next.

Theorem 9.1. The following problem is decidable but intractable,
that is, the language is recursive but not in the class P

{〈M〉〈w〉 | the TM M accepts w using ≤ 2|w| transitions}

9 COMPUTATIONAL COMPLEXITY 160

9.2 Decision problems of unknown time-complexity

There are many decidable problems of practical significance for which
nobody has ever exhibited polynomial time algorithms to decide such
problems. Such problems are usually called combinatorial prob-
lems. Next we list a few of these problems.

• SAT = the Satisfiability problem. Given a set of propositional
clauses involving n variables, decide whether the set is satisfiable (i.e.,
whether there is a model = a valuation for which all clauses are true).
The problem is decidable because we can construct the truth table
for the given clauses and find whether one of the valuations in the
table is a model. However, this is an exponential process, as the
table involves 2n rows. Nobody has ever found a polynomial-time
algorithm for this problem.

• 3SAT. This problem is the same as SAT with the restriction that
each clause contains exactly three literals. Despite this restriction,
the time-complexity of this problem is not known to be polynomial.

• The Travelling Salesman problem. Given a number of cities
and the costs of travelling from any city to any other city, what is
the least-cost round-trip route that visits each city exactly once and
then returns to the starting city? This is not a decision problem.
However, we can modify it to a decision problem as follows: given
a bound B and the cities data, decide whether there is a round-trip
route whose cost is at most B.

• The Hamilton Cycle problem. Given a graph, decide whether
there is a cycle that goes through every vertex exactly once.

• The integer partition problem. Given a set of integers, decide
whether we can partition the set into two parts such that the sums
of the integers in the two parts are equal.

• Nondeterministic algorithms. The previous problems have the
following common characteristic. There are many possible combina-
tions of tests we can perform on the given input in order to decide
whether to return YES. Usually this number is exponential with re-
spect to the size of the input. For example in the 3SAT problem, if

9 COMPUTATIONAL COMPLEXITY 161

the input involves n different variables, there are 2n possible valua-
tions, and each valuation is tested to see whether it makes the clauses
true. A nondeterministic algorithm would perform all tests in par-
allel and return YES if at least one test succeeds, or NO otherwise.
We also say that the nondeterministic algorithm always guesses the
right test for the given input, if indeed it is a YES-input. The time
required to perform a test is usually polynomially bounded.

Ex. 9.2. [A nondeterministic algorithm for 3SAT] Given the input
clauses C1, . . . , Ck involving n different variables p1, . . . , pn, do the
following

- Guess a combination val = (v1, . . . , vn) of
truth values for the n variables.

– For each clause Ci, test whether val(Ci) is T.
– If all Ci’s are true under val, output YES.

- Output NO.

Being nondeterministic, the above algorithm guesses a valuation val
that makes all clauses true, if indeed such a valuation exists. Evalu-
ating whether Ci is true requires looking up the truth values of the
three variables in Ci. This is an O(n)-time task. Thus, evaluating
k clauses takes time O(kn), which is polynomially bounded. If the
guessed valuation does not make all clauses true, then the output is
NO.

9.3 NP-completeness

Many combinatorial problems like 3SAT can be solved in polynomial
time using nondeterministic algorithms. The concept of nondeter-
ministic algorithm is formalized next using nondeterministic TMs.

• Nondeterministic TMs (NTMs). In a nondeterministic TM
M , for a given state q and tape symbol t, there could be two different
transitions of the form (q, t/ , ,). A word w belongs to L(M) iff
there is at least one accepting computation of M on input w. A
decision NTM is a NTM M that halts on every input.

Theorem 9.2. We have that L(NTM) = L(TM), that is, a language
is accepted by some NTM, iff it is accepted by some (ordinary) TM.
Moreover, a language L is accepted by some decision NTM iff L is
accepted by some decision TM (that is, L is recursive).

9 COMPUTATIONAL COMPLEXITY 162

Language class NP = All problems L for which there is a nondeter-
ministic decision TM M accepting L and the time complexity
of M is O(nk), for some k ∈ N0, (i.e., polynomially bounded).

• Problems in NP . All the problems listed in Section 9.2 belong
to the class NP , that is, there are NTMs deciding these problems
in polynomial time. Unfortunately, as noted already, we know of
no ordinary (deterministic) algorithms deciding these problems in
polynomial time.

• The most famous open problem in CS.

Is P = NP ?

We know for fact that P ⊆ NP , but nobody has ever proved the
converse. In fact, most people believe that the two classes are not
equal. The most promising approach to address the P = NP ques-
tion is the theory of NP-completeness, which requires the concept of
polynomial reduction.

• Problem reduction. Informally, we say that problem L reduces
to L′ to mean that if I know how to decide L′ then also L can be
decided by mapping somehow L to L′. More formally, we say that L
is (effectively) reducible to L′, if there is a program P that halts on
all inputs w such that “w ∈ L iff P (w) ∈ L′.” Thus, if I can decide
L′ then I can also decide L as follows: Given an input w, run P to
get the value P (w). Then, decide whether P (w) ∈ L′. If YES then
also w ∈ L so return YES; else return NO.

• Polynomial reductions. We say that problem L is polynomially
reducible to L′ if there is a program as above whose time complexity
is polynomially bounded.

• NP-complete problem. This is a decision problem L that (i) be-
longs to the class NP , and (ii) every problem in NP is polynomially
reducible to L.

•Why is this important?. The significance of this concept is
that if we can solve an NP-complete problem L deterministically in
polynomial time then every other problem in NP can also be solved
deterministically in polynomial time. Hence, this would imply that
P = NP . Obviously, if L is proved to be not in P then P 6= NP .

9 COMPUTATIONAL COMPLEXITY 163

Theorem 9.3. (Cook-Levin Theorem) There exist NP-complete prob-
lems.

• How to show that a problem L is NP-complete using a
known NP-complete problem L′. First we show that L is in NP,
that is, there is a nondeterministic algorithm (or NTM) deciding
L in polynomial time (at most). Second, we show that there is a
polynomial reduction from L′ to L, that is, a polynomially bounded
algorithm P such that “w ∈ L′ iff P (w) ∈ L.”

Ex. 9.3. Explain how you would show that the Hamilton Cycle
problem is NP-complete using the fact that SAT is NP-complete.

Solution. First I would show a polynomially bounded nondeterminis-
tic algorithm that decides whether a given graph contains a Hamilton
cycle. Then I would show a polynomially bounded algorithm P that
maps every set of clauses C to a graph P (C) such that C is satisfiable
iff the graph contains a Hamilton cycle. 2

10 APPENDIX: VARIOUS PROOFS 164

10 APPENDIX: various proofs

Here we list the proofs of a few of the theorems in the preceding
sections.

• Proof of Lemma 6.4. We follow the presentation in [5]. We
assume that the source involves n events. For the first part we shall
use the Kraft inequality (see Theorem 6.1) and the fact that, for
every real x > 0,

log x ≤ (x− 1) log e,

where e is the constant 2.718281 · · ·. We assume that ℓ1, . . . , ℓn are
the lengths of the words in K. We have

H(p̃)− ℓp̃(K) = −
∑

i

p̃(i) log p̃(i)−
∑

i

p̃(i)ℓi

= −
∑

i

p̃(i)(log p̃(i) + ℓi)

= −
∑

i

p̃(i)(log p̃(i) + log 2ℓi)

=
∑

i

(p̃(i) log
1

p̃(i)2ℓi
)

≤
∑

i

p̃(i)(
1

p̃(i)2ℓi
− 1) log e

= log e
∑

i

(2−ℓi − p̃(i))

= log e(
∑

i

2−ℓi −
∑

i

p̃(i))

≤ log e (1− 1) = 0.

For the second part we use again the Kraft inequality and the concept
of Shannon length, which is the quantity ℓi = ⌈− log p̃(i)⌉. This gives
that ℓi ≥ − log p̃(i) and 2−ℓi ≤ p̃(i). If we take the sum over all the
i’s we get

∑

i

2−ℓi ≤
∑

p̃(i) = 1.

By Theorem 6.1, there is a prefix code K0 of n codewords whose

10 APPENDIX: VARIOUS PROOFS 165

words have lengths ℓ1, . . . , ℓn. As ℓi < − log p̃(i) + 1, we have

ℓp̃(K0) =
∑

i

p̃(i)ℓi <
∑

i

p̃(i)(− log p̃(i) + 1) = H(p̃) + 1.

2

• Proof of Lemma 6.6. If we show that, for k ≥ 2, H(p̃k) =
H(p̃) + H(p̃k−1) then the claim will follow easily. We use the term
Pk−1 as a shorthand for p̃(i1) · · · p̃(ik−1). So we have

H(p̃k) = −
∑

i1,...,ik∈Ep̃

p̃(i1) · · · p̃(ik) log(p̃(i1) · · · p̃(ik))

= −
∑

ik∈Ep̃

p̃(ik)
∑

i1,...,ik−1∈Ep̃

Pk−1[log(Pk−1) + log p̃(ik)]

= −
∑

ik∈Ep̃

p̃(ik)
∑

i1,...,ik−1∈Ep̃

Pk−1 logPk−1

−
∑

ik∈Ep̃

p̃(ik)
∑

i1,...,ik−1∈Ep̃

Pk−1 log p̃(ik)

= (
∑

ik∈Ep̃

p̃(ik)) ·H(p̃k−1) +H(p̃)
∑

i1,...,ik−1∈Ep̃

Pk−1

= 1 ·H(p̃k−1) +H(p̃) · 1 = H(p̃k−1) +H(p̃).

2

• Proof of Theorem 7.1. Suppose the language is regular. Then
there is an NFA with N , say, states accepting the language. As the
word aNbN is in the language there is an accepting computation

(q0, a, q1), . . . , (qN−1, a, qN), (qN , b, qN+1), . . . , (q2N−1, b, q2N).

As the NFA has N states and the first N transitions above contain
N+1 states: q0, q1, . . . , qN , it follows that at least one of these states
is repeated, that is, there are two indices i and j, such that

i < j (3)

and qi = qj. Now we modify the above computation by removing the
transitions (qi, a, qi+1), . . . , (qj−1, a, qj) and we get a new accepting
computation

10 APPENDIX: VARIOUS PROOFS 166

(q0, a, q1), . . . , (qi−1, a, qi), (qj , a, qj+1), . . . , (qN−1, a, qN),
(qN , b, qN+1), . . . , (q2N−1, b, q2N)

whose label is the word aN+i−jbN and, therefore, that word must be
in the language. So we must have N + i − j = N , which implies
i = j, contradicting (3). Hence, there can be no NFA accepting the
language and, therefore, the language is not regular.
2

REFERENCES 167

References

[1] J. Berstel and D. Perrin. Theory of Codes. Academic Press, Or-
lando, 1985.

[2] P. Brna. Prolog Programming. Accessed in Nov. 2010,
http://homepages.inf.ed.ac.uk/pbrna/prologbook/, 2001.

[3] C. Calude and H. Jürgensen. Is complexity a source of incom-
pleteness?. Advances in Applied Mathematics 35 (2005), 1–15.

[4] M. Crochemore and C. Hancart. Automata for matching pat-
terns. In [18], Vol. 2, pp 399–462.

[5] A. Drozdek. Elements of Data Compression. Brooks/Cole, Pa-
cific Grove, CA, 2002.

[6] J. Duske and H. Jürgensen. Codierungstheorie. BI Wis-
senschaftsverlag, Manheim, 1977.

[7] R.W. Hamming. Coding and Information Theory. Prentice Hall,
Englewood Cliffs, NJ, 1980.

[8] H. Hamburger and D. Richards. Logic and Language Models for
Computer Science. Prentice Hall, New Jersey, 2002.

[9] H. Jürgensen. Logic for Computer Science – Lecture Notes. The
University of Western Ontario, 1994.

[10] H. Jürgensen and S. Konstantinidis. Codes. In [18], Vol. 1, pp
511–607.

[11] L. Kari. Logic for Computer Science – Lecture Notes. The Uni-
versity of Western Ontario, 2007.

[12] S.C. Kleene. General recursive functions of natural numbers.
Mathematische Annalen 112 (1936), 727–742.

[13] H. Lewis and C.H. Papadimitriou. Elements of the Theory of
Computation, 2nd ed. Prentice Hall, 1998.

[14] B.H. Marcus, R.M. Roth and P.H. Siegel. Constrained Systems
and Coding for Recording Channels. In [16], pp 1635–1764.

REFERENCES 168

[15] A. Mateescu and A. Salomaa. Aspects of classical language the-
ory. In [18], Vol. 1, pp 175–251.

[16] V.S. Pless andW.C. Huffman (eds). Handbook of Coding Theory.
Elsevier Science, 1998.

[17] S. Roman. Coding and Information Theory. Springer-Verlag,
New York, 1992.

[18] G. Rozenberg and A. Salomma (eds). Handbook of Formal Lan-
guages. Springer-Verlag, Berlin, 1997.

[19] C.E. Shannon and W. Weaver. The Mathematical Theory of
Communication. Univ. of Illinois Press, Urbana, 1949.

[20] W.A. Shay. Understanding Data Communications & Networks
– 2nd ed. Brooks/Cole, Pacific Grove, CA, 1999.

[21] C. Smorynski. Self-Reference and Modal Logic. Springer-Verlag,
New York, 1985.

[22] A.M. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceed. London Math. Society 2.42
(1936), 230–265. See also ibid. 2.43, 544–546.

[23] D. Wood. Theory of Computation. John Wiley, New York, NY,
1987.

[24] S. Yu. Regular Languages. In [18], Vol. 1, pp 41–110.

