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ABSTRACT

We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and
pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order
to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented
from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of
the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow
algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform
adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We
also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic
pulsation models.
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1. INTRODUCTION

Early nonlinear calculations of stellar pulsation, as outlined
by Christy (1964), used a one-dimensional (1D) Lagrangian
framework and had considerable success producing full am-
plitude RR Lyrae models that resembled the basic observations.
However, these calculations used purely radiative envelopes and
failed to identify a red edge to the RR Lyrae instability strip.
This leads to the hypothesis that convection in the ionization
zones quenched pulsation (Baker & Kippenhahn 1965; Christy
1966). To explore this, Tuggle & Iben (1973) used a 1D, linear,
non-adiabatic code with a time-independent mixing-length the-
ory for the convective flux. They found that time-independent
convection only reduced the growth rate of pulsation but did not
produce pulsational stability.

Several formalisms and 1D codes were developed that in-
cluded time-dependent convection by introducing an additional
differential equation to calculate the evolution of the con-
vective flux with time based on the standard mixing-length
theory (Cox et al. 1966a, 1966b; Unno 1967; Gough 1977).
Stellingwerf (1982a, 1982b, 1984a, 1984b, 1984c) developed
a time-dependent treatment of convection for 1D Lagrangian
models which follows the time evolution of averaged convec-
tive velocities and includes a treatment of overshooting and
eddy viscosity to account for small length scale kinetic energy
dissipation.

There are several numerical difficulties associated with mod-
eling radial pulsation. First, there are very steep gradients in
the ionization zones and adequately resolving these gradients is
important for accurate modeling. Both Gehmeyr (1992a, 1992b,
1993) and Dorfi & Feuchtinger (1991) have included adaptive
grids to better resolve the steep gradients in the ionization zones
as they sweep through the envelope during pulsation. Using a
version of Stellingwerf’s time-dependent convective model with
his adaptive scheme, Gehmeyr was able to produce a red edge
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at roughly the observed effective temperature. He notes that the
effective temperature of the red edge is dependent on the pa-
rameters used for the convective model, and that the predicted
temperature of the red edge could vary by a few hundred degrees
Kelvin depending on the values used for the convective model
parameters. Also, there are differences between Gehmeyr’s light
amplitude–rise time relationship and the observed relationship
in both slope and zero point. Feuchtinger & Dorfi (1996) used
their adaptive code to calculate light and radial velocity curves
which exhibit shapes typical of RR Lyrae stars. A second po-
tential difficulty is an accurate representation of the surface
boundary, which Feuchtinger & Dorfi tested by including a
model atmosphere and found that its inclusion did not impact
the pulsational characteristics of the model.

Marconi et al. (2003) used the 1D, Lagrangian, hydrody-
namics code described by Bono & Stellingwerf (1994) and
Bono et al. (1997a, 1997b) to compute RR Lyrae models to
compare with the RR Lyrae stars observed in M3. In order to
fully specify the problem Marconi et al. needed to choose a
mixing-length parameter, and adopted both l/Hp = 1.5 and
2.0, where l is the mixing length and Hp is the pressure scale
height. They found that in order to match the boundaries of
the RR Lyrae gap in M3, they required two different mixing-
length parameters, one to obtain the observed blue edge location
(l/Hp ≈ 1.5) and the other to obtain the observed red edge lo-
cation (l/Hp ≈ 2.0). In addition, the observed visual amplitude
as a function of B−V displays nonlinear characteristics, while
theoretical relations predict linear relationships. Marconi et al.
also mention that a mixing-length parameter of 2.0 produces
luminosities for horizontal-branch models that are brighter than
what is observed by ≈0.08 ± 0.05 mag.

Other models for time-dependent convection in 1D have been
proposed by Kuhfuss (1986) and Xiong (1989). Kuhfuss argued
that the convective model by Stellingwerf (1982a) does not
use the diffusion approximation consistently throughout the
model. Smolec & Moskalik (2008) developed their application
of the Kuhfuss convective model, which requires eight free
parameters, and used it to study convection in β Cephei stars
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(Smolec & Moskalik 2007). They found that convection is
not important for calculating pulsation amplitudes for their
models. However, they caution that their convective model,
while working well for classical pulsators, is at the limits of
its applicability in the β-Cephei models they are studying.
More recently, Olivier & Wood (2005) have also developed a
code including the Kuhfuss convective model and present some
test calculations of their program, mentioning that the turbulent
viscosity parameter shows potential as an important determinant
of the pulsation amplitudes.

The distillation of multi-dimensional convective phenomenon
to 1D is always accompanied by extra equations and/or pa-
rameters to approximate the effects of convective motions of
material in more than one spatial dimension. Deupree (1977a)
approached the interaction of convection and stellar pulsation in
a fundamentally different way using a 2D hydrodynamic code
directly following the convective flow patterns. While Deupree
(1977b, 1977c, 1980, 1985) was able to successfully determine
the observed edges of the RR Lyrae instability strip, he was un-
able to compute full amplitude solutions because his algorithm
for moving the radial coordinate allowed the radial zoning to
drift over time. Consequently at later times, the radial zoning
did not cover the hydrogen ionization zone adequately and the
calculations were eventually numerically unreliable. The algo-
rithm Deupree used for the moving radial coordinate used the
horizontal average of the radial velocities at a particular radius
as the grid velocity. Recently, Bruenn et al. (2010) have used
a similar average radial velocity as the grid velocity to follow
the core in fall phase in supernovae simulations. Another form
of a radial moving grid was by Mundprecht (2009), where the
radial grid velocity at the surface was set as the average of the
radial velocities, and the inner grid velocity was held constant.
The intermediate radial grid velocities were then set using a
dilatation factor.

Recently, Stökl (2008) developed an approach for model
pulsation somewhere between the 2D model of Deupree and the
1D convective models. Stökl used two radial columns to model
convection. One column represented the sum of all upward
convective flows, and the other column represented the sum
of all downward flows. While not including any mixing-length
parameter, it does contain free parameters related to the physical
size of the convective cells, and the fraction of the surface
area of a spherical surface which contains downdrafts. These
parameters do have a physical basis, but in practice it would
be difficult to determine them as they are probably functions of
depth and likely depend on a particular star’s properties. Also,
because the model only has two radial columns, it may miss
some of the more subtle features of convection. More recently,
others have begun working on directly simulating the interaction
of convection and pulsation in 2D (Muthsam et al. 2010; Gastine
& Dintrans 2011).

Both Buchler (2009) and Marconi (2009) have stressed
the importance of improving the convective models used in
variable stars. Buchler highlights some of the well-known
difficulties facing time-dependent mixing length noting that it
is an empirical description, rather than a consistent physical
description. Also, the up to eight or more free parameters used
in time-dependent mixing-length approach cannot be chosen
based on physics, but instead must be calibrated by comparison
with observations. Marconi mentions some remaining problems
for RR Lyrae models, particularly the unsatisfactory match
between theoretical light curve morphology and observed light
curve morphology near the red edge of the RR Lyrae instability

strip, supporting the suggestion that an improved treatment of
turbulent convection is needed.

Three-dimensional (3D) convective simulations have had sig-
nificant success in other areas of stellar astrophysics. For exam-
ple, Nordlund et al. (2009) note many of the recent successes
in 3D modeling of solar surface convection, in particular that
3D models with numerical resolutions around 2003 reproduce
widths, shifts, and shapes of observed photospheric spectral
lines with high accuracy. Three-dimensional convective simula-
tions by Meakin & Arnett (2007) simulated core convection in
a massive star finding differences in 2D and 3D convective ve-
locities in both morphology and magnitude. Three-dimensional
models remove the need for many free parameters and the lack
of a physically consistent description of convection, with con-
vection resulting naturally from the conservation laws; however,
an algorithm to include the effects of subgrid-scale turbulence
on the larger eddies is still required. Here, we build on the ideas
of Deupree (1977a), with the goal of developing a fully 3D cal-
culation in which the radial coordinate moves in such a manner
to allow us to perform full amplitude solutions of RR Lyrae
models with large eddy simulations (LES) of convective energy
transport. As a first step, we apply our approach to purely adia-
batic models to verify that the method can compute accurate and
stable large amplitude periodic solutions over many periods.

2. HORIZONTAL EULERIAN RADIAL
LAGRANGIAN SCHEME

Calculation of full amplitude solutions requires following the
pulsation for many periods. One-dimensional codes have been
able to calculate full amplitude solutions, while Deupree’s 2D
code had difficulty after many periods because of his particular
moving radial coordinate. This led us to try using the internal
mass, Mr, as the radial independent variable instead of radius, r,
and allow r to change such that the mass within a shell remains
constant. This requires introducing a grid velocity, v0r , in the
radial direction that dictates how the coordinate system radius
changes. The intent is that our radial grid acts like that of a 1D
Lagrangian code while allowing the usual Eulerian approach
in the horizontal directions. Note that this approach still allows
fluid flow across radial zone boundaries. It just moves the radial
gridding so that it maintains the mass in a spherical shell. It does
not put any constraints on the horizontal flow and does not alter
the physics of the conservation equations in any way.

The calculations are performed in a limited range of the
spherical polar coordinates θ and φ, a 3D version of a “pie
slice.” Periodic boundary conditions are placed in the horizontal
directions. The interior boundary is placed at a location deeper
than 0.15 of the stellar radius and is regarded as rigid. This is
a common assumption in most 1D simulations. Because the
horizontal zoning would get very narrow (leading, through
the Courant condition, to undesirably short time steps) and
because the 3D flow of interest is expected to be only in the
surface ionization regions, we impose a purely radial region
for an arbitrary number of radial zones above the interior
boundary. In conjunction with the assumption that non-radial
motion occurs only near the very low mass surface, we assume
the gravitational force has its spherically symmetric form.

2.1. Conservation Equations

We first define a horizontally averaged density which allows
us to replace an infinitesimal radial change, dr , with an
infinitesimal internal mass change, dMr. The mass of a spherical
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shell of thickness dr is given by dMr = 4πr2〈ρ〉dr where 〈ρ〉
is the volume averaged density within a spherical shell,

〈ρ〉i = 1

Vi

∑
j,k

ρi,j,kVi,j,k. (1)

Here i, j, and k are the r̂ , θ̂ , and φ̂ zone indices defined at
zone centers and increase with each of their respective spherical
coordinates (e.g., i increases from the center of the star toward
the surface); Vi is the volume of a spherical shell at a particular
radial shell, i, that spans all the j and k at that i; Vi,j,k is the volume
of the (i, j, k) grid cell. In order to develop and test this approach,
we have assumed that the system is adiabatic. Introducing
both dMr and the grid velocity, v0r , into the 3D conservation
equations for mass, three components of momentum, and energy
produces:
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The above symbols have their usual meaning (E is the specific
internal energy). Finally, the system is closed with three further
equations:

∂r

∂t
= v0r , (7)

which is used to update the radius,

P = (γ − 1)ρE, (8)

a simple gamma-law gas for the equation of state, and an
equation for solving for the grid velocity (see Equation (15)).
Before we present the equation for the grid velocity, we present
an equivalent equation to Equation (2) by which we solve mass
conservation.

r

Aj+1/2

A
k+1/2

A i-1/2

θ

Φ

A i+1/2

Ak-1/2

A
j-1/2

Figure 1. Geometry of a cell in spherical coordinates. The areas of the six
surfaces of the “cube” are shown.

2.2. Finite Volume Mass Conservation

The definition of volume we will use in the equation for deter-
mining the grid velocity (Equation (15)) and the average density
(Equation (1)) must be consistent with the mass conservation
equation. The definition of volume we use in Equations (15)
and (1) is

Vi,j,k =
∫ ri+1/2

ri−1/2

∫ θj+1/2

θj−1/2

∫ φj+1/2

φi−1/2

r2 sin θ dφ dθ dr. (9)

To make the mass equation consistent with this definition of
the volume, one integrates Equation (2) over the volume, then
uses Gauss’s theorem to convert the volume integral into a
surface integral, producing the finite volume form of the mass
conservation equation.

The mass in a cell changes only from mass flowing into and
out of that cell. This change from one time step (n) to the next
(n + 1) can be written as
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, (10)

where A is the area of a cell face (see Figure 1) and the Fs are
fluxes defined as

F
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)
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F
n+1/2
k±1/2 = v

n+1/2
φ,i,j,k±1/2ρ

n
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To obtain the densities at the interfaces (ρn
i±1/2), straight aver-

ages are computed of centered densities adjacent to the interface.
The two centered subscripts have intentionally been omitted in
the expressions for the fluxes and areas to reduce equation length
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(e.g., i was left off but i + 1/2 was kept). Note that the densi-
ties in the fluxes are at time n and not n + 1/2, so our solution
algorithm is straightforwardly explicit, as is true for many 1D
calculations. It is not possible to properly time center all terms
without introducing a more complex implicit or multi-step ex-
plicit algorithm. With this expression for the fluxes, we can
directly solve Equation (10) for the density at the new time step.

2.3. Radial Grid Velocity

The final piece needed to complete the description is the
calculation of the grid velocity. For a spherical shell to have
constant mass, the net flow of mass into and out of that spherical
shell must be zero. Summing up all the fluxes into and out of
the individual horizontal cells in a spherical shell, substituting
Equation (11) in for the outer radial flux (at i + 1/2) and setting
the result equal to zero, we arrive at the equation
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∑
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Solving for the outer grid velocity, v
n+1/2
0r,i+1/2, produces an equa-

tion for calculating the new grid velocity:
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The inner radial flux, Fn+1/2
i−1/2 , is dependent on the grid velocity

at the inner interface. At the first radial zone boundary next to
the rigid core, we impose both a zero radial velocity and grid
velocity. Thus, Equation (15) can be solved recursively from
the model interior boundary to the surface to determine the grid
velocity at all interfaces.

3. COMPUTATIONAL SETUP

3.1. Starting Model

The initial model for our adiabatic simulations is generated
by requiring that it be in hydrostatic equilibrium. When this
constraint is applied to the conservation equations, the only
terms that remain are the pressure and gravity terms in the
radial momentum conservation equation. In particular, there
are no terms left in the internal energy conservation equation,
and thus no equation to solve for the energy structure. To
provide this information, an energy profile was generated from
another stellar modeling code ROTORC (Deupree 1990) and
energies were interpolated in log(Mr ) to cell centers. Once we
impose the energy distribution, we can simultaneously solve
the radial hydrostatic equilibrium finite difference equation
and the equation of state for the pressure and density structure
of the model given the spacing of the independent variable Mr.
The radius is determined from the volume required to produce

the calculated density from the mass of the shell. No convective
model is included in the starting model because RR Lyrae do
not have extensive convective regions to affect the structure. To
induce pulsation, a radial velocity profile from the linear, non-
adiabatic, radial pulsation code, LNA (Castor 1971), modified
to allow a gamma-law gas, is imposed so that the model pulsates
around the equilibrium point in either the fundamental or the
first overtone modes.

3.2. The Grid and Numerical Details

The simulation volume is separated into cells bounded by
intersecting surfaces. These surfaces are defined at constant val-
ues of the three independent variables Mr, θ , and φ. Dependent
quantities ρ, E, and P are defined at cell centers and dependent
quantities r, vr , v0r , vθ , and vφ are defined at appropriate cell
interfaces. The models used for testing have 107 radial, 10 theta,
and 10 phi zones. The inner 10 radial zones are handled in 1D
as discussed in Section 2. The zone number at which the switch
between 1D and 3D is made is chosen by the user. For the test
cases used in this paper, the total mass of the star was 0.575 M�,
with an initial mass spacing of 4.5 × 10−9 M� at the surface,
and increasing by 10% each shell into the star. Both the θ and φ
zones have a spacing of 1◦, so that the total simulation volume
covers 100 deg2.

The equations outlined in Section 2.1 are in differential form
and are approximated by appropriate finite difference expres-
sions. Spatial differentials are approximated by differences be-
tween quantities at either cell centers or cell interfaces depend-
ing on whether the quantity being updated in time is interface
centered or cell centered, respectively. Temporal differentials
are approximated by differences between the current grid state
and the updated grid state divided by the time step, Δt , com-
puted as a fraction of the minimum time step allowed by the
Courant condition for the model as a whole. This then allows
us to explicitly solve for the updated grid state given the current
grid state and the time step.

Equation (10) is written in finite volume form with fluxes
defined at cell faces. The velocities required for these fluxes
are already interface centered; however, the densities are not.
In general, quantities that are needed at interfaces but defined
at cell centers, and quantities that are needed at cell centers but
defined at interfaces are approximated by averages of adjacent
quantities. We have used artificial viscosity given by von
Neumann & Richtmyer (1950) and Richtmyer & Morton (1967)
to smooth out shocks with a threshold velocity of one-hundredth
of the local sound speed for turning on the artificial viscosity and
have used weighted donor cell to stabilize advection terms, with
a weight of 0.1 on the upwind terms and 0.9 for centered terms.

3.3. Order of Calculation

The order of calculation follows that of Deupree (1977a)
with a few minor modifications. We start by updating the three
velocities using Equations (3)–(5) from time n − 1/2 to n + 1/2
using quantities at n (ρ, 〈ρ〉, r, and P) and quantities at n − 1/2
(vr , vr0, vθ , and vφ). Next the grid velocity is calculated at time
n+1/2 using Equation (15) working from inner boundary of the
model to the surface in a recursive manner. The updated radius
is computed with Equation (7). The density is updated from n to
n + 1 using the equation for mass conservation (Equation (10)),
with quantities at n (ρ and r), and quantities at n+1/2 (vr , vr0, vθ ,
and vφ). The energy is updated in a similar manner. The equation
of state then allows us to compute the pressure at the new time
step from the updated density and specific internal energy.
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3.4. Parallelism

The code we have developed to perform these calculations
has been named SPHERLS (Stellar Pulsation with a Horizontal
Eulerian Radial Lagrangian Scheme). SPHERLS has been
designed from the beginning to allow for parallel calculations
using MPI protocols. The parallel design allows for domain
decomposition in all three directions with the ability to vary the
number of ghost cells (used to express the boundary conditions
of the local domain) copied from other processors. Note that
boundary conditions in this sense are not the global boundary
conditions of the calculation but only the information required
from other processors to be able to perform the calculations on
the processor in question. Equations (3)–(6) and (10) depend
on only local quantities and are easily applied to the local grids
on each processor. The equation to calculate the grid velocity
(Equation (15)) requires information across all j and k space.
Using this equation with domain decomposition in the j- and
k-directions would require additional message passing which
has not yet been implemented, and thus currently limits domain
decomposition to the radial direction only. This could change in
the future and may become helpful for optimizing calculations
for larger horizontal grids.

During program initialization, each processor can be assigned
different equations to solve on their local grid, which allows
one to divide the computational domain up into a 3D and a 1D
region. The 1D region is composed of only a single zone at each
i spanning all of j and k space. Quantities are volume averaged
from the 3D region to the 1D region to be used as boundary
conditions for the 1D region; while values in the 1D region
are copied across j and k space to the 3D region to be used as
boundary conditions there.

To date, only exploratory time trials have been performed
because future additions to the code (including both an implicit
solution to the energy equation with radiation diffusion and
an eddy viscosity subgrid-scale model) will impact the timing
results significantly. At present, a calculation with 97 × 10 × 10
3D zones and 10 1D zones for 1 million time steps (10 million
seconds, or approximately 178 fundamental mode periods) takes
2 processors 12h22m, 4 processors 5h25m, 8 processors 3h28m,
and 16 processors 2h29m. At larger numbers of processors with
the current gridding, the overhead from MPI begins to negate
any additional benefits. Thus, for this gridding 16 processors
represents the “sweet spot.” At larger horizontal grid sizes,
the “sweet spot” will likely be pushed to larger numbers of
processors.

4. TEST CASE RESULTS

Five adiabatic test calculations have been performed using
the method outlined above. The first calculation (CalI) was of
a static stellar model with all velocities set to zero, which was
used to test that the starting model was indeed generated in
equilibrium consistently with respect to the hydrodynamic finite
difference equations, and that SPHERLS’s finite difference and
finite volume representations of the hydrodynamic equations
are hydrodynamically stable. The second calculation (CalII)
was a spherical blast wave (e.g., Sedov 1959), used to test that
the code could handle strong shocks and check it against an
analytical solution. The third calculation (CalIII) was of a low
amplitude radial pulsation (1 km s−1 initial surface velocity) in
the fundamental mode with a horizontal velocity perturbation
to break spherical symmetry. The forth calculation (CalIV)

was of an even lower amplitude radial pulsation (0.1 km s−1

initial surface velocity) in the first overtone mode again with
a horizontal velocity perturbation. These two low amplitude
calculations were used to compare the calculated periods to the
linear adiabatic periods, and to insure that the scheme worked
as expected at low velocities. The lower velocity is needed for
comparison with the linear LNA code, which assumes small
perturbations from the static model to calculate periods. The
fifth calculation (CalV) started with the same stellar model as
CalIII, but with a higher amplitude pulsation (10 km s−1 initial
surface velocity) and a toroidal velocity perturbation instead of
the horizontal velocity perturbation. This calculation was used
to show that SPHERLS reproduced quantities well from one
period to the next over many periods in the presence of weak
shocks and large-scale structured motions.

The static calculation (CalI) started with all velocities (r, θ ,
and φ) set to zero and was computed for over 20 million seconds
(356 fundamental periods). The radial velocities in the surface
zone reached the largest amplitudes. In this zone, the radial
velocity amplitude initially grew from zero to a temporal mean
of about 3.7×10−5 cm s−1 within the first 80 periods. This mean
was maintained for the rest of the calculation with a standard
deviation of 2.7×10−5 cm s−1. The horizontal velocities remain
zero throughout the calculation. This is understandable because
all terms in the horizontal momentum equations are zero and
remain that way; while the radial momentum equation is the
balance between two nonzero terms and thus subject to round
off error.

To assure that the method is behaving as designed, we checked
the mass calculated from the averaged density, 〈ρ〉, and the shell
volume (which is dependent on the radial grid velocity) with
the mass set as the independent variable. The largest relative
difference between the calculated mass and the independent
mass variable for all calculations is 4 × 10−13. This is only two
significant digits above machine round off, and there are no
signs of a trend with time.

To test how well SPHERLS handles strong shocks and to
compare the computed results with an analytic calculation
we performed a Sedov blast wave calculation (CalII). This
calculation had 400 radial zones with an initial spacing of 10 cm
and 10 θ and φ zones with spacings of 1◦. The 400 radial zones
produces a 40 m radius spherical volume for the shock to expand
into, and was chosen to allow enough volume for the shock to
expand into over 10 ms, at which time the analytic solution has
reached a shock radius of 32.7 m. The inner 10 radial zones
were (as in the adiabatic stellar models) treated in 1D. The blast
was accomplished by setting the initial energy in the inner 30
zones (i.e., a 3 m radius sphere) to 4.18×1021 erg with all other
zones having an energy of 1 × 106 erg. The density was set to
2 g cm−3 through out the starting model. A gamma-law gas was
used for the equation of state, with a γ of 1.6. All the initial
velocities were set to zero and the blast was followed for 10 ms.
The calculation was compared to an analytical solution with
a point-source energy producing the blast, evaluated at times
from 0.5 ms to 10 ms in 0.5 ms intervals. When comparing the
extended source to the point-source solution, one would expect
that at early times (when the shock is closer to the source), and
at later times closer to the initial location of the source, the
discrepancies between the computed and analytical solutions
should be larger. This is because the differences between a non-
point-source calculation and the point-source analytic solution
will diminish as the disturbance moves outward. The blast
radii computed by SPHERLS matched those form the analytic
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Figure 2. Two-dimensional slice at constant φ (third φ zone) for CalIII. The
color scale is (ρi,j,k − 〈ρ〉i )/〈ρ〉i ) and vectors show the difference between
the radial velocity and the grid velocity added vectorially with the θ velocity.
The slice is at 7225 s into the calculation. Cells exterior to the white lines on
the left and right sides are used to express the horizontal periodic boundary
conditions. This figure shows only the outer 30% of the stellar radius, while the
total simulation is of more than 85%.

(A color version of this figure is available in the online journal.)

solution to within 7.5 cm at all times. The best match of shock
radii (within 1.7 cm) occurred later in the calculation at a time
of 10 ms, while the worst match (7.3 cm) occurred much earlier
in the calculation at 3.5 ms. The computed velocity, density, and
pressure profiles were also compared to the analytic solution, but
because of the extended source, only the zones outside the initial
explosion source were compared. The root mean square of the
fractional error in velocity, density, and pressure was less than
3%, 8%, and 5%, respectively, in the last half of the calculation
(5–10 ms). In the first half of the calculation (0.5–5 ms), the
root mean square of the fractional errors are a bit larger, mostly
due to the difference between using an extended source in the
calculation versus a point source in the analytic solution and are
within 8%, 15%, and 11% for the velocity, density, and pressure,
respectively. The radial profiles of the velocity, density, and
pressure fit quite well without any outlying points.

Because the calculations are adiabatic, we expect the pulsa-
tion to neither grow nor decay and to be reproducible from one
period to the next. This should provide a good test to verify that
our numerical algorithm functions as desired over many periods.
Both the low amplitude fundamental and first overtone pulsa-
tion (CalIII and CalIV, respectively) had a horizontal velocity
perturbation imposed on them to break spherical symmetry, by
setting specific values of vθ and vφ at a central horizontal zone
located at 90% of the total radius (18 zones in from the surface
of the 107 radial zone models). The velocities were directed
horizontally out of the zone through sides Aj±1/2 and Ak±1/2
(see Figure 1). The magnitude of these horizontal velocities was
taken to be half of the initial radial velocity at this radial location
(0.3 km s−1 and 0.03 km s−1 for CalIII and CalIV, respectively).
Figure 2 shows a 2D slice at constant φ of CalIII slightly after
the initial conditions. The slice is at 7225 s into the calculation
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Figure 3. Geometry of the torus used to define the toroidal velocity perturba-
tions. x1 and x2 are two radii used to define the equation of torus. α and β are
two angles used to define a point on the surface of the torus. The upper panel
shows a top–down view of the torus, while the lower panel shows the side view
along the slice axis indicated in the top panel. The distance from an arbitrary
point P to the surface of the torus is given by d.

(relatively early in the 1 × 107 s calculation) and shows the
disturbance resulting from the horizontal velocity perturbation
as well as its location and geometry with respect to the rest of
the model.

The period of the fundamental mode is 56,178 s for the
low amplitude calculation (CalIII), and compares well with the
period calculated from LNA of 56,114 s. There is less than
0.12% difference between the periods of the two codes. The first
overtone model (CalIV) was found to have a period of 38,911 s
and compares with the LNA period of 39,522 s, producing less
than a 1.6% difference.

In addition to the horizontal velocity perturbation we explored
in CalIII and CalIV, we also explored a velocity perturbation
that is more structured over a larger scale (CalV). To create this
model, we started with the same structural model and radial
velocity profile as Cal III, this time, however, using a surface
amplitude of 10 km s−1. On top of the radial velocity profile,
we added a velocity perturbation in the shape of a torus (see
Figure 3 for torus geometry). The velocity perturbations were
taken to be constant on the surface of the torus (the two circles
in the lower half of Figure 3) and parallel to the surface of the
torus. By locating the closest point (defined by angles α and
β) on the surface of the torus to the point P, the distance d in
Figure 3 can be calculated. Then, a Gaussian centered on the
surface of the torus with a maximum amplitude of 5 km s−1 is
evaluated at d providing the velocity magnitude. The FWHM
of the Gaussian is chosen so that the velocity perturbations do
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Figure 4. Two-dimensional slice at constant φ (sixth φ zone) with vectors
showing the difference between the radial velocity and the grid velocity added
vectorially with the θ velocity. This plot is from CalV at 9031 s into the
calculation. At later times, the initial toroidal velocity perturbation has spread
through out the model, making its initial form indiscernible.

(A color version of this figure is available in the online journal.)
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Figure 5. Two-dimensional slice at constant θ (sixth θ zone) with vectors
showing the difference between the radial velocity and the grid velocity added
vectorially with the φ velocity. The calculation and time are the same as in
Figure 4.

(A color version of this figure is available in the online journal.)

not overlap the other parts of the torus, and so that the velocity
perturbations are still reasonably strong a zone or two away
from the surface of the torus. The direction of the velocity is
taken to be parallel to the surface of the torus at the location
closest to P. The velocity magnitude is then broken into r, θ ,
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a large span of periods through the model, indicating that there is no drift of the
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(A color version of this figure is available in the online journal.)

and φ components. The result of applying this perturbation is
shown in Figures 4 and 5. These figures show slices through the
center of the model at constant θ and φ, respectively, 9031 s
into the calculation and indicate that θ and φ directions behave
identically.

The high surface velocity model (CalV) results are presented
in Figures 6 and 7. Figure 6 shows that the radial grid velocity
throughout the model is well reproduced at periods 50, 110, and
170. Figure 7 shows that 〈ρ〉 is well reproduced over a large
number of periods and does not show the drifting apparent in
Deupree (1977a). The fact that the calculations of dependent
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quantities are reproduced over many periods shows that the
scheme is working as desired and we expect to calculate full
amplitude solutions of pulsating variable stars in the future.

A low radial surface velocity model (1 km s−1 surface
velocity) that was spherically symmetric and did not use
artificial viscosity has a very constant peak kinetic energies per
period, without any long term detectable growth or decay rates
larger than 1 × 10−11% per fundamental period. While CalIII,
which had a horizontal velocity perturbation, had a growth rate
of 4.3×10−4% per fundamental period. In the high radial surface
velocity calculation (CalV), artificial viscosity is required in the
momentum equations (Equations (3)–(5)) to reduce the very
steep pressure gradients at shocks. If it is omitted when pulsation
amplitudes exceed the local sound speed, it ultimately leads to
negative densities and energies. One might argue that including
the artificial viscosity in the energy equation would produce a
non-adiabatic calculation, since the inclusion of the artificial
viscosity raises the internal energy more than otherwise when
the volume is decreasing. In CalV if the artificial viscosity is
included in the energy equation, we find that the peak kinetic
energy decays at a rate 0.36% per fundamental period. If it is
not included, the peak kinetic energy decays at a rate of 0.13%.
These decay rates are dependent on the inclusion or omission
of artificial viscosity in the energy equation, and may affect the
amplitude of full amplitude solutions to some degree. This is
not merely a concern for the present code, but for all nonlinear
hydrodynamics codes that use artificial viscosity.

5. CONCLUSIONS AND NEXT STEPS

We have developed a numerical algorithm and the computer
code, SPHERLS, which is able to follow 3D adiabatic radial pul-
sations for many periods when spherical symmetry is broken.
This is a necessary step for following the convective motions
and radial pulsations of stars. We have shown that SPHERLS
maintains hydrostatic equilibrium to a high degree over 356
fundamental periods. The radial Lagrangian algorithm for main-
taining constant mass in the radial shells is effective over 178
periods to within one or two digits of machine round off, with
no signs of any particular trend either decreasing or increasing.

We have found that SPHERLS reproduces both the funda-
mental and first overtone modes of the linear adiabatic code
LNA reasonably well (<0.12% for fundamental and <1.6% for
first over tone). The velocities as well as other dependent quan-
tities (e.g., the horizontally averaged density) are reproducible
over many periods when spherical symmetry is broken, again
indicating that our radial Lagrangian scheme is performing as
designed.

Adiabaticity is maintained extremely well at low radial
velocities when artificial viscosity is not included. However,
at higher radial velocities some kinetic energy is converted into
internal energy via the artificial viscosity required to smooth out
shocks. This should be kept in mind while using any nonlinear
hydrodynamics code employing artificial viscosity to compare
full amplitude solutions with observations.

In order to calculate full amplitude pulsating models to
compare with observations, a few additions must be made to
SPHERLS. A more realistic equation of state and radiative
Rosseland mean opacities must be included and radiation
diffusion must be added to the energy equation. The latter
is expected to require an implicit integration of the energy
equation, at least near the surface, because optically thin zones
would require a very small time step based on the speed of light
and not the speed of sound. We expect to use the current explicit

solution to the energy equation deeper in the envelope where
the mean free path of photons is much less than a computational
zone, keeping the calculation time down. Finally, we will add
the subgrid-scale terms required in an LES for treating turbulent
convection in the ionization zone.

These calculations were performed with ACEnet computa-
tional resources. ACEnet, a part of Compute Canada, provides
academic high-performance computing to Atlantic Canada.
C.M.G. is supported in part by an NSERC Discovery Grant
to R.G.D. and in part by an ACEnet fellowship.
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