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ABSTRACT

BAYESIAN ASTEROSEISMOLOGY

by Michael Gruberbauer

June 7, 2013

This thesis presents a new probabilistic method for the asteroseismic analysis of stel-
lar structure and evolution with the goal of providing a universal tool to improve
our knowledge of stellar modelling. This new method implements the advantages of
Bayesian analysis, such as the treatment of systematic errors and nuisance parame-
ters, the modular structure of Bayesian analysis, and the correct normalization of all
probabilities.

First, a general introduction to asteroseismology is provided, followed by
an comprehensive guide to Bayesian analysis. The derivation of the new method then
follows, and its subsequent application to current problems in asteroseismology is also
presented. An in-depth analysis of the Sun is performed in order to investigate long
standing problems with the solar chemical composition. This also reveals the pres-
ence of systematic problems in the modelling of the Sun, potentially requiring new
developments in solar modelling. Finally, the new method is also applied to 23 stars
that were observed with the Kepler satellite, in order to perform a comparative inves-
tigation with respect to published results from other teams, and to study systematic
errors in the stellar models.
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Chapter 1

Introduction I: Asteroseismology in the Age of Space

Telescopes

Although hard data is lacking, it is probably safe to assume that a large

percentage of PhD theses dedicated to the study of stellar structure and evolution

start something like this: For countless millennia human beings have looked at the sky

and wondered about the nature of the Sun and the stars. This is certainly a cliché, but

it is so appealing because it is true, and it puts into perspective the enormous amount

of understanding humans have gained about the stars in the last two centuries. It

is illuminating to recall that the idea of gaining in-depth knowledge by probing the

stellar interiors in some way (or even to realise that there is such a thing as “stellar

interiors”) must have seemed preposterous. This is nicely indicated by the well-known

passage in Auguste Comte’s “The Positive Philosophy” (1842)

To attain a true idea of the nature and composition of [astronomy], it is

indispensable ... to mark the boundaries of the positive knowledge that we

are able to gain of the stars. ... We can never by any means investigate

their chemical composition.

Today this notion is of course completely obsolete, since at least the basic (chemical)

characteristics of stars have been accessible through spectroscopy of the stellar pho-

tospheres. Studying the deep interiors of stars observationally1, on the other hand,

has only recently become viable thanks to asteroseismology - studying the stars by

understanding their oscillations.

1The first comprehensive work on stellar interiors (Eddington 1926) was, although reliant on the
astronomical observations of the time, basically founded on theory.

1



The purpose of this chapter is to convey an understanding of the observational

properties of stellar oscillations which can then be studied statistically for many stars

or, alternatively, compared in more detail to theoretical models. Section 1.1 will elab-

orate on the fundamental characteristics and observables. Since this thesis is mostly

concerned with the application of Bayesian methods to the analysis of solar-like oscil-

lations, this section will not discuss other types of pulsations in great detail. Although

the tools and methods developed during the course of my work are applicable to as-

teroseismic data gathered with many different methods, the current state-of-the-art

data sets are almost exclusively obtained with space photometry. Consequently, sec-

tion 1.2 will discuss how these observables are obtained from space photometry today.

Finally, section 1.3 will briefly give recent examples for how these data are used to

better understand stellar structure and evolution.

1.1 Fundamental aspects of stellar oscillations

1.1.1 Spherical harmonics and mode nomenclature

The first step to understanding stellar oscillation modes pertains to their de-

scription. The displacement and motion within the star produced by pulsation and,

consequently, the brightness variations on the stellar surface can be expressed through

spherical harmonics (see, e.g., the recent textbook by Aerts et al. 2010). These are

defined by three quantum numbers: n, l, and m. n counts the number of nodes in the

radial direction, l gives the number of nodes on the surface (the spherical degree), and

−l ≤ m ≤ l denotes the number of meridional nodes. Oscillations with l = 0 (and

therefore m = 0) are called radial pulsations, where the mode with n = 0 is called the

fundamental mode, followed by the first overtone with n = 1, and so on. It is these

modes that have been known for the longest time and have been used in Cepheids

and RR Lyrae stars to establish distance scales using the period-luminosity relation

first discovered by Leavitt & Pickering (1912) and still studied and refined today (e.g.

Bono et al. 2010). Modes with nodal lines on the surface are called nonradial modes.
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Figure 1.1: Cartoon representation of spherical harmonics. a) l=1, m=0; b) l=2, m=0; c)l=2,
m=2; d) l=3, m=2. Signs represent the inward and outward motion at a snapshot in time.

For non-rotating stars, pulsations with m �= 0 are not distinguishable from the

m = 0 solution since the pulsation frequencies are identical. Once rotation is taken

into account, however, rotational splitting can be observed. The splitting removes the

degeneracy between the modes with different m and the corresponding frequencies

can be described with

νn,l,m �=0 = νn,l,m=0 +mkΩ, (1.1)

where Ω is the rotation rate and k ≈ 1. For faster rotators that can become sub-

stantially non-spherical, this approximation, as well as the description using single

spherical harmonics, no longer holds. In such cases, for instance a linear combination

of various spherical harmonics can be used to describe the pulsation. Here it starts to

become problematic to uniquely identify each mode (Deupree & Beslin 2010). Similar

expansions are necessary for pulsating stars with strong magnetic fields, resulting in

comparable mode identification problems (Saio 2005; Cunha 2005).

Stellar pulsations can be understood as (damped and re-excited) harmonic

oscillations. Depending on the restoring force, the modes that are commonly observed
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in stars are either called p modes (pressure as restoring force), g modes (gravity modes

- buoyancy in addition to pressure contributes to the restoring force), or r modes.

For the latter, which are commonly called Rossby waves, the restoring force is the

variation of the Coriolis force as a function of latitude, similar to the planetary waves

on the Earth. The most common modes are the p and g modes. What distinguishes

them is that the pressure modes are predominantly probing the bulk of the star, while

the g modes are more sensitive to the core (see, e.g., Aerts et al. 2010, for more details).

An effect termed “avoided crossing”, where the frequency of a g mode in the core

approaches the frequency of a p mode in the envelope due to evolutionary changes in

the stellar structure, can lead to perturbations of the p-mode frequency. This results

in so-called “mixed” or “bumped” modes that display theoretical characteristics of

p modes in the outer layers and g modes in the interior. They are very sensitive to

the evolutionary state or age of the star and can easily be distinguished from pure p

modes (e.g., Bedding 2012).

1.1.2 Pulsation across the HR diagram and mode excitation

Different types of stars show different types of oscillations. For instance,

Cepheids and RR Lyrae stars pulsate (predominantly) radially at very large am-

plitudes. They usually pulsate in only one or two modes with periods of several hours

to days, although recent space missions have provided evidence for more radial and

even nonradial pulsation at lower amplitudes (e.g., Gruberbauer et al. 2007; Guggen-

berger et al. 2012). Their long periods and large amplitudes are also the reason why

they were among the first pulsating stars to be studied in great detail. δ Scuti stars,

on the hand, pulsate in either radial or nonradial modes at slightly higher orders and

at shorter periods down to several tens of minutes. Between a few and several dozen

significant frequencies can usually be detected, even from ground-based observations

(e.g. Breger et al. 2005). Recent space-based data have revealed even more frequen-

cies although their nature is debated (see section 1.3). Since δ Scuti stars can show

substantial rotation rates, which also appear to influence mode selection and mode
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amplitudes, rotational splitting is observed, and other interesting features such as

frequency multiplets and combination frequencies complicate the picture (Breger &

Kolenberg 2006). The magnetic, rapidly oscillating Ap stars show nonradial pulsa-

tions at even higher radial orders with periods of minutes (Kurtz 1982).

The pulsations in these stars are thought to be excited by the so-called κ mech-

anism. As the name suggests, it is related to the radiative opacity of the material,

and it is believed that this opacity, in particular in the ionization zones of hydrogen,

helium, and some metals, provides the means to build up energy during contraction

in a way as to perpetuate pulsation (see, e.g., Hansen et al. 2004). A different mech-

anism, called the � mechanism for which the increased nuclear reaction rate during

contraction is important, might also be responsible to drive pulsations in a subset of

stars (see, for example Miller Bertolami et al. 2011). For γ Doradus stars, “convective

blocking” (Guzik et al. 2000) has been found as a possible explanation to excite the

g-mode pulsations found in these stars (and also in the many γ Dor-δ Scuti hybrid

pulsators which have been found thanks to recent space missions).

In recent years, the discovery of solar-type oscillations in many different types

of stars has been among the most exciting findings in stellar physics. These pulsations

are named after the fact that they have first been observed in the Sun. They are

thought to be p modes (and mixed modes) excited stochastically by the acoustic

noise of convection and granulation which affects their observational properties, as

discussed in section 1.2. Solar-type oscillations are now believed to be excited in

all stars with convective envelopes, i.e., cool stars, from the main sequence up to

the giant branch. As will be discussed in section 1.3, thanks to MOST, CoRoT and

Kepler pulsation in thousands of red giants have now been analysed.

Aside from the types mentioned so far, many more named types of pulsating

stars exist, so that the term “zoo” readily applies. For the purposes of this thesis,

however, the types mentioned and the distinctions made so far are enough to proceed.

More details on other types of pulsating stars can be found, e.g., in Aerts et al. (2010).
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1.1.3 The asymptotic relation and scaling laws

The most important property of solar-type oscillations from the perspective of

asteroseismology, is the fact that they excite modes at high radial orders, similar to

the roAp stars, but without the complications of the magnetic field. Thanks to the

approximate validity of the so-called asymptotic relation (Vandakurov 1967; Tassoul

1980)

νn,l ≈ ∆ν

�
n+

l

2
+ �

�
− δν0l, (1.2)

at such high orders the p-mode pulsations show an almost uniform pattern. Modes

of the same spherical degree l but adjacent radial order n are almost evenly spaced

by ∆ν, which is called the characteristic frequency spacing. It is related to the run

of the sound speed cs through the star as in

∆ν ≈

�
2

� R

0

dr

cs

�−1

. (1.3)

In practise, the characteristic frequency spacing is also sometimes identified with the

large frequency spacing νn+1,l − νn,l of a particular mode or its average over several

orders for different modes, which is only approximately correct.

δν0l = νn,0 − νn+1,l is called the small spacing or small separation. These

patterns can be used to better visualize the structure in the pulsation spectrum by

employing so-called échelle diagrams (Grec et al. 1983), in which the frequencies are

plotted against their values modulo ∆ν. If the asymptotic relation were exact, all

modes of the same spherical degree would line up on vertical ridges. Hence, the échelle

diagram easily reveals such features as avoided crossings or other features (including

instrumental artefacts) which do not line up with the expected pattern.

Figure 1.2 shows an exemplary échelle diagram for the Kepler target KIC

7976303, for which low-degree solar-type oscillations have been detected. It is ob-

vious that the l = 0 and l = 2 modes correspond nicely to the asymptotic relation

as they stack almost vertically. The l = 1 modes, on the other hand, are clearly

affected by mode bumping, which produces deviations from the asymptotic relation.
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Figure 1.2: Échelle diagram of KIC 7976303 frequencies detected by the Kepler satellite
(Mathur et al. 2012). Individual spherical degrees are indicated by labels and lines in between
data points.

Compared to similar data obtained for the Sun (see, e.g., Figure 3.1 in Chapter 3),

the frequency uncertainties are larger by about an order of magnitude and, overall,

fewer modes can be detected, as will be explained in the next section.

Aside from employing ∆ν to reveal the structure of the oscillation spectrum, it

is also central to one of several important scaling relations. Using basic assumptions

about stellar interiors, one can show that

∆ν ∝
�
M/R3. (1.4)

Furthermore, for solar-type oscillations, the maximum pulsation amplitude occurs

around the so-called frequency of maximum oscillation power νmax which is thought

7



to scale approximately as

νmax ∝
M

R2
√
Teff

. (1.5)

Therefore, knowing the approximate solar quantities and measuring the correspond-

ing values in other stars (which is possible even in cases where individual modes are

more difficult to extract) is helpful to further constrain the stellar properties. These

relations and others for the amplitude of the pulsations as a function of stellar pa-

rameters, are described by Kjeldsen & Bedding (1995) in more detail. Recent results

on the scaling relations will be discussed in the next section.

How the individual modes themselves are used to infer stellar properties is a

major topic of this thesis and will be explained in detail in Chapter 3. First, however,

it is helpful to understand how these observables are extracted from modern space-

based data sets to better judge their reliability.

1.2 Obtaining pulsation characteristics from space photom-

etry

1.2.1 The limits of detection and the need for satellites

Although for the Sun many thousands of modes of very high spherical degree

have been detected via photometry as well as radial velocity variations, the situation

is different for other stars. The fundamental constraints for the detection of stellar

pulsations are provided by the magnitude of the pulsation amplitudes and the effect

of cancellation. The latter is responsible for the fact that we cannot observe modes

with very high l values in stars other than the Sun. Since the disks of most stars

cannot be resolved, the disk-integrated observations result in the overall cancellation

or averaging of brighter and darker areas on the surface, which strongly diminishes

the effective amplitudes of the brightness variations. Thus, the solar-like oscillations

in other stars have only been observed up to l = 3 and the claimed photometric

detection of higher-l values in some δ Scuti stars is a matter of debate.
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As mentioned above, the intrinsic amplitudes are also important and vary

strongly among the different types of variable stars. Whereas Cepheids have light

variations that can even be detected by eye, solar-type oscillations in Sun-like stars

have amplitudes that are of the order of several parts per million (ppm). Ground-

based observations, for instance for δ Scuti stars, can usually detect variability down to

mmag-level precision. Therefore, due to the optical limitations of observing through

the Earth’s atmosphere, the sensitivity from ground is too small to, e.g., detect solar-

type oscillations by approximately 3 orders of magnitude. Some of the first solar-type

oscillations in other stars have been observed from ground, however, due to the more

sensitive observations of radial velocity variations on the level of m s−1. Even for

radial velocity variations, however, a second major restriction applies for ground-

based observations. In order to reliably extract pulsational information for many

frequencies, long, uninterrupted, and rapidly sampled data sets have to be obtained.

This is due to four properties of the Fourier domain that is often used to analyse such

data sets (see, e.g., Reegen 2007):

• noise levels in the frequency domain decrease with the square root of the number

of data points,

• the Rayleigh frequency resolution, which limits the frequency resolution in the

discrete Fourier transform, is 1/∆T , where ∆T is the length of the data set in

time units,

• the Nyquist frequency, 1/(2δt), where for equidistant sampling δt is the time

difference between adjacent data points, limits the highest frequency that can

be reliably detected, and

• gaps in the sampling can produce artificial signal (aliasing) well above the noise

level.

These limitations affect different types of pulsation data in different ways.

Regular small-amplitude oscillations, e.g., as in δ Scuti stars, have mode lifetimes
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that are much longer than the observed data sets. Therefore, even when multiple

modes are excited, these sinusoidal signals can be easily resolved and decomposed

into several significant frequency components. The uncertainties for the actual mode

frequencies are then only limited by the frequency resolution and the signal-to-noise

ratio of the actual pulsation signal.

Solar-type oscillations, on the other hand, are damped and re-excited on much

shorter time scales. If the mode lifetimes are shorter than the data set time base,

multiple realizations of the damped and re-excited signal are observed. This is known

to lead to Lorentzian profiles in the power spectrum, where the width of the pro-

file (the so-called linewidth) is inversely proportional to the mode lifetime (or mode

coherence time) τ as in

Γ =
1

πτ
. (1.6)

For the Sun, for instance, the mode linewidths around νmax are of the order of 1µHz

(Chaplin et al. 1997). All this led to the realization that space-based missions, which

are not negatively affected by gaps due to the day-night cycle, and which could observe

targets for months at a time were the best possible solution to obtain asteroseismic

data. The first dedicated asteroseismology mission was the Canadian MOST (Mi-

crovariability and Oscillation of STars) satellite (Walker et al. 2003) and launched

in the summer of 2003 and is still in orbit obtaining data. The CoRoT mission

(Michel et al. 2006) and Kepler mission (Borucki et al. 2010) followed a few years

later and have since revolutionized the observational aspects of asteroseismology (see

section 1.3).

1.2.2 The extraction of solar-like oscillations

The fact that individual pulsation modes are no longer represented by a sharp

peak in the frequency domain but by Lorentzian profiles has severe consequences.

In the case of coherent, long-lived oscillations, the individual signals can be deter-

mined by refining a multi-sine fit using iterative sine fitting and subtraction. This

has traditionally been accomplished using software packages like Period04 (Lenz &
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Breger 2005) or SigSpec (Reegen 2007), and more reliable probabilistic techniques

for frequency extraction are still being developed (Zechmeister & Kürster 2009). In

order to extract the frequencies associated with the Lorentzian profiles, however, it is

necessary to model the power spectrum, including the granulation background (see,

e.g., Kallinger & Matthews 2010), the (possibly skewed) shape of the Lorentzian pro-

files and the leakage from adjacent profiles. Furthermore, for sufficiently fast rotating

stars and modes with l > 0, sidelobes to the Lorentzian profiles with asymmetric

mode height also have to be considered. While this provides additional information

on the stellar inclination (Gizon & Solanki 2003) it adds several new parameters per

mode and complicates the analysis.

For solar data sets that span up to decades, modelling all this information

is a computational challenge. Many different techniques have been developed to

either model individual parts of the solar power spectrum or to implement a pseudo-

global fitting strategy (e.g. Fletcher et al. 2009). For space-based data sets that are,

at least for now, much shorter, the whole power spectrum can still be treated in a

global approach where every significant mode is fit simultaneously. Recently, Bayesian

methods (Gruberbauer et al. 2009; Benomar et al. 2009a; Handberg & Campante

2011) have proven to be the most promising approach to execute this task. They are

able to propagate all the uncertainties and correlations of the power spectrum models

with their sometimes more than 100 free parameters, into the eventual frequency

uncertainties obtained from marginal distributions. They also help with the problem

of mode identification, as will be discussed in the next chapter2. More details on

Bayesian methods will be provided in Chapter 2.

Figure 1.3 summarizes the description of solar-type oscillation data by depict-

ing a Bayesian fit to the CoRoT data of HD 49933 and a corresponding échelle dia-

gram. Even without the échelle diagram, the regularity in the pulsation spectrum is

obvious. Note that this plot only shows the region in the spectrum where significant

2A different but very promising Bayesian approach, which models the damped and randomly
excited signal in the time domain, has been suggested by Brewer & Stello (2009). So far, however,
it remains computationally intractable for the big data sets obtained from space.
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Figure 1.3: Power density spectrum of the solar-type oscillations detected in the CoRoT data
for HD 49933 (grey) (Appourchaux et al. 2008; Gruberbauer et al. 2009; Benomar et al. 2009a).
Also shown is a 10-pt running average (black) and a simple multi-component model fit consisting
of a standard background model and several Lorentzian profiles (red). For simplicity, this model
assumes equal linewidths for all modes and only considers l = 0 and l = 1 modes. The insert
shows the échelle diagram produced using the frequencies from Benomar et al. (2009b).

pulsation signal can be detected. The power spectrum still contains more information

on the granulation signal and possibly rotational modulation of the stellar brightness

at much lower frequencies.
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1.3 Recent advances in asteroseismology from space

1.3.1 Unveiling the hidden secrets of classical pulsators

Within the time span of a few years, the CoRoT and Kepler missions have

lead to a revolution in the study of pulsating stars. It is self-evident that either stars

with previously undetected pulsations or with many modes that are difficult to de-

tect from ground are the biggest beneficiaries of the new instruments. However, even

traditional pulsators like RR Lyrae stars have benefitted from the gapless sampling

and high precision, for instance in the study of the so-called Blazhko cycles and a po-

tentially connected new phenomenon discovered by the Kepler satellite called “period

doubling” (Szabó et al. 2010). Moreover, as already suggested by data produced with

previous space-based missions such as MOST (Gruberbauer et al. 2007), previously

unknown additional modes were found in these stars as well (Guggenberger et al.

2012).

For δ Scuti stars, γ Dor stars, and hybrids, CoRoT and Kepler have revealed

up to hundreds of additional and unexpected frequencies (e.g. Moya & Rodŕıguez-

López 2010). This has produced quite a controversy about whether these frequencies

could have been produced by pulsation (Garćıa Hernández et al. 2009) or are rather

artefacts created by the noisy signals produced through very shallow surface convec-

tion and granulation (Kallinger & Matthews 2010). In any case, it seems clear that

the incidence of hybrid pulsators that show both p and g modes appears to be much

higher than previously thought (see, e.g Uytterhoeven et al. 2011). Many more un-

expected discoveries, such as potential g modes in pre-main sequence stars (Zwintz

et al. 2013a), as well as regularities (Breger et al. 2011; Zwintz et al. 2013b) and very

high-frequencies in δ Scuti stars (Balona et al. 2012) have resulted from the CoRoT

and Kepler space photometry as well. Naturally, roAp stars (Kurtz et al. 2011) and

pulsating B stars (Balona et al. 2011) have also been observed, resulting in interesting

new phenomena and detections.
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1.3.2 The solar-like revolution

The reliable detection of nonradial solar-like oscillations in hundreds to thou-

sands of red giants (e.g., Huber et al. 2010; Kallinger et al. 2010) is perhaps considered

the most important asteroseismic discovery of these missions so far3. It has further-

more led to the detection of many g modes clustered around the l = 1 modes, as

predicted by theory (Dupret et al. 2009). These g modes have been highly valuable

since it was discovered that they can be employed to distinguish between hydrogen-

and helium-burning giants (Bedding et al. 2011; Kallinger et al. 2012; Stello et al.

2013). Furthermore, they also allow to draw inferences about the rotation speed

profile as a function of stellar radius (Beck et al. 2012).

Most relevant to the types of stars analyzed in this thesis, the data base for

the reliable observation of solar-like oscillations in main sequence stars has increased

by at least one order of magnitude. From one (the Sun) or perhaps a few objects, if

one considers the ground-based observations of e.g., α Cen, η Boo, and a few other

stars as reliable (see Aerts et al. 2008, for a good review of the state of asteroseismol-

ogy before the impact of the two space-based missions), we have moved forward to

single publications that contain frequencies for several dozens of solar-like pulsators

(Appourchaux et al. 2012). Even just with a few quarters of Kepler data, as in the

case of the 61 stars reported by Appourchaux et al., observational uncertainties of

frequencies are approaching the theoretical random uncertainties typically reached by

pulsation model frequencies. The observation of so many stars with solar-like oscilla-

tions also permit the explicit testing of the scaling relations previously mentioned in

this chapter (Huber et al. 2011).

1.3.3 Realizing the promises of asteroseismology

A large asteroseismic community is currently at work, using previously unimag-

inable amounts of data, to investigate so many different phenomena that it is hopeless

3It should be noted that nonradial modes in giants were first detected by the MOST satellite
Kallinger et al. (2008).
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to mention them all in this introductory chapter. Instead, it is more important to

connect these current advances with the aims of this thesis. To summarize, cur-

rent state-of-the-art asteroseismology relying on space-based data is concerned with

two types of studies. The first has been termed “ensemble asteroseismology” (e.g.

Chaplin et al. 2011) and amounts to studying whole populations and types of stars

using “comparative” and statistical asteroseismology. Due to their statistical nature,

mistakes made in the modelling of individual stars, be it due to inadequacies of the

scaling relations, slight systematics in the stellar modelling, or unavailable spectro-

scopic constraints are not as important.

The second important approach, however, requires the detailed modelling of

individual stars in order to provide stronger constraints on the stellar parameters

(e.g., Brandão et al. 2011; Metcalfe et al. 2010; Mathur et al. 2012; Metcalfe et al.

2012). This is, for instance, important to constrain properties of their transiting

planets4 (Huber et al. 2013). Of course, the ultimate goal for stellar astrophysicists is

to better understand the stars themselves but it is vital to emphasise that for many

types of stars there exist fundamental problems for the modelling approach. For many

stars there exists the general problem of ambiguous mode identification (e.g., for δ

Scuti and roAp stars) that prohibits a simple comparison of observed and calculated

frequencies. Furthermore, the theoretical stellar models used to study stars are,

at least for several classes of objects, still not good enough to perform asteroseismic

modelling without significant systematic errors. For the aforementioned δ Scuti stars,

for instance, systematic frequency errors arise due to rapid rotation.

One major problem for modelling of solar-like pulsation, which is of central

importance for this thesis, lies in the inadequate modelling of the outer layers of

solar-like stars which imprint the so-called “surface effect” onto the stellar frequency

spectra5. This systematic error reveals itself through increasing deviations of the

4It is sometimes necessary to remind the asteroseismologist that both the CoRoT and Kepler
mission are, fundamentally, missions for the detection and characterisation of exo-planets

5As of yet, it is uncertain in how far these “surface effects” also extend to other stars with
convective envelopes such as red giants.
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observed frequencies from the calculated values towards higher orders. Since this

effect originates in the improper modelling of convection, different solutions have been

proposed. Most widely used is the application of an empirical correction (Kjeldsen

et al. 2008) which, however, has only been calibrated with a specific set of solar

models and observations. In the next chapters, this thesis will introduce a more

flexible solution for the consideration of such systematic errors. A different, more

future-proof approach is to improve the convective modelling specifically targeted at

reducing the surface effects (e.g., Grigahcène et al. 2012). However, most current

studies are done using traditional stellar models and adiabatic pulsation codes that

suffer from the surface effect and deficiencies due to the assumption of adiabaticity,

and until recently there also was no framework for how to consistently compare the

various modelling approaches. In general, even recent studies with many different

modellers and codes, such as presented by Metcalfe et al. (2012), suffer from the lack

of such a framework since many different incommensurable goodness-of-fit results

(e.g., due to different parametrisation of the surface effect correction) have to be

averaged to represent the results. This problem also persists outside the specific

field of solar-like oscillations and is a problem for asteroseismic modelling in general.

Providing this framework for a consistent comparison of model codes and results is

the second major goal of this thesis.

Although the wealth of new data allows us to draw many new conclusions

independent of the detailed modelling, to reach the fundamental goals of asteroseis-

mology it is necessary to overcome these problems. I will argue in the chapters that

follow that current methods for asteroseismic modelling can be improved upon by

using probabilistic analysis. The goal is to develop a method that can be used to sys-

tematically work towards more realistic theoretical models and to critically evaluate

these models at all stages. In order to make this a reality, a method has to be found

that is able to reliably compare different modelling codes, different implementations

of grid physics, and different formulations to correct against systematic errors in the
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model. This method will be presented in the paper reproduced as Chapter 3. First,

however, I will provide a brief introduction to Bayesian analysis.
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Szabó, R., et al. 2010, MNRAS, 409, 1244

Tassoul, M. 1980, ApJS, 43, 469

Uytterhoeven, K., et al. 2011, A&A, 534, A125

Vandakurov, Y. V. 1967, Astronomicheskii Zhurnal, 44, 786 (English translation:

Soviet Astronomy AJ, 11, 630)

Walker, G., et al. 2003, PASP, 115, 1023

Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577

Zwintz, K., Fossati, L., Ryabchikova, T., Kaiser, A., Gruberbauer, M., Barnes, T. G.,

Baglin, A., & Chaintreuil, S. 2013a, A&A, 550, A121

Zwintz, K., et al. 2013b, ArXiv e-prints

20



Chapter 2

Introduction II: Probabilistic Inference Using Bayesian

Analysis

In order to understand the modus operandi and the purpose of the asteroseis-

mic methods developed in this thesis, some basic insights into Bayesian analysis are

required. This chapter, which will strongly rely on the two textbooks by Gregory

(2005) and Jaynes & Bretthorst (2003), will provide all the required preliminaries to

do so. First, section 2.1 will provide a motivational discussion about scientific infer-

ence and the argument for probabilistic inference. Section 2.2 then sets out to explain

the fundamental laws of probability theory and how they can be used to evaluate

different hypotheses. This also includes a toy problem example related to stellar as-

trophysics. In section 2.3, I will then discuss some additional points that are helpful

to understand, such as the nature of priors, the difference between a prior and an

observable, the basic purpose of the evidence, and the modular nature of Bayesian

analysis. Lastly, section 2.4 will present some recent results from stellar modelling

and asteroseismology that were produced by the application of Bayesian analysis.

2.1 The scientific method and the argument for probabilistic

inference

The scientific method is usually associated with the following narrative: science

is a process that starts with the observation of nature, then leads to the formation

of hypotheses, and then turns to experiments to verify or falsify the predictions that

follow from the hypotheses. From this results a feedback loop that eventually leads to

scientific theories as a collection of laws and relations between concepts and observed

phenomena which have prevailed against all observational tests. Further observations
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of nature are made to assess the applicability of the specific theories in previously

unaccessible regimes until discrepancies are found.

Such an idealization of the scientific process, however, completely overlooks

the actual sociological structure of science as a profession and the history of scientific

development. This was impressively unveiled by Thomas Kuhn in the seminal work

“The Structure of Scientific Revolutions” (Kuhn 1970). A simplification, which is

often encountered when scientists describe the scientific method, is the notion that

science works through falsification such that a single experiment can disprove a hy-

pothesis or a theory. Kuhn, however, argues that scientists are much more adherent

to the current paradigms in their field than the idea of falsification suggests. To

paraphrase: once a theory is established, scientists use the tools that follow from it

to further investigate nature as seen through its lens. Discrepancies between theory

and experiment are not necessarily considered to be evidence against the paradigm’s

overall validity. Instead, slight modifications are made (e.g., arbitrary fitting param-

eters) to make the paradigm work also in such cases. This is fundamentally a good

thing because otherwise science would be a very chaotic endeavour, constantly being

overturned and questioned by the latest public claims of cold fusion or superluminal

neutrinos. It is only when more and more evidence mounts in the peer-reviewed liter-

ature that makes it harder and harder to adhere to the current paradigm, that a crisis

develops which can only be resolved by eventually changing to a different paradigm.

Therefore, falsification is either not as effective or as prevalent as the tradi-

tional narrative might suggest. One reason for this is certainly given by the difficulty

to assess in practice whether a hypothesis, or one of its predictions, has actually

been falsified. Complicated physical models usually have many (free) parameters and

uncertainties or systematic errors in some of the modelled processes. Moreover, obser-

vations always have uncertainties, as well as known and unknown systematic errors.

This naturally raises the question: is a model or a hypothesis automatically wrong if

22



the outcome of an experiment disagrees with what was predicted by more than the

quoted uncertainties? Is a more or less conservative criterion necessary1?

This picture of the scientific process is clearly different from the classical nar-

rative but strangely enough the idea of falsification still prevails. One could argue

that this is partially due to long-held methodological practices. Science, in particular

physics and also astronomy, was dominated for decades by the idea of frequentist hy-

pothesis testing and the ideas of Fisher (see Jaynes & Bretthorst 2003)2. Given the

increased complexity of todays problems, it is important to ask whether this school

of scientific inference is reaching its limits. After all, these so-called “frequentist”

methods, even though they haven been described as fundamentally different in their

philosophy, are really approximations to general probabilistic inference. They cer-

tainly yield impressive and accurate results for many problems and were an obvious

choice in particular at a time where computational power was limited. However,

with the advent of more capable computers, the more general approach to scientific

inference has re-emerged from the dustbins of history - Bayesian analysis.3

As will be described in the following sections, Bayesian analysis works in fun-

damentally different ways than traditional statistical tests (or frequentist methods),

because it does away with the idea of simple hypothesis rejection as a sufficient tool

for evaluating scientific models. The fundamental property of this probabilistic frame-

work is that it is able to give every tested hypothesis an objective and comparative

value. While the set of tested hypotheses, and the collection of prior knowledge on

which their evaluation is based, is still subjective (or subject to economic or temporal

constraints), a set of clearly stated assumptions always leads to the same outcome.

1This discussion leaves out the big problem of theories that have become very complicated and
also more and more difficult to test. Such theories can reach a state where they are so flexible
and powerful that they are utterly untestable. This is discussed for the case of string theory in the
controversial book “The Trouble with Physics” (Smolin 2006)).

2For instance, as is discussed in Gregory (2005), the commonly cited p value is often used to
reject (or accept) models based on the likelihood of the data sample under the null hypothesis.
Such a test is only applicable if a commonly accepted threshold is employed which then assumes the
responsibility for deciding whether the null hypothesis is considered “falsified”.

3More details on the origins of Bayesian analysis and its connection to frequentist methods can
be found, e.g., in Jaynes & Bretthorst (2003) and also McGrayne (2011).
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Put in the terms of Jaynes & Bretthorst, Bayesian analysis is like a robot that evalu-

ates new evidence using its prior knowledge and the rules of logic, and each robot with

the same set of prior knowledge and the same set of new evidence must, by definition,

come to the same conclusions. Except for the simplest of problems, this means that

the process of scientific inference is never complete, because one can always envision

new hypotheses, and one might always gather new evidence that can potentially have

a huge impact on our prior knowledge for the next iteration of inference. However,

such is the nature of the scientific method. It is certainly anchored in the well known

principle of Occam’s Razor, which says that the simplest available explanation that

can explain all the available data is usually the most plausible. However, a new ob-

servational datum, if convincing enough, could suggest that what was deemed almost

certain yesterday is now no longer so. Therefore, our set of prior assumptions should

never have the upper hand in any test of our scientific hypotheses and theories. On

the other hand, the famous motto of science, often publicized by Carl Sagan, that

“extraordinary claims require extraordinary evidence”, is certainly important as well.

It is therefore assuring, that Bayesian analysis incorporates all these desiderata at

the fundamental level.

Probabilistic inference has proven itself in countless practical applications even

outside of science (see, e.g., McGrayne 2011), and it is gaining momentum in many

previously “frequentist”-dominated scientific fields as well. One of these is astero-

seismology, as will be discussed in section 2.4. It will be interesting to see whether

the increasing prevalence of the more comparative Bayesian approach, which formally

adheres to the fundamental principles of the scientific method, can change the narra-

tive of how science is done in the future. Will Kuhn have to revise his conclusions if

scientist will ever learn to use their Bayesian robots to evaluate competing paradigms?
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2.2 Fundamentals of Bayesian inference

2.2.1 The laws of probability and Bayes’ theorem

At the most fundamental level, probabilistic inference or Bayesian analysis

is based on two “laws of probability” (Jaynes & Bretthorst 2003). The first is the

product rule

P (A,B|C) = P (A|C)P (B|A,C) = P (B|C)P (A|B,C) (2.1)

and the second is the sum rule

P (A+B|C) = P (A|C) + P (B|C)− P (A,B|C) . (2.2)

In these equations, P simply stands for probability or probability density, and the

letters A, B, and C represent propositions that can be evaluated. Both rules follow

from theorems developed by Cox (1961) as described at length by Jaynes & Bretthorst

(2003). In short, these two laws are necessary for any inference that regards (1)

the plausibility of a proposition as a numerical value, (2) requires consistency in

the derived results, and (3) follows the requirements of logic. The notation used in

these two equations associate the “,” operator with a logical “AND”, while the “+”

operator describes the logical “OR”. Finally, the ”|” denotes conditionality in that the

proposition on the left are evaluated conditional on the truth of the proposition on the

right. Therefore the left side of the product rule, P (A,B|C), reads as “the probability

that A AND B are true, given C”. The left side of the sum rule P (A+B|C) reads

as “the probability that A OR B OR both are true, given C”.

By simply rearranging the terms in Equ. 2.1, one obtains Bayes’ theorem

P (B|A,C) =
P (B|C)P (A|B,C)

P (A|C)
(2.3)

which gives Bayesian analysis its name. It is important to remember, however, that

25



• Bayesian analysis is not merely the application of one mathematical theorem,

• the product and sum rules can be further applied to the terms in this and other

probabilistic equations, and

• in some cases probabilities are of interest that do not require the specific use

of Bayes theorem, but that would still be regarded as following a “Bayesian

approach”.

Still, although “probabilistic inference” is a better name to describe all these fea-

tures, “Bayesian analysis” has established itself as the common term with which such

analyses are described.

2.2.2 The Bayesian approach to scientific inference

In order to perform scientific inference, the terms in Equ. 2.3 need to be iden-

tified with propositions that are relevant for this task. This is done, as shown in

Gregory (2005), by using for example the assignment

P (M1|D,H, I) =
P (M1|H, I)P (D|M1, H, I)

P (D|H, I)
(2.4)

In this assignment, M1 represents the proposition that the modelM1 describes what is

observed in the dataD. Furthermore, all these terms are conditional on the hypothesis

H with which the model M1 was created. For example, H could stand for a specific

combination of fundamental assumptions in stellar modelling (such as: treatment of

convection, chemical composition, nuclear reaction rates). Different models Mi could

then be created, for instance with different masses and metallicities or at different

stages in stellar evolution, from the same common “hypothesis” H. Finally, I stands

for the prior information or the set of prior assumptions made.

If a certain subset of mutually exclusive models Mi (e.g., a star cannot have

two different masses at the same time) are to be considered as a combined proposition,
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one can use the sum rule and the product rule and write for example

P (M1 +M2 +M3|D,H, I) =

�3
i=1 P (Mi|H, I)P (D|Mi, H, I)

P (D|H, I)
. (2.5)

When this sum is extended to all models that we have available under the hypothesis

H, the term on the left side becomes unity, since the posterior probability over all

available hypotheses must be equal to one4. In this case the denominator of Bayes’

theorem finally takes shape as

P (D|H, I) =
�

i

P (Mi|H, I)P (D|Mi, H, I). (2.6)

Rewriting the “scientific inference” version of Bayes’ theorem, we obtain for the pos-

terior of model M1

P (M1|D,H, I) =
P (M1|H, I)P (D|M1, H, I)�
i P (Mi|H, I)P (D|Mi, H, I)

. (2.7)

This is another common and insightful way to write Bayes’ theorem when used for

scientific inference.

The individual terms in Equ. 2.4 or Equ 2.7 have very specific meanings:

1. P (M1|D,H, I) is the posterior probability of M1 given the data D, the hypoth-

esis H and the prior information I. It represents the actual probability of the

model M1 once all models Mi have been evaluated using the new data D.

2. P (M1|H, I) is the prior probability M1 given the hypothesis H and the prior

information I. This simply corresponds to the probability that model M1 rep-

resents reality before the new data was obtained.

3. P (D|M1, H, I) is the likelihood of the obtaining the data D under the assump-

tion that the model M1 represents reality and given the prior information I.

4Note that this does not mean that one of the models must be “true” in any way. This will be
discussed in more detail in section 2.3
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4. P (D|H, I), finally, is called the evidence5 It is the likelihood of obtaining the

data D under the assumption that the hypothesis H represents reality. As

derived above, it is also equivalent to the normalization constant obtained when

summing all the different numerators in Bayes’ theorem.

All terms mentioned above warrant some more discussion that will be provided in

section 2.3.

2.2.3 Marginalization

An important feature of Bayesian analysis that stems from the underlying

rules of probability theory is marginalization. Marginalization has already been used

above to derive the different expressions for the evidence. It is a process that employs

the sum rule to remove a “dimension” in the problem that previously had to be

considered. This is more easily understood if the models to be analyzed are analytical.

For example, in simple sine fitting, a function

y(t) = c+ A sin (2πft+ φ) (2.8)

is fitted to the data (e.g., brightness variations), where c is the constant offset, A

is the amplitude, f is the temporal frequency, φ is the phase shift, and t is the

independent variable (e.g, time). All of these terms are required to describe a proper

sine wave. However, when fitting such a function to the data, we are often not

interested in all parameters. In other cases, strong correlations might arise that make

it difficult to summarize the result as, e.g., a function of frequency alone. In a Bayesian

analysis, while the analysis would proceed by calculating the posterior probability

for all combinations of parameters, there is the option of marginalizing over the

uninteresting parameters. For the sine wave example, the posterior probability is a

5Jaynes & Bretthorst uses the term evidence while Gregory uses the term global likelihood. This
thesis predominantly uses the former term since it is more concise and prevents confusion with the
regular likelihood.
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function of all the parameters

P (c, A, f,φ|D, I) ∝ P (c, A, f,φ|I)P (D|c, A, f,φ, I) . (2.9)

If, say, the constant offset is uninteresting6, it can be marginalized by calculating

P (A, f,φ|D, I) ∝
�

c values

P (c, A, f,φ|I)P (D|c, A, f,φ, I) , (2.10)

or in the continuous case

P (A, f,φ|D, I) ∝

� cmax

cmin

P (c, A, f,φ|I)P (D|c, A, f,φ, I) dc. (2.11)

Note that c is now missing in the list of arguments in the posterior probability. It

is still considered in the evaluation of the marginal posterior probabilities of A, f ,

and φ, but these values are now independent of any specific choice for the value of

c. Naturally, the marginalization will not change the value of the evidence, since the

evidence is the marginal likelihood over the whole hypothesis space.

In order to properly calculate the marginal posterior probability, all values of

the marginalized parameter have to be taken into account. This is of course impos-

sible, unless the integral over the parameter can be performed analytically. In such

cases, however, the computational savings can be tremendous, since the sampling of

a complete parameter can be avoided by simply changing the function that is eval-

uated by integration. Nonetheless, even if the marginalization cannot be performed

analytically, it is an important concept for the analysis of more complex problems via

Markov Chain Monte Carlo (MCMC) methods.

2.2.4 A toy problem

Before proceeding with more details on the different terms in Bayes’ theorem,

it is helpful to present some numerical examples to better explain how these equations

6Gregory likes to use the term nuisance parameter for this purpose.
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work and how they can be used to answer specific questions. Therefore, this section

will show an intuitive but sufficiently complex example using a stellar toy problem.

Imagine that a new kind of peculiar star has been observed to have a certain

effective temperature Teff,obs = 8000± 100,K. No other information about the object

is available, except for the fact that Teff is a very important probe of the particular

and exotic physical properties of this star. Let us then assume that two sets of models,

both of which propose to adequately describe this peculiar object, are available. One

set uses fairly standard physics S, while the other set incorporates non-standard

physics N (e.g., a new description of the stratification of peculiar chemical elements).

Let only three models be available per model family with specific Teff predictions that

are summarized in Table 2.1.

As shown by Gregory (2005), by assuming Gaussian uncertainties e we can

use the ansatz

Teff,obs = Teff,Mi + e. (2.12)

If one of the models was actually correct, we would observe the predicted effective

temperature were it not for the random uncertainties. Thus, given the Gaussian

uncertainties, we can write the likelihood of observing the data D (= Teff,obs) as

P (Teff,obs|Mi,H, I) =
1

√
2πσ

exp

�
−
(Teff,obs − Teff,Mi)

2

2σ2

�
, (2.13)

where H (“hypothesis”) stands for either S (“S is true”) or N (“N is true”), or

the logical proposition S + N (“S or N are true”), and σ = 100K. With these

results, the posterior probabilities can then be calculated after the prior probabilities

have been specified. If there is no specific information about which models are more

realistic a priori (for more on this see the next section), an equal uniform probability

can be assigned. The only condition to obtain a so-called proper prior is to ensure

that they are properly normalized7. Therefore, if N and S are evaluated separately,

7Improper priors, which are not normalized to unity, do not produce evidence values that can be
used as likelihood for further Bayesian analysis. This follows from the fact that the evidence is the
prior-weighted mean likelihood.
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Table 2.1: Teff , likelihood, and posterior probability for all competing models in the stellar
probability example.

observed M1 M2 M3

Teff(S) [K] 7932 8305 12103
Teff(N ) [K] 7908 8102 9007

results M1 M2 M3

P (Teff,obs|M,S, I) 3.166 · 10−3 3.8 · 10−5 ≈ 0.0
P (Teff,obs|M,N , I) 2.613 · 10−3 2.37 · 10−3 ≈ 0.0
P (M |Teff,obs,S, I) 0.988 0.012 ≈ 0.0
P (M |Teff,obs,N , I) 0.524 0.476 ≈ 0.0
P (Teff,obs|M,S +N , I) 3.166 · 10−3 3.8 · 10−5 ≈ 0.0
P (Teff,obs|M,S +N , I) 2.613 · 10−3 2.37 · 10−3 ≈ 0.0
P (M |Teff,obs,S +N , I) 0.387 0.005 ≈ 0.0
P (M |Teff,obs,S +N , I) 0.319 0.289 ≈ 0.0

P (Mi|H, I) = 1/3. However, we can also evaluate all the individual models together

to see which of the individual models is the most probable. This is done by combining

the two model families so that P (Mi|S +N , I) = 1/6. The results for the likelihoods

and the posterior probabilities are also shown in Table 2.1.

It is clear that the likelihood values are the same whether they are evalu-

ated conditional on one or both model families. The posterior probabilities, however,

change dramatically. M1 with the standard S physics, has a very high probability

(0.988) compared to the other models in the same model family. When all models of

both families are taken into account, it still has the highest overall posterior prob-

ability (0.387), but the second highest probability (0.319) now belongs to a model

of the non-standard physics family, and the contrast between these two models is

negligible. The reason for this difference is self-evident: within the S familiy, M1 has

no strong competitor, but in the N family, two models predict a very similar effective

temperature8.

8This is an example for how Bayesian analysis correctly takes into account the specific propositions
that are investigated. Standard hypothesis tests, on the other hand, are usually only based on the
likelihood itself. Therefore, based on the fundamental formalism, they cannot answer the questions
that are related to the propositions tested here without further modifications.

31



Table 2.2: Posterior probabilities for the S and N families as a function of the evidence and
several priors.

equal prior S N

P (H|I) (= prior) 0.5 0.5
P (Teff,obs|H, I) (= evidence) 0.001068 0.001661
P (H|Teff,obs, I) (= posterior) 0.391 0.609

unequal prior 1 S N

P (H|I) 0.9 0.1
P (Teff,obs|H, I) 0.001068 0.001661
P (H|Teff,obs, I) 0.853 0.147

unequal prior 2 S N

P (H|I) 0.99 0.01
P (Teff,obs|H, I) 0.001068 0.001661
P (H|Teff,obs, I) 0.985 0.015

The most interesting exercise is to evaluate the evidence for the two model

families. The evidence can be understood as the prior-weighted mean likelihood, but

it is also equivalent to the likelihood for the data under the hypothesis expressed by

the summation. In the case of our example, therefore, the evidence for S (or N )

is equivalent to the likelihood for the data given S (or N ) as a whole. Hence, we

can employ Bayes’ theorem again to calculate the posterior probability for, e.g., the

model family S with

P (S|Teff,obs, I) =
P (S|I)P (Teff,obs|S, I)

P (S|I)P (Teff,obs|S, I) + P (N|I)P (Teff,obs|N , I)
(2.14)

The equation now contains prior probabilities for the model families as a whole,

P (S|I) and P (N|I), which again should be properly normalized to unity to be con-

sidered proper priors. The results for various prior values are presented in Table 2.2.

As shown, if both model families are equally probable before the new observations are

evaluated, we obtain the interesting situation where the most probable model belongs

to model family S, but where model family N as a whole is overall more probable

(0.609 compared to 0.391). This is due to the fact that the prior-weighted mean
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likelihood (and therefore the evidence) is larger for model N than for model S. This

interesting example also signifies that it is important to realize what is calculated at

each step in the Bayesian analysis in contrast to the standard statistical tests. Are

we interested in determining the most probable model, or are we interested in eval-

uating the physics behind the model? Answers to these questions usually belong to

the evaluation of quite different propositions that nonetheless follow from the same

exact formalism.

Finally, more details are in order for the priors P (S|I) and P (N|I). Since

our example considers the comparison of standard to non-standard physics, it is

important to assess how improbable the non-standard physics are, simply because

they are non-standard. Thankfully, the rules of probability consider this implicitly

due to the presence of the priors in Equ. 2.14. If it is simply a matter of convention,

then the uniform prior is an adequate choice. However, if the non-standard physics of

N are known to be otherwise much less plausible than those of S, different priors are

in order which can have a big impact on the posterior probabilities. Additional priors

in Table 2.2 show how priors of various orders of magnitude in probability contrast

affect the results. It can be difficult to assess which priors to use for things such as

different input physics, but that does not render the analysis more subjective as is

often claimed. More details on the choice of prior values will be discussed in the next

section.

2.3 Advanced details of Bayesian analysis

Much of the skepticism that prevented the quick adaption of Bayesian analy-

sis in many fields lies in its complexity and nuances, but also in the simple naming

conventions of the different terms in, e.g., Equ 2.7. This section will provide a brief

discussion of these terms, work out some differences to standard frequentist inference,

and conclude with a detailed look at the modular nature of Bayesian analysis. Fi-

nally, at the end of this section, the Bayesian treatment of systematic errors will be

introduced.
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2.3.1 Prior probabilities

The prior probabilities and how they are used could be argued to leak “subjec-

tivity” into statistical analyses. Several arguments can be given to better understand

why priors are actually required that the claim of subjectivity is not necessarily cor-

rect. Firstly, prior might be a fitting name, but it misrepresents the fact that the

term simply describes conditional probabilities that are required by the product rule of

probability theory. It is therefore not the convenience of affecting the posterior prob-

abilities that drives Bayesian analysts to incorporate their prior information. Doing

so is a mathematical necessity.

Thus, follows the second argument, since prior probabilities have to be specified

in order to produce the numerically correct results, not using prior probabilities is

equivalent to always using equal priors for all parameters or hypotheses. As is argued

by Jaynes & Bretthorst (2003), however, the uniform prior

P (x|I) =
1

xmax − xmin
(2.15)

is not always the prior that correctly encodes a state of “missing information” for

some parameter x. In the case of a scale parameter that varies over many orders of

magnitude, for instance, the Jeffreys prior

P (x|I) =
1

x log (xmax/xmin)
(2.16)

is the correct choice. Jaynes tried to answer the general question which priors would

be most non-committal to missing information (i.e., we are not putting in informa-

tion that we do not have). The solution that he provides is to determine the prior

which maximizes the entropy of the prior probability distribution, which leads to very

particular prior choices for the simplest problems (i.e., uniform prior for a location

parameter, Jeffreys prior for a scale parameter, Gaussian prior for a distribution with

known mean and variance).
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However, when the maximum entropy approach is not used, specifying the

prior probability is still a requirement to (re-)producing the results. As mentioned

above, Jaynes’ “inference robot” will always come to the same conclusions if supplied

with the same bits of prior information and the same observational data. Therefore,

there is no more subjectivity in the results than in any other statistical test. What

Bayes’ theorem (or the robot) does, however, is to elevate the prior assumptions from

some hidden area in statistical testing to being an integral part of the analysis to be

put under scrutiny. As in the toy example above (or in the analysis of the Sun in

Chapter 4), it is sometimes not easy to be absolutely clear on the choice of priors. In

such cases, however, many different priors can be tested. The importance of Bayes’

theorem is then that the choice of prior becomes a potentially revealing part of the

analysis.

2.3.2 The posterior probability and the likelihood

The posterior probability is the probability of propositions (logical statements,

models, parameters) after the evaluation of new information, but with consideration of

the previous state of information. The likelihood, on the other hand, merely describes

how likely it is to obtain the new information, given that the assumptions on which

it is conditional are correct. From the formal equations alone, it is obvious that the

two terms cannot mean the same thing, unless both the prior probability and the

evidence either cancel or are equal to unity. In this case, however, the likelihood and

the posterior themselves have to be equal to unity, and therefore no inference has

occurred.

Seen from yet another angle, the likelihood alone cannot describe the prob-

ability of some hypothesis. Assume that there is some experiment, and that there

are two hypotheses, both of which are equally probable a priori. Furthermore, both

experiments predict the same outcomes with the same frequency although they make

completely different but equally probable assumptions. Evaluated with some spe-

cific outcome observed from this experiment, they would both have the same prior
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probability and they would lead to the same likelihood. Hence, if the two were the

only hypotheses considered, they would obtain the same posterior probability: 0.5.

Unless some experiment could be found where the predictions of both hypotheses

differ, this result would always be obtained. The likelihood term, however, depends

on the specific data set that was obtained. Sometimes the outcome of the experi-

ment would be more, sometimes less likely. If the likelihood alone was responsible

for the actual probability of the hypotheses, the probabilities for both models would

constantly change. In the case of extremely unlikely outcomes, the experiment would

even suggest that both hypotheses are wrong. Nonetheless, extremely unlikely events

happen all the time. For instance, in a game of cards, the likelihood of obtaining a

specific set of playing cards is astronomically small. Nonetheless, every player ends

up with a hand of cards once they have been dealt.

Yet, the traditional χ2 test, one of the test statistics most often encountered

in traditional frequentist inference (see, e.g., Gregory 2005), uses this exact likelihood

principle alone. It assesses the likelihood of obtaining the test statistic (the χ2 value)

given the assumptions (n degrees of freedom; observed variance due to independent,

normally-distributed random variables). This is then turned into a “probability”

(the p value) by using the cumulative distribution function of the χ2 distribution

for n degrees of freedom. However, this probability does not consider any alternate

hypotheses, since it is only based on the likelihood of one model - the null hypothesis.

Finally, the p value only encapsulates the frequency of the occurrence a χ2 value like

the one that was observed, if the experiment (or whatever led to the new information)

was infinitely repeated. To summarize, it is merely a normalized likelihood.

The likelihood is only one term in the equations, and it only determines the

likelihood of the data given that the conditional assumptions are correct. The prob-

ability of the tested hypotheses is quite different. This is also relevant for the dis-

tinction between prior information and new data. One of Cox’s desiderata, that of

consistency, requires that a calculus of inference must come to the same conclusions,

no matter in which sequence information is evaluated. For instance, assume that
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some information is obtained and evaluated at time T1, which leads to a certain state

of prior information at later time T2. Then, another piece of information is obtained

and evaluated at time T2. Alternatively, assume that the information at time T1

was put into an envelope instead of being evaluated. This envelope is then opened

at time T2, at the same time as the second piece of information arrives, and both

pieces are evaluated simultaneously. Naturally, the state of information after time T2

is the same in both cases. Similarly, Bayes’ theorem will also produce the exact same

posterior probability after time T2. However, even though the posterior probability

at T2 is the same, the value of the likelihood at T2 differs depending on whether

one or two pieces of information are evaluated at the same time. This is another

indication that the likelihood alone is insufficient to evaluate hypotheses. It always

depends on what is considered prior information and what is considered new data.

To conclude, the posterior probability, and the whole Bayesian approach, dif-

fers from the likelihood principle because the posterior probability and the likelihood

of obtaining the data are two different parts of the problem of inference. The likeli-

hood always has to be conditional on the hypothesis it is evaluating, and therefore it

is insufficient for probabilistic inference.

2.3.3 The evidence and the modular nature of Bayesian analysis

One of the most useful features of Bayesian analysis is it’s modular nature,

provided by the correct normalization of probabilities through the evidence value.

This was already encountered in the toy example above. In this section, however, a

more complex conceptual example will be given to reflect the power of this approach.

First, however, it is important to once more clarify that the evidence value is rig-

orously defined as the prior-weighted average likelihood of all propositions that are

evaluated. In order to function in the way described below, proper priors have to be

used so that the sum over all weights in the calculation of the evidence add up to

unity.
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Fig. 2.1 shows a fictional situation in which four different fundamental hy-

potheses HI to HIV are being evaluated. Each hypothesis has a distinct set of models

Mi, and every model has several different parameters θ = {θ1, θ2, ..., θn} that allow for

up to several different parameter value combinations Cθ,1, Cθ,2, and so on. Probabilis-

tic inference allows us to test this collection of models at every layer. The reason for

this is that the likelihood terms originate at the smallest scale, i.e., at the parameter

values in every model. For instance, after obtaining some data D relevant to these

fundamental hypotheses, evaluating the parameter values Cθ,1 for M1 of HI leads to

P (Cθ,1|D,M1,HI, I) =
P (Cθ,1|M1,HI, I)P (D|Cθ,1,M1,HI, I)

P (D|M1,HI, I)
. (2.17)
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Figure 2.1: Cartoon representation of the modular nature of Bayesian analysis. Four different
hypotheses, each with different model structure, down to the level of individual combination of
parameter values (Pc), can be compared thanks to the correct normalization of the posterior
probabilities and the evidence.
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Here, the evidence P (D|M1,HI, I) is equivalent to the sum of the numerator

over all parameter combinations for HI
9. Note, however, that this evidence is for-

mally equivalent to the likelihood of data given the model M1 and the fundamental

hypothesis HI. Therefore, it is easy to evaluate the posterior probability for M1 by

calculating

P (M1|D,HI, I) =
P (M1|HI, I)P (D|M1,HI, I)

P (D|HI, I)
(2.18)

using the evidence values obtained at the more granular parameter value level. At

this higher level of evaluating the Mi, however, the new evidence is obtained by

summing over all the different models within HI, rather than the parameter values.

Consequently, it is equivalent to the likelihood of the data given the hypothesis HI as

a whole10. It is therefore possible to again go up a layer and to directly compare the

four different hypotheses HI to HIV. The posterior probability for HI, for instance,

amounts to

P (HI|D, I) =
P (HI|I)P (D|HI, I)

P (D|I)
. (2.19)

This time, the evidence is equivalent to the sum over all four fundamental hypotheses.

The structure of the argument is also summarized in Fig. 2.2. Through the

likelihood the observed data first affects the posterior probability of the parameter

values. The evidence from this stage of the analysis then enters as the likelihood

at the model level. This, in return, affects the posterior probability of the models

and the evidence at the model layer. Lastly, the latter becomes the likelihood at the

hypothesis layer, finally producing the posterior probabilities for the four fundamental

hypotheses11. For the remaining chapters in this thesis, the evidence and the modular

nature of the Bayesian approach are of fundamental importance.

9Note that for M1 and M3 of HIV there is only one set of parameter values. Hence for those mod-
els, the priors P (Cθ,1|M1,HIV, I) = 1 and P (Cθ,1|M3,HIV, I) = 1, and the likelihood is equivalent
to the evidence.

10Just like HIV for the parameter values, HIII is a special case at the level of individual models.
It only has one model M1. Therefore, P (M1|HIII, I) = 1 and the evidence is equivalent to the
likelihood of the model M1.

11As the equations and the figure shows, each level also requires its own set of proper priors.
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Figure 2.2: Flow of information from the observed data to the posterior probabilities of the
different levels from Fig. 2.1.

2.3.4 Bayesian treatment of systematic errors

As will be shown in the following chapters, one of the central problems of

asteroseismology is the assumption that the observables can in principle match the

predictions from the model. However, in many modelling problems, and also in

asteroseismic modelling, this not always the case. Therefore, a consistent treatment

of systematic errors is important to properly assess the information provided by the
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observations. In his book, Gregory provides a very straightforward way to solve this

problem. Referring back to the toy example given in the previous section, a systematic

error appears once the difference between model and observations cannot be reduced

to random uncertainties. Therefore, instead of assuming Teff,obs = Teff,calc + e, the

correct ansatz must be something like

Teff,obs = Teff,calc + e+∆, (2.20)

where ∆ is now some term describing the systematic error. In the simplest case, ∆

could be a constant offset. In other cases, it could be a complicated function of Teff,calc.

Whatever the case might be, ∆ can be included in the Bayesian analysis as a new

dimension of the problem. Hence, again referring to our toy problem, the posterior

probability is now not only a function of S or N but also of ∆. Since ∆ is now

part of the analysis, prior probabilities for different values of ∆ have to be supplied

that reflect the state of information about the systematic error. Marginalization can

then be used to integrate out the systematic errors, which takes their impact on the

result fully into account without having to choose particular values of ∆. On the

other hand, Bayesian analysis can also be used to infer the most probable values of

∆. Thanks to the correct normalization of all probabilities to the parameter space

of the investigation, adding systematic error parameters like ∆ comes at a penalty

(Gregory calls this a built-in “Occam’s Razor”). All these properties for the analysis

of systematic errors will be crucial in the analysis of the “surface effect” observed in

the Sun and other Sun-like stars, as described in the later chapters.

2.4 Examples for Bayesian inference in asteroseismology

The most common application of Bayesian analysis in asteroseismology is the

extraction of mode parameters for solar-type pulsators, which was already discussed

in Chapter 1. The reason for this is two-fold and both are connected to the CoRoT

data of the star HD 49933. This object was observed for 60 days, in the “initial run”
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of CoRoT, and one of the first stars for which clear detection of solar-like oscillations

was possible. Soon after this initial run, Appourchaux et al. (2008) presented a

first analysis of the data, using a maximum likelihood-based approach to extract the

mode parameters from the power spectrum. However, it turned out that the line

widths (mode lifetimes) in HD 49933 were incredibly broad (short), so that there

was no clear distinction between the l = 0 and l = 1 modes. With narrower line

widths, such a distinction would have appeared either through rotational splitting

in the l = 1 track, or through the extistence of an l = 2 track next to the l = 0

frequencies. Based on the maximum likelihood approach, Appourchaux et al. (2008)

produced a favoured mode identification scenario and claimed high precision due to

small frequency uncertainties.

However, soon thereafter, Bayesian analyses appeared (Gruberbauer et al.

2009; Benomar et al. 2009a; Kallinger et al. 2010) that showed strong evidence against

the scenario proposed by Appourchaux et al. Gruberbauer et al. (2009) used Bayesian

Markov-Chain Monte Carlo (MCMC) to extract the mode parameters which led to

much larger uncertainties, and later on Kallinger et al. (2010) used these results

to give a pulsation model-based argument against Appourchaux et al. Benomar et

al., on the other hand, who also used an MCMC approach, calculated the evidence

for the data, given both possible mode identification scenarios. This also turned

out to contradict Appourchaux et al., as did an analysis based on even more data

(Benomar et al. 2009b). In summary, these results showed that the single-value based

maximum likelihood approach was inferior to a full evaluation of the parameter space.

Bayesian analysis was already proposed even before the interpretation of the CoRoT

observations were put into question (Brewer et al. 2007). Nonetheless, it obviously

required a specific problematic object such as HD 49933, for which the probabilistic

inference was clearly advantageous, to raise the community’s awareness for these tools.

The same effect as for HD 49933 has since been identified in many F stars (thus

it came to be known as the “bloody F-star” problem), and calculating the Bayesian

evidence for both mode scenarios is now the standard approach to analyse these
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stars (Handberg & Campante 2011; Appourchaux et al. 2012a). A different Bayesian

approach for arriving at the correct mode identification has since been developed by

White et al. (2012). Their method does not extract the individual mode properties

but uses certain features in the power spectrum as well as spectroscopic constraints

to calculate the evidence for both scenarios.

Further applications of Bayesian analysis in asteroseismology have been pur-

sued for the analysis of the interplay between stellar granulation and pulsation (Kallinger

& Matthews 2010), mode linewidths (Appourchaux et al. 2012b), amplitude scaling

laws (Corsaro et al. 2013), basic stellar modelling (Bazot et al. 2008), and even more

detailed modelling based on asteroseismic observables (Quirion et al. 2010). However,

no asteroseismic modelling technique has yet reaped the full benefits of the Bayesian

formalism. In the next chapters of this thesis, I therefore present several papers that

rely on a completely new probabilistic approach to grid-based asteroseismic mod-

elling. It makes use of all the key features of Bayesian analysis, from marginalization

to the modular use of the evidence, and applies them to shed new light on some of

the problems and paradigms of asteroseismology.
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Abstract

Recent developments in instrumentation (e.g., in particular the Kepler and

CoRoT satellites) provide a new opportunity to improve the models of stellar pulsa-

tions. Surface layers, rotation, and magnetic fields imprint erratic frequency shifts,
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trends, and other non-random behavior in the frequency spectra. As our observa-

tional uncertainties become smaller, these are increasingly important and difficult to

deal with using standard fitting techniques. To improve the models, new ways to

compare their predictions with observations need to be conceived. In this paper we

present a completely probabilistic (Bayesian) approach to asteroseismic model fitting.

It allows for varying degrees of prior mode identification, corrections for the discrete

nature of the grid, and most importantly implements a treatment of systematic errors,

such as the “surface effects.” It removes the need to apply semi-empirical corrections

to the observations prior to fitting them to the models and results in a consistent

set of probabilities with which the model physics can be probed and compared. As

an example, we show a detailed asteroseismic analysis of the Sun. We find a most

probable solar age, including a 35± 5 million year pre-main sequence phase, of 4.591

billion years, and initial element mass fractions of X0 = 0.72, Y0 = 0.264, Z0 = 0.016,

consistent with recent asteroseismic and non-asteroseismic studies.

3.1 Introduction

The success of recent space missions CoRoT and Kepler, designed for the

discovery of exoplanets and the analysis of stellar pulsation, have produced a large

number of high-quality light curves (Chaplin et al. 2010). With these data sets,

obtained over long time bases of several months, we are able to detect variability

with semi-amplitudes down to a few parts per million. These observations have now

firmly established the existence of solar-type pulsation in a large number of solar-like

and red-giant stars. Moreover, observations of an unprecedented number of δ Scuti

stars and other types of pulsators have also revealed rich mode spectra.

These data are now causing a paradigm shift for many topics in stellar as-

trophysics. In particular, the determination of fundamental stellar parameters, and

any inferences regarding the physics of stellar interiors, have for a long time been

restricted to testing theoretical models using classic observables such as photometric
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indices or spectroscopic data. Even though these methods have become more ad-

vanced, for instance by applying complex Bayesian methods to determine stellar ages

(Pont & Eyer 2004; Jørgensen & Lindegren 2005) and to evaluate competing models

(Takeda et al. 2007; Bazot et al. 2008), the value of additional information provided

by pulsation modes is tremendous, as they directly probe the whole star. Already,

the asteroseismic community is successful in extracting general characteristics of the

mode spectra for many different types of stars (e.g., Mathur et al. 2010; Kallinger

et al. 2010c) and also in devising promising tools for a comparative interpretation of

the observations (e.g., Bedding & Kjeldsen 2010). Average mode parameters, such as

the large and small frequency separations, and the frequency of maximum power, have

been shown to successfully constrain stellar parameters although certain correlations

remain as a source for uncertainty (see, e.g., Kallinger et al. 2010b; Huber et al. 2011;

Gai et al. 2011). These have been incorporated into the current advanced probabilis-

tic pipelines to investigate stellar model grids (Quirion et al. 2010) and already been

applied to recent observations (Metcalfe et al. 2010). The next step to improving

our knowledge about stellar interiors is to analyze individual pulsation modes in an

equally rigorous way, to see where our models agree or disagree.

In the past, χ2-minimization techniques (Guenther & Brown 2004), or equiv-

alent Bayesian analyses (e.g., Kallinger et al. 2010a), have been introduced to find

the pulsation model that most closely reproduce the observed frequencies within a

large and dense grid of models. The Bayesian analysis, in this context, only provides

an additional framework for constraining solutions to models that match our prior

knowledge about the stars’ fundamental parameters. Due to the rich information

provided by the pulsation frequencies, these approaches should be successful in many

cases, which is why they are being applied also to the most recent Kepler data sets.

For instance, Metcalfe et al. (2010) test various approaches from different modelers

with different methods that actually use the individual frequencies. However, there

are currently (at least) three major problems when applying these techniques.
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Stellar rotation, at all but the slowest rotation speeds, has been shown to produce

rotational splittings which are incompatible with the traditional linear approxima-

tions. It even perturbs the values of the axisymmetric (m = 0) frequencies (e.g.,

see Deupree & Beslin 2010, and references therein). In order to correctly take this

into account, the rotation speed as a function of stellar depth needs to be known,

and extensive computations would be necessary to do these effects justice. Given the

large variety of possible rotation profile characteristics, this would greatly expand the

dimensionality and size of the pulsation model grid. This implies currently insur-

mountable computational expenses for the types and sizes of grids that are necessary

for a comprehensive asteroseismic analysis of many stars.

For stars with a convective envelope, model frequencies at high radial orders

differ from observations due to problems in modeling the outer layers (see Figure 3.1).

These so-called surface effects can be compensated by looking at ratios of frequency

differences (Roxburgh 2005), or by “correcting” the observed frequencies through cal-

ibration of the surface effects seen for the Sun as proposed by Kjeldsen et al. (2008).

It is likely that the surface correction as calibrated for the Sun is not universally appli-

cable, and evidence for this has been mounting (e.g., Bedding et al. 2010). Moreover,

neglecting (or correcting for) the surface effects in the observed frequencies is only

reasonable when studying properties of the star for which the outer layers are unim-

portant. However, if we want the theoretical models to more closely reflect reality,

we need to include more and better physics to bring the computed frequencies closer

to the (un-corrected) observed ones.

Furthermore, the fact that static asteroseismic grids can only have a finite

resolution in parameter space is often neglected. If the error bars of the observed

frequencies are small compared to the differences between calculated frequencies in

adjacent grid points, the likelihood of having a model in the grid that corresponds to

the best model one’s code could deliver decreases rapidly. The problem of finding the

“true” model and the actual uncertainties with respect to the grid becomes apparent.

Even grids with adaptive resolution have the same problem in principle, as the decision
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Figure 3.1: Echelle diagram of solar p modes taken from Broomhall et al. (2009) (filled circles)
and an appropriate solar model constructed using YREC. The higher order model frequencies are
increasingly deviating from the observations due to deficiencies in modeling the upper stellar
layers. The systematic errors of the models are much bigger than the random observational
uncertainties.

for further refining the resolution of a particular region in parameter space must

always depend on a number of discrete grid points. This problem is much more

severe if our aim is to calculate probabilities (or some summary statistics) to compare

different model grids.

In this paper we present a new approach to asteroseismic model grid fitting.

Our goal is to find a new way of putting our model physics to the test that can handle

all of the aforementioned difficulties. Even restricted to models that are unable to

produce all the details of the observations, we want to know which models are most

“correct” (i.e., consistent with appropriate fundamental parameters and physics),
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and how well the solution is constrained. We show how to quantitatively assess our

model grids as a function of the observational uncertainties, the uncertainties of the

calculated frequencies, and our general prior knowledge about the star and possible

shortcomings of our models.

3.2 Bayesian treatment of systematic errors

3.2.1 Basics of Bayesian inference

Bayes’ theorem, applied to the problem of inference, states that the probability

of a particular hypothesis after obtaining new data (i.e., the posterior) is proportional

to the probability of the hypothesis prior to obtaining the new data (i.e., the prior)

times the likelihood of obtaining the new data, under the assumption that the hy-

pothesis is true (i.e., the likelihood function). This approach to inference is derived

from the product and sum rules of probability theory that have shown to be necessary

and sufficient for consistent, quantitative logical reasoning1(see Jaynes & Bretthorst

2003).

In this paper, we stay as close as possible to the general notation used in

Jaynes & Bretthorst (2003) or Gregory (2005). We start with Bayes’ theorem applied

to the problem of comparing observations with the predictions of a model M . If the

predictions of a model M are governed by a set of n parameters θ = {θ1, ..., θn},

and we define the observations to be represented by the symbol D (for data), it is

commonly formulated by expressing the posterior probability

P (θ|M,D, I) =
P (θ|M, I)P (D|θ,M, I)

P (D|M, I)
. (3.1)

The symbol I is equivalent to the prior information about the problem that is inves-

tigated. The first term in the numerator of Equation (3.1) is the prior probability of

1Strictly speaking, Bayes’ theorem is only one result that derives from these rules. Consistent use
of Bayes’ theorem, in particular the assignment of the various terms in Equation (3.1), also requires
knowledge of its origin and consistent application of the product and sum rule. However, for the
sake of brevity we will simply call our approach in this manuscript to be “Bayesian” rather than
“based on probability theory as extended logic”.
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a particular set of parameter values θ, given the model M and our prior information

I about the problem. It is independent of any new data which are supposed to be

analyzed. The second term in the numerator is called the likelihood. It gives the

likelihood of obtaining the observed data under the assumption that the predictions

of model M are correct, given the particular choice of its parameter values θ. The

denominator in Equation (3.1) is called the global likelihood, or evidence, and is the

sum (or integral) of the numerator over the whole parameter space of model M . It

therefore acts as a normalization constant. Most importantly, if the prior probabili-

ties are adequately normalized, it also represents the likelihood of obtaining the data

given the whole model M , independent of the particular choice of θ. Thus, it can be

used as a likelihood for comparisons among different alternative models.

More details on the application of Bayes’ theorem, in particular with respect

to data analysis in astronomy, can be found in Gregory (2005).

3.2.2 Systematic errors in the Bayesian framework

One of the strengths of the Bayesian framework is that a parameter θn, known

to be necessary to describe a model M , can be marginalized by applying the sum

rule. In the case of continuous parameters, the sum turns into an integral, and by

integrating the full posterior over the parameter range of θn, one obtains the marginal

posterior

P (θ1, ..., θn−1|M,D, I) =

�
P (θ1, ..., θn−1, θn|M,D, I) dθn. (3.2)

The marginal posterior retains the overall effects of including parameter θn in the

model, but is independent of any particular choice of its value. In other words, θn is

“removed” from the detailed analysis. This is similar to what is done for calculating

the evidence in the denominator in Equation (3.1). The only difference is that the

evidence is the marginal likelihood over all parameters of the model, weighted by the

prior.

The reason this is useful is that if the data and the model are known to show

systematic differences, like shifts or trends, such “systematic errors” can simply be
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encoded introducing additional parameters to the model M , so that M is able to

model these effects as well. By subsequently marginalizing over these “fudge param-

eters”, one is then able to perform a standard Bayesian analysis without any need for

knowing the exact value of the systematic error(s). However, even though the exact

value is unknown, the presence of the error is being considered in the evaluation of

the posterior probabilities. Furthermore, an increasing number of “fudge parameters”

comes at a cost, because it potentially decreases the evidence for the model due to

the increase in prior volume. As mentioned in Section 3.2.1 the evidence is used as

the value for the likelihood of obtaining the data in Bayesian model comparison. It

is therefore possible to compare models with and without “fudge parameters”. Im-

proved models that do not need them, but are able to explain the observations just

as well, will be favored.

3.3 Toward a Bayesian solution to asteroseismic model fitting

3.3.1 Review and problems of the standard approach

The general problem of asteroseismic model fitting is to match observed fre-

quencies fi,o to those calculated from models fi,m. If the nobs observed frequencies

have individual uncertainties σi,o, and the model frequencies have random uncertain-

ties σi,m then a χ2-statistic can be calculated according to

χ2 =
1

nobs

nobs�

i=1

(fi,o − fi,m)
2

σ2
i,o + σ2

i,m

. (3.3)

Searching a large grid of N stellar models Mj with fundamental parameters close to

those estimated for the observed star will produce a minimum in χ2 (= best-fit model).

In addition, uncertainties can be estimated from the change in χ2 as the distance in

parameter space to the best fit increases. Calculated with adequate stellar evolution
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and pulsation codes, it should be possible to infer details about the stellar interior

and to obtain precise fundamental parameters.

In order to consistently encode prior information about the fundamental pa-

rameters and other model properties, and to make use of all the additional advantages

that come with the Bayesian approach (all of which will become clear in the next sec-

tion), it is much easier to perform the model fitting using probabilities. Assuming

that the random uncertainties σi,o and σi,m are compatible with Normal distributions,

one can define

σ2
i = σ2

i,o + σ2
i,m. (3.4)

This leads to the likelihood for observing the data (= the specific values of fi,o), given

a single observed and calculated frequency

P (fi,o|fi,o �→i,m,Mj, I) =
1

√
2πσi

exp

�
−
(fi,o − fi,m)

2

2σ2
i

�
. (3.5)

Here, fi,o �→i,m stands for the proposition “The observed mode fi,o corresponds to the

calculated mode fi,m.”2 Naturally, we want our models Mj to reproduce all observed

frequencies. Assuming that each observed frequency is a statistically independent

datapoint, this leads to a product for the likelihood of obtaining all observed frequency

values given that the model is correct

P (D|Mj, I) =
nobs�

i=1

P (fi,o|fi,o �→i,m,Mj, I). (3.6)

Here, D stands for complete set of observed frequencies and their uncertainties. This

can then be incorporated in the usual framework for Bayesian inference.

2Although the explicit notation seems clumsy at first glance, it is actually one of the major assets
of the Bayesian approach. It visualizes exactly which propositions we are evaluating, and under
which conditions the probabilities are calculated. Slightly different propositions or conditions can
yield vastly different results. If the notation is explicit, there are no hidden variables or assumptions.
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Alas, both of the mentioned, straightforward approaches above suffer from the

following problems:

1. The most appropriate model is not necessarily the one that minimizes Equa-

tion (3.3) or maximizes Equation (3.6). There are many possible scenarios where

this would be the case (e.g., due to surface effects, stellar activity, magnetic field

effects, rotational effects). Straightforward application of the formalism above

will then lead to wrong or nonsensical results in both best fit and derived un-

certainties. Even worse, this would propagate into our assessment of the model

physics that were used to produce the models.

2. In case of such systematic differences, we need to take into account that for each

observed pulsation frequency, multiple model frequencies are possible candidates

(not necessarily only the closest one). This is particularly problematic in cases

were no prior mode identification is available.

3. As the observational uncertainties decrease, the contrast in χ2 (and even more

so the contrast in probabilities) between different models increases. If the

model that minimizes/maximizes Equation (3.3)/Equation (3.6) is not the cor-

rect model due to missing physics, this increase in fitting contrast is misleading

and unwarranted.

4. In static grids the finite grid resolution increases the risk of missing the most

adequate model that the code could produce. If there are systematic differences

between even the most adequate mode and the observations, the “contrast en-

hancement effect” will be magnified. For the same reason, adaptive grids run

into the same problem and will miss the correct parameter space region to finer

resolve in the first place.

As a consequence of all these shortcomings, it is clear that a method is needed

that considers the possibility of systematic differences. It is also mandatory to consider

the finite resolution of our model grids. Solutions to these problems are presented in

the following sections.
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3.3.2 The argument for probabilities

There are obvious benefits to quantifying the best fit and the uncertainties in

terms of probabilities. With probabilities for each specific model, we automatically

obtain probability distributions for each parameter of the model itself. We can fur-

thermore consistently compare different grids and see which set of input physics is

more probable, given all our current information and the data.

However, there are much stronger arguments for a probabilistic approach.

Marginalization allows us to consistently treat nuisance parameters, while the sum

and product rules allow us to clearly formulate the question we are asking. This

question is “Given the observed frequencies, our knowledge about the star and model

physics, which model(s) best represent the star in terms of its fundamental param-

eters and general physical properties as probed by the pulsation modes?” In reality,

this general question has to be further refined as we encounter more complicated

situations like: “We have model frequencies that could potentially show negative

or positive systematic offsets, or no such offset at all, when compared to our ob-

servations. They could be influenced by rotation or actually be rotationally split

frequencies themselves. They could be bumped l = 1 modes or l = 0 modes. Given

all of these possibilities, which model is the most adequate one, and how well is the

solution constrained?”. From the viewpoint of probability theory the only way to

treat such a set of possibilities and get meaningful answers is to use the sum rule and

product rule, as we will show in the next section.

3.3.3 Ambiguous mode identification

As a first improvement to the general approach of asteroseismic model fitting,

we can involve the sum rule to consistently consider uncertainties (or even ignorance)

in our mode identification. In essence, if there is no unique proposition fi,o �→i,m,
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Equation (3.6) changes to

P (D|Mj, I) =
nobs�

i=1

�
nmatch�

k=1

P (fi,o, fi,o �→k,m|Mj, I)

�
(3.7)

with

P (fi,o, fi,o �→k,m|Mj, I) =

P (fi,o �→k,m|Mj, I)P (fi,o|fi,o �→k,m,Mj, I).
(3.8)

Here the sum over the index k means that all possible and mutually exclusive assign-

ments nmatch of one observed mode to a number of calculated frequencies fk,m have

to be taken into account as an “or” proposition3. Note that due to the product rule

of probability, the terms in each sum now include the conditional prior probabilities

P (fi,o �→k,m|Mj, I). These have to be normalized so that
�nmatch

k=1 P (fi,o �→k,m|Mj, I) = 1.

The most conservative assignment is to assign equal probabilities P (fi,o �→k,m|Mj, I) =

1/nmatch to each possible scenario. However, if more information is available (e.g., a

mode could be identified to be either l = 0 or l = 2 with specific probabilities for

both cases as found by some peak bagging program), this can easily be encoded at

this stage.

The end result is a product of weighted sums of probabilities, where the weights

are given by the respective prior probabilities.4 This product is the correctly normal-

ized likelihood for obtaining the data, given the proposition that any one of the pro-

posed scenarios is correct. Note that if there is an unambiguous assignment fi,o �→i,m

for every observed frequency, each prior probability P (fi,o �→i,m|Mj, I) = 1 and Equa-

tion (3.7) simplifies to Equation (3.6). Now that we have included our uncertainties

concerning the assignment of model frequencies and observed frequencies, we will

3Hereafter, a possibly ambiguous frequency assignment will always be denoted as fi,o �→k,m.
4A common misconception is that these “priors” are only there to allow us to incorporate prior

information. In reality, they are formally required by the product rule and ensure that the result of
Equation (3.7) is always properly normalized.
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deal with uncertainties in the validity of the model frequencies themselves in the next

section.

3.3.4 Treatment of systematic errors

As a next step, we now show how to treat the problem of imperfect mod-

els. As mentioned before, applying standard techniques that rely on minimizing the

quadratic differences between the observations and the models will give incorrect

results if systematic differences exist. The alternative of correcting for such imper-

fections prior to modeling is also undesirable if the correction is not known to be

universally applicable.

To treat any systematic deviation from the model frequencies due to unmod-

eled physical effects, we simply expand the models Mj by considering an additional

systematic error parameter for each tested frequency. The aim is to construct new

values fi,∆ to compare with the observations according to

fi,∆ = fi,m + γ∆i (3.9)

Here, ∆i is the absolute value of the systematic error. γ = 1 or γ = −1

and determines whether the model frequency is expected to be systematically higher

or lower than the observed frequency. To keep our notation from occupying too

much space, we will implicitly assume the value of γ to be constant throughout the

following derivations, and attribute this to our prior information I. ∆i is an unknown

parameter but as long as its lower and upper boundaries can be roughly estimated,

it can be treated fully consistently in the probabilistic framework.

In the following, we will again work out an example of only one observed

and calculated frequency. Therefore, for the derivation the assignment fi,o �→i,m is

unique. We will then provide the extension to multiple frequencies and ambiguous

mode identifications.
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Using the new parameters, the equivalent to Equation (3.5) is

P (fi,o,∆i|fi,o �→i,m,M
∆
j , I) =

P (∆i|fi,o �→i,m,M
∆
j , I)P (fi,o|∆i, fi,o �→i,m,M

∆
j , I) =

P (∆i|fi,o �→i,m,M
∆
j , I)×

1
√
2πσi

exp

�
−
(fi,o − fi,m − γ∆i)

2

2σ2
i

�
.

(3.10)

Here the symbol M∆
j simply denotes the model Mj augmented by the new

parameter∆i. Self-evidently, the product rule again requires that we introduce a prior

probability P (∆i|fi,o �→i,m,M∆
j , I). This can either encode prior information about the

expected behavior of the error, or be simply assigned by considerations of symmetry.

Again it is required that the integral over the prior
�
P (∆i|fi,o �→i,m,M∆

j , I) d∆i = 1.

It would now be possible to try to find the∆i that maximizes P (fi,o,∆i|fi,o �→i,m,M∆
j , I)

in Equation (3.10). However, this is completely irrelevant for our needs. In case of

multiple observed frequencies it would also quickly lead to a highly dimensional pa-

rameter space that we are not interested in navigating. Instead, we are interested in

finding the probabilities of the models M∆
j . To do this it is necessary to integrate out

∆i which we have just introduced. We obtain the marginal likelihood

P (fi,o|fi,o �→i,m,M
∆
j , I) =

� ∆i,max

∆i,min

P (fi,o,∆i|fi,o �→ i,m,M
∆
j , I) d∆i.

(3.11)

This integral naturally depends on the shape of the prior probability distribution for

∆i, and can easily be evaluated numerically5. It represents the likelihood of obtaining

the value of the observed frequency fi,o given that Mj predicts a frequency fi,m but

that there is a possibility of a systematic difference ∆i, between ∆i,min and ∆i,max.

Furthermore, it is fundamentally constrained and properly weighted by the prior we

5For several simple shapes, such as the beta prior introduced in the next section, there also exist
analytical solutions.
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assigned. This result is now easily extended to multiple modes and ambiguous mode

identifications. Equation (3.7) becomes

P (D|M∆
j , I) =

nobs�

i=1

�
nmatch�

k=1

P (fi,o, fi,o �→k,m|M
∆
j , I)

�
(3.12)

and

P (fi,o, fi,o �→k,m|M
∆
j , I) =

P (fi,o �→k,m|M
∆
j , I)P (fi,o|fi,o �→k,m,M

∆
j , I).

(3.13)

In summary, we have to calculate a product of weighted sums of integrals in the form

of Equation (3.11), where the summation is performed over every possible assignment

fi,o �→k,m.

Note that even when we choose to consider systematic deviations, we usually

do not expect them to be significant for all frequencies. For good models some

frequencies should already match well “right out of the box”. In particular, this is

true for all frequencies in the idealized case where we have (finally) found a way to

correctly model all the effects that previously caused systematic deviations.

One might think that this is taken care of by setting ∆i,min = 0. However,

unless the prior P (∆i|fi,o �→k,m,M∆
j , I) is a δ function at ∆i = 0, it is much more likely

that ∆i > 0. This means that a priori a model will be preferred which shows at least

a small deviation from the observations, depending on the observational uncertainties

and the steepness of the prior. The limiting case however, the δ function, corresponds

to a whole different model which is simply the standard model without systematic

deviations, Mj. Thanks to the sum rule, there is an elegant solution for taking this

alternative into account.
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For the mutually exclusive logical propositions6 M∆
j and Mj we can calculate

P (fi,o, fi,o �→k,m|M
∆
j +Mj, I) =

P (M∆
j , fi,o, fi,o �→k,m|I) + P (Mj, fi,o, fi,o �→k,m|I)

P (M∆
j |I) + P (Mj|I)

=

P (M∆
j |I)

P (M∆
j |I) + P (Mj|I)

P (fi,o, fi,o �→k,m|M
∆
j , I)+

P (Mj|I)

P (M∆
j |I) + P (Mj|I)

P (fi,o, fi,o �→k,m|Mj, I).

(3.14)

Note that here M∆
j + Mj means “M∆

j or Mj is true”. This is the likelihood of

observing the frequency value fi,o, given that a systematic deviation either does or

does not exist. The principle of indifference as the most conservative approach for

the prior probabilities obviously demands P (M∆
j |I) = P (Mj|I) = 0.5, but if more

information is available, it can be encoded here. This result is also easily generalized

to the case of multiple frequencies and ambiguous mode identification.

3.3.5 The choice of the prior for ∆i

A very important detail to consider when extending the models with systematic

error parameters is their prior probabilities P (∆i|fi,o �→k,m,M∆
j , I). There is a basic

choice between two possibilities. The first is to use uninformative (or ignorance)

priors, or alternatively, maximum entropy priors. Uninformative priors can be derived

from arguments of invariance to specific transformations, while maximum entropy

priors should satisfy the maximum entropy criterion for a given set of constraints.

The other possibility is to use priors derived from heuristic or physical arguments.

The specific form of the prior probabilities of ∆i are part of the model that

is evaluated, as indicated by the notation.7 They are not necessarily “prior” as in

a sense of “before obtaining observations”, but conditional probabilities required for

the correct normalization, as demanded by the product rule of probabilities. They

6Note that from a logical standpoint even if ∆ = 0, M∆
j is still a different model than Mj because

the prior is not a δ function. Therefore, they are always mutually exclusive.
7The prior is described by P (∆i|fi,o �→k,m,M

∆
j , I) rather than, e.g., P (∆i|I)
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encode specific ways in which we expect ∆i to behave, given our grid of frequencies

and our information (which of course can be influenced by previous observations). For

instance, if we expect our best model to minimize the systematic deviations, the prior

should assign larger probability densities to smaller ∆i, so that models with smaller

deviations will be more probable. On the other hand, if we expect our best model

to show more erratic deviations, a flat uninformative prior is a better choice. After

a complete evaluation of the probabilities and likelihoods, the Bayesian evidence will

indicate whether the state of information encoded by the priors is supported by the

data or not.

As a first important example of an uninformative prior, consider a uniform

prior

P (∆i|fi,o �→k,m,M
∆
j , I) =

1

∆i,max −∆i,min
= const. (3.15)

This means that all values of ∆i are equally likely. With such a prior, every model

that predicts frequencies at any value between fi,o +∆i,min and fi,o +∆i,max has the

same maximum likelihood (i.e., the same maximum value for Equation (3.10)).

On the other hand, a Jeffreys prior

P (∆i|fi,o �→k,m,M
∆
j , I) =

1

∆i ln (∆i,max/∆i,min)
, (3.16)

assigns equal probability per decade and, in terms of the probability density, favors

smaller values of ∆i. This prior is obviously not defined for ∆i = 0, i.e., it requires

∆i,min > 0. This is problematic for, e.g., surface effects that approach zero at low

orders. However, when ∆i,min = 0, one can use a modified version of this prior given

by

P (∆i|fi,o �→k,m,M
∆
j , I) =

1

(∆i + c) ln [(∆i,max + c) /c]
, (3.17)

where c is a small constant. For values smaller than c, this prior acts more or less

like a uniform prior, while for higher values it behaves like the usual Jeffreys prior.

This prior is nowadays often used in “peak-bagging” algorithms (e.g., Gruberbauer

et al. 2009; Benomar et al. 2009; Handberg & Campante 2011). However, there is
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no objective criterion for how to set c, and various tests we conducted with our grid

fitting code have shown that the choice of c can have a large impact on the evidence

values.

Consequently, we argue that any priors used for a systematic error parameter

∆i = [0,∆i,max] should be functions that are clearly defined by the parameter limits,

without additional parameters that have large effects on the evidence. The uniform

prior8 is such a prior, as are priors derived from the beta distribution (given in units

of our problem)

P (∆i|fi,o �→k,m,M
∆
j , I) ∝

�
∆i

∆i,max

�α−1 �
1−

∆i

∆i,max

�β−1

. (3.18)

With α = 1 and β = 2 this simply leads to a linearly decreasing probability

density

P (∆i|fi,o �→k,m,M
∆
j , I) =

� √
2

∆i,max

�2

(∆i,max −∆i) . (3.19)

It is the only prior that allows for a linearly decreasing probability density, is

properly normalized, and reaches zero at ∆i = ∆i,max. It also leads to an analytical

solution for the integral in Equation (3.11). Thus, it satisfies all our requirements for

a prior with which to minimize systematic errors.

We have compared the results obtained from Equation (3.19) (hereafter: beta

prior) with several other plausible choices, such as an exponential distribution with

expectation value ∆i,max/2 and a modified Jeffreys prior with c = σi,m, and we find

them to yield comparable results and evidence values. Due to the clarity of its

definition and lack of additional parameters, we therefore argue that the beta prior is

an appropriate choice for a non-flat prior. We will show how to use it in Section 3.4

in a worked example.

Lastly, priors based on heuristic or physical arguments obviously vary strongly

with the specific problem to which the fitting method is applied. As an example, when

8In fact, the uniform prior is consistent with a beta distribution with α = β = 1.
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modeling surface effects on p-mode frequencies, the prior could be Gaussian, following

the heuristic frequency correction proposed by Kjeldsen et al. (2008). It would be a

function of frequency, expecting greater deviations toward higher-order modes. The

width of the Gaussian, however, would be again a rather arbitrary choice, leading to

potentially different evidence values. Such priors clearly need to have a strong basis

either in theory or prior observations.

3.3.6 Bumped modes and finite grid resolution

Equation (3.12) represents the final likelihood for obtaining the observed fre-

quencies given our (extended) model M∆
j . This model still represents only a single

point in a discrete grid.9 However, the probability is small that a single model in

the grid corresponds to the “true best model” our code can produce. The problem

becomes worse as the grid resolution is lowered, or as mode frequencies are changing

quickly or unpredictably from one model to the next (e.g., avoided crossings, magnetic

shifts). The probabilities (or χ2-values) we obtain will not be a fair assessment of the

model physics, even at higher grid resolutions. Even worse, the overall evidence for

the grid will be finely tuned to the positions of all models in the grid. This makes it

difficult to compare different grids with different physics. We will now show how to

improve on this.

In a sequence of models along a single evolutionary track, except for the first

and last models, each model Mj has two neighboring models Mj−1 and Mj+1. In most

cases these adjacent models will contain the same modes, and their changing values

can be traced from Mj−1 to Mj and Mj+1. Now we declare the difference between

observed and calculated frequency as a new free parameter

δfi = fi,o − fi,m. (3.20)

9Note that this is also the case for approaches using an adaptive grid, since each iteration of an
adaptive scheme is based on a discrete grid.
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This value is fixed if only a single grid point is considered. However, we can

split the evolutionary tracks into segments in between grid points, and define

δfi,j− = fi,o −
fi,Mj−1 + fi,Mj

2
(3.21)

and equivalently

δfi,j+ = fi,o −
fi,Mj + fi,Mj+1

2
. (3.22)

Adding δfi as a new parameter to the equations derived in the earlier sections,

we change our focus to evaluate probabilities of model track segments T∆
j centered

around the models M∆
j . To do this, we again use marginalization to integrate out

both ∆i and δfi to obtain the marginal likelihood. We obtain

P (fi,o|fi,o �→i,m, T
∆
j , I) =

� ∆i,max

∆i,min

� δfi,j+

δfi,j−

P (fi,o,∆i, δfi|fi,o �→i,m, T
∆
j , I) d∆i dδfi.

(3.23)

If the priors for ∆i do not vary greatly from one model to the next, ∆i and

δfi can be considered to be independent parameters. It is therefore possible to use

the product rule to separate the conditional probabilities

P (fi,o,∆i, δfi|fi,o �→i,m, T
∆
j , I) =

P (∆i|fi,o �→i,m, T
∆
j , I)×

P (δfi|fi,o �→i,m, T
∆
j , I)×

P (fi,o|∆i, δfi, fi,o �→i,m, T
∆
j , I).

(3.24)

Furthermore, since we evaluate the complete evolutionary track segment we

can assume a uniform prior probability P (δfi|fi,o �→i,m, T∆
j , I) = 1/ (δfi,j+ − δfi,j−).

With these definitions, the integral over δfi can easily be calculated analytically. The

equivalent to Equation (3.10) becomes
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P (fi,o,∆i|fi,o �→i,m, T
∆
j , I) =

P (∆i|fi,o �→i,m, T
∆
j , I)×

1

2 (δfi,j+ − δfi,j−)
×

�
erf

�
δfi,j+ − γ∆i

√
2σi

�
− erf

�
δfi,j− − γ∆i

√
2σi

��
.

(3.25)

where erf is the error function. The remaining integral over ∆i again has to be carried

out numerically. Figure 3.2 shows an example for the definitions introduced above,

given three models in a solar evolutionary track.

We have now used the free parameter δfi to “trace” each mode through seg-

ments of the evolutionary track, and compare it to the observed frequencies, retaining

the possibility of systematic differences. Note that our only assumption here is that

the mode frequencies change smoothly between the frequencies given by the constrain-

ing models. In principle, this approach can be carried out in multiple dimensions (e.g.,

not only along the evolutionary track in stellar age but also between tracks in mass).

As before, an extension to multiple frequencies and ambiguous mode identifications

is straightforward.

We stress that this approach only locates the region of highest probability

given the current grid, and given unspecified behavior of frequencies in between grid

points. It is thus best used for frequencies whose behavior is difficult to capture, e.g.,

due to mode bumping, or for a first general assessment of a very coarse grid. Given

a dense enough grid, regular frequencies that are expected to change approximately

linearly from one grid point to the next need to be treated using interpolation, since

the integration over the model gaps for individual modes, independently of all other

modes, would allow for highly unphysical models.

Therefore, in order to obtain a final best model and uncertainties for the

model parameters, the regions of substantial probability should be further refined

after the track probabilities have been calculated. Eventually, the grid is resolved
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Figure 3.2: Example for the definition of δi,j− and δi,j+ (see the text). Four radial orders of
l = 1 modes from three adjacent models in a high-resolution grid of solar models are shown.
The triangles represent the central model. The frequencies for the adjacent models along the
evolutionary track sequence are depicted as squares and white circles. Black circles (and error
bars) indicate observed frequencies published in Broomhall et al. (2009). δi,j− and δi,j+ for a
single mode are represented using arrows. The insert shows an unzoomed version of the l = 1
and l = 3 ridge.

enough so that well-defined distributions arise. In dense enough grids, this can easily

be accomplished by interpolation of the frequencies in between grid points without

violating the condition of hydrostatic equilibrium. This can also be done during run-

time with arbitrary precision using probabilities, by interpolating between grid points

and using the sum rule to calculate a probability representative of the original grid

resolution using the interpolated models. Naturally, modes that change erratically,
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should be excluded from such an interpolation routine and treated as shown above

instead.

3.3.7 Model probabilities

So far we have only shown how to calculate the likelihood for standard pulsa-

tion models, models that contain systematic differences, and also evolutionary track

segments. In order to obtain the probabilities for individual models (or track seg-

ments), we want to use Bayes’ theorem, assign model priors, and calculate the total

evidence for each model grid. The simplest method to assign model priors in the

absence of any other prior information, is to use the principle of equipartition and

assign a uniform prior

P (Mj|I) = 1.0/NM, (3.26)

where NM is the number of models (or, equivalently, NT would be the number of

track segments) that are analyzed.

Although each model or track only predicts a number of frequencies, it im-

plicitly represents values or ranges for fundamental parameters like Teff or L, which

can be compared to (and constrained by) different and non-seismic observations. For

instance, assuming our prior photometric and spectroscopic observations of a pulsat-

ing star indicate Teff = Tspec ± σspec then the prior probability density for the model

temperature is

P (Teff,j|I) = k exp

�
−
(Tspec − Teff,j)

2

2σ2
spec

�
. (3.27)

This example assumes that the uncertainty in Teff follows a Gaussian distribution.

k is a normalization constant depending on the absolute lower and upper plausible

limits of Teff .

All the different implicit parameters for which prior observations or other

fundamental constraints are available, and hence prior knowledge exists, then can be

used for prior probabilities which combine into an overall prior for model Mj. As an
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example

P (Mj|I) = P (Teff,j|I)P (Lj|I)P ([Fe/H]j |I)... (3.28)

if we assume separable priors for simplicity. If probabilities of track segments are

calculated, such a prior could be approximated by a product of separable integrals,

which are easily evaluated analytically. Again, in order to obtain a proper prior and

therefore proper values for the evidence, the integral of the prior probability over all

possible models/tracks in a grid should be 1.

By calculating, e.g.,

P (M∆
j |D, I) =

P (M∆
j |I)P (D|M∆

j , I)
�NM

k=1 P (M∆
k |I)P (D|M∆

k , I)
(3.29)

or, e.g., in the case of rapidly changing modes with or without systematic errors,

P (T∆
j + Tj|D, I) =

P (T∆
j + Tj|I)P (D|T∆

j + Tj, I)
�NT

k=1 P (T∆
k + Tj|I)P (D|T∆

k + Tj, I)
(3.30)

we obtain the probability of M∆
j or, respectively, T∆

j + Tj given our prior knowledge

(or lack thereof), our grid, and the set of observed frequencies. Note that the de-

nominators of these equations represent the evidence or likelihood for the grid as a

whole. We can therefore use these as likelihoods when we want to compare different

grids with different input physics.

3.4 Application to surface effects

As mentioned in the introduction, shortcomings in modeling the outer stellar

layers produce systematic deviations in comparison to the observations. These devi-

ations seem to be such that model frequencies tend to be higher than the observed

frequencies, and therefore γ = −1 (see Equation (3.9)). Kjeldsen et al. (2008) have

proposed to calibrate a power-law description of the deviations by measuring the sur-

face effects in the Sun, and then fitting this relation to frequencies of other stars.
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Their correction expressed in terms of our definitions has the general form of

γ∆i ≈ a

�
fi,m
fref

�b

, (3.31)

where fref is some reference frequency, typically the frequency of maximum power

νmax, and a and b are parameters to be fitted. From their fits, Kjeldsen et al. de-

termined b ≈ 4.90 in the Sun, which has subsequently been used for other stars by

a number of authors. A comprehensive implementation of this formalism into a χ2-

fitting algorithm was presented in a recent study by Brandão et al. (2011). However,

even in this more advanced approach, there is still a choice of a and b required. More-

over, complications for modes of different spherical degree and also bumped modes

arise because they do not necessarily conform to this relation. The authors propose

to alleviate these problems by introducing additional model-dependent parameters

that approximately correct for some of these deviations. While this approach is a

great improvement over applying a fixed surface-effect correction (or no correction at

all), our approach is much more powerful. It allows for a much greater flexibility and

leads to clearly defined probabilistic results.

3.4.1 Priors for surface effects

As we want to treat systematic errors of more or less unknown magnitude,

the most general approach is to use the flat uniform prior (Equation (3.15)). Impos-

ing only minor additional constraints, as we argued in Section 3.3.5, the beta prior

(Equation (3.19)) can also be used to give more weight to models which minimize

these unknown errors. We can use both priors and compare the Bayesian evidence

to tell us which interpretation of the surface effect is better supported by the data,

given our model and everything we know. Moreover, irrespective of which prior is

chosen, we also always allow for the possibility of no surface effects at all, as discussed

in Section 3.3.4.
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Figure 3.3: Behavior of the beta prior for systematic offsets in an echelle diagram. The squares
represent model frequencies, while the shaded “trails” indicate the prior probability density for
varying ∆i. The left panel uses equal ∆max, whereas the right panel uses a power-law ∆max

with exponent b = 4.9 (see Section 3.4.1). Note that the uniform prior is not shown, since it
simply assigns a constant probability density.

This now gives us enough flexibility to consider a possibly frequency-dependent

behavior of the surface effects. However, instead of “predicting” the behavior of ∆i as

is done by modeling the surface deviations through a power law, we will prescribe the

behavior of its upper limit ∆i,max. In contrast, the lower limit should always remain

0, since our ultimate goal is to find models that correctly describe the surface layers

(and therefore approach ∆i → 0).

The choice of the largest allowed ∆max is not unique, but it should be sensi-

ble and used consistently throughout the analysis. A reasonable strategy is to use

sup(∆max) = ∆ν, the large frequency separation of each specific model, as a sensi-

ble upper limit. If the systematic differences between observations and models are

larger than the average distance between modes of adjacent radial order, we no longer

recognize this as a valid frequency assignment10. With this upper limit defined, we

now want to model different types of surface effects. If we have no preference for any

10This condition may be relaxed at the highest radial orders.
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frequency-dependent trend (i.e., all we know is that observed frequencies are lower

than model frequencies) we require that all frequencies have equal ∆max.

On the other hand we can also use a more specific model, such as Equa-

tion (3.31), but retain the same flexibility. The surface effect as shown in Equa-

tion (3.31) depends on two parameters. The power-law exponent b determines how

quickly the surface effect increases as we move to higher frequencies, whereas a is

simply a scaling factor. We are not interested in the scaling parameter, since the

scaling (i.e., the magnitude of the offset) is governed by our condition that for each

model sup(∆max) = ∆ν. It is taken care of by the fact that we are marginalizing over

∆i anyway. Since the largest surface effects are expected at the highest frequency

fmax,m in the model, it follows that for a specific b

∆max,i = ∆ν

�
fi,m

fmax,m

�b

. (3.32)

Figure 3.3 shows how these definitions affect the prior probability density

P (∆i|fi,o �→i,m,M∆
j , I) as we increase the value of ∆i for both the constant and the

power-law approach. With all the ∆max,i set, we can then use the priors as discussed

above for all our calculations. Note that we can also easily evaluate new composite

propositions at this stage and compute the probability for a hypothesis that allows

for, e.g., a range b = {4.4, 4.65, 4.9, ...}. This is done in the same way as was explained

earlier (see Equation (3.14)).

3.4.2 Detailed analysis of the Sun

As an example for how to implement the surface-effect treatment, we will

consider the solar l = 0, 1, 2, and 3 pmodes obtained by using BiSON data (Broomhall

et al. 2009). For our models, we used a large and dense solar grid obtained with YREC

(Demarque et al. 2008). The model grid spans: masses from 0.95 M⊙ to 1.05 M⊙ in

steps of 0.005 M⊙, initial hydrogen mass fractions from 0.68 to 0.74 in steps of 0.01,

initial metal mass fractions from 0.016 to 0.022 in steps of 0.001, and mixing length
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Table 3.1: Parameter Ranges for the Solar Grid.

Parameter Range Step Size
Mass 0.95–1.05 0.005
X0 0.68–0.74 0.01
Z0 0.016–0.022 0.001
αml 1.8–2.4 0.1

0
Notes. Masses are given in units of solar masses; αml is the mixing length parameter.

parameters from 1.8 to 2.4 in steps of 0.1. These parameters are also summarized in

Table 3.1.

Our model tracks begin as completely convective Lane–Emden spheres (Lane

1869; Chandrasekhar 1957) and are evolved from the Hayashi track (Hayashi 1961)

through the zero-age main sequence (ZAMS) to 6 Gyr with each track consisting of

approximately 2500 models. Only models between 4.0 and 6.0 Gyr are included in

the model grid. Constitutive physics include the OPAL98 (Iglesias & Rogers 1996)

and Alexander & Ferguson (1994) opacity tables using the GS98 mixture (Grevesse

& Sauval 1998), and the Lawrence Livermore 2005 equation of state tables (Rogers

1986; Rogers et al. 1996). Convective energy transport was modeled using the Böhm-

Vitense mixing-length theory (Böhm-Vitense 1958). The atmosphere model follows

the (T–τ) relation by Krishna Swamy (1966). Nuclear reaction cross-sections are from

(Bahcall et al. 2001). The effects of helium and heavy element diffusion (Bahcall et al.

1995) were included. Note that our atmosphere models and diffusion effects have been

shown to require a larger value of mixing length parameter (αml ≈ 2.0−−2.2) than

standard Eddington atmospheres (αml ≈ 1.7−−1.8) (Guenther et al. 1993).

The pulsation spectra were computed using the stellar pulsation code of Guen-

ther (1994), which solves the linearized, non-radial, non-adiabatic pulsation equations

using the Henyey relaxation method. The non-adiabatic solutions include radiative

energy gains and losses but do not include the effects of convection. We estimate the

random 1σ uncertainties of our model frequencies to be of the order of 0.1µHz.
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We analyzed our grid using adiabatic and non-adiabatic frequencies, and em-

ployed three different surface-effect models:

• M1: frequency-independent surface effects with ∆i,max = ∆ν

• M2: frequency-dependent, “canonical” surface effects with ∆i,max following

Equation (5.3) with b = 4.90

• M3: same as M2, but with b as a free parameter marginalized from b = 3.0 to

b = 6.0

For each frequency evaluated throughout our model grid, irrespective of the

surface-effect model, we also considered the possibility of no surface effect, i.e., we

consistently calculated P (M∆
j +Mj|D, I). To take into account the discrete nature

of the grid, we interpolated along the evolutionary tracks during run-time by a factor

of 20, thereby increasing the effective “frequency resolution” of the grid to below the

random uncertainties of the model frequencies. All models were evaluated with

• (a) a uniform prior for all track segments

• (b) a prior using normal distributions for the constraintsM = 1.0000±0.0002M⊙,

log Teff = 3.7617 ± 0.01, and log (L/L⊙) = 0.00 ± 0.01, where YREC uses the

following adopted values for M⊙ = 1.9891 ± 0.0004 · 1033g (Cohen & Taylor

1986) and L⊙ = 3.8515 ± 0.009 · 1033erg s−1 (the average of the ERB-Nimbus

and SMM/ARCRIM measurements; Hickey & Alton (1983))

• (c) same as (b) but with an additional Gaussian constraint on the age of 4.603±

0.0075Gyr, derived from the estimated age of the solar system found by Bouvier

& Wadhwa (2010) and an average pre-main sequence phase of our models of

35± 5Myr.

For the ∆i we consistently used beta priors, as discussed in the previous sec-

tion. Our calculations yield the most probable models and uncertainties for all these

approaches, and they also give the Bayesian evidence for each approach. The results
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Table 3.2: Evidence for the Solar Grid Using the BiSON Data Set

Surface HRD log10(evidence) log10(evidence)
Model Prior (adiabatic) (non-adiabatic)
M1 a −233.4 −229.9
M2 a −189.8 -186.7
M3 a −189.8 −187.2
M1 b −235.5 −231.6
M2 b −190.8 -187.1
M3 b −191.4 −187.9
M1 c −236.7 −235.1
M2 c −193.5 -190.7
M3 c −192.6 −189.4

0
Notes. See the text for the definition of models and prior a, b, and c. Results for models M2a,
M2b, and M2c, which are analyzed in more detail, are indicated in bold face. Note that small

numbers are expected.

are summarized in Table 3.2. We also computed the probabilities using uniform pri-

ors, but found similar results with lower evidence (several orders of magnitude) values

than for the corresponding beta prior analysis.

The non-adiabatic frequencies consistently produce larger evidence values than

for the respective adiabatic case. This is no surprise, as the non-adiabatic frequencies

are in general better at reproducing the higher frequencies. Overall, model M2a

shows the largest evidence, followed by M2b and M3a. Note that M1a, M1b, and

M1c, which use frequency-independent priors for the surface effects, and therefore

are extremely flexible, fail compared to the other models. Also, M3a and M3b

cannot beat their M2 counterparts. These are examples of how marginalization and

the consistent normalization of probabilities work together to penalize more flexible

models if they cannot generate considerably better results. Model M3c has a greater

evidence than M2c, but the most probable stellar models are the same in both cases,

suggesting that these models fit well, but do not necessarily adhere in detail to the

standard surface correction.
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Table 3.3: Most Probable Models for the Complete BiSON Data Set Model Fitting.

Model Mass Age X0 Z0 Zs αml Probability
M2a 1.015 4.885± 0.006 0.73 0.017 0.0153 2.2 0.54

1.005 4.713± 0.006 0.72 0.017 0.0153 2.2 0.21
M2b 1.000 5.017± 0.006 0.72 0.018 0.0161 2.1 0.68

1.000 4.983± 0.006 0.71 0.019 0.0160 2.2 0.17
M2c 1.000 4.591± 0.005 0.72 0.016 0.0144 2.2 0.95

1.000 4.562± 0.005 0.71 0.017 0.0153 2.3 0.05

0
Notes. Age is given in billion years and is computed from the pre-main-sequence birthline. The
age from the ZAMS is 35± 5 million years less. X0 and Z0 are initial hydrogen and metal mass

fractions, Zs is the metal mass fraction in the envelope. Probabilities are given with respect to the
specific surface-effect model and prior combination.

At first glance it might be unsettling that M2a has a slightly greater evidence

than M2b (and significantly greater evidence than M2c). This indicates that there

are models in our grid which reproduce the pulsation spectrum very well but do not

match the solar fundamental parameters. A correctly calibrated grid would produce

higher evidences with a prior restricted to the true solution. However, regardless of

whether or not we include the fundamental parameter constraints, we are still finding

models that match the oscillations constraints reasonably well. Furthermore, recall

that the evidence is only the likelihood of obtaining the data, given that the approach

is correct.11 We know that the a prior is misrepresenting our state of information.

The solar prior approach b more correctly encodes what we know about the Sun, and

the age prior c puts even tighter constraints on the pulsation models. Ignoring this

information (using prior a and setting equal conditional probabilities) is an interesting

and necessary exercise to study the consistency of the results, and how the different

models, approaches, and priors work. For an actual detailed study of the solar model

physics, however, it is not appropriate. We can nonetheless compare the results,

11In order to obtain correctly normalized probabilities for the different approaches themselves,
we have to introduce conditional probabilities like, e.g., P (M2a|I) or P (M2b|I) and use Bayes’
theorem. Only comparing the evidence amounts to setting these conditional probabilities to be
equal for all tested hypotheses (e.g., P (M2a|I) = P (M2b|I)).
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restricting ourselves to the non-adiabatic frequencies and the on average best model

for each prior, M2. The resulting parameters are displayed in Table 3.3.

The results obtained without using our prior knowledge of the Sun for model

M2a are spread over several models in the parameter space that can fit the obser-

vations quite well. However, for the most probable models, the mass and age are

inconsistent with our prior knowledge. These models seem to produce smaller sur-

face effects, and are therefore preferred. For model M2b the situation is similar.

Although the mass is now fixed to the true solar value, we do not obtain models that

are consistent with the solar age.

For M3c a single combination of physical parameters dominates the results

and manages to fit well all the constraints we impose (mass, luminosity, Teff , pulsation

frequencies, and age). Loosening the conditions on Teff and the luminosity does not

significantly change the result. We have also tested slight variations of up to 20

million years in the age prior and do not find the result to be affected. In all cases, we

recover a tightly constrained most probable model with Z0 = 0.016 and Zs = 0.0144,

and an age of 4.591 ± 0.005Gyr. We therefore find a result similar to Houdek &

Gough (2011). Given that our models take 35 ± 5Myr to reach the main sequence,

our result is also consistent with meteoritic age determinations of the solar system

to within several million years (see, e.g. Bouvier & Wadhwa 2010). However, we also

recover X0 = 0.72, which leads to an initial helium mass fraction of Y0 = 0.264(1).

This is different compared to the value of Y0 = 0.250(1) that was found by Houdek

& Gough, but more consistent with Asplund et al. (2009).

Fitting the observations to the adiabatic frequencies, including the age prior,

we also recover the exact same model. We also tested how sensitive the grid is to the

prior constraints in order to estimate the actual impact of the pulsation frequencies

on the probabilities. If we only evaluate the combined priors, ignoring the frequencies

but including the prior on the age, we obtain X0 = 0.71± 0.01, Z0 = 0.019 ± 0.002,

Zs = 0.017 ± 0.002, age = 4.603 ± 0.008Gyr, and αml = 2.1 ± 0.2. This leads us
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to conclude that the frequencies have a decisive impact and actually select the low-

metallicity models, no matter whether adiabatic or non-adiabatic model frequencies

are used.

However, it has to be stressed again that the evidence drops by almost two

orders of magnitude when we introduce the age prior. This can be understood by the

fact that the solution is so well constrained and at the edge of our current parameter

space in Z0, and that many other models can also produce similar pulsation spectra.

It could also suggest that we might not have covered the true best model parameters

yet in our current grid. Therefore, our next goal will be to extend the grid to lower

metallicities, and also include different abundance mixtures, but this is beyond the

scope of this paper.

Figure 3.4 compares the BiSON observations with our most probable model

at the correct solar age. Even with non-adiabatic frequencies, significant surface

effects can still be found. The measured surface effects themselves are shown in

Figure 3.5, together with least-squares fits following the relation proposed by Kjeldsen

et al. (2008). The magnitude of the surface deviations depends on whether the non-

adiabatic or the adiabatic frequencies are used for the fit. Nonetheless, our method

manages to identify the same exact model to be the most probable, even using the

same surface-effect model, thanks to the power of marginalization. However, the

non-adiabatic models are vastly preferred in terms of the Bayesian evidence. This is

an example for how the presented approach can be used to iterate toward improved

stellar model physics, while still recovering meaningful stellar parameters from current

asteroseismic investigations.

We also determined surface-correction power-law exponents for every spherical

degree via least-squares fits. For both the non-adiabatic and adiabatic frequencies the

best fitting exponents are markedly different from b = 4.9 which was both advocated

by Kjeldsen et al. (2008) and also used as the basis for our probabilistic surface model

M2. This is also the reason why the M3c models have a greater evidence than their

M2c counterparts. The fitted values range from b = 4.23 for non-adiabatic (l = 0)
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Figure 3.4: Non-adiabatic (shaded symbols) and adiabatic (open symbols) frequencies of
the most probable solar model from evaluating the BiSON frequencies (black circles + error
bars) using approach M2c. Note that frequencies have been shifted upward by 5µHz, before
calculating the x-axis values in order to prevent the l = 2 modes from wrapping around.

frequencies to b = 5.13 for adiabatic (l = 3) frequencies. Moreover, the power-law fits

do not match the deviations very well at intermediate radial orders near 2400µHz.

From our point of view, fixing the exponent to b = 4.9 for a least-squares fit, as

for instance done by Brandão et al. (2011), is therefore a potential problem since

it does not even match the Sun very well, in particular when improved (e.g., non-

adiabatic) physics are implemented. The probabilistic procedure has no problem with

these deviations, even though it formally assumes an exponent of b = 4.9, since the

magnitude of the surface effects is marginalized for every frequency.
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Figure 3.5: Measured surface effects for non-adiabatic (filled circles) and adiabatic (open
circles) frequencies of the most probable solar model from evaluating the BiSON frequencies
using approach M2c. The uncertainties of the differences are smaller than the symbols. Least-
squares power-law fits (see Equation (3.31)) to the surface effects for the adiabatic (solid line)
and non-adiabatic (dashed line) frequencies are also shown.

3.4.3 Asteroseismic analysis of a Sun-like star

To investigate the applicability of our method to current asteroseismic inves-

tigations, we also performed an “asteroseismic” analysis of a Sun-like star, simulated

by artificially “degrading” the set of observed BiSON frequencies to a precision and

accuracy expected from current space-based missions for average Sun-like solar-type

oscillators. We first multiplied the uncertainties of the BiSON observations by a
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factor of 20, and then added corresponding random errors to the frequency values.

Furthermore, we did not assume to have detailed prior information on the fundamen-

tal parameters. Instead, we fitted the “degraded” data set with a completely flat

prior to the same grid as before, again using our surface effect model M2.

Although a different most probable model is identified, the overall results are

comparable to our findings for M2a. They show a slightly larger spread of the model

probabilities across the grid. Summarizing the uncertainties for the main parameters

by calculating the first and second central moments of the probability distribution

in our grid we approximately obtain M = 1.015 ± 0.007M⊙, age = 4.76 ± 0.10Gyr,

X0 = 0.72± 0.01, Z0 = 0.017± 0.001, Zs = 0.0148± 0.0005, and αml = 2.3± 0.1.

However, these results become worse if we systematically remove lower order

modes which are crucial to “anchor” the surface effect relation. To illustrate, we

further degraded our data set by only keeping 13 l = 0 modes from 1950 to 3580µHz,

12 l = 1 modes from 2020 to 3505µHz, 10 l = 2 modes between 2080 and 3300µHz,

and 8 l = 3 modes from 2270 to 3220µHz. Similar data sets from Kepler and CoRoT

with comparable uncertainties and numbers of modes have recently been analyzed in

the literature. The results for the model parameters become M = 1.046± 0.007M⊙,

age = 4.80 ± 0.43Gyr, X0 = 0.72 ± 0.01, Z0 = 0.021 ± 0.01, Zs = 0.019 ± 0.001,

and αml = 2.3± 0.1. Although the values are still within ∼ 5% we are almost at the

border of our parameter space, and higher-mass models systematically outperform

lower-mass models.

We know from investigating the BiSON data using our grid that we require

αml = 2.2 to fit all solar observables. Therefore, in an analysis of a Sun-like star,

we can constrain the fit to all models with this value or use a prior based on the

marginal posterior probability for αml as determined from the fit to the Sun. In

this case we obtain M = 1.04 ± 0.01M⊙, age = 4.41 ± 0.29Gyr, X0 = 0.72 ± 0.01,

Z0 = 0.020 ± 0.002, Zs = 0.018 ± 0.001. This is an improvement, but still not

comparable to the results obtained when using the full data set.
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Thanks to the probabilistic method, however, we can also easily add new

observables as further constraints, such as the frequency of maximum power, which

can also be inferred from a power spectrum analysis and which approximately scales

for Sun-like stars as

νmax ≈
M/M⊙ (Teff/Teff,⊙)

3.5

L/L⊙
νmax,⊙, (3.33)

with νmax,⊙ = 3120 ± 5µHz (Kallinger et al. 2010b). Assuming an observed

value of νmax,obs and calculating νmax,mod for each model according to Equation (5.1)

we can then multiply the probability for each model with

P (νmax,obs|M
∆
j , I) =

1
√
2πσν

exp

�
−
(νmax,obs − νmax,mod)

2

2σ2
ν

�
, (3.34)

where σν =
�

σ2(νmax,obs) + σ2(νmax,mod).

With νmax,obs = 3120± 20µHz for our simulated Sun-like star, we then obtain

M = 1.02±0.01M⊙, age = 4.39±0.28Gyr, X0 = 0.72±0.01, Z0 = 0.019±0.002, Zs =

0.017± 0.002. Finally, if we were able to determine νmax,obs to about solar precision,

the results would be M = 1.008± 0.006M⊙, age = 4.39± 0.30Gyr, X0 = 0.71± 0.01,

Z0 = 0.019±0.002, Zs = 0.017±0.002. Therefore, if our observations provide precise

additional information such as νmax, it can easily be implemented with our method.

It then seems possible to obtain reasonably accurate results for Sun-like stars, even

in the absence of low-order modes and without a fixed surface effect correction.

3.5 Conclusions

In this paper, we have derived a new, completely probabilistic framework for

asteroseismic grid fitting. We explicitly used marginalization and the formulation

of combined propositions to allow for the quantitative evaluation of the model grid

physics. While computationally more intensive than the standard χ2 evaluation, this

approach has several benefits in that it
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1. allows for the treatment and analysis of systematic errors such as the surface

effects, therefore removing the need to apply corrections prior to fitting,

2. easily implements uncertainties in the mode identification,

3. takes into account the fact that grids are discrete representations of a continu-

ous parameter space, which is especially important for rapidly varying bumped

modes,

4. provides a consistent framework to use prior knowledge about stellar fundamen-

tal parameters or to evaluate additional observables such as νmax, and

5. produces correctly normalized probabilities and likelihoods, respectively evi-

dences, which can be used to assess the model grid physics and the calibration

of the grids.

While the above was explicitly derived using the example of a static grid, the prob-

abilistic approach would also be suited for an adaptive grid approach. The Bayesian

evidence could be used as a formidable criterion to decide whether an adaptive grid

needs to be further refined or not.

We also showed how to apply our method to study the Sun. The analysis

based on our current grid and our prior information matches well the findings of

Houdek & Gough (2011), and in general fits the up-to-date picture of the Sun. The

age of our best model (measured from the pre-main-sequence birth line) is consistent

with the meteoritic solar age. The solar model arrives on the ZAMS approximately

35± 5Myr after appearing on the birth line. We found the same best model whether

non-adiabatic or adiabatic frequencies were used. This shows that our method can

adequately deal with different shapes of surface effects, even when using the same

(flexible) surface-effect model. One requirement, however, is that there exist enough

lower-order modes to “anchor” the fit.

To our knowledge, this work is also the first completely grid-based asteroseis-

mic analysis of the Sun, using all the information provided by the frequencies and
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prior knowledge about the solar fundamental parameters, that results in the need

for initial hydrogen, helium and metal mass fractions more consistent with Asplund

et al. (2009) than the traditional higher-metallicity models. At least for our current

grid, these values are required to produce a model that “looks” like the Sun, pulsates

like the Sun, and has the correct solar age. We stress that a formal χ2 fit to the

Sun’s oscillation frequencies (Guenther & Brown 2004) or even targeted nonlinear

inversion of the oscillation frequencies (Marchenkov et al. 2000) will not necessarily

yield the same model as our approach. With χ2 fits it is difficult to provide an un-

biased correction for surface effects that at the same time does not overly weight the

deeper penetrating modes. Some of the deeper penetrating modes are sensitive to the

base of the convection zone where the effects of convective overshoot and turbulence,

introduced by rotation shears, are not included in the standard models. Inversion

methods, where a standard base model is perturbed to fit the oscillations, are also

distinct because even though the perturbed model obtained from inversions reveal

regions of the standard model that are inadequate, e.g., the base of the convection

zone, the inversion model is not an actual standard model in the sense that it is

constrained and generated by the model physics.

We know our best-fit model is inaccurate at the surface and we suspect it

is inaccurate at the base of the convection zone (the latter suspicion based on the

inadequate model physics for this region). Regardless, the model is probabilistically

the best model from the current model grid that matches all the known constraints.

We speculate that preferring fits that match the oscillation frequencies at the expense

of the other physical constraints may be the reason that helioseismologists have been

unable reconcile the observed solar p-mode frequencies with frequencies derived from

standard models based on the Asplund mixture and metal abundance (Serenelli et al.

2009; Guzik & Mussack 2010). We will pursue these matters in a future study where

we include model grids based on the Asplund mixture.

While the purpose of our analysis of the Sun is to test the details of our model

physics, our method can also be used in general asteroseismic investigations. When
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applying our technique to stars other than the Sun, e.g., recent asteroseismic targets

from the Kepler mission, tight prior constraints as in the solar case are generally not

available. However, the probability formalism can simply assign uninformative (e.g.,

uniform) priors for the unknown parameters and still retain all the remaining benefits

like treatment of missing mode identification and of finite grid resolution.

For current asteroseismology, however, the most important feature is the flexi-

ble treatment of the surface effects that differs from the usual approach of employing

the empirical correction by Kjeldsen et al. (2008) to the frequencies. Instead of mea-

suring the empirical correction for the Sun with the help of a reference model, we

use a flexible probabilistic model that allows us to measure surface effects in any

star given our current asteroseismic grids. We do not rely on the validity of the so-

lar surface-effect correction and can test new surface-effect models that deviate from

the solar power-law approach. Correctly treating the impact of the surface effects

on the model probabilities, this also yields correctly propagated uncertainties, and

therefore a less biased (but model-dependent) assessment of the stellar fundamental

parameters.

The results presented in the previous section indicate that the accuracy of

such current asteroseismic analyses is still an open question and heavily dependent

on the number of unaffected, lower-order modes. If there are not enough lower-order

modes the surface effect will lead to systematic errors in the fundamental parameter

determination. However, even in such a case, by looking at how the evidence changes

as better physics are included in the models, our method can be used to iterate toward

improved models, hopefully solving the surface-effect problem eventually.

3.6 Acknowledgements

We are very grateful to Werner W. Weiss for his valuable input and fruitful

discussions. We also thank the referee for improving the quality of the manuscript.

MG and DG acknowledge funding from the Natural Sciences & Engineering Research

84



Council (NSERC) Canada. TK is supported by the FWO-Flanders under project

O6260-G.0728.11.

Bibliography

Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481

Bahcall, J. N., Pinsonneault, M. H., & Basu, S. 2001, ApJ, 555, 990

Bahcall, J. N., Pinsonneault, M. H., & Wasserburg, G. J. 1995, Reviews of Modern

Physics, 67, 781

Bazot, M., Bourguignon, S., & Christensen-Dalsgaard, J. 2008, Mem. Soc. As-

tron. Italiana, 79, 660

Bedding, T. R., & Kjeldsen, H. 2010, Communications in Asteroseismology, 161, 3

Bedding, T. R., et al. 2010, ApJ, 713, 935

Benomar, O., Appourchaux, T., & Baudin, F. 2009, A&A, 506, 15
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Abstract

We perform a Bayesian grid-based analysis of the solar l=0,1,2 and 3 p modes

obtained via BiSON in order to deliver the first Bayesian asteroseismic analysis of the

solar composition problem. We do not find decisive evidence to prefer either of the

contending chemical compositions, although the revised solar abundances (AGSS09)

are more probable in general. We do find indications for systematic problems in stan-

dard stellar evolution models, unrelated to the consequences of inadequate modelling

of the outer layers on the higher-order modes. The seismic observables are best fit

by solar models that are several hundred million years older than the meteoritic age

of the Sun. Similarly, meteoritic age calibrated models do not adequately reproduce
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the observed seismic observables. Our results suggest that these problems will affect

any asteroseismic inference that relies on a calibration to the Sun.

4.1 Introduction

The study of solar-type pulsation with its reliance on scaling relations (e.g.,

Huber et al. 2011) and calibrations of fundamental free parameters in stellar models

(i.e., mixing length parameter and helium abundance) is ultimately anchored by what

we know about the Sun and by how well seismology performs at identifying the Sun’s

key properties. Recent asteroseismic investigations of sun-like pulsators (e.g., Metcalfe

et al. 2010; Mathur et al. 2012) are able to give precise model-dependent constraints

but it is difficult to assess their accuracy. Inferences from certain asteroseismic ob-

servables are not necessarily model dependent as can be verified using spectroscopy or

interferometry (e.g., Huber et al. 2012). However, full asteroseismic analyses that de-

termine stellar ages and compositions, or decide among different implementations of

how to model important physical processes (e.g., different approaches to convection)

rely on a thorough calibration of the properties and parameters of the model.

Several incompatibilities remain between solar modelling and the results in-

ferred from helioseismology that can potentially affect our calibrations (for a recent

comprehensive review see Christensen-Dalsgaard 2009). For example, many investi-

gators find that models that use the previous generation (Grevesse & Sauval 1998)

abundances fit helioseismic observables better than the current revised solar abun-

dances (Asplund et al. 2005, 2009). Consequently, the helium abundance and the

resulting value for the ratio of the metal mass fraction to hydrogen mass fraction at

the surface, (Zs/Xs)⊙, is uncertain. We do know that inadequate modelling of the

outer layers leads to the so-called “surface effects” (see, e.g., Kjeldsen et al. 2008;

Gruberbauer et al. 2012) that worsens the model fit to higher order frequencies. Un-

certainties in opacities, equations of state, nuclear reaction rates, and other global

parameters also influence the properties of the solar model and, as a consequence, its

seismic calibration. Recently, for instance, an increase in the opacities (Serenelli et al.
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2009) and different accretion scenarios (Serenelli et al. 2011) have been identified as

possible remedies for the disagreement between the results of helioseismic inversion

and models based on the previous and current generation of chemical compositions.

Previous studies testing different model configurations, for example, different

chemical mixtures, have often relied on the direct comparison of non-seismic observ-

ables and general properties inferred from helioseismology to stellar models calibrated

to the non-seismic observables: age, radius, mass, luminosity, and in some cases also

surface abundances. More recent approaches (Basu et al. 2007; Chaplin et al. 2007;

Serenelli et al. 2009) compared low-degree p modes, or rather various spacings derived

from them, to models with solar characteristics. The result again suggests that they

cannot be reconciled with the revised solar abundances. Houdek & Gough (2011)

also developed an approach that uses quantities derived from the observed modes to

infer solar model properties via iterative calibration procedures.

What is missing, though, is a test of the solar model with a tool that takes

into account all the information given by the low-degree solar p modes and other

constraints and which then results in a quantitative comparison of how much certain

model properties are actually preferred on a global, probabilistic level. In our previous

paper (Gruberbauer et al. 2012, hereafter Paper I) we introduced a new Bayesian

method that uses prior information and properly treats known systematic effects

(i.e., “surface effects”). We performed a state-of-the-art, albeit, abbreviated grid-

based asteroseismic analysis of the solar model. In this paper we build on and extend

our solar modelling by testing various chemical compositions and nuclear reaction

rates. Our goal is to answer the following questions:

1. Which models fit the solar modes and other observables the best?

2. Is there a clear preference for any of the chemical compositions and reaction

rates?

3. How do the surface effects affect the fit?

4. How do our results affect the calibrations for asteroseismology?
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We approach our analysis, leaning more toward utilising the techniques appli-

cable to asteroseismology than helioseismology. Specifically we will only utilise the

lower l-valued p modes and we will allow all parameters except for the mass to remain

unconstrained. We are, therefore, setting out to model the global properties of the

Sun as a star, hence, to perform asteroseismology of the Sun.

4.2 Grid-based fitting approach

4.2.1 Observations

As in Paper I, we fit our models to the activity-corrected solar l = 0, 1, 2,

and 3 p modes obtained by using BiSON data (Broomhall et al. 2009). For our prior

probabilities on other solar observables, we take an investigative approach by using

both broad and narrow priors for the most important solar quantities: Teff , L, and

age. This will help us to study the systematic dependencies of our results on the

imposed constraints. For the general properties of the Sun, we use both a broad prior

with log Teff = 3.7617 ± 0.01, and log (L/L⊙) = 0.00 ± 0.01, or alternatively a more

realistic but still conservative prior with log Teff = 3.7617± 0.002, and log (L/L⊙) =

0.00± 0.002. Here L⊙ = 3.8515± 0.009 · 1033erg s−1 (the average of the ERB-Nimbus

and SMM/ARCRIM measurements; Hickey & Alton (1983)). For the solar mass, we

use M⊙ = 1.9891± 0.0004 · 1033g (Cohen & Taylor 1986). As a reference for the solar

age we take the result from Bouvier & Wadhwa (2010) who determined a meteoritic

age of the solar system of τ ≈ 4.5682Gyrs. As will be discussed in Section 4.3.3,

we construct various uniform priors to allow a range of ages centred on this value.

Finally, we also use the helioseismically inferred value of the radius of the base of the

convection zone, RBCZ = 0.713 ± 0.001R⊙ (Christensen-Dalsgaard et al. 1991; Basu

& Antia 1997). All priors are assumed to be normal distributions.

4.2.2 Model physics

Just as in Paper I, our aim was to employ YREC (Demarque et al. 2008) and

produce a set of dense grids covering a wide range in initial hydrogen mass fractions
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X0, initial metal mass fractions Z0, and mixing length parameters αml. For this study

we kept all model masses constrained to 1M⊙, but we additionally varied the chemical

composition and the nuclear reaction rates.

Our model tracks begin as completely convective Lane-Emden spheres (Lane

1869; Chandrasekhar 1957) and are evolved from the Hayashi track (Hayashi 1961)

through the zero-age-main-sequence (ZAMS) to 6 Gyrs with each track consisting of

approximately 2500 models. Only models between 4.0 and 6.0 Gyrs are included in

the model grid. Constitutive physics include the OPAL98 (Iglesias & Rogers 1996)

and Alexander & Ferguson (1994) opacity tables, as well as the Lawrence Livermore

2005 equation of state tables (Rogers 1986; Rogers et al. 1996). Convective energy

transport was modelled using the Böhm-Vitense mixing-length theory (Böhm-Vitense

1958). The atmosphere model follows the (T -τ) relation by Krishna Swamy (1966).

For each grid, we varied the chemical composition and tested two different nuclear re-

action rates. We considered the GS98 mixture (Grevesse & Sauval 1998), the AGS05

mixture (Asplund et al. 2005), and the AGSS09 mixture (Asplund et al. 2009). Nu-

clear reaction cross-sections were taken from Bahcall et al. (2001) and the nuclear

reaction rates from Table 21 in Bahcall & Ulrich (1988). In addition, we also cal-

culated grids using the NACRE rates (Angulo et al. 1999). The effects of helium

and heavy element diffusion (Bahcall et al. 1995) were included. Note that our at-

mosphere models and diffusion effects have been shown to require a larger value of

mixing length parameter (αml ≈ 2.0 − 2.2) than standard Eddington atmospheres

(αml ≈ 1.7− 1.8) (Guenther et al. 1993). The model grid spans: X0 from 0.68 to 0.74

in steps of 0.01, Z0 from 0.014 to 0.026 in steps of 0.001, and αml from 1.3 to 2.5 in

steps of 0.1.

The pulsation spectra were computed using the stellar pulsation code of Guen-

ther (1994), which solves the linearized, non-radial, non-adiabatic pulsation equations

using the Henyey relaxation method. The non-adiabatic solutions include radiative

energy gains and losses but do not include the effects of convection. We estimate
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the random 1σ uncertainties of our model frequencies to be of the order of 0.1µHz.

These uncertainties are properly propagated into all further calculations.

4.2.3 Fitting method

Our Bayesian fitting method is explained in detail in Paper I. To briefly sum-

marize, we compare theoretical and observed frequencies by calculating the likelihood

that the two values agree were it not for the presence of random and systematic er-

rors. These likelihoods are then combined using the sum rule and product rules of

probability theory, and weighted by priors to arrive at correctly normalised proba-

bilities. The random errors are assumed to be independent and Gaussian. Although

frequency uncertainties are likely to be somewhat correlated depending on the data

set quality and extraction technique, independence is a fundamental necessity to al-

low the independent treatment of surface effects. In the solar case the observational

uncertainties are rather small, and so random errors in the model frequencies due to

the model shell resolution (∼ 0.1µHz), the influence of priors, and the surface effect

treatment will outweigh the influence of correlations1. The systematic errors in the

case of solar-like stars are assumed to be similar to “surface effects”. At higher orders,

observed frequencies are systematically lower than model frequencies, and the abso-

lute frequency differences increase with frequency. This is modelled by introducing

a systematic difference parameter, ∆, between observed and calculated frequency so

that

fobs,i = fcalc,i + γ∆i. (4.1)

In the case of surface effects, γ = −1. These ∆i are then allowed to become

larger at higher frequencies. The upper limit at each frequency is determined by

the large frequency separation and a power law similar to the standard correction

introduced by Kjeldsen et al. (2008). The∆ parameter is incorporated in a completely

1Moreover, if frequency errors are derived from their marginal distribution as in Bayesian peak-
bagging (e.g., Gruberbauer et al. 2009; Handberg & Campante 2011), they can be treated as inde-
pendent.
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Bayesian fashion, using a β prior to prefer smaller values over larger ones (see Paper

I for more details). In addition, we always allow for the possibility that a mode is

not significantly affected by any kind of systematic error. Altogether, this allows

us to fully propagate uncertainties originating from the surface effects into all our

results, and at the same time gives us more flexibility than the standard surface-

effect correction.

We obtain probabilities for every evolutionary track in our grids, and within

the tracks also for every model. We also obtain the correctly propagated distributions

for systematic errors so that the model-dependent surface effect can be measured. In

order to fully resolve the changes in stellar parameters and details in the stellar-

model mode spectra, we oversample the evolutionary tracks via linear interpolation

until the (normalised) probabilities no longer change significantly. Eventually, we

obtain so-called evidence values, equivalent to the prior-weighted average likelihood,

for every grid as a whole. These evidence values are also identical to the likelihood

of the data (i.e., the solar frequency values) given the particular grids as conditional

hypotheses. Just as the likelihoods for individual stellar models or, one step further,

for evolutionary tracks can be used to compare their probabilities and evaluate the

stellar parameters, the evidence values as likelihoods for whole grids can therefore be

employed to perform a quantitative comparison between different input physics used

in the grids2. This exemplifies the hierarchical structure of Bayesian analysis, which

is discussed in more detail in Paper I and also in the more general literature (e.g.,

Gregory 2005).

4.2.4 Analysis procedure

The advantage of the Bayesian analysis method from Paper I is that many

different approaches to fitting the same data set can be compared using the evidence

values. Our goal is to see if there is a strong preference for either the GS98, AGS05, or

AGSS09 mixture. We also want to test whether or not the NACRE nuclear reaction
2Other hypothesis modifications (e.g, different shapes of systematic errors) can in principle also

be compared.
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rates are an improvement. The corresponding grids will be designated as GS98N,

AGS05N, and AGSS09N3. We use priors for the HRD position and age, as well as

RBCZ, to see which of these grids are more consistent with well-known solar properties

other than the frequencies. Also, by turning off the priors we can tell which solar-mass

models best reproduce the frequencies irrespective of their fundamental parameters.

We will start our analysis without any priors and successively increase the prior

information we use, to answer the questions outlined in Section 5.1. For example, if

we were to find that the best solar models are much too old and luminous, or if the

evidence values decrease when the priors are turned on, we will then have evidence

that the model physics cannot reproduce an accurately calibrated solar model.

It should be noted that all results presented in the following sections are highly

dependent on the models used (i.e., what was described in Section 4.2.2). We there-

fore cannot claim that our results represent the real Sun, as indeed we perform our

analysis to investigate the similarities and systematic differences between models and

observations. However, as explained in Paper I, our approach is able to compare

different grids produced from different codes and thus draw probabilistic inferences

about systematic differences between these codes as well.

4.3 Results

4.3.1 No priors

For the first test we did not use any of the luminosity, temperature, age, or

RBCZ constraints as formal priors. In this case the only effective prior is provided by

the selection of the model grid parameters and the restriction to solar-mass models,

hence, every model in the grids was given equal prior weight.

Fig. 4.1 compares the grids in terms of the logarithm of the evidence. Note

that differences between these values are equivalent to the logarithm of the posterior

3Statements that are valid for both reaction rates will refer to both grids at once using the
notation GS98(N), AGS05(N), or AGSS09(N)
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Figure 4.1: Model grid performance without HRD, age or RBCZ priors. The thick double-
sided and thin arrows indicate strength of evidence that is “barely worth mentioning” and
“substantial” respectively. Differences larger than the thin arrow can be considered “strong”
evidence (see text).

probability ratios for the grids as a whole under the condition that they have equal

prior probabilities.

Following the guidelines provided by Jeffreys (1961), differences of up to 0.5

(or likelihood ratios up to 3) are considered “barely worth mentioning”. Differences

between 0.5 and 1.0 indicate “substantial” strength of evidence. Only when the dif-

ferences rise above 1.0 (i.e., likelihood ratios > 10) should the strength of evidence

be considered strong. Accordingly, the GS98-mixture models are not significantly

better than AGSS09-mixture models. However, there is substantial evidence that the

AGS05, AGS05N, and AGSS09N models do not reproduce the solar frequencies ade-

quately, i.e., the GS98, GS98N, and AGSS09 are significantly better than the AGS05,

AGS05N, and AGSS09N models. This indicates that there are problems with the

AGS05 mixture and it also suggests that the NACRE rates have a detrimental effect

on the model frequencies. Inspection of the frequencies for AGSS09N and AGSS05N

reveals that, compared to the corresponding models in the AGSS09 and AGSS05

grids, the lower order modes do not fit as well and the surface effect also increases4.

4As will be shown in Section 4.4.3, the former is usually more important than the latter.
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Figure 4.2: Grid evidence versus mean values and uncertainties of some model properties when
fitting the observed frequencies without any priors. Open symbols denote the corresponding
NACRE grids.

For instance, when just considering the best evolutionary track for AGSS09, adopting

the NACRE rates for the same track leads to decrease in probability by a factor of

∼ 125. The NACRE models are also older by ∼ 16 Myrs and there is a significant

increase in RBCZ from 0.7164 to 0.7182.

In Fig. 4.2 we show the mean values and uncertainties of some model proper-

ties, corresponding to the grids in Fig. 4.1. Note that these uncertainties are caused

by spreading the probabilities over a few different evolutionary tracks with models

that fit the frequencies best. If we were to restrict the parameter space by using priors

as described in the next sections, then the probabilities will be mostly concentrated

on only one or two evolutionary tracks and, consequently, the formal uncertainties

will be reduced.

Table 4.1 contains more details for the most probable model parameters of the

best and second-best evolutionary tracks in all grids. Considering the metallicities

and the locations of the base of the convection zone, the results are similar to the
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Table 4.1: Most probable parameters without priors. The quoted probabilities refer to the
probability of the evolutionary track within each grid. X0, Z0: initial hydrogen and metal mass
fractions; Zs: metal mass fraction in the envelope; RBCZ: fractional radius of the base of the
convection zone; αml: mixing length parameter.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5718 0.958 1.0001 5.022 0.72 0.018 0.0161 0.0214 0.7116 2.1 0.89

5802 1.016 0.9998 4.656 0.71 0.018 0.0162 0.0218 0.7139 2.2 0.05
GS98N 5660 0.920 1.0000 5.046 0.72 0.019 0.0170 0.0226 0.7114 2.0 0.52

5816 1.025 0.9997 4.637 0.71 0.018 0.0161 0.0217 0.7160 2.2 0.34
AGS05 5711 0.953 0.9997 4.967 0.72 0.016 0.0143 0.0190 0.7173 2.1 0.51

5754 0.983 1.0000 4.975 0.71 0.017 0.0152 0.0204 0.7139 2.2 0.38
AGS05N 5694 0.942 1.0000 5.041 0.71 0.018 0.0161 0.0216 0.7139 2.1 0.50

5647 0.911 0.9997 5.029 0.72 0.017 0.0152 0.0202 0.7165 2.0 0.26
AGSS09 5718 0.958 0.9998 4.932 0.72 0.016 0.0143 0.0190 0.7164 2.1 0.70

5761 0.988 1.0000 4.941 0.71 0.017 0.0152 0.0205 0.7132 2.2 0.26
AGSS09N 5701 0.947 1.0001 5.006 0.71 0.018 0.0161 0.0216 0.7128 2.1 0.67

5654 0.916 0.9998 4.993 0.72 0.017 0.0152 0.0202 0.7155 2.0 0.11

general picture that has emerged in the literature. The GS98 and GS98N models

requires higher metallicities and a deeper base of the convection zone. Concerning

the latter, the uncertainties are such that both AGSS09 and GS98(N) are in general

agreement with RBCZ. None the less, the GS98(N) models fit this value a little bit

better. Using the RBCZ prior in the next sections will put a formal constraint on this

as well.

It is disturbing, however, to see that all of the best models greatly overestimate

the age of the Sun by several hundred million years. Furthermore, most of the models

do not match the solar Teff and luminosity very well. Therefore our next step is

to “switch on” either the broad or the more realistic priors constraining the Sun’s

position in the HR diagram.

4.3.2 Teff and L priors

As in Paper I we now use normal distributions as priors for log Teff and

log (L/L⊙) (hereafter: HRD prior). More weight is put on models that match the

solar position in the HRD. Note that this does not mean that the best models will

match the solar values. In this paper we employ slightly different HRD priors, using

either a broad prior or a more realistic narrow prior based on current observational
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Figure 4.3: Model grid performance with the broad (top panel) and the realistic (bottom
panel) HRD prior.
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uncertainties. As we show below, the differences between the more realistic prior and

the broad prior enable us to distinguish the chemical compositions. The resulting

grid evidences are shown in the two panels of Fig. 4.3.

For the broad HRD prior, an increase in evidence for all grids can be seen.

This indicates that the models that are somewhat consistent with the solar values do

include the majority of the best fit models. Since the evidence is a weighted average

of the likelihood, however, most of the increase in evidence is caused by putting less

weight on the many models that are clearly outside the solar values and do not match

the solar frequencies at all. The relative likelihood ratios remain comparable to the

“no prior” case, but now AGSS09 is actually slightly more probable than the GS98(N)

models. As before, the evidences of the three best grids are not different enough to

clearly prefer one grid over the other. Table 4.2 again gives information on the best

fitting evolutionary tracks within each grid for the broad HRD prior. About half of

the best or second-best models from the “no prior” analysis remain among the most

probable models but only GS98 shows the same models and ranking as before. It

is interesting that the best-fitting model from the AGSS09 grid, which also is the

overall best fit using the broad HRD prior, now matches the observed base of the

convection zone closest from all models considered. Except for GS98N, the NACRE

grids again perform worse than their counterparts. Note, however, that with the

broad HRD prior the most probable basic model parameters are the same whether or

not NACRE rates are used.

For the realistic HRD prior, on the other hand, the GS98(N) grids receive

an evidence penalty. Here, the preference for AGSS09(N) is more pronounced, and

the previous decrease in evidence for AGSS09N is now compensated by its much

closer match to the solar HRD position. As is shown in Table 4.3, the most probable

models for AGS05(N) and AGSS09(N) remain the same. However, the best AGS05

model underestimates luminosity and effective temperature and therefore its evidence

decreases compared to the broad HRD prior.
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Table 4.2: Same as Table 4.1 but with the broad HRD priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5718 0.958 1.0001 5.022 0.72 0.018 0.0161 0.0214 0.7116 2.1 0.77

5802 1.016 0.9998 4.656 0.71 0.018 0.0162 0.0218 0.7139 2.2 0.20
GS98N 5816 1.025 0.9997 4.637 0.71 0.018 0.0161 0.0217 0.7160 2.2 0.85

5732 0.967 1.0000 5.002 0.72 0.018 0.0161 0.0214 0.7127 2.1 0.10
AGS05 5754 0.983 1.0000 4.975 0.71 0.017 0.0152 0.0204 0.7139 2.2 0.84

5711 0.953 0.9997 4.967 0.72 0.016 0.0143 0.0190 0.7173 2.1 0.15
AGS05N 5768 0.992 0.9999 4.957 0.71 0.017 0.0152 0.0204 0.7161 2.2 0.46

5725 0.962 0.9996 4.951 0.72 0.016 0.0143 0.0189 0.7189 2.1 0.36
AGSS09 5761 0.988 1.0000 4.941 0.71 0.017 0.0152 0.0205 0.7132 2.2 0.66

5718 0.958 0.9998 4.932 0.72 0.016 0.0143 0.0190 0.7164 2.1 0.33
AGSS09N 5775 0.997 1.0000 4.923 0.71 0.017 0.0152 0.0204 0.7149 2.2 0.69

5701 0.947 1.0001 5.006 0.71 0.018 0.0161 0.0216 0.7128 2.1 0.23

Table 4.3: Same as Table 4.1 but with the realistic HRD priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5767 0.992 1.0002 4.980 0.71 0.019 0.0170 0.0229 0.7096 2.2 0.83

5802 1.016 0.9998 4.656 0.71 0.018 0.0162 0.0218 0.7139 2.2 0.15
GS98N 5780 1.001 1.0002 4.959 0.71 0.019 0.0170 0.0228 0.7109 2.2 0.997

5769 0.992 0.9995 4.660 0.72 0.017 0.0152 0.0203 0.7184 2.1 2.6e-3
AGS05 5754 0.983 1.0000 4.975 0.71 0.017 0.0152 0.0204 0.7139 2.2 0.90

5789 1.006 0.9995 4.848 0.72 0.015 0.0134 0.0178 0.7205 2.2 0.07
AGS05N 5768 0.992 0.9999 4.957 0.71 0.017 0.0152 0.0204 0.7161 2.2 0.99996

5779 1.000 0.9997 4.680 0.70 0.018 0.0161 0.0220 0.7177 2.2 3.7e-5
AGSS09 5761 0.988 1.0000 4.941 0.71 0.017 0.0152 0.0205 0.7132 2.2 0.9996

5796 1.011 0.9996 4.814 0.72 0.015 0.0134 0.0178 0.7191 2.2 3.0e-4
AGSS09N 5775 0.997 1.0000 4.923 0.71 0.017 0.0152 0.0204 0.7149 2.2 0.999998

5787 1.005 0.9998 4.646 0.70 0.018 0.0161 0.0220 0.7158 2.2 1.0e-6
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Table 4.4: Same as Table 4.1 but with the RBCZ and realistic HRD priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5802 1.016 0.9998 4.656 0.71 0.018 0.0162 0.0218 0.7139 2.2 0.83

5789 1.007 1.0000 4.941 0.72 0.017 0.0152 0.0202 0.7130 2.2 0.14
GS98N 5780 1.001 1.0002 4.959 0.71 0.019 0.0170 0.0228 0.7109 2.2 0.99998

5746 0.977 0.9998 4.694 0.71 0.019 0.0171 0.0230 0.7142 2.1 6.2e-6
AGS05 5754 0.983 1.0000 4.975 0.71 0.017 0.0152 0.0204 0.7139 2.2 0.99996

5798 1.014 1.0001 4.947 0.70 0.018 0.0161 0.0219 0.7119 2.3 1.8e-5
AGS05N 5768 0.992 0.9999 4.957 0.71 0.017 0.0152 0.0204 0.7161 2.2 0.9999997

5779 1.000 0.9997 4.680 0.70 0.018 0.0161 0.0220 0.7177 2.2 1.2e-7
AGSS09 5761 0.988 1.0000 4.941 0.71 0.017 0.0152 0.0205 0.7132 2.2 0.9999997

5773 0.996 0.9998 4.664 0.70 0.018 0.0162 0.0221 0.7139 2.2 2.6e-7
AGSS09N 5775 0.997 1.0000 4.923 0.71 0.017 0.0152 0.0204 0.7149 2.2 0.9999998

5787 1.005 0.9998 4.646 0.70 0.018 0.0161 0.0220 0.7158 2.2 1.6e-7

All the conclusions drawn from the “no prior” approach still apply, i.e., the

model fits give us no clear indication for, e.g., preferring GS98(N) over AGSS09, but

they do show significant evidence against AGS05 and for the detrimental effect of the

NACRE rates.

Lastly, we turn on the RBCZ prior in tandem with the HRD priors, which puts

stronger constraints on a proper fit to the interior. The results are shown in Fig. 4.4

and the corresponding model parameters for the realistic HRD prior are summarized

in Table 4.4. Interestingly, for both HRD priors, AGSS09 manages to increase the

probability contrast to the other models. The evidence rises once more, which signifies

that the models that fit the pulsation frequencies also are among those that fit best to

RBCZ. This is also confirmed by Table 4.4 which shows that the most probable models

for AGSS09(N) and AGS05(N) have not changed. For these mixtures the models that

are best at reproducing the pulsation and broad HRD constraints also fit the realistic

HRD constraints and the base of the convection zone. This is also responsible for

producing the enormous concentration of probability on the best evolutionary tracks.

The bottom panel in Fig. 4.4 also indicates that, with the realistic HRD prior and the

RBCZ constraint, there is formally strong evidence for the AGSS09 mixture to provide

the overall most realistic solar model.

Nonetheless, all ages are still too high compared to the well-established me-

teoritic age estimate. We cannot consider these models to be properly calibrated to
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Figure 4.4: Model grid performance with the RBCZ prior, as well as the the broad (top panel)
and the realistic (bottom panel) HRD prior.
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the Sun, even though the frequencies clearly prefer these solutions. We therefore now

turn to age priors to avoid the solutions that are clearly too old (or too young).

4.3.3 HRD and age priors

In Paper I, we used a similar approach to rule out older models and employed

a Gaussian prior centred on the meteoritic solar age but allowed for a few tens of

millions of years of PMS evolution. In this paper, however, we chose to take a more

careful approach.

Different authors often use different definitions for the age of their solar model

(e.g., age from the birthline or age from the ZAMS). Therefore, Fig. 4.5 presents the

age-related details in our solar model evolution. The meteoritic age is measured from

the time when the initial abundance of the isotopes used to date the meteorites are

no longer kept in equilibrium. This probably occurs at some point on the Hayashi

track. We take the zero age of our models to coincide with the birthline as defined

in Palla & Stahler (1999). This introduces an uncertainty of ∼ 7Myrs between the

meteoritic age and the birthline age, which is still smaller than the systematic errors

in our model ages, which we estimate are of the order of a few tens of Myrs. Note,

for example, that switching to the NACRE rates leads to a change in age of about

20Myrs.

In order to avoid putting too much weight on slight differences in the age, and

to allow for systematic errors in the meteoritic age determination of perhaps a few

Myrs, we will only use uniform age priors centred on the meteoritic age. The purpose

of the age prior is therefore only to provide a cut-off for model ages above or below

certain limits. We chose two different age priors, one more restrictive than the other,

and we continue to use the HRD and RBCZ priors.

4.3.3.1 Broad age prior

The broad age prior is a uniform prior that rules out very old or young models.

We designed it to allow for an age range of 4.4 – 4.7 Gyrs. This removes most of
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to zero. The thick grey line indicates the period in which the primordial meteoritic material
will cool and lock in the initial isotopic abundances used to date meteorites.

our previous best fits, but retains the good GS98(N) models which have ≈ 4.65 Gyrs.

Fig. 4.6 shows the results in terms of evidence. Clearly, the AGS05 and AGSS09

mixture have suffered a severe penalty for their older models are now outside the

range allowed by the prior. The GS98 and GS98N models, on the other hand, show

an increase in evidence compared to Fig. 4.3 and therefore the evidence contrast has

increased markedly. The realistic HRD prior does affect and slightly decrease this

contrast, but since the AGS05(N) and AGSS09(N) grids have lost their previous best

models to the age prior, the effect is not as pronounced as in Fig. 4.3. In terms of the

strength of evidence, this result would amount to decisive evidence for the GS98(N)

grids. Since the best models are the same for the broad and the realistic HRD prior,

we only list the results for the latter in Table 4.5.

For GS98, the probability is now concentrated in the best model from Ta-

ble 4.4. Note that both the best GS98 and second best GS98N models have the same

fundamental parameters, differing only in their nuclear reaction rates. The AGS05(N)
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Figure 4.6: Model grid performance with the RBCZ and broad age prior, as well as the broad
(top panel) and realistic (bottom panel) HRD prior.

and AGSS09(N) grids all find the same basic model (except for the different mixture

and reaction rates) with intermediate Z0 = 0.018 proving to be the most probable.

Without the RBCZ prior (not shown) the best GS98 and GS98N models are

the same, and the overall evidence distribution is very similar as in Fig. 4.6. However,

the AGS05(N) and AGSS09(N) grids would prefer models with low metallicity (Z0 =

0.016) which produce values of RBCZ well outside the range supported by the inversion

results5. For all grids, the ages of the best models are still too high by up to 150 Myrs.

5These models will nonetheless turn out to be the most probable when we make the age constraint
even stronger in the next section.
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Table 4.5: Same as Table 4.1 but with RBCZ, realistic HRD and broad age priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5802 1.016 0.9998 4.656 0.71 0.018 0.0162 0.0218 0.7139 2.2 0.9998

5755 0.983 0.9996 4.678 0.72 0.017 0.0153 0.0203 0.7167 2.1 1.0e-4
GS98N 5746 0.977 0.9998 4.694 0.71 0.019 0.0171 0.0230 0.7142 2.1 0.43

5816 1.025 0.9997 4.637 0.71 0.018 0.0161 0.0217 0.7160 2.2 0.30
AGS05 5766 0.990 0.9997 4.697 0.70 0.018 0.0162 0.0220 0.7149 2.2 0.9999997

5795 1.010 0.9994 4.613 0.71 0.016 0.0143 0.0193 0.7204 2.2 2.9e-7
AGS05N 5779 1.000 0.9997 4.680 0.70 0.018 0.0161 0.0220 0.7177 2.2 1.00

5733 0.968 0.9995 4.687 0.71 0.017 0.0152 0.0205 0.7194 2.1 1.8e-13
AGSS09 5773 0.996 0.9998 4.664 0.70 0.018 0.0162 0.0221 0.7139 2.2 0.999999

5802 1.015 0.9995 4.580 0.71 0.016 0.0144 0.0193 0.7192 2.2 9.9e-7
AGSS09N 5787 1.005 0.9998 4.646 0.70 0.018 0.0161 0.0220 0.7158 2.2 0.999998

5767 0.991 0.9999 4.671 0.69 0.020 0.0180 0.0248 0.7121 2.2 1.0e-6

4.3.3.2 Narrow age prior

In order to see how fully age-constrained solar models in the GS98(N) grids

compare to the AGS04 and AGSS09 models, we restricted the age even further by

employing a narrow uniform age prior that only allows ages of 4.52 – 4.62 Gyrs. As

shown in Fig. 4.7, the narrow age prior has a big effect on the analysis. Since it is

interesting to see whether models at the correct age can fit the base of the convection

zone, we first perform the analysis without the RBCZ prior.

Compared to Fig. 4.6 and for the broad HRD prior, the narrow age constraint

strongly decreases the evidence for the GS98(N) models, while increasing the evidence

for the other models. GS98 still comes out to be the most probable by an order

of magnitude. The remaining grids show more or less comparable evidences, but

AGS05N and AGSS09N are worse than their non-NACRE counterparts. All solutions

for AGS05 and AGSS09 favour the same basic model parameters. Table 4.6 lists the

corresponding most probable models. Ultimately, the narrow age prior has led to

models which are very close to the meteoritic solar age without constraining them

too strongly (as would be the case for a non-uniform, e.g., Gaussian, age prior) so that

we do not rule out completely the possibility of systematic errors in the stellar model

age. All of the best models, irrespective of mixture or reaction rates, have X0 = 0.71,
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Figure 4.7: Model grid performance with the narrow age prior, as well as the broad (top
panel) and realistic (bottom panel) HRD prior.
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Z0 < 0.018, and RBCZ > 0.716. Compared to the revised mixtures, GS98(N) has

slightly higher metallicities and requires a larger mixing length parameter.

For the realistic HRD prior, however, the situation is completely different.

All GS98(N) models drop out of the discussion due to a big decrease in evidence.

The effective temperature and luminosity values (see, e.g., the results for GS98N in

Table 4.6) are so far outside the prior range that the prior probability terms become

close to our numerical threshold values. The only GS98(N) models that still retain

what is left of the evidence have Z0 < 0.017. Even though the evidence picture has

changed drastically, the actual best models for the AGS05 and AGSS09 grids are still

the same as with the broad HRD prior.

Finally, we again turn on the RBCZ prior. The evidence results are depicted

in Fig. 4.8. For the broad HRD prior, the evidence present a similar picture as be-

fore, but the contrast between GS98(N) and the AGS05(N) and AGSS09(N) models

has intensified. Furthermore, the most probable models for GS98N, AGS05(N) and

AGSS09(N) now have higher metal mass fraction as before. The overall most proba-

ble model of the GS98 grid, which far outweighs the others in terms of evidence, still

is the same as in Table 4.6.

For the realistic HRD prior, which most closely reflects all of our prior knowl-

edge of the Sun, the verdict is clear as well. However, for this prior, it is the AGS05

and the AGSS09 models which are preferred. The evidence contrast between these

two grids and the others is the highest contrast measured in all analyses performed

in this paper. The influence of the realistic HRD prior is again substantial and even

produces a null result for the GS98N grid because of our numerical thresholds. The

parameters for the most probable models are given in Table 4.7. All best models now

have X0 < 0.73, Z0 = 0.016, αml = 2.2, and RBCZ > 0.719, and the models with

revised composition agree on X0 = 0.71 as well.

4.3.3.3 Summary

Our detailed analysis using various priors has shown:
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Figure 4.8: Model grid performance with the RBCZ and narrow age priors, as well as the
broad (top panel) and realistic (bottom panel) HRD prior.

Table 4.6: Same as Table 4.1 but with broad HRD and narrow age priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5872 1.065 0.9997 4.566 0.71 0.017 0.0153 0.0205 0.7162 2.3 0.98

5829 1.034 0.9995 4.591 0.72 0.016 0.0144 0.0191 0.7192 2.2 0.02
GS98N 5885 1.075 0.9996 4.547 0.71 0.017 0.0152 0.0205 0.7183 2.3 0.999

5843 1.043 0.9994 4.573 0.72 0.016 0.0143 0.0190 0.7212 2.2 4.3e-4
AGS05 5795 1.010 0.9994 4.613 0.71 0.016 0.0143 0.0193 0.7204 2.2 0.9999

5837 1.040 0.9997 4.605 0.70 0.017 0.0153 0.0208 0.7180 2.3 1.6e-5
AGS05N 5809 1.019 0.9994 4.596 0.71 0.016 0.0143 0.0192 0.7220 2.2 0.9999

5851 1.050 0.9996 4.588 0.70 0.017 0.0152 0.0207 0.7194 2.3 2.5e-5
AGSS09 5802 1.015 0.9995 4.580 0.71 0.016 0.0144 0.0193 0.7192 2.2 0.9999

5845 1.045 0.9997 4.572 0.70 0.017 0.0153 0.0208 0.7162 2.3 2.5e-5
AGSS09N 5816 1.024 0.9994 4.564 0.71 0.016 0.0143 0.0193 0.7209 2.2 0.9999

5858 1.055 0.9997 4.555 0.70 0.017 0.0152 0.0207 0.7180 2.3 4.9e-5
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Table 4.7: Same as Table 4.1 but with RBCZ, realistic HRD and narrow age priors.

grid Teff [K] L/L⊙ R/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml Probability
GS98 5829 1.034 0.9995 4.591 0.72 0.016 0.0144 0.0191 0.7192 2.2 1.0

5788 1.004 0.9991 4.580 0.73 0.015 0.0135 0.0177 0.7224 2.1 1.0e-18
AGS05 5795 1.010 0.9994 4.613 0.71 0.016 0.0143 0.0193 0.7204 2.2 1.0

5741 0.974 0.9998 4.538 0.68 0.022 0.0199 0.0278 0.7101 2.2 5.1e-70
AGS05N 5809 1.019 0.9994 4.596 0.71 0.016 0.0143 0.0192 0.7220 2.2 1.0
AGSS09 5802 1.015 0.9995 4.580 0.71 0.016 0.0144 0.0193 0.7192 2.2 1.0

5762 0.986 0.9991 4.547 0.72 0.015 0.0135 0.0179 0.7227 2.1 6.8e-26
AGSS09N 5816 1.024 0.9994 4.564 0.71 0.016 0.0143 0.0193 0.7209 2.2 0.999997

5834 1.039 0.9999 4.607 0.69 0.019 0.0171 0.0235 0.7134 2.3 2.9e-6

• Without priors, the frequencies fit best to models with significantly underesti-

mated luminosities and ages of about 5 Gyrs. There is no clear preference for

any specific composition.

• Models that are constrained by the solar L, Teff and RBCZ prefer the revised

composition but are still too old. Except for the age, they can reproduce all

known parameters, as well as the frequencies, quite well.

• Models that are tightly constrained by our information on the solar age suffer a

strong degradation in their quality of fit. Depending on whether L and Teff are

included as tight constraints, there is a either a clear preference for the old or

the revised composition. In any case, for solar-age models Teff is overestimated

while the stellar radius is slightly underestimated, producing a significantly

overestimated luminosity. The model values for RBCZ are too high and well

outside the observational uncertainties.

4.4 Discussion

In the following section, we will consider the questions formulated at the be-

ginning of the paper.

111



4.4.1 The “best fit”

Our first question was “Which models fit the solar modes and other observables

the best?”. This can be answered by looking at the evidence values for all the grids

we tested in the previous section.

Considering only the p-mode frequencies, i.e., no priors, Fig. 4.1 shows that

GS98, GS98N, and AGSS09 all perform comparably well, as they are all able to

reproduce the observed solar frequencies. Taking into account some of our prior

knowledge by using the broad HRD prior, we find a similar result in Fig. 4.3. This

also increases the evidence of all models. For a tighter, more realistic HRD prior the

evidence for AGSS09(N) is significantly higher than for the other models.

However, we have to reject these results, as the models are clearly too old.

By removing the older models via uniform age priors, we first see a large drop in the

evidence values for the AGS05(N) and AGSS09(N) grids. Indeed, when we employed

the narrow age prior, which is still comparatively broad (100 Myrs) to allow for sys-

tematic errors in the model evolution, the GS98(N) grid evidences suffer the same

effect. We are forced to conclude that the model frequencies are getting worse as we

approach the (presumably) correct solar age. A similar conclusion was reached in

Paper I, but here we have shown that this is not affected by the contested different

chemical compositions or the two different nuclear reaction rates.The different com-

positions only produce clearly different results when using additional constraints, as

discussed in the next section.

In Fig. 4.9 we have plotted the relative difference between the solar sound speed

profile as measured from inversion (Basu et al. 2009) and as determined from some of

our best fit models. The Model S from Christensen-Dalsgaard et al. (1996) is plotted

as well. This reflects our summary from above, concluding that models constrained to

the solar observables are worse at reproducing the observed frequencies and therefore

the solar sound speed profile. The figure also shows, contrary to what is commonly

reported in the literature, that when using all our prior information the best GS98

model performs worse than the the models with the revised composition. It would
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be interesting to include the sound speed profile information in the fitting procedure

as well, but the systematic differences between observations and calculations are sub-

stantial and the analysis would be non-trivial. It is therefore beyond the scope of this

paper and should be targeted for future work.

To summarize, the argument for or against the grids presented in this paper

cannot be made by simply claiming that one grid produces better frequencies in one

particular setup of priors and observables. As we have shown, the grids are able to

deliver similar fits in various conditions, and all grids actually have problems to fit

both seismic and solar parameters. Therefore, we cannot identify a clear “best fitting

model”.

4.4.2 Composition

Contrary to most studies in the literature, our results lead us to reject any clear

preference for any of the contested chemical compositions over the others. Looking

at the frequencies alone, no composition is clearly preferred, but there is very strong
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evidence against AGS05. Ignoring the model ages but using our other priors leads

to a significant preference for AGSS09(N). Employing the RBCZ, narrow age, and

broad HRD prior leads to decisive evidence for GS98. On the other hand, using all

priors leads to a clear preference for AGS05 and AGSS09. Hence, which composition

better represents the Sun depends on the consideration of tight constraints on RBCZ,

Teff , L, and age. This suggests that our models are not calibrated well enough to

the Sun, so that prior information is playing an important role compared to the

observed frequencies. The latter do have an effect, however, in selecting the models

that are compatible with our prior information, and thus the results cannot simply

be dismissed.

We have to conclude that without solving the general problem of how to pro-

duce solar-age models that look like the Sun and produce adequate frequencies, any

discussion of the contending compositions has to remain unresolved. Therefore, we

also have to refute the claim that the AGSS09 composition is incompatible with

helioseismic results.

We want to exemplify this, and contrast it to arguments used in the past,

by looking at some of the solar parameters obtained from the fits. As shown in

Table 4.7, the best GS98 model when subject to all our prior knowledge constraints,

hasX0 = 0.72 and Z0 = 0.016, and therefore Y0 = 0.264. For the helium mass fraction

in the envelope we obtain Ys = 0.234, which clearly does not agree with helioseismic

inferences (Ys = 0.2485 ± 0.0035, Basu & Antia (2004)). Furthermore, this GS98

model over-estimates the luminosity and effective temperature. Also the location of

the base of the convection zone remains a problem. For the corresponding AGSS09

model, our best model when using all prior constraints, we obtain X0 = 0.71 and

Z0 = 0.016, which leads to Y0 = 0.274. In the envelope, this then amounts to Ys =

0.243, which lies almost within the 1σ uncertainties. Judging from the goodness of fit

to the frequencies, as well as from the agreement to these helioseismically determined

values, we would have to conclude that AGSS09 outperforms GS98. Naturally, this

is only true if we ignore the overestimated luminosities, and RBCZ values. Also, as
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shown in Fig. 4.9 both models produce some of the strongest deviations from the solar

sound speed profile.

In a similar case, when ignoring the age and using just the RBCZ and realistic

HRD prior we find Ys = 0.2413 and RBCZ = 0.7096 (GS98), or alternatively Ys =

0.2413 and RBCZ = 0.7132 (AGSS09). Both models now fit the helioseismic inferences

quite well, but again AGSS09 is better at reproducing the overall solar parameters

and also the base of the convection zone. In this case, however, we have to consider

the big problem that the ages are wrong by almost ten percent.

Consequently, we reiterate that these arguments, as well as potentially serendip-

itous matches of specific model properties are insufficient to solve the composition

problem.

4.4.3 Surface effects

As mentioned in the introduction, previous studies mostly looked at frequency

differences and spacings, due to the surface effect problem. We have employed the

Bayesian formalism to take the surface effects into account while still using the full

information provided by each frequency. We now want to analyse how they affect the

analysis and to what extent they influence our conclusions.6 This is possible because,

as discussed in Paper I, our method provides the most probable systematic deviations

between observed and theoretical frequencies, as well as their uncertainties, for every

observed mode.

One explanation for the higher evidences at older ages could be that the older

models show smaller surface effects. Such a situation would pose a difficult problem,

because we cannot assume that our models are already good enough in the outer

layers. The determination of the basic solar parameters would again depend on

the surface layers which is not what we want. Fig. 4.10 shows that, fortunately,

the opposite is the case. It compares the surface effects as determined from our

GS98 models with the “no prior” approach to respective values from the narrow

6Note that the surface effects are always measured with respect to specific models and using, e.g.,
adiabatic rather than non-adiabatic frequencies will result in different surface effects.
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age prior approach. The mean most probable deviation for the latter amounts to

�γ∆i� = −2.495, while the narrow age prior yields �γ∆i� = −2.301. Obviously, the

surface effects are larger for the “no prior” mode, yet this model has a much higher

evidence. This shows that in the case of large surface effects, the probabilities are,

as required, more sensitive to the lower order modes. Fig. 4.11 shows these modes in

more detail. In addition, we have plotted linear fits to these deviations to underline

that for l=0 modes in particular, the “no prior” approach is more consistent with the

γ∆ = 0 baseline.

In a similar comparison, it is also interesting to probe the differences between

the surface effects for the different compositions. Fig. 4.12 and 4.13 show a comparison

of the AGSS09 and GS98 results obtained with the RBCZ, realistic HRD, and narrow

age prior. The AGSS09 model exhibits a larger surface effect at the lowest orders and

therefore gets penalized in the probability terms for these modes. However, it also

fits better on average at the lowest l = 0, l = 1, and l = 3 modes and, at the highest

orders, has slightly smaller surface effects.

Comparing the systematic differences plotted in Fig. 4.11 and Fig. 4.13 reveals

that the most important component of the frequency fit is indeed the overall goodness

of fit at the lower order modes. While the “no prior” frequencies do have significantly

larger surface effects above ∼ 3000µHz, the systematic differences are significantly

smaller between 2000 and 3000µHz.

In conclusion, our surface effect treatment performs favourably by allowing

low-order modes to dominate the fitting process, while still being flexible enough to

allow us to properly measure the most probable surface effect at higher orders for

every frequency.

4.4.4 Implications for asteroseismology

General properties of Sun-like stars can now be inferred via scaling laws using

high-quality frequencies from space missions and other asteroseismic observables (see,

e.g., Huber et al. 2012). While the uncertainties of the current solar frequency sets are
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still smaller than those of the best Kepler targets, the asteroseismology community

expects to be able to go beyond scaling laws and probe details of the stellar physics

(e.g., determining ages and chemical compositions). Our results suggest that in order

to obtain accurate results, more work is needed to first understand the properties of

the Sun. As we know from meteoritic data, we obtain solar ages that are wrong by

hundreds of millions of years unless we restrict the model space. Furthermore, when

we perform a full grid-based analysis, we cannot yet properly distinguish between the

competing chemical compositions which have an effect on all the involved quantities.

The impact of our analysis also extends beyond the purely asteroseismic ap-

plications. For instance, for our best models presented in this paper we obtain values

for (Zs/Xs)⊙ ranging from 0.0190 to 0.0230. If we constrain ourselves to our models

at the approximate solar age, we require (Zs/Xs)⊙ < 0.0205, which is quite different

from the standard value that is often used to transform between [Fe/H] and Zs. In

addition, uncertainties and systematic errors in the metallicity and helium abundance

will naturally propagate into the results of other fields (e.g., the study of Galactic

abundances) that rely on the solar calibration.

4.5 Conclusions

In this paper we have reported on our extensive grid-based “asteroseismic”

investigation of the Sun using the Bayesian formalism developed in Paper I. We

extended our previous study by using different grids with competing chemical com-

positions (GS98, AGS05 and AGSS09) and nuclear reaction rates. We found that

we cannot accurately reproduce the solar properties by fitting the frequencies alone

without using prior information. On the other hand, when using prior information,

we observe a strong degradation in the goodness-of-fit for the frequencies. This leads

us to conclude that we cannot yet give preferential weight to either of the competing

chemical compositions (or nuclear reaction rates for that matter) since the evidence

values contradict our prior information. In other words, the grids are not properly

calibrated and some parts of the fundamental model physics are inappropriate. Our
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work does not suggest that the revised compositions are any more incompatible with

helioseismology in some systematic way than the traditional GS98 abundances. We

have also established that it is not the outer layers which cause the problem, as our

Bayesian treatment of surface effects all but removes their impact.

The meteoritic age of the solar system of about 4.568 Gyrs is very well estab-

lished (even if we allow for a systematic error of perhaps a few Myrs) and its relation

to the solar model age, although not precisely known, cannot be expected to intro-

duce a larger uncertainty than the dynamical time scales associated with evolution

down the Hayashi track. Yet, if we do not constrain the solar age, we obtain values

around 4.9 to 5 Gyrs, which is an error of about 10 percent. Systematic errors in the

models are well below 100 Myrs, and therefore below the discrepancy between the

asteroseismic solar age and the meteoritic age7. So although ultimately this may not

be the best way to untangle our results and characterise, in a simple way, what is

wrong with the models, we have come to see the problem as one related to, or at least

indicated by, the age. Unfortunately, nearly every model assumption, e.g., opacities

(especially of the metals), primordial abundances (especially of helium, neon, carbon,

oxygen, and nitrogen), convective transport theory and the modelling of the surface

convective envelope, diffusion of helium and heavier elements, winds, mass loss, mag-

netic fields, rotational shear at the base of the convection zone, can affect the model

age.

Our conviction is that the problems reported in this paper are not caused by

inadequate frequencies or the general inability to use asteroseismology in the way

we have presented. Rather, we think that all the tools and the data are now at an

adequate level to show us the limitations of our models. Indeed, we would like to em-

phasise that evidence-based Bayesian studies are an excellent way to accurately assess

future developments in solar modelling. They provide a fully consistent framework

7The age discrepancy predates the present work. The standard, often used, reference solar model
Model S by Christensen-Dalsgaard et al. (1996) uses an age of 4.6 Gyrs measured from the ZAMS
or approximately 4.64 Gyrs measured from the birthline.
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to test observables, treat systematic errors (e.g., surface effects) and use prior infor-

mation, in order to iterate towards more accurate model physics. Such is necessary

to both better understand our Sun and to reap the full benefits of asteroseismology.
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Abstract

We study 23 previously published Kepler targets to perform a consistent grid-

based Bayesian asteroseismic analysis and compare our results to those obtained

via the Asteroseismic Modelling Portal (AMP). We find differences in the derived

stellar parameters of many targets and their uncertainties. While some of these

differences can be attributed to systematic effects between stellar evolutionary models,

127



we show that the different methodologies deliver incompatible uncertainties for some

parameters. Using non-adiabatic models and our capability to measure surface effects,

we also investigate the dependency of these surface effects on the stellar parameters.

Our results suggest a dependence of the magnitude of the surface effect on the mixing

length parameter which also, but only minimally, affects the determination of stellar

parameters. While some stars in our sample show no surface effect at all, the most

significant surface effects are found for stars that are close to the Sun’s position in

the HR diagram.

5.1 Introduction

Ultra-precise long-term photometric time series from space have revolutionized

the study of stellar variability in recent years. The CoRoT (Michel et al. 2008) and

the Kepler (Borucki et al. 2010) space telescopes in particular have produced high-

quality data sets for thousands of stars in order to detect planets down to Earth

size and below. Particularly interesting for the study of stellar interiors and stellar

evolution is their ability to detect solar-type oscillations from giants to subdwarfs.

The pulsational characteristics of these stars adhere, at least to a very good first

approximation, to scaling relations (e.g., Huber et al. 2011) permitting the study of

large populations of stars with “ensemble asteroseismology” (Chaplin et al. 2011) and

even Galactic archeology (Miglio et al. 2013).

The same information can also be exploited to infer the parameters of individ-

ual stars, e.g., to better constrain their planets’ properties. For stellar astrophysics,

however, the ultimate goal is to use asteroseismology to study stellar interiors. Instead

of direct inversion of the pulsation information, asteroseismology usually employs a

comparison between observed and modelled pulsation frequencies (e.g., Guenther &

Brown 2004). Various new tools have been developed to facilitate a state-of-the-art

version of such a comparison using different approaches, such as the Asteroseismic

Modelling Portal (AMP) (Metcalfe et al. 2009) and Bayesian grid-based analysis (Gru-

berbauer et al. 2012, hereafter Paper I). The major differences between these methods

128



lie in their different statistical basis and their different applications of what is known

as the surface effect correction (see Paper I for an in-depth discussion). Already, the

AMP has been used to analyse some Kepler targets in detail and to compare the

results with those from other modellers (Metcalfe et al. 2010, 2012). Such a com-

parison is advantageous, because asteroseismic modelling often relies on a specific set

of stellar models with a specific set of input physics. Slight systematic differences

among these models are therefore not only plausible but unavoidable, resulting in

underestimated uncertainties. A different approach is to study a larger sample of

stars self-consistently with one particular method and model base to facilitate a pool

of results to be compared with other researcher’s results (Mathur et al. 2012).

In this paper we reexamine some of the previously published studies based on

Kepler data with a strong emphasis on AMP results, employing our own set of models

and our Bayesian method described in Paper I. We will discuss how the results differ

and whether the methodologies themselves introduce systematic deviations. We will

also perform the first detailed study on surface effects for a sample of stars with our

flexible method.

5.2 Methods, models and observations

5.2.1 Target selection and observations

In order to investigate the impact of the stellar models and methodologies in

the most general sense, we analyse stars for which the p-mode frequency sets and de-

tailed prior information used in previous asteroseismic fitting procedures are available

in the literature. We furthermore constrain ourselves to stars that do not show strong

signatures of deviations from the asymptotic relation, i.e., avoided crossings such as

in KIC 11026764 (Metcalfe et al. 2010). While those signatures are very valuable

for asteroseismic inferences and can be easily taken into account with our method as

mentioned in Paper I, they would constitute special cases in the comparison between

methods. We therefore postpone such an analysis to a future paper and restricted

ourselves to 20 of the 22 stars analysed by Mathur et al. (2012) (hereafter M20), the
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solar analogues 16 Cyg A & B (Metcalfe et al. 2012), and the planet-host Kepler-36

(Carter et al. 2012). Where available in the previously cited papers, we use prior con-

straints on log Teff , logL/L⊙, Z/X (adopting [Fe/H]⊙ = 0.0245) and log g. Following

our description in Paper I, these prior constraints are modelled as separate Gaussian

probability distributions.

As is common in recent asteroseismic analyses, we treat the frequency of max-

imum power νmax as an additional and independent observable by using the scaling

relation

νmax,mod ≈
M/M⊙ (Teff/Teff,⊙)

3.5

L/L⊙
νmax,⊙. (5.1)

where we employ the solar value νmax,⊙ = 3120.0 ± 5µHz given by Kallinger et al.

(2010) based on VIRGO data. For M20, the observed values and uncertainties of

νmax have been taken from Mathur et al. (2012), and for Kepler-36 we have used the

value published in Carter et al. (2012). For 16 Cyg A & B, we have determined the

values ourselves by performing a Bayesian multi-component model fit, consisting of

a flat background, three super-Lorentzian profiles and a Gaussian power hump, to

the power density spectra of both data sets1. In this case, the central frequency of

the Gaussian power hump and the corresponding uncertainties are interpreted as a

good proxy for νmax. The method employs the nested sampling algorithm MultiNest

(Feroz et al. 2009) and is described in more detail in Kallinger et al. (2010). We find

νmax = 2215.6± 6.5µHz for 16 Cyg A, and νmax = 2571.9± 12.6µHz for 16 Cyg B.

5.2.2 Models

A wide parameter range has to be spanned in order to perform a meaningful

grid-based analysis. We therefore employed YREC (Demarque et al. 2008) to produce

a set of dense grids covering a wide range in initial masses, and several values for the

1Note that only Q7 data obtained between September 2010 to December 2010 have been used in
Metcalfe et al. (2012). We therefore restrict ourselves to this data set as well.
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helium mass fraction Y0, initial metal mass fraction Z0, and mixing length parameter

αml.

Our model tracks begin as completely convective Lane-Emden spheres (Lane

1869; Chandrasekhar 1957) with the stellar age reset to zero when the star crosses

the birthline (10−5 M⊙/yr, Palla & Stahler 1999). They are evolved from the Hayashi

track (Hayashi 1961) through the zero-age-main-sequence (ZAMS) to the base of the

red giant branch. Constitutive physics include the OPAL98 (Iglesias & Rogers 1996)

and Alexander & Ferguson (1994) opacity tables, as well as the Lawrence Livermore

2005 equation of state tables (Rogers 1986; Rogers et al. 1996). Convective energy

transport was modelled using the Böhm-Vitense mixing-length theory (Böhm-Vitense

1958, MLT,). The atmosphere is implemented using Eddington gray atmosphere.

Nuclear reaction cross-sections were taken from Bahcall et al. (2001) and the nuclear

reaction rates from Table 21 in Bahcall & Ulrich (1988). The effects of helium and

heavy element diffusion (Bahcall et al. 1995) were included. The model grid contains

models with M/M⊙ from 0.8 to 1.3 in steps of 0.01 and Y0 from 0.210 to 0.315 in

steps of 0.005. Furthermore, Z0 is varied from 0.005 to 0.04 in steps of 0.005, but

with the overall constraint that X0 ≥ 0.68. Lastly, we also vary αml from 1.8 to 2.4

in steps of 0.1.

The pulsation spectra were computed using the stellar pulsation code of Guen-

ther (1994), which solves the linearized, non-radial, non-adiabatic pulsation equations

using the Henyey relaxation method. The non-adiabatic solutions include radiative

energy gains and losses but do not include the effects of convection. We estimate

the random 1σ uncertainties of our model frequencies to be of the order of 0.1µHz.

These uncertainties are properly propagated into all further calculations.

5.2.3 Bayesian asteroseismic grid fitting

Our Bayesian fitting method is explained in detail in Paper I, and it has been

previously applied to analyse the Sun (Gruberbauer & Guenther 2013). We compare

theoretical (fm) and observed (fo) frequencies by calculating the likelihood that the
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two values agree were it not for the presence of random and systematic errors, i.e.,

fo − fm = γ∆+ e. (5.2)

Here, the random errors e are assumed to be independent and Gaussian. The sys-

tematic errors γ∆ in the case of solar-like stars are assumed to be similar to “surface

effects”. At higher orders, observed frequencies are systematically lower than model

frequencies, and the absolute frequency differences increase with frequency. This is

modelled by introducing ∆ as free parameters for each observed mode and by setting

γ = −1.

These ∆ terms are then allowed to become larger at higher radial orders. The

upper limit ∆max for each model frequency fm is determined by the large frequency

separation and a power law similar to the standard correction introduced by Kjeldsen

et al. (2008) so that

∆max = ∆ν

�
fm

fmax,m

�b

, (5.3)

where b = 4.9, ∆ν is the large frequency separation of the corresponding model, and

fmax,m is the frequency of the highest order in the model2.

The ∆ parameter is incorporated in a completely Bayesian fashion, using a

β prior to prefer smaller values over larger ones (see Paper I for more details). In

addition, we always allow for the possibility that a mode is not significantly affected

by any kind of systematic error by explicitly including the null hypothesis, that is

by combining the probabilities of two hypotheses: one with and one without the ∆

parameter. Altogether, this allows us to fully propagate uncertainties originating from

the surface effects, or other potential systematic differences, into all our results. At

the same time it gives us more flexibility than the standard surface-effect correction.

Whereas the latter prescribes a fixed power-law behaviour for the actual surface

2This means that for the highest order in the model ∆max = ∆ν and guarantees that we do not
introduce ambiguities in the radial orders by implementing the ∆ terms.
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effects, our method only prescribes such a behaviour for the upper limits of the surface

effects for the individual radial model frequencies.

For each model in our grid, all the likelihood terms from the different fre-

quencies are combined to yield an overall weighted likelihood for the model, where

the weights are provided either via prior information or using ignorance priors (i.e.,

information that simply encodes the dimension of the grid). These weights provide

correctly normalized probabilities that allow us to derive distributions for all model

properties (e.g., mass, age, fractional radius of the base of the convection zone RBCZ,

mixing-length parameter αML, and so on).

In summary, we obtain probabilities for every evolutionary track in our grid,

and within the tracks also for every model. We also obtain the correctly propagated

distributions for systematic errors so that the model-dependent surface effect can be

measured. In order to fully resolve the changes in stellar parameters and details

in the stellar-model mode spectra, we oversample the evolutionary tracks via linear

interpolation until the (normalised) probabilities no longer change significantly. Even-

tually, we obtain so-called evidence values, equivalent to the prior-weighted average

likelihood, for the grid as a whole. These could, in principle, be used to perform a

quantitative evaluation of different input physics (see Gruberbauer & Guenther 2013)

or even different stellar evolution and pulsation codes. We will use them in this study

to analyse the significance of the measured surface effects.

In order to facilitate this, we propose two alternative systematic error models

in addition to the standard surface effect (SSE) model described above. First, we

employ a less restrictive systematic error model where

∆max = ∆ν/2 (5.4)

for every frequency of each particular model. Furthermore, the observed frequencies

are allowed to deviate in either direction (first γ = 1 is evaluated, then γ = −1 follows,
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and then both results are combined using the sum rule). We call this model the “arbi-

trary systematic error” (ASE) model since it allows, in principle, very large differences

between observed and calculated frequencies without prescribing any systematic be-

haviour or preferred sign. Note that this is not equivalent to simply increasing the

Gaussian uncertainties of the observed frequencies to ∆ν/2.

Finally, we will also employ a third error model which only consists of the

probabilities obtained without any ∆ parameters. This model therefore assumes that

no systematic errors are present so that fo − fm = e. We will call this the “no

systematic error” (NSE) model. Together, the three systematic error models will

allow us to estimate the significance of surface effects or other systematic differences

between observed and calculated frequencies.

5.3 Dependence of surface effects on non-adiabaticity and

mixing length

The advantage of our method to include systematic frequency errors over the

standard surface correction is its universality. The standard surface effect exponent of

b = 4.9 as obtained by Kjeldsen et al. (2008) has been derived for adiabatic pulsation

frequencies and for a solar-calibrated model with a calibrated parametrization of

the mixing length3. More advanced pulsation models and different stellar models

(see, e.g., Grigahcène et al. 2012) are not necessarily consistent with such a relation.

This is also the case for our non-adiabatic pulsation frequencies. Since the only way

to improve our modelling of outer layers is to compare more advanced models to

observations, it is necessary to relax the constraint of a definite empirical surface

correction relation dependent on adiabatic pulsation codes. Aside from the surface

effect, our method also allows various other kinds of parameterisations for systematic

errors, such as our ASE model.

3As explained in the previous section, technically we also use b = 4.9 for our surface effect
modelling, but the exponent is only employed to derive an upper limit for the surface effect for each
mode. This does not enforce the usual power-law like behaviour of the surface effect.
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The drawback of our method, as discussed in Paper I, is that in the absence

of strong prior information about the stellar parameters, a lack of lower-order modes

will potentially result in an underestimated magnitude of the surface effects. This

follows from the fact that we always obtain the most probable result given our state

of information including the new data set; if we cannot constrain the stellar model

parameters using our prior knowledge, the pulsation frequencies are our only reference.

When conditions are encountered under which the empirical correction law of Kjeldsen

et al. (2008) does not apply, or if one rejects such a correction on other grounds,

we have to evaluate the models acknowledging the presence of less well-specified

systematic errors.

As described in Paper I, neglecting lower order modes leads to overestimated

αml, mass, and metallicity for the Sun, simply because such models can fit the higher

order modes better. The same models cannot fit the lower order modes as well, but

when they are not included in the list of fitted modes no penalty ensues. For stars

other than the Sun, we usually do not have a complete list of lower-order modes, nor

do we have as accurate non-seismic constraints (e.g., mass, luminosity, age). Even in

such cases, however, stellar metallicity, Teff and L can be estimated from spectroscopic

and photometric observations. Furthermore, equation 5.1 reveals that νmax provides

valuable if approximate constraints for the fundamental parameters, including the

stellar mass, in particular when spectroscopic constraints are available.

Two adjustable parameters of the stellar model, the helium abundance and

αml, affect the structure of the surface layers. The mixing length parameter is nor-

mally tuned to produce a model of the Sun at the observed composition and (mete-

oritic) age that matches the limb-darkening-corrected radius of the Sun. The helium

abundance is either derived also from a tuned model of the Sun, matching its lumi-

nosity, or extrapolated from the observed rate of Galactic nucleosynthesis. Both the

helium abundance and the αml affect the depth of the convection zone (i.e., the fitted

adiabat) and the temperature gradient in the superadiabatic layer (SAL)4 via the

4Below the SAL, the temperature gradient is adiabatic.
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Figure 5.1: Systematic differences between observed and computed l = 0 modes for KIC
8006161 when fitted to models with varying mixing length but otherwise fixed initial parameters.

mixing length theory. We stress that the mixing length parameter of the MLT is used

primarily to control the efficiency of convection and its adjustment is primarily used

to fix the radius of the star. As is well known for the case of the Sun the MLT does

not correctly predict the temperature gradients in the SAL so even though it may be

providing an accurate radius for the star it may, at the same time, be providing a

poor model of the SAL (e.g., Robinson et al. 2003). The surface effect is sensitive to

αml since the p-mode frequencies are sensitive to the SAL. But at the same time the

large frequency spacings are also sensitive to the αml via its effect on the star’s radius.

The interplay of the two effects of the mixing length parameter on the frequencies

makes it difficult to isolate the surface effect completely from αml.

Figure 5.1 shows the effect of fitting one of the stars in our sample, KIC

8006161, to a specific evolutionary track with M = 1.11M⊙, Y0 = 0.22 and Z0 = 0.04,

but varying values of αml (note that these models are not equivalent to our most prob-

able models as determined in the next section). At the highest frequencies, the larger

αml values clearly reduce the measured surface effect by almost 50%, and the effect
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are of the order of the symbol size.
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is even more pronounced at the lower orders.5 On the other hand, the plot suggests

that at the lowest observed radial order, the frequencies for the higher-αml models

are somewhat too low. Figure 5.2 presents the echelle diagramme for the l=0,2 modes

of the αml = 1.8 and αml = 2.2 models. We observe that if the set of l=2 modes

extended below ∼ 3000µHz, we would be able to clearly distinguish between these

two models. At the l=0 orders below ∼ 2000µHz the two models show small but

systematic differences as well. With the current set of observed modes, however, we

cannot clearly determine whether a lower or higher mixing length parameter value

is more probable. Yet, we want to find the model with the smallest surface effects

that still fits all other constraints. Therefore, in our example the higher αml values

become more probable automatically. As long as we have limited knowledge on the

magnitude of the surface effects across the HR diagram, however, this increase in

probability might not be warranted. In the given example, it does seem as if the

αml = 2.2 model is more consistent with the observed small spacing, but we know

that the solar-calibrated value is closer to αml ∼ 1.8, so deviations from this value

should not be taken lightly6. Nonetheless, studying the possible variation of the mix-

ing length parameter across the HRD and its interplay with the surface effects is

important, so setting a fixed (calibrated) value is also not desirable.

We therefore propose the following solution: we perform our analysis using

three different approaches to constraining the mixing length. The first approach is to

not use any prior on αml. The second approach is to employ a Gaussian prior with

αml = 1.8± 0.075, based on the solar calibrated value. The standard deviation of the

prior (0.075) is somewhat arbitrary, but we choose it to permit deviations from the

calibrated value in the presence of strong evidence. As the maximum value of αml in

our grid is 2.4, such a model would represent an a priori 8σ outlier. For such a model

to still be more probable, it would require differences in likelihood of about 14 orders

5It is necessary to point out, however, that for adiabatic frequencies, the relative impact of the
mixing length is not as big as for the non-adiabatic frequencies.

6Note that such deviations are also a non-negligible problem when applying the standard surface
correction since it relies on the solar-calibrated values at the solar mixing length parameter.
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Figure 5.3: Systematic differences between all observed and computed modes of KIC 8006161
for the whole grid, calculated with (black circles) and without (blue triangles) αml prior. Results
for only the αml = 1.8 models (red squares) are also shown.

of magnitude, and therefore a large amount of evidence from the frequencies and the

fit to the other stellar parameters. The prior should therefore only lead to αml > 2.1

for stars that can be matched very well both in terms of their frequencies and in terms

of their fundamental parameters. Lastly, the third approach is to constrain ourselves

to αml = 1.8 in reference to the Sun-calibrated value for Eddington atmospheres.

This set of different constraints on αml will allow us to show its impact on the stellar

parameters and the surface effects. By comparing the Bayesian evidence for the result

obtained with different priors, we can also quantify the formal preference of one prior

over the others.

As an example, we present the results for the surface effect analysis of KIC

8006161, based on the complete grid rather than just one evolutionary track, in

Figure 5.3. While for this star the prior does not have a big effect at the lower order

modes, we obtain significantly larger surface effects beyond 3300µHz with the αml
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priors. Even with the Gaussian αml prior, as will be shown below, the most probable

posterior value for αml lies above 1.8.

5.4 Results

As described in the previous sections, we have analysed all 23 stars in our

sample with the same grid, using priors on their fundamental parameters if available

and three different models relating to the treatment of systematic errors. Moreover,

we perform this analysis three times, first setting αml = 1.8, then with a Gaussian

prior, and lastly without a prior on αml. The results are given in Table 5.1, Table 5.2,

and Table 5.3, and the most probable αml priors and surface effect models are also

indicated.

5.4.1 The influence of the αml priors

Before we move on to a comparison to the literature, we first study the effect

of the αml priors on our results. Figure 5.4 shows the posterior mean values and

uncertainties of αml, M , Y0, log g, Z/X, and age for all stars and compares the

results with and without the Gaussian αml prior. The Gaussian αml prior leads

to slightly lower values of αml as was expected from the discussion in Section 5.3.

Furthermore, the stellar masses are also slightly lower with an average difference

�∆M� = −0.021M⊙, and, although there is a larger scatter in Y0, slightly larger

values in the initial helium mass fraction are also preferred with an average difference

of �∆Y0� = 0.008. On the other hand, log g remains basically unaffected as expected,

since the radius of the stars are well constrained by the large spacings (as we will see

below, this also extends to a comparison with the other αml prior and the literature).

Z/X and age also do not show strong systematic effects. Nonetheless, the latter

does exhibit a strong outlier with 16 Cyg B, for which the age changes from 9.279±

0.473Gyrs to 6.532 ± 0.281Gyrs. Note that even though the Bayesian evidence is

clearly in favour of the older model, the younger value is much more reasonable,
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Figure 5.4: The effect of the Gaussian αml prior on the posterior value of various model
parameters. Results are plotted for the most probable systematic error model as given in, e.g.,
Table 5.1. The black line indicates a ratio of unity.
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Figure 5.5: Same as Figure 5.4 but for the αml = 1.8 prior and the Gaussian αml prior.
Comparison of αml is not shown.

given the results from Metcalfe et al. (2012) and also given the value of the age for

16 Cyg A. This is a good test case for the impact of the αml prior.

A comparison of the results from the Gaussian prior and the fixed αml = 1.8

prior is presented in Figure 5.5. In general, the results fall in line with our expec-

tations: the mass is now slightly larger for the Gaussian prior with �∆M� = 0.014,

and Y0 is slightly smaller with �∆Y0� = −0.005. Z/X and age values are again quite

comparable except for a few outliers. In general the systematic differences between

the Gaussian prior and the αml = 1.8 prior results are smaller than those obtained

in a comparison without any priors on αml. Overall, our comparison reveals that

stronger constraints on αml do not perturb the parameters outside the uncertainties

and produce slightly lower stellar masses and higher Y0.

In terms of the systematic errors, in particular the surface effect, the results

also follow our conclusions from the previous section. Figure 5.6 shows the differences
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in the systematic errors that arise by using the two αml priors for every mode of every

star in our sample. Using the Gaussian αml prior leads to an increase in the magnitude

of the surface effects (= more negative systematic differences between observed and

calculated frequencies) in general. There are only a few stars in the sample for which

the effect is very pronounced. It is interesting that for many modes the Gaussian αml

prior does not produce large differences for the surface effects. This is due to the fact

that we find a number of stars for which the surface effects are not significant unless

we restrict the analysis to the αml = 1.8 models. Consequently, switching to the

αml = 1.8 prior results in even bigger surface effects and to significant surface effects

for more stars in the sample. This is also reflected in the strong preference for the

“surface effect” systematic error model, as shown in the result tables. In both panels

there are also a few outliers for which the priors lead to decreased surface effects (=

more positive systematic differences between observed and calculated frequencies),

but these modes belong to the stars for which the “arbitrary systematic error” model

is either preferred or very similar in probability to the surface effect model.

As indicated in our result tables, using no αml prior often leads to the highest

evidence. Larger evidence values require that the models are formally more consistent

with all our available constraints while also minimizing the systematic errors, i.e., the

surface effects. Therefore, the analysis which yields the highest evidence and thus the

corresponding stellar parameters are usually interpreted as being most appropriate.

As explained in Section 5.3, however, we stress that at this point it is necessary to

present the results from all approaches, and not to put too much confidence into the

formal preference over to αml priors. This follows simply because we do not possess

enough low-order modes or additional information to anchor the surface effect relation.

The only clear exception to this are KIC 8379927 and KIC 10516096, for which we

do not detect significant systematic errors irrespective of the αml priors but still find

higher αml to be most probable. Concerning the impact of αml on the other stellar

parameters, however, only the stellar mass and Y0 seem to be somewhat systematically

affected by the choice of priors. Even for those parameters the deviations are usually
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Figure 5.6: Differences in the measured systematic errors that arise from using the Gaussian
αml prior (top panel) or the αml = 1.8 prior (bottom panel). All modes of all stars are shown:
l=0 modes (open circles), l=1 modes (black circles), l=2 modes (shaded squares), and l=3 modes
(open triangles). Positive (negative) values denote bigger (smaller) systematic errors in terms
of surface effects when the αml priors are used. The average uncertainty of the differences is
indicated by the diamond in the upper left. For each star, the plotted differences were obtained
using the most probable systematic difference model for the respective αml prior.

within the quoted uncertainties. Thus, for our comparison with the values published

in the literature, which also allow different values of αml, we constrain ourselves to

the results obtained using the “intermediate approach”, the Gaussian αml prior, and

refer to our tabulated results for the differences arising from the different priors.

5.4.2 Surface effects and other systematic frequency differences

As previously alluded to, Figure 5.6 suggests that many stars do not show

strong evidence for surface effects when our non-adiabatic models are used in tandem

with the Gaussian prior. The situation changes, however, when the αml = 1.8 prior is
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used. This implies that, depending on the prior, the convective contributions to the

surface effects are either more or less significant. Since a proper normalization of the

surface effect amplitudes is not trivial and the shape of the surface effects can vary

from star to star, we instead quantify the significance of the surface effect in terms of

probabilities. As discussed in Section 5.2.3, our calculations consider three different

systematic error models: SSE, ASE, and NSE. Therefore, in order to quantify the

surface effect significance for every star, we simply calculate the odds ratio

ODDS =
ev(SSE)

ev(ASE) + ev(NSE)
, (5.5)

where ev(SSE), ev(ASE), and ev(NSE) are the evidence values obtained for the

analysis using each specific systematic error model7. This is the probability ratio

between the hypotheses “standard surface effect” and “either arbitrary systematic

errors or no systematic errors”. Therefore, if surface effects are needed to explain the

observations, we expect that ODDS � 1. According to the convention established

by Jeffreys (1961), the evidence for or against one of the two hypotheses is considered

“substantial” for a factor of 3 to 10, “strong” for a factor of 10 to 30, “very strong”

for a factor of 30 to 100, and ”decisive” for factors above 100. Hence, when the

surface effects become more significant with respect to the other hypotheses, ODDS

will increase as well.

Our calculations show that for some stars the significance of the individual

systematic error models depend on the specific prior for αml, in accordance with what

was discussed in Section 5.3. However, there are four stars for which ODDS < 1

irrespective of mixing length parameter: KIC 6933899, KIC 8379927, KIC 10516096,

and Kepler-36. The latter three objects do not require any systematic errors at all.

Furthermore, for KIC 6106415, KIC 6603624, and KIC 11244118 the surface effect

model is only significant for the αml = 1.8 prior.

7This assumes that a priori all three surface effect models are equally probable.
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Figure 5.7: Normalized systematic frequency differences as a function of normalized frequency
for l = 0 modes for the results obtained with the Gaussian αml prior. The colour represents
the mean posterior αml. For each star, the plotted differences were obtained using the most
probable systematic difference model.

Figure 5.7 shows the actual systematic error measurements obtained when us-

ing the Gaussian αml prior that have been rescaled and plotted as a function of their

mean αml. For many stars the individual deviations do not seem to correspond to the

clear power-law behaviour that can be identified for the Sun. Furthermore, there ap-

pears to be a very weak dependence on αml, where higher values are related to smaller

normalised surface effects, as expected from the discussion in Section 5.3. Whether

this dependence is physically meaningful depends on whether these stars actually

have higher values of αml, or if it is simply the case that our αml prior is too weak.

In any case, αml and surface effects are related.

Similar to Mathur et al. (2012), we do not find any simple correlations of the

normalised surface effect with any of the other parameters in Table 5.1 to Table 5.3.

However, studying the significance of the surface effect in terms of probabilities reveals

some interesting results. Figure 5.8 shows the logarithm of the odds ratio for all stars

in our sample as a function of their position in the HR diagram. The most significant

detections appear to be situated at close-to-solar values of Teff and the picture is
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Figure 5.8: HR diagram of all stars in our sample (filled circles) with parameter taken from
Table 5.1 to Table 5.3, using the results from the Gaussian (top panel) and αml = 1.8 (bot-
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each star, the plotted parameters were obtained using the most probable systematic difference
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similar whether the Gaussian αml prior, the αml = 1.8 prior, or no αml prior is

used. Furthermore, the coolest star in the sample, KIC 8006161, also displays highly

significant surface effects but lies far off from the main bulk of the sample. We have

also added symbols representing the Sun (Gruberbauer & Guenther 2013), β Hydri

(Brandão et al. 2011), and α Cen A& B (Eggenberger et al. 2004), all of which were

used by Kjeldsen et al. (2008) to define the surface effect correction. Except for β

Hydri8, the stars fit well into the pattern given by the Kepler stars. 16 Cyg A, 16

Cyg B,α Cen A, and of course the Sun, appear to lie on the “surface effect locus” in

the HRD diagram of our sample. α Cen B, on the other hand, is situated very close

to KIC 800616.

The stars for which no significant surface effects were detected do mix with

stars that show less significant detections, which is why there does not seem to be a

strong correlation of the surface effect with any particular parameter. On average,

however, lower luminosities and higher effective temperatures correspond to more

significant surface effects. Plotting log Teff against log g (not shown) necessarily yields

a very similar picture which again clusters the most significant detections at the solar

values. A correlation of the surface effect amplitude with log g was already noted by

Mathur et al. (2012). Our comparison of the significance of the surface effect would

be more in line with their investigation of the normalised surface effect for which they

could not find a strong correlation. It will be intriguing to see whether a bigger sample

and additional lower order modes could lead to a clearer detection of a “surface effect

locus” in the HR diagram.

In any case, the non-detection of surface effects in some stars, as well as the

concentration of very significant surface effects for stars with close to solar values

should be a warning for unreflected usage of the standard surface correction for all

solar-like stars.
8Note that the surface effects detected in β Hydri have only been measured using adiabatic

frequencies which do not contain the correction for radiative gains and losses.
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5.4.3 Comparison with non-Bayesian results

5.4.3.1 M20

In this section we investigate the presence of potential systematic differences

between our results and those obtained using the AMP pipeline. Figure 5.9 shows that

there are no strong systematic trends in either of the plotted parameters. As in the

comparison between our three different Bayesian analyses (Figure 5.4, Figure 5.5), the

determined log g values are very similar, but the Bayesian uncertainties are usually

smaller. The results for αml show large scatter which is mostly compensated by the

large uncertainties. It should be noted that our grid only extends from αml = 1.8 to

2.4, and therefore we do not cover the lower values that AMP returns for some of the

stars.

The masses that were determined are quite similar for most stars, but the

AMP delivers smaller uncertainties on average. For several stars, only the larger

uncertainties reported by the Bayesian method can help to reconcile the results. There

exists also a clear outlier with KIC 11244118 where the masses differ by about 0.3M⊙,

more than 15 times our statistical uncertainty.9 The initial helium mass fraction again

displays large but seemingly unsystematic scatter, in particular when compared to

some of the uncertainties reported by AMP. On the other hand, the results for Z/X

are more similar, but our values appear to be slightly larger in a systematic way. In

general, we have to stress that concerning the chemical composition, our grid is quite

coarse compared to the capabilities of AMP’s genetic algorithm.

Lastly, significant differences appear in the comparison of the determined ages.

Irrespective of potential differences in the definition of zero-age models, the two meth-

ods yield different results with significant scatter. Moreover, the Bayesian age uncer-

tainties appear to be bigger on average by a factor of 6, which is substantial, necessary,

but insufficient to reconcile the results in many cases.

9This star is also problematic since it fits best to models near the border of our grid both in
terms of mass and metallicity.
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Figure 5.9: Same as Figure 5.4 but comparing the results from our Bayesian approach using
the αml prior with the published results obtained via the AMP pipeline (Mathur et al. 2012;
Metcalfe et al. 2012). Note that Kepler-36 is not included in these plots.
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5.4.3.2 16 Cyg A & B

The modelling performed by Metcalfe et al. (2012) revealed that 16 Cyg A & B

are of slightly different masses but have a similar age, as expected for a binary system.

Several different grids and methods were used, including AMP, to arrive at an average

ensemble solution. Our results compare favourably with this ensemble average, when

it comes to the ages, the masses, Z0, and αml. Except for the mass of 16 Cyg B,

for which we obtain 1.023 ± 0.013M⊙ compared to their result of 1.07 ± 0.02M⊙,

these parameters overlap within their respective 1σ uncertainties. It should be noted

that we obtain a lower mass for 16 Cyg A as well, which might suggest a systematic

difference between the methods and models used. As discussed in the previous section,

however, we don’t find that such a trend is true for our larger sample. The ages are

fully consistent with a common origin, even though this constraint was not used in

the analysis10.

We find a slight discrepancy for the initial helium mass fraction. For 16 Cyg

A we obtain Y0 = 0.282 ± 0.01 and for 16 Cyg B we find Y0 = 0.285 ± 0.01, while

Metcalfe et al. report 0.25 ± 0.01. Overall, we observe that the differences between

our results and the ensemble average in the literature are minor.

Comparing our results exclusively to the AMP values, we see a significant

difference in the age and the value of αml for 16 Cyg B. It is interesting that this star

is among the set of the most significant surface-effect detections in our sample. As

the AMP results in a value of αml = 2.05 ± 0.03, which is bigger than the ensemble

average, it is perhaps the combination of the solar-calibrated surface effect correction

and the use of a higher-than-solar αml which results in the discrepancy. For the age,

we obtained 6.532± 0.281Gyr compared to 5.8± 0.1. Consistent with our findings in

Section 5.4.3.1, we observe that our age uncertainties are significantly bigger.

In a recent paper, White et al. (2013) have combined interferometric diameters

from CHARA observations with Hipparcos parallaxes, spectrophotometric bolometric

10The equal age is in even better agreement with our results for the αml = 1.8 prior, but for this
approach we also obtain substantially smaller masses.
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fluxes, and the asteroseismic large frequency separation, to obtain largely model-

independent constraints for 16 Cyg A & B. In comparison to their results, for 16 Cyg

A, our αml = 1.8 prior produces a very close match in terms of mass and radius,

but the model Teff values are slightly too low and match better for the Gaussian αml

prior. For 16 Cyg B, on the other hand, the higher αml values are more consistent

with their results, predicting higher masses and larger radii but again Teff values

that are not quite high enough to match the mean observed values. These slight

differences however are insignificant and, irrespective of the particular priors used,

we find that our results match the masses, temperatures, and radii from White et al.

(2013) reasonably well and in all cases to within the combined 1.5σ uncertainties.

Therefore, the interferometric uncertainties are too large to give strong evidence for

or against our particular solutions (i.e., in particular the different αml values). This

can also be interpreted as additional justification for the various αml priors, since

the range of results allows us to define a parameter space that is more in line with

model-independent observations.

5.4.3.3 Kepler-36

With respect to Kepler-36, we find that we can match all parameters published

in Carter et al. (2012) within the uncertainties. It is interesting, however, that we do

not detect any surface effects for this star. Carter et al. report that the surface-effect

correction was applied to the frequencies. Judging from our results, any surface effects

necessary to be corrected for this star would have to originate from the radiative losses

that are already taken into account in our non-adiabatic models.

5.5 Conclusions

In this paper we have reported on our asteroseismic analysis of 23 previously

published stars that were observed with the Kepler satellite. We compared the results

obtained with our Bayesian grid-based method to the results from the literature, most

importantly those obtained with the AMP. Except for a weak trend towards larger
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values of Z/X with our method, no obvious systematic differences in the basic stellar

parameters can be found. In part, this is certainly due to spectroscopic constraints

(Teff , log g, [Fe/H], L/L⊙) that were used in by all authors.

However, we observe that the uncertainties derived from the two methods differ

substantially for some stellar parameters. Uncertainties in the stellar ages in particu-

lar are either significantly underestimated by AMP or significantly overestimated by

the Bayesian method. We conclude that the flexible treatment of the surface effects in

the Bayesian approach is probably responsible for this discrepancy. Different values

of αml and the usage of non-adiabatic models require a more flexible treatment of the

surface effect. Therefore, in our view the uncertainties derived with our method more

adequately represent our actual state of knowledge about the surface effects and are

therefore more realistic. On the other hand, the interplay between the surface effect

and αml introduces another layer of complexity in the analysis which has to be taken

into account in the determination of the stellar parameters. We propose that future

studies with more stars should aim to reexamine this interdependence, especially as

long as non-seismic constraints on αml are not available.

Concerning the surface effects themselves, we find that with a Gaussian prior

on αml, only a few stars in our sample actually require larger corrections. 6 stars in

our sample do not show strong evidence for any surface effect at all. Compared to the

results in Mathur et al. (2012), this suggests that for many stars taking into account

the radiative losses is already good enough. On the other hand, using only models

with αml = 1.8 leads to more significant detections. Irrespective of the prior on αml,

we also discovered that the stars for which we do find a highly significant surface

effect appear to be located very close to the Sun in the HR diagram (see Figure 5.8).

A comparison with the stars that were used to derive the traditional surface-effect

correction (Kjeldsen et al. 2008) shows that most of these calibrators - including the

Sun - also fit the picture. As radiative losses are already taken into account in our

models, the modelling of convection and its dependencies on element abundances,
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opacities, and the equation of state remains a leading candidate to explain the cause

of the surface effects.

To conclude, although systematic differences between stellar evolutionary codes

are still affecting the individual stellar parameters, the systematic analysis of surface

effects can already be pursued using more advanced methods than the standard sur-

face correction, such as our Bayesian approach. No matter which surface correction is

used, however, the constraints on αml will potentially affect the results in the absence

of lower-order modes. The data sets on which this analysis is based have since been

superseded by many more quarters of Kepler data. Also, many more stars have been

observed, for which public frequencies are also available (Appourchaux et al. 2012).

Strong spectroscopic constraints and access to lower-order modes will be necessary to

improve our analysis, and to see whether the “surface effect locus” can be reproduced

with a larger sample of stars and better data. Given the large number of subgiants and

red giants observed with Kepler and CoRoT, a similar study for non-main sequence

stars could be very illuminating as well.
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Table 5.1: Mean parameters and uncertainties as a function of αml prior for KIC 3632418 to
KIC 6603624. Bold font indicates the prior for which the highest evidence was obtained, as well
as other priors for which the evidence was comparable (within a factor of 5). X0, Z0: initial
hydrogen and metal mass fractions; Zs: metal mass fraction in the envelope; RBCZ: fractional
radius of the base of the convection zone; αml: mixing length parameter; sys: the most probable
systematic-error model is given (SSE = standard surface effect, ASE = arbitrary systematic
errors, NSE = no systematic errors) and asterisks indicate a probability contrast of less than
an order of magnitude with respect to any of the other systematic-error models.

Star α prior M/M⊙ log Teff logL/L⊙ logR/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml sys
3632418 αml = 1.8 1.273 3.802 0.696 0.268 3.926 0.735 0.0134 0.0130 0.0175 0.8397 1.80 SSE

±0.033 ±0.002 ±0.007 ±0.004 ±0.227 ±0.012 ±0.0024 ±0.0022 ±0.0030 ±0.0069
Gaussian 1.261 3.805 0.706 0.266 3.823 0.727 0.0130 0.0126 0.0172 0.8405 1.87 SSE

±0.030 ±0.003 ±0.012 ±0.004 ±0.221 ±0.024 ±0.0025 ±0.0022 ±0.0033 ±0.0088 ±0.05
no αml prior 1.264 3.807 0.713 0.266 3.738 0.723 0.0133 0.0129 0.0177 0.8386 1.91 SSE

±0.029 ±0.003 ±0.012 ±0.004 ±0.217 ±0.024 ±0.0024 ±0.0021 ±0.0032 ±0.0093 ±0.06
3656476 αml = 1.8 1.131 3.754 0.219 0.126 6.623 0.688 0.0310 0.0273 0.0373 0.6874 1.80 SSE

±0.025 ±0.004 ±0.017 ±0.003 ±0.729 ±0.011 ±0.0028 ±0.0026 ±0.0038 ±0.0090
Gaussian 1.159 3.754 0.230 0.130 6.871 0.689 0.0347 0.0308 0.0422 0.6732 1.94 SSE

±0.022 ±0.004 ±0.017 ±0.003 ±0.564 ±0.012 ±0.0034 ±0.0031 ±0.0045 ±0.0089 ±0.07
no αml prior 1.253 3.766 0.301 0.143 7.789 0.726 0.0400 0.0359 0.0473 0.6591 2.39 NSE*

±0.013 ±0.002 ±0.007 ±0.002 ±0.287 ±0.010 ±0.0005 ±0.0005 ±0.0010 ±0.0015 ±0.02
4914923 αml = 1.8 1.228 3.759 0.297 0.154 5.409 0.710 0.0306 0.0271 0.0361 0.7097 1.80 SSE

±0.036 ±0.003 ±0.013 ±0.004 ±0.349 ±0.021 ±0.0017 ±0.0016 ±0.0025 ±0.0078
Gaussian 1.227 3.764 0.314 0.153 5.269 0.707 0.0299 0.0266 0.0357 0.7075 1.88 SSE

±0.037 ±0.004 ±0.018 ±0.004 ±0.446 ±0.021 ±0.0018 ±0.0017 ±0.0026 ±0.0092 ±0.05
no αml prior 1.245 3.769 0.343 0.157 6.802 0.724 0.0337 0.0302 0.0399 0.6812 2.19 SSE

±0.025 ±0.005 ±0.021 ±0.003 ±0.766 ±0.020 ±0.0035 ±0.0032 ±0.0044 ±0.0102 ±0.12
5184732 αml = 1.8 1.239 3.761 0.261 0.132 4.421 0.684 0.0394 0.0350 0.0483 0.7258 1.80 SSE*

±0.024 ±0.005 ±0.023 ±0.003 ±0.594 ±0.008 ±0.0016 ±0.0015 ±0.0023 ±0.0143
Gaussian 1.253 3.764 0.278 0.135 4.951 0.689 0.0400 0.0360 0.0497 0.6995 2.03 SSE

±0.022 ±0.004 ±0.020 ±0.003 ±0.370 ±0.010 ±0.0004 ±0.0004 ±0.0009 ±0.0070 ±0.06
no αml prior 1.274 3.771 0.312 0.137 4.521 0.687 0.0399 0.0362 0.0502 0.7022 2.15 SSE

±0.016 ±0.003 ±0.016 ±0.002 ±0.257 ±0.008 ±0.0007 ±0.0006 ±0.0011 ±0.0049 ±0.05
5512589 αml = 1.8 1.106 3.756 0.408 0.216 7.843 0.706 0.0222 0.0192 0.0256 0.6620 1.80 SSE

±0.031 ±0.002 ±0.008 ±0.004 ±0.303 ±0.018 ±0.0026 ±0.0024 ±0.0036 ±0.0051
Gaussian 1.111 3.757 0.414 0.217 7.722 0.706 0.0223 0.0194 0.0259 0.6629 1.82 SSE

±0.033 ±0.003 ±0.015 ±0.004 ±0.408 ±0.019 ±0.0026 ±0.0024 ±0.0036 ±0.0054 ±0.04
no αml prior 1.117 3.758 0.421 0.218 7.588 0.706 0.0225 0.0196 0.0261 0.6640 1.84 SSE

±0.034 ±0.004 ±0.019 ±0.004 ±0.472 ±0.019 ±0.0026 ±0.0025 ±0.0037 ±0.0057 ±0.05
6106415 αml = 1.8 1.184 3.772 0.243 0.101 4.536 0.733 0.0236 0.0204 0.0264 0.7446 1.80 SSE

±0.022 ±0.004 ±0.014 ±0.003 ±0.383 ±0.014 ±0.0023 ±0.0021 ±0.0029 ±0.0088
Gaussian 1.264 3.772 0.264 0.112 4.939 0.746 0.0300 0.0265 0.0341 0.7174 2.06 NSE

±0.012 ±0.002 ±0.010 ±0.001 ±0.170 ±0.005 ± < 0.0001 ±0.0001 ±0.0002 ±0.0038 ±0.05
no αml prior 1.267 3.774 0.271 0.112 4.922 0.747 0.0299 0.0265 0.0340 0.7163 2.10 NSE*

±0.007 ±0.002 ±0.008 ±0.001 ±0.150 ±0.005 ±0.0008 ±0.0007 ±0.0009 ±0.0029 ±0.02
6116048 αml = 1.8 1.090 3.772 0.241 0.099 6.608 0.745 0.0159 0.0132 0.0166 0.7290 1.80 ASE

±0.014 ±0.003 ±0.011 ±0.002 ±0.420 ±0.009 ±0.0019 ±0.0017 ±0.0023 ±0.0073
Gaussian 1.066 3.763 0.200 0.097 9.328 0.743 0.0200 0.0167 0.0212 0.6747 2.01 SSE

±0.022 ±0.004 ±0.019 ±0.003 ±0.763 ±0.008 ±0.0003 ±0.0003 ±0.0004 ±0.0082 ±0.04
no αml prior 1.082 3.770 0.230 0.099 8.650 0.742 0.0197 0.0166 0.0212 0.6789 2.12 SSE

±0.027 ±0.005 ±0.024 ±0.004 ±0.865 ±0.009 ±0.0012 ±0.0010 ±0.0013 ±0.0100 ±0.06
6603624 αml = 1.8 1.052 3.735 0.029 0.067 9.830 0.700 0.0356 0.0301 0.0403 0.6625 1.80 SSE

±0.022 ±0.004 ±0.015 ±0.003 ±0.708 ±0.016 ±0.0040 ±0.0034 ±0.0050 ±0.0057
Gaussian 1.117 3.742 0.074 0.076 9.309 0.720 0.0373 0.0319 0.0418 0.6627 1.98 SSE*

±0.028 ±0.004 ±0.017 ±0.004 ±0.593 ±0.015 ±0.0029 ±0.0026 ±0.0038 ±0.0043 ±0.05
no αml prior 1.192 3.751 0.129 0.086 8.321 0.744 0.0371 0.0321 0.0411 0.6687 2.16 NSE*

±0.013 ±0.005 ±0.018 ±0.002 ±0.290 ±0.005 ±0.0025 ±0.0021 ±0.0027 ±0.0016 ±0.05
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Table 5.2: Same as Table 5.1 but for KIC 6933899 to KIC 10963065

Star α prior M/M⊙ log Teff logL/L⊙ logR/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml sys
6933899 αml = 1.8 1.164 3.756 0.393 0.208 7.808 0.728 0.0245 0.0212 0.0275 0.6779 1.80 ASE

±0.047 ±0.004 ±0.022 ±0.006 ±0.571 ±0.018 ±0.0021 ±0.0020 ±0.0028 ±0.0154
Gaussian 1.140 3.760 0.401 0.205 7.806 0.717 0.0237 0.0207 0.0273 0.6650 1.90 ASE

±0.064 ±0.004 ±0.027 ±0.008 ±0.620 ±0.024 ±0.0026 ±0.0024 ±0.0033 ±0.0189 ±0.05
no αml prior 1.131 3.766 0.426 0.204 7.553 0.713 0.0223 0.0196 0.0260 0.6589 2.04 ASE*

±0.053 ±0.005 ±0.028 ±0.007 ±0.574 ±0.022 ±0.0027 ±0.0025 ±0.0035 ±0.0146 ±0.09
7680114 αml = 1.8 1.156 3.761 0.309 0.157 6.084 0.685 0.0294 0.0259 0.0355 0.7012 1.80 SSE

±0.025 ±0.003 ±0.010 ±0.003 ±0.544 ±0.009 ±0.0018 ±0.0017 ±0.0025 ±0.0068
Gaussian 1.172 3.766 0.333 0.159 5.780 0.687 0.0289 0.0256 0.0351 0.7004 1.89 SSE

±0.027 ±0.004 ±0.017 ±0.003 ±0.567 ±0.010 ±0.0022 ±0.0020 ±0.0030 ±0.0076 ±0.05
no αml prior 1.186 3.771 0.356 0.160 5.521 0.688 0.0281 0.0251 0.0345 0.6997 1.99 SSE

±0.033 ±0.005 ±0.024 ±0.004 ±0.721 ±0.011 ±0.0025 ±0.0023 ±0.0034 ±0.0101 ±0.08
8006161 αml = 1.8 1.052 3.721 −0.207 −0.022 2.714 0.696 0.0395 0.0377 0.0532 0.6891 1.80 SSE

±0.022 ±0.003 ±0.010 ±0.003 ±0.500 ±0.015 ±0.0015 ±0.0015 ±0.0026 ±0.0026
Gaussian 1.077 3.721 −0.201 −0.019 3.220 0.714 0.0398 0.0378 0.0519 0.6847 1.91 SSE

±0.027 ±0.003 ±0.011 ±0.004 ±0.541 ±0.020 ±0.0010 ±0.0009 ±0.0019 ±0.0037 ±0.07
no αml prior 1.114 3.721 −0.188 −0.013 3.896 0.741 0.0400 0.0377 0.0499 0.6791 2.10 SSE

±0.017 ±0.003 ±0.011 ±0.002 ±0.453 ±0.011 ±0.0003 ±0.0003 ±0.0008 ±0.0024 ±0.06
8228742 αml = 1.8 1.214 3.762 0.518 0.260 6.584 0.740 0.0200 0.0174 0.0224 0.6906 1.80 SSE

±0.021 ±0.002 ±0.002 ±0.003 ±0.200 ±0.014 ±0.0003 ±0.0003 ±0.0005 ±0.0025
Gaussian 1.248 3.771 0.565 0.264 5.868 0.739 0.0199 0.0175 0.0225 0.6996 1.95 SSE

±0.025 ±0.004 ±0.017 ±0.003 ±0.259 ±0.012 ±0.0006 ±0.0006 ±0.0008 ±0.0038 ±0.05
no αml prior 1.274 3.778 0.596 0.266 5.479 0.740 0.0199 0.0175 0.0225 0.7047 2.05 SSE

±0.027 ±0.004 ±0.017 ±0.003 ±0.261 ±0.014 ±0.0006 ±0.0006 ±0.0008 ±0.0039 ±0.06
8379927 αml = 1.8 1.253 3.774 0.184 0.068 1.513 0.749 0.0250 0.0237 0.0310 0.7638 1.80 NSE*

±0.011 ±0.001 ±0.007 ±0.001 ±0.231 ±0.003 ±0.0003 ±0.0003 ±0.0005 ±0.0039
Gaussian 1.258 3.778 0.201 0.068 1.511 0.748 0.0246 0.0233 0.0305 0.7651 1.86 NSE*

±0.016 ±0.004 ±0.018 ±0.002 ±0.248 ±0.004 ±0.0014 ±0.0014 ±0.0019 ±0.0044 ±0.06
no αml prior 1.262 3.797 0.279 0.069 1.624 0.749 0.0204 0.0191 0.0249 0.7750 2.18 NSE*

±0.017 ±0.007 ±0.029 ±0.002 ±0.231 ±0.004 ±0.0014 ±0.0014 ±0.0019 ±0.0060 ±0.13
8760414 αml = 1.8 0.839 3.775 0.084 0.016 11.400 0.750 0.0050 0.0038 0.0046 0.7212 1.80 SSE

±0.013 ±0.002 ±0.014 ±0.002 ±0.873 ±0.002 ± < 0.0001 ± < 0.0001 ± < 0.0001 ±0.0090
Gaussian 0.838 3.775 0.084 0.016 11.426 0.75 0.0050 0.0038 0.0046 0.7209 1.80 SSE

±0.013 ±0.002 ±0.014 ±0.002 ±0.886 ±0.002 ± < 0.0001 ± < 0.0001 ± < 0.0001 ±0.0092 ±0.02
no αml prior 0.862 3.789 0.147 0.020 10.511 0.750 0.0050 0.0039 0.0048 0.7181 2.25 SSE

±0.015 ±0.008 ±0.037 ±0.003 ±0.706 ±0.001 ± < 0.0001 ± < 0.0001 ±0.0001 ±0.0049 ±0.26
10516096 αml = 1.8 1.185 3.765 0.338 0.163 6.049 0.718 0.0244 0.0213 0.0280 0.7128 1.80 NSE

±0.017 ±0.002 ±0.009 ±0.002 ±0.461 ±0.016 ±0.0016 ±0.0016 ±0.0024 ±0.0060
Gaussian 1.210 3.772 0.374 0.166 5.854 0.730 0.0229 0.0201 0.0261 0.7160 1.92 NSE

±0.021 ±0.004 ±0.020 ±0.003 ±0.533 ±0.019 ±0.0025 ±0.0023 ±0.0034 ±0.0079 ±0.06
no αml prior 1.240 3.781 0.419 0.170 5.500 0.741 0.0213 0.0189 0.0243 0.7188 2.11 NSE

±0.018 ±0.005 ±0.022 ±0.002 ±0.500 ±0.013 ±0.0022 ±0.0020 ±0.0028 ±0.0072 ±0.09
10963065 αml = 1.8 1.122 3.778 0.259 0.097 5.035 0.731 0.0174 0.0147 0.0189 0.7511 1.80 SSE

±0.037 ±0.005 ±0.025 ±0.005 ±0.945 ±0.018 ±0.0025 ±0.0023 ±0.0032 ±0.0167
Gaussian 1.094 3.777 0.248 0.094 6.139 0.730 0.0176 0.0148 0.0191 0.7254 1.92 SSE

±0.038 ±0.005 ±0.026 ±0.005 ±1.090 ±0.18 ±0.0025 ±0.0022 ±0.0032 ±0.0198 ±0.07
no αml prior 1.089 3.785 0.278 0.093 6.538 0.740 0.0154 0.0129 0.0165 0.7162 2.15 SSE

±0.029 ±0.005 ±0.026 ±0.004 ±0.846 ±0.012 ±0.0013 ±0.0012 ±0.0017 ±0.0135 ±0.09
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Table 5.3: Same as Table 5.1 but for KIC 11244118 to Kepler 36

Star α prior M/M⊙ log Teff logL/L⊙ logR/R⊙ Age X0 Z0 Zs Zs/Xs RBCZ αml sys
11244118 αml = 1.8 1.233 3.751 0.392 0.218 7.100 0.696 0.0388 0.0345 0.0470 0.6830 1.80 SSE

±0.053 ±0.007 ±0.038 ±0.006 ±1.232 ±0.014 ±0.0026 ±0.0025 ±0.0036 ±0.0267
Gaussian 1.299 3.752 0.412 0.227 7.633 0.729 0.0400 0.0359 0.0471 0.6557 2.01 NSE*

±0.004 ±0.002 ±0.008 ±0.000 ±0.222 ±0.005 ±0.0001 ±0.0001 ±0.0004 ±0.0017 ±0.03
no αml prior 1.291 3.759 0.438 0.226 6.962 0.713 0.0400 0.0360 0.0483 0.6603 2.09 NSE*

±0.004 ±0.003 ±0.011 ±0.000 ±0.292 ±0.007 ± < 0.0001 ±0.0001 ±0.0005 ±0.0021 ±0.04
11713510 αml = 1.8 1.025 3.772 0.441 0.200 7.135 0.695 0.0139 0.0115 0.0153 0.6992 1.80 SSE

±0.019 ±0.003 ±0.013 ±0.003 ±0.508 ±0.019 ±0.0022 ±0.0019 ±0.0028 ±0.0121
Gaussian 1.031 3.773 0.447 0.201 7.042 0.692 0.0145 0.0121 0.0162 0.6930 1.85 SSE

±0.022 ±0.003 ±0.013 ±0.003 ±0.424 ±0.017 ±0.0019 ±0.0017 ±0.0025 ±0.0121 ±0.05
no αml prior 1.082 3.775 0.467 0.208 6.705 0.692 0.0182 0.0157 0.0213 0.6829 1.99 SSE*

±0.071 ±0.003 ±0.025 ±0.010 ±0.522 ±0.016 ±0.0057 ±0.0055 ±0.0077 ±0.0138 ±0.15
12009504 αml = 1.8 1.238 3.773 0.360 0.157 4.558 0.724 0.0239 0.0207 0.0270 0.7451 1.80 SSE

±0.034 ±0.003 ±0.017 ±0.004 ±0.488 ±0.019 ±0.0021 ±0.0019 ±0.0028 ±0.0122
Gaussian 1.245 3.779 0.386 0.158 4.487 0.728 0.0223 0.0195 0.0253 0.7419 1.93 SSE

±0.028 ±0.004 ±0.018 ±0.003 ±0.480 ±0.018 ±0.0025 ±0.0022 ±0.0033 ±0.0112 ±0.05
no αml prior 1.253 3.786 0.416 0.159 4.332 0.731 0.0205 0.0180 0.0234 0.7410 2.07 SSE

±0.026 ±0.005 ±0.021 ±0.003 ±0.367 ±0.016 ±0.0016 ±0.0014 ±0.0021 ±0.0103 ±0.08
12258514 αml = 1.8 1.250 3.769 0.440 0.206 5.564 0.724 0.0256 0.0224 0.0294 0.7291 1.80 SSE

±0.039 ±0.004 ±0.020 ±0.004 ±0.939 ±0.018 ±0.0021 ±0.0019 ±0.0028 ±0.0137
Gaussian 1.227 3.769 0.436 0.204 6.342 0.729 0.0255 0.0225 0.0293 0.7086 1.90 SSE

±0.038 ±0.003 ±0.017 ±0.004 ±0.823 ±0.019 ±0.0024 ±0.0023 ±0.0035 ±0.0138 ±0.04
no αml prior 1.217 3.771 0.445 0.203 6.445 0.731 0.0242 0.0213 0.0278 0.7046 1.96 SSE

±0.041 ±0.004 ±0.020 ±0.005 ±0.701 ±0.018 ±0.0029 ±0.0027 ±0.0039 ±0.0134 ±0.06
16CygA αml = 1.8 1.054 3.762 0.173 0.086 6.441 0.684 0.0250 0.0214 0.0291 0.7027 1.80 SSE

±0.010 ±0.001 ±0.006 ±0.001 ±0.363 ±0.006 ± < 0.0001 ±0.0002 ±0.0004 ±0.0036
Gaussian 1.095 3.765 0.196 0.092 7.055 0.692 0.0281 0.0247 0.0337 0.6730 2.13 SSE

±0.016 ±0.005 ±0.023 ±0.002 ±0.375 ±0.012 ±0.0024 ±0.0021 ±0.0033 ±0.0056 ±0.06
no αml prior 1.114 3.771 0.225 0.095 6.647 0.706 0.0250 0.0220 0.0295 0.6795 2.20 SSE

±0.009 ±0.001 ±0.004 ±0.001 ±0.206 ±0.006 ±0.0003 ±0.0002 ±0.0005 ±0.0015 ±0.01
16CygB αml = 1.8 1.007 3.758 0.070 0.043 6.464 0.681 0.0247 0.0214 0.0294 0.6986 1.80 SSE

±0.006 ±0.002 ±0.007 ±0.001 ±0.250 ±0.004 ±0.0012 ±0.0010 ±0.0015 ±0.0035
Gaussian 1.023 3.762 0.091 0.045 6.532 0.686 0.0250 0.0217 0.0296 0.6942 1.92 SSE

±0.013 ±0.002 ±0.010 ±0.002 ±0.281 ±0.007 ±0.0001 ±0.0001 ±0.0003 ±0.0034 ±0.04
no αml prior 1.076 3.764 0.116 0.054 9.279 0.741 0.0250 0.0214 0.0274 0.6621 2.40 SSE

±0.012 ±0.002 ±0.009 ±0.002 ±0.473 ±0.005 ±0.0001 ±0.0001 ±0.0003 ±0.0035 ±0.00
Kepler36 αml = 1.8 1.113 3.771 0.475 0.220 6.923 0.729 0.0150 0.0124 0.0159 0.7059 1.80 NSE

±0.035 ±0.003 ±0.015 ±0.005 ±0.372 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0121
Gaussian 1.118 3.771 0.480 0.221 6.870 0.730 0.0150 0.0125 0.0159 0.7058 1.82 NSE

±0.035 ±0.003 ±0.017 ±0.005 ±0.386 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0122 ±0.04
no αml prior 1.123 3.773 0.486 0.222 6.792 0.731 0.0150 0.0125 0.0160 0.7058 1.85 NSE

±0.036 ±0.004 ±0.021 ±0.005 ±0.409 ±0.018 ±0.0004 ±0.0004 ±0.0006 ±0.0122 ±0.06
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Chapter 6

Concluding Remarks

Given that a wealth of new asteroseismic data and information has only be-

come accessible very recently, it should not be surprising that we are discovering

discrepancies between the data and our models. The prevalent way of performing

asteroseismology is to employ a specific set of models (or rather a particular stellar

evolution and pulsation code) and a very specific tool set in order to arrive at some

conclusions about the stellar parameters, the stellar structure, and the general ap-

plicability of the theory of stellar evolution. In this respect, what was presented in

this thesis might appear as just another adaptation of this approach. It is certainly

correct that all the results given in this thesis are based on one stellar evolution code

and one pulsation code alone.

The important breakthrough of the approach developed in this thesis, how-

ever, is the application of probabilistic inference to the comparison of observations

and models. Chapter 2 described how it allows in principle to consistently compare

many different stellar evolutionary models and evolutionary codes in one common

hypothesis space. Furthermore, the Bayesian approach is uniquely modular, so that

every layer of the stellar models can be studied in detail, using the same observed

data and the same formalism. This is not only constrained to actual asteroseismic

studies where, e.g., Kepler data is used to obtain results for actual stars. Instead,

researchers could compare their codes in a new way. They could agree to use the

exact same fundamental physics (equation of state, opacities, ...) in their otherwise

different model toolset. The Bayesian formalism would then give them a clear answer

as two whether they also obtain the same results at every layer of their model hierar-

chy when compared to some input data. Many different applications for theoretical

modellers can be envisioned (e.g., hare-and-hound exercises), which might help to
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study and better understand the systematic differences between the stellar evolution

codes by using clearly defined probabilistic terms such as the evidence and posterior

probability. The primary goal of the new method, however, is naturally to perform

probabilistic inference and learn something about the real stars.

Here, the new method is uniquely able to make clear statements about all the

stellar evolutionary models, systematic error models, or adapted prior assumption

sets, that were used in the inference. It would certainly be a great advantage if,

instead of merely comparing χ2 values between different researchers, their different

codes and assumptions could actually be evaluated in a common hypothesis space.

A comparison that uses prior information about the stellar parameters from, e.g.,

spectroscopy, could immediately reveal which codes are best calibrated for the specific

object that was studied.

The new method can also be used to answer very specific questions about

specific objects. This follows from the fact that Bayesian analysis always evaluates

specific propositions1. For example, the revised solar chemical compositions has been

discredited for years based on specific fits of the helioseismic observables to the con-

tending models. This is in conflict with the self-consistent and expansive probabilistic

analysis of the problem described in Chapter 4. Thanks to the modular nature of

Bayesian analysis, the new analysis method answers the question whether helioseis-

mology actually has anything to say about the preference for either the old or the

revised chemical composition. The answer, at least based on the larger grid of models

that we have constructed, appears to be “no”. There seem to be more fundamental

problems with the solar model calibration that have to be solved first. Only then

can the chemical composition really be tackled from the perspective of helioseismol-

ogy. Aside from this example, many different variations of such investigations can be

envisioned (e.g., testing different models for convection).

1Furthermore, the propositions can be constructed with the product and sum rules, which can
be used to formulate specific compound propositions (such as: “this frequency is affected by the
surface effect or not” or “this frequency is due to an l = 0 mode or due to an l = 2 mode”) which
correctly propagate into the posterior probabilities.
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However, there also lies a danger in using the Bayesian approach. First off,

both the prior information and the likelihood of the data has a big impact on the

posterior probabilities calculated with Bayes’ theorem. It is therefore important to

make sure that what is used on their behalf makes sense. It is also the responsibility of

the Bayesian analyst to clearly state which assumptions are made, and also in how far

they are potentially aribtrary, so that the results can be reproduced and also properly

assessed. More importantly, however, the answers obtained with this formalism are

always related to a specific set of pre-defined propositions. In other words, if the same

propositions (models, hypotheses) are always used to evaluate new data, there is no

mechanism intrinsic to the posterior probability that tells us that “these models are

wrong”. In that respect, it is important to remember Thomas Kuhn’s terminology

and assessment once again. If we cling to the paradigms (and to our legacy codes)

even in the presence of evidence against their validity, there is no mechanism in science

that guarantees that other paradigms are getting their fair chance to overthrow the

current one. At least, the Bayesian approach has the potential to reveal whether the

paradigms we are clinging to are really applicable. For this to work, however, our

analyses have to be as inclusive as possible. Then, if prior information and newly

obtained information are in stark conflict, new explanations for what is observed can

take the stage. On the other hand, clinging to current models that are no longer

applicable is sometimes necessary as well. Fudging our paradigms to accommodate

such problems is easily hidden in the traditional approach by performing “corrections”

(e.g., such as a surface correction that yields reassuring χ2 values). In the Bayesian

approach, at least, these fudge parameters stand out in the list of propositions as part

of the toolset that we apply to what we observe in nature.

To quote Kuhn in “The structure of scientific revolutions” directly:

Scientists work from models acquired through education and through sub-

sequent exposure to the literature often without quite knowing or needing

to know what characteristics have given these models the status of commu-

nity paradigms. [..] The coherence displayed by the research tradition in
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which they participate may not imply even the existence of an underlying

body of rules and assumptions that additional historical or philosophical

investigation might uncover. [..] Paradigms may be prior to, more bind-

ing, and more complete than any set of rules for research that could be

unequivocally abstracted from them.

As physicists, our tools are quantitative in nature. Is Bayesian analysis a first step to

perform a partial quantitative analysis of our paradigms, or is it perhaps just another

paradigm itself that will be overthrown? Whether or not this is true, we should not

forget that the paradigms are there, that they determine our results, and that at least

in science they seem to never hold.
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