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ABSTRACT

CLIMATE AND PLANT TRAITS AS INFLUENCES ON GREEN ROOF PERFORMANCE

Stephanie Tran

Green roofs are being introduced and installed in varying climates worldwide to benefit from 

green roof services. Services of thermal cooling and stormwater capture reduce building energy 

consumption and strain on infrastucture. Across North America, green roofs often make use of 

a limited set of plants, but the effects of different climates on survival and growth are unknown 

while survival often outranks optimization of services. To identify the impact of climate on plant 

performance, I installed an identical green roof system in three Canadian cities. To investigate 

the relationship between plant traits and green roof services, I measured service provision and 

analyzed for correlation. A moderate climate supported the best growth and performance, but 

in all climates, mixture plantings performed well over the two growing seasons. Plant traits 

of specific leaf area and plant height were predictive, through vegetation characteristics, of 

stormwater capture and green roof surface cooling.

June 16, 2017
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Chapter 1

Introduction: Climate and plant traits as influences on green roof performance
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Introduction

	 Urban environments are characterized as having more impervious surface compared to 

rural or wild areas and are quickly expanding due to growing populations. Roads, parking lots, 

sidewalks and rooftops make up horizontal impervious surfaces which change normal hydrology 

(USEPA 2003) and contribute to the urban heat island effect (Rizwan et al. 2008). While roads, 

sidewalks and parking lots serve functions for city inhabitants, rooftops, which account for 

20–30% of a city’s impervious surfaces, are under-utilized spaces (Banting et al. 2005, Carter 

and Jackson 2007, Akbari and Rose 2008). Green roofs, as porous systems, are being promoted 

for their benefit to the environment in urban centres such as Berlin, Portland, and Tokyo (Earth 

Pledge 2005). Large-scale, citywide benefits include mitigation of the urban heat island (Bass and 

Baskaran 2003, Wong et al. 2003, Getter and Rowe 2006), stormwater runoff reduction (Carter 

and Jackson 2007, Getter et al. 2007), provision of habitat for insects and birds (Brenneisen 

2006), air quality improvement (Currie and Bass 2008), and aesthetic value (Getter and Rowe 

2006, Oberndorfer et al. 2007, Berndtsson 2010). Green roof benefits also extend to the building-

level, increasing roof longevity (Monterusso et al. 2005) and reducing energy consumption 

through summer cooling (Theodosiou 2003).  

	 Green roofs are an engineered ecosystem composed of a drainage layer, filter membrane 

and water retention layer, lightweight growing media and vegetation (Dunnett and Kingsbury 

2004, Oberndorfer et al. 2007). They are categorized based on the growing medium (or substrate) 

depth with extensive green roofs having depths of less than 15 to 20 cm while intensive green 

roofs have substrate depths greater than 15 or 20 cm. Extensive green roofs have lower structural 

loading requirements, lower installation costs and require less maintenance (Dunnett and 

Kingsbury 2004). For these reasons, extensive green rooftops are more often considered for 

implementation. However, extensive green roofs present challenging conditions for vegetation. 

In general, green roofs are subject to high wind speeds which promote desiccation of both the 
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substrate and vegetation. They experience higher summer temperatures and are prone to periods 

of drought (Snodgrass and Snodgrass 2006). Along with drought conditions, green roofs can 

quickly shift to being waterlogged (Wolf and Lundholm 2008) due to the limited water-holding 

capacity of shallow substrate depths. The physical parameters of the green roof along with 

climate conditions create a difficult environment and limit plant selection for green roof use. 

At minimum, plants must be able to survive the intended climate and have a rooting system 

compatible with the substrate depth. Climate factors affecting green roof plant survival include 

summer maximum temperatures, humidity, and soil moisture while differences in the climate 

affect plant height and relative growth rate (Gazol and Camerero 2012) and with timing and 

amount of precipitation impacting plant growth and competition (Aerts 1993, Knapp et al. 2002, 

Heisler and Weltzin 2006). The green roof industry has relied heavily on Sedum spp. plants for 

green roof plantings as they have proven adaptable to many climates and have shallow rooting 

systems. Sedums are capable of withstanding drought and quickly creating coverage, however 

they have limited survival in climates with extreme winter or summer temperatures (Boivin et al. 

2001, Livingston et al. 2004). While researchers in the green roof field often investigate survival 

of different test species within a given location, no studies have looked at the impact climate 

has upon plant performance within the same species. Green roof studies vary in location and 

corresponding climate, substrate depths and composition, and vegetation types. Understanding 

climate impact on green roof systems is crucial as climate impacts green roof services of 

stormwater capture and thermal cooling and also influences plant performance which in turn 

impacts green roof service provision. 

	 Stormwater runoff is a concern especially in cities with a combined sewer system. In a 

combined sewer system, stormwater is drained from roadways and led to pipes also collecting 

wastewater. During heavy rain events, sewer system capacity can be exceeded resulting in a 

combined sewer overflow event where rainwater and raw sewage are released at relief points. 

These relief points typically lead into surface waters such as rivers, lakes and oceans. In New York 
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City, half of the rainfall events result in combined sewer overflow and surface waters receive 40 

billion gallons of untreated sewage annually (Cheney 2005). Replacing sewer pipes to increase 

water storage capacity is an expensive, time-consuming and disruptive process. Green rooftops 

relieve stress on the stormwater system by reducing the amount of runoff entering the sewer 

system, delaying runoff start and releasing runoff over a longer period of time (VanWoert et al. 

2005, Carter and Rasmussen 2006, Mentens et al. 2006, Getter et al. 2007, Teemusk and Mander 

2007). Climate factors of temperature, rainfall duration, quantity and intensity (Speak et al. 

2013), and preceding dry duration (Villarreal and Bengtsson 2005, Mentens et al., 2006, Getter et 

al. 2007) modulate stormwater capture amounts by green roofs. 

	 Thermal cooling by green rooftops reduces the required energy used to cool the building 

during summer months (Del Barrio 1998, Niachou et al. 2001, Liu and Minor 2005). Green 

rooftops delay and reduce the daily temperature extremes experienced (Liu and Baskaran 2003). 

With lower surface temperatures, less heat is then transferred through the roof into the building 

interior, lowering cooling energy demands. Green roofs reduce heat flux by increasing albedo 

(Alexandri and Jones 2008), evapotranspiration (Onmura et al. 2001, Lazarrin et al. 2005) and 

the rooftop insulation value (Niachou et al. 2001). Thermal cooling is related to climate factors, 

influenced by temperatures and rainfall (Lin et al. 2013). Higher temperatures result in greater 

thermal cooling performance while rain reduces cooling ability relative to conventional roofs. 

Aside from ambient temperature and rainfall, humidity, wind speed and solar radiation intensity 

also influence thermal performance by green roofs (Theodosiou 2003, Santamouris 2012). 

Theodosiou (2003) found relative humidity to be the most important climatic factor in green 

roof temperatures, where higher humidity levels reduced cooling processes of transpiration and 

evaporative cooling.

	 Green roof services of thermal cooling and stormwater capture can be considered 

ecosystem services as they are considered valuable to us. Ecosystem services are valued products 
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ranging from cultural services (inspiration, iconography, social effects) to productive soils 

to water purification to fuel resources. They are generated from ecosystem functions, which 

represent processes arising between components of an ecosystem, such as biological production, 

nutrient cycling and decomposition. Ecosystem functions such as plant biomass generation affect 

the ecosystem services of green roof stormwater capture and thermal cooling. Each plant species 

performs functions to varying degrees (Hector and Bagchi 2007) and some species outperform 

the industry standard Sedum spp. in stormwater capture. Wolf and Lundholm (2008) found 

grasses to remove water from the substrate more quickly than Sedums. Over repeated rainfalls, 

grasses would remove more water, creating drier antecedent conditions and thereby allowing the 

green roof system to retain more subsequent stormwater than Sedum plantings (Lundholm et al. 

2010). Overall, herbaceous plants can outperform Sedums in terms of stormwater management 

(Dvorak and Volder 2010). With higher transpiration rates in herbaceous plants, there is 

potential for greater cooling effects through evaporative cooling (Dvorak and Volder 2010). 

Blanusa et al. (2013) reported better cooling of the substrate surface by Stachys byzantina over 

other herbaceous plants and an industry Sedum mix.

	 Green roof service provision of stormwater capture and thermal cooling is influenced 

by a number of physical and physiological vegetation traits. Stormwater capture is proposed to 

be linked to transpiration rates (DeNardo et al. 2005) and shown to be influenced by canopy 

features that slow the rate of water reaching the substrate (Dunnett et al. 2008). Thermal cooling 

depends in part by reducing heat flux through the roof, with the plant canopy playing a role by 

shading the substrate surface (DeNardo et al. 2005) and performing evaporative cooling (Jim 

and Tsang 2011). The canopy architecture may also differentially change thermal performance 

(Dunnett and Kingsbury 2010) with canopy architecture being highly varied and comprised from 

a wide array of traits, including branching characteristics, leaf angle and branch angle (Ollinger 

2011). Canopy features and evaporative processes are all derived from inherent plant traits. Plant 

traits are morphological and physiological characteristics, independent of taxonomic identity, 
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that relate to plant function, survival and fitness. From the understanding of plant function 

through plant traits, a range of ecological questions can be answered. Ecological questions 

probing vegetative response to climate, climate change, landuse and disturbance or atmospheric 

chemistry have been investigated (Gross et al. 2008, Lavorel and Grigulis 2012). Questions can 

also be answered on a large scale, at the ecosystem, landscape or biome level, as archetypal values 

of plant traits are systematically found in similar environments.

	 The most useful plant traits are those relatively easy to measure for the widest number of 

plant species and those that most strongly predict ecosystem processes (Cornelissen et al. 2003). 

For my purpose, within the green roof system, stormwater capture and thermal cooling can be 

considered ecosystem processes. Use of plant traits for description and prediction of green roof 

functions has begun to be adopted by researchers. Functional plant traits for green roofs were 

defined by Cook-Patton and Bauerle (2012) as “traits that contribute to a green roof ’s ability 

to provide services to an urban area,” while Farrell et al. (2013) utilized physiological traits to 

screen for potential green roof plants, looking for drought tolerance, and to investigate green 

roof vegetation water use. With the ability to measure trait data for a large number of species 

and the correlation of traits to ecosystem processes, there exists the opportunity for green roof 

researchers to expand the palette of suitable and optimal green roof plants. Expanding the 

green roof plant palette and increasing green roof plant diversity can develop resilience of green 

roofs (Cook-Patton and Bauerle 2012) and potentially optimize green roof service provision 

(Lundholm et al. 2010). Diverse green roof plantings can, depending on the incorporated species, 

better withstand conditions of drought (Butler and Orians 2011) and better perform stormwater 

capture and thermal cooling (Kolb and Schwarz 1986, Lundholm et al. 2010).

	 The goal of this thesis was to investigate the impact climate has upon green roof plant 

performance, and to suggest a method for screening plants to optimize green roof service 

provision of stormwater capture or thermal cooling. The specific objectives addressed were:
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Chapter 2: Determining the impact of climate upon green roof plants in growth performance 

measures; and

Chapter 3: Identifying the relationship between plant traits and green roof services of thermal 

cooling and stormwater capture.

	 For Chapter 2, identical green roof systems were installed in Calgary, Alberta; London, 

Ontario; and Halifax, Nova Scotia; cities which receive different weather. Sedum spurium (a 

succulent), Aquilegia canadensis (a forb) and Sporobolus heterolepis (a graminoid) were grown 

in monoculture and combined in a mixture planting. The objective was to discern whether plant 

performance of leafing density, plant height and establishment and persistence rates differed 

between sites, indicating influence of climate. 

	 For Chapter 3, test plant species were grown in monoculture on a modular green roof 

system in Halifax, NS and included local, native species previously shown to survive on extensive 

green roof systems (Lundholm et al. 2010, MacIvor and Lundholm 2011). Traits were obtained 

for these 21 test species and relationships to their corresponding stormwater capture and surface 

temperatures were analyzed using path analysis.
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Abstract	

	 Green rooftops are being introduced and installed in varying climates worldwide to benefit 

from green roof services. Across North America, green roofs often make use of the same limited 

set of plant species, but the effects of different climates on survival and growth on different plant 

species is unknown. To identify the impact of climate on green roof plant performance, we 

installed an identical green roof system in three Canadian cities that experience different climate 

conditions: Calgary, Alberta; London, Ontario; and Halifax, Nova Scotia. The green roofs were 

monitored across three growing seasons for plant survival, plant height, and canopy density of 

three species grown in monoculture: Aquilegia canadensis, Sporobolus heterolepis, and Sedum 

spurium, in addition to a mixture planting incorporating all three species. I found green roof 

canopy density, plant height and calculated establishment and persistence rates, components 

of green roof performance, to be significantly influenced by the green roof site. Experimental 

factors of site, plant species and planting type (monoculture or mixture treatment), significantly 

impacted plant growth variables. I found a moderate climate, as experienced in London, 

supported the best green roof growth and performance as compared to the cooler, drier Calgary 

and the rainier Halifax. Between sites, plant species also exhibited different phenologies. Mixture 

treatments performed better than monoculture plantings at each site in canopy density measures 

but were not significantly greater in plant height measures. The persistence rate for mixture 

treatments was greatest, indicating greater potential for long term survival and performance of 

mixture plantings.

Keywords: Extensive green roof; monoculture; mixture; climate; canopy density
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Introduction

	 Between 2005 and 2012, thirteen cities across North America implemented policy or 

incentive programs regarding green roof installation (GRHC 2013), often to promote stormwater 

capture, but green roofs also provide habitat provision, increase roof membrane longevity and 

urban heat island mitigation, among others benefits (Getter and Rowe 2006, Oberndorfer 

et al. 2007). While green rooftops provide benefits to the city and the building itself through 

its material components and its living plants, growing conditions for plants on rooftops are 

considerably harsher than comparative ground level conditions. Green roofs are restricted in 

substrate depth and are typically subject to greater solar radiation and wind speeds (Dunnett 

and Kingsbury 2010). Greater solar radiation and wind speeds quicken water loss through 

evaporation (Santamouris 2012) while restricted substrate depth limits maximum water 

availability (Berndtsson 2010), contributing to creating drought conditions. For extensive green 

roofs, especially of substrate depth less than 15 cm, these growing conditions limit plant selection 

to those that can withstand periodic drought if supplementary irrigation is not available and to 

those with shallow, non-penetrating root systems.	

	 Research and industry experience from Europe and North America have found the Sedum 

genus well suited to green roof conditions. Sedums are drought tolerant succulents, able to 

survive in a wide range of climates and in very shallow substrate depths, shown to endure down 

to a substrate depth of 5 cm (Dvorak and Volder 2010). However, Sedums are not suitable across 

all climates. Boivin et al. (2001) found Sedum x hybridum in 5 cm deep substrate to be susceptible 

to root damage following winters with minimum temperatures of -0.4 and -5.4°C in Laval, 

Quebec, Canada. At the other climate extreme, Livingston et al. (2004) found Sedums susceptible 

to hot, humid environments. Furthermore, provision of green roof services isn’t necessarily 

optimized by Sedum species. Their drought tolerant nature and mat growth form prevents high 

water capture ability as compared to other plant species (Wolf and Lundholm 2008). Lundholm 



17

et al. (2010) and Farrell et al. (2013) have found some plant species to outperform Sedums in 

water capture and transpiration rate.	

	 The use of mixture plantings has shown evidence of enhancing plant survival and green 

roof performance. Butler and Orians (2011) found survival of herbaceous species in extensive 

green roof modules to be greater during drought conditions when co-planted with Sedum 

species through facilitation. Nagase and Dunnett (2010) similarly found greater plant survival 

in dry conditions when plantings included multiple species. Co-planting, or mixture plantings, 

can also potentially boost green roof service provision. Lundholm et al. (2010) found increased 

roof cooling and stormwater capture services with a mixture planting incorporating a tall forb, 

a grass and a succulent life form. Cook-Patton and Bauerle (2012) reports findings from Kolb 

and Schwarz (1986) that diverse plantings had greater roof cooling abilities than monocultures. 

Instead of industry reliance on Sedums, there exists great potential for plantings incorporating 

different species and different growth forms to maximize green roof service provision. The 

ability to maximize green roof ecosystem functioning through plant selection would enhance 

environmental benefits and create increased visual diversity on green roofs, an aesthetic marker 

(Dunnett et al. 2008).	

	 Incorporating taller plants on green roofs could be one strategy of green roof optimization. 

Plants with taller foliage allow for better maintenance of the insulating air pocket between 

the substrate surface and the vegetation layer (Theodosiou 2003). This air pocket reduces 

temperatures at the substrate surface compared to atmospheric temperatures. Consequently, 

taller plants better reduce the temperature within the substrate (Sailor 2008). Taller plants have 

also been shown to perform stormwater capture better than shorter plants (Nagase and Dunnett 

2012). Theodosiou (2003) mentions that low foliage plants provide better shading of the substrate 

surface, which contributes to reducing substrate temperatures, but overall, studies suggest taller 

foliage heights have better performance value on green rooftops.	
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	 Overall plant biomass contributes to green roof services of stormwater capture, thermal 

cooling and visual rating. Plants contribute to stormwater capture by taking water up from the 

substrate and performing evapotranspiration through their leaves. This removes water from the 

substrate material and recharges the substrate’s capacity for water capture during the next storm 

event (Stovin 2010). Plant canopies contribute to reducing heat flux through the roof by shading 

the substrate surface (DeNardo et al. 2005) and through evaporative cooling (Jim and Tsang 

2011). 	

	 Plant height, biomass and interaction with other plant species contribute to green roof 

performance. Green roofs, however, are dynamic, with plant biomass, height and coverage 

of the green roof shifting with time (Dunnett et al. 2008). Considering the role plants have in 

stormwater capture and thermal cooling, having optimal biomass and coverage throughout the 

growing season or year if possible would help optimize green roof service provision. 	

	 While studies have looked to expand the green roof palette to maximize green roof 

performance, many studies allude to the need for plant selection suited to the climate conditions 

the roof will experience. Monterusso et al. (2005) expressed that better understanding of the 

plants that will thrive in the climate range of the United States is required for the success of green 

roofs. Getter et al. (2009) furthered this message, writing that plant success depends upon the 

overall climate as well as the microclimate experienced by the roof. 	

	 For this study, I was interested in how plant growth would respond in different climate 

locations. I investigated if different sites would be differently affected by green roof parameters of 

substrate depths and planting species. To fulfill this goal, I installed an identical green roof system 

of two substrate depths in three Canadian cities: Calgary, Alberta; London, Ontario; and Halifax, 

Nova Scotia. Plant species Sedum spurium, Aquilegia canadensis and Sporobolus heterolepis were 

grown in monoculture modules and plant health and survival, canopy density, establishment and 

persistence rates were measured as indicators of plant performance. To investigate robustness 
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of mixture plantings, I also compared the plant performance of the best monoculture canopy 

density performer from this experiment, S. spurium, against a mixture planting containing S. 

spurium, A. canadensis and S. heterolepis. The mixture planting was compared to only the best 

monoculture so that any added benefit from mixture planting would be clear. The goal was to 

identify the best approach for green roof planting, so if the mixture outperformed the best, it 

would follow that it also outperformed a poorer performing monoculture. In comparing these 

plantings, we aim to identify factors that contribute to best optimal performance for each site.

Methods

Sites	

	 To examine plant performance variation between cities with differing climates, identical 

green roof systems were installed in Calgary, Alberta; London, Ontario; and Halifax, Nova 

Scotia, Canada. In Calgary, the green roof system was installed on the University of Calgary’s 

Earth Sciences building, atop the second storey over an existing gravel ballast roof. To the north, 

the Earth Sciences building rises another eight storeys. In London, the green roof system was 

hosted by the University of Western Ontario. It was placed atop Talbot College, on a two storey 

high portion of the building where the building’s third storey rises on the south face of the green 

roof approximately 50 feet away. The existing roof surface was covered by concrete pavers. In 

Halifax, the green roof was installed atop Park Place V, a five storey commercial office building 

approximately 5 km from Halifax’s city centre. The experimental green roof system was placed on 

a high-reflectivity, white roof membrane with a mechanical penthouse to the east. To minimize 

interaction with and influence from the existing roof structures, at all locations, the experimental 

green roofs were installed atop 2.5 cm sheets of Styrofoam insulation.	
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	 Climatically, Calgary has a dry climate, receiving less precipitation than both London and 

Halifax (Table 1, Figure 1). Calgary experiences colder winter temperatures but also receives 

frequent chinooks, warm winds that raises temperatures and remove winter conditions for hours 

to days at a time. By the Köppen classification system, created considering temperatures and 

amount and distribution of precipitation, all three cities classify under humid continental (Dfb) 

with some differences within the classification. Some markers of continental climate within the 

Köppen classification system are a large temperature difference between summer and winter, 

and precipitation generally distributed throughout the year. Calgary classifies as a dry humid 

continental climate, while London’s climate can be considered to be on the threshold between 

Table 1: Thirty year climate averages from 1971 - 2010 for Calgary, Alberta, Halifax, Nova Scotia 
and London, Ontario. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Yearly

Calgary

Daily Average T (°C) -7.1 -5.4 -1.6 4.6 9.7 13.7 16.5 15.8 11 5.2 -2.4 -6.8 4.4

Precipitation (mm) 9.4 9.4 17.8 25.2 56.8 94 65.5 57 45.1 15.3 13.1 10.2 418.8

Wind Speed (km/h) 13.9 13.7 14.6 16.1 16.1 15 13.5 12.7 13.4 14 13.4 13.7 14.2

Days with wind >= 52km/h 3.1 2.1 2.2 2.2 2.6 2.1 1.8 1.7 2.1 2.5 2.1 3.1 27.7

Degree days over 15 °C 0 0 0 0.4 7.8 22.7 65.6 57.3 13.4 1.1 0 0 168.1

London

Daily Average T (°C) -5.6 -4.5 -0.1 6.8 13.1 18.3 20.8 19.7 15.5 9.2 3.4 -2.6 7.9

Precipitation (mm) 74.2 65.5 71.5 83.4 89.9 91.7 82.7 82.9 103 81.3 98 87.5 1011.5

Wind Speed (km/h) 17.3 16.2 16.3 16.3 14 11.9 10.6 9.7 11.1 13.4 15.6 16.5 14.1

Days with wind >= 52km/h 1.2 0.8 1.6 1.2 0.6 0.4 0.4 0.2 0.3 0.8 0.5 1.0 9.0

Degree days over 15 °C 0 0 0.9 5.3 35.6 112.3 179.3 147.7 61.1 6.8 0.3 0.1 549.2

Halifax

Daily Average T (°C) -5.9 -5.2 -1.3 4.4 10 15.1 18.8 18.7 14.6 8.7 3.5 -2.4 6.6

Precipitation (mm) 134.3 105.8 120.1 114.5 111.9 96.2 95.5 93.5 102 124.9 154.2 143.3 1396.2

Wind Speed (km/h) 17.7 18.3 18.5 18.3 16.5 15.2 14.2 13.2 14.4 16 17.5 18.3 16.5

Days with wind >= 52km/h 2.4 1.9 1.9 1.3 0.4 0.3 0.2 0.2 0.5 0.6 1.7 2.2 13.3

Degree days over 15 °C 0 0 0 0.1 4.6 42.8 120.6 118.4 35 3.1 0.1 0 324.6
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Dfb and Dfa. Dfa, a hot summer continental climate, in London is pushed to the Dfa/Dfb 

boundary due to a lake effect from Lake Huron. Consequently, London experiences the greatest 

number of >15°C degree days, 519.5 compared to 157.3 days in Calgary and 303.6 in Halifax 

(Table 1). Halifax receives the most annual rainfall, 1356.1 mm, with precipitation occurring 

even in the driest months. Halifax receives relatively mild winters from the Gulf Stream, but is 

overall cold and temperate, with high wind speeds.

Green Roof System	

	 A modular green roof from LiveRoof® System was used at all locations (LiveRoof Ontario, 

Mount Brydges, ON, Canada). The system consists of plastic modules measuring 30 cm x 30 cm 

along the inside perimeter, and proprietary LiveRoof® Engineered Soil. 	

	 Plant plugs and modules for the green roof system were propagated at two plant nurseries. 

Eagle Lake Turf Farms, near Strathmore, AB, prepared planted modules for Calgary. The 

LiveRoof® nursery in Mount Brydges, ON, prepared planted modules for London. For Halifax, 

the Mount Brydges nursery prepared plant plugs which were trucked to Halifax and planted into 

modules upon arrival. 	

	 Plant species for experimentation included Sedum spurium, commonly used by the 

industry throughout North America, and two species native to Ontario: Sporobolus heterolepis, 

a grass, and Aquilegia canadensis, a forb. These test plant species were planted in modules as 

monocultures as well as incorporated into a mixture treatment. Modules with the mixture 

treatment combined these three growth forms, following findings from Lundholm et al. (2010) 

for optimal green roof performance of thermal cooling and stormwater capture. All monoculture 

and mixture treatments were planted at two substrate depths, 10 cm and 15 cm deep.	

	 With the goal of achieving 80% coverage upon maturation as per FLL guidelines (FLL 
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2002), monoculture modules were planted with plant density of: one S. heterolepis; three A. 

canadensis; or five S. spurium. These planting densities for each species was, from literature 

and past experience, assumed to be sufficient to generate 80% coverage. For mixture treatment 

modules, a five plug planting density was created from one A. canadensis, one S. heterolepis and 

three S. spurium plugs. Following installation, 10 mL of 17-06-12 POLYON Nursery fertilizer 

(Agrium Advanced Technologies, Calgary, AB, Canada) was applied to the base of each plug. 

Modules were thoroughly watered following installation and for the subsequent two weeks. After 

the two foundation weeks, no supplemental irrigation was provided. Modules were weeded twice 

a month during the growing season to remove volunteer species.	

	 Experimental units were created from nine modules in a 3 x 3 arrangement of the same 

planting type (monoculture species or mixture planting) and substrate depth. In each unit, the 

centre module, buffered by the other modules to reduce edge effects, was considered the test 

module. Data were collected only from these central, test modules.	

	 Replicate number of experimental units were identical between Calgary and Halifax green 

roofs, whereas London had increased replication of S. spurium monoculture modules and a 

different allotment between shallow and deep modules of the monocultures and the mixture 

(Table 2).

Table 2. Final test module replication number by green roof location, planting 
type and substrate depth. In parentheses are the original module replication 
counts, where appropriate.

Site Depth A. canadensis S. heterolepis S. spurium Mixture

Calgary 10 cm 0 (3) 3 3 3
15 cm 2 (4) 4 9 4

Halifax 10 cm 3 3 3 3
15 cm 4 4 9 4

London 10 cm 4 4 3 4
15 cm 3 3 16 3
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Data Collection	

	 Experimental modules were assessed for plant health and survival, module canopy 

density and plant height. In addition, module coverage was obtained by processing overhead 

photographs of test modules in Image J (Image Processing and Analysis in Java, NIH, USA). 

Measurements of canopy density began August 2012, year 1, after the two weeks of irrigation 

following installation. Measurements were taken again in October. Through year 2 (2013) and 

year 3 (2014), measurements were taken once monthly from May to August. All measurements 

were made in the third week of the month. Canopy density measurements June and July year 2 

for London were lost.	

	 Plant health was rated on a scale of 0-2 (Butler and Orians 2011) where a rating of 2 

corresponded to a healthy plant with green leaves and green stem, 1 dead leaves with green stem, 

and 0 dead leaves and dead stem. At the beginning of the year 2, treatment blocks whose centre, 

test module had died (health rating of 0) were removed and replaced with a LiveRoof® Sedum 

mixture. Following plant death, these test modules were removed from analysis.	

	 Canopy density, an index of above-ground biomass, was determined using the point-

interception method (Jonasson 1988). A plastic frame measuring 30 cm x 30 cm along the inside 

edge was subdivided into 16 sections. At each intersection, totalling nine points, a 3.75 mm 

diameter pin was inserted and the number of contacts made between live vegetation matter and 

pin recorded, measuring three dimensional density. Contacts were totalled from the nine points 

to provide the canopy density value. Canopy density measures over the experimental period were 

used to identify the best monoculture species for comparison to mixture module performance.	

	 Plant height was obtained by using a frame measuring 30 cm x 30 cm divided into nine 

sections. Within each section, a ruler was placed at substrate level, and the average plant height 

visually assessed for the section. The nine measurements were averaged for the module.	
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	 Establishment and persistence rates were generated from August canopy density 

measurements over a year time period to identify a year-over-year measure of growth. 

Establishment rate was considered the year 1 to year 2 growth rate, determined as: 		

Canopy Density (August year 2) - Canopy Density (August year 1) 

Persistence rate, considered the year 2 to year 3 growth rate, was similarly calculated as: 	

Canopy Density (August year 3) - Canopy Density (August year 2) 

In both instances, positive values indicate increased canopy density over the time span.

Data Analysis	

	 To compare green roof performance between locations over time, a repeated measures 

ANOVA was performed with two within-subject factors (random effects: unit nested within 

sampling year and month) and three-between (fixed effects: site, depth, species). Post-hoc tests 

were performed at each time point, with three-way ANOVAs and TukeyHSD to investigate pair-

wise interactions. Variables canopy density, heights and establishment and persistence rates were 

investigated with factors of site, substrate depth and species type (for monoculture plantings) or 

planting type (when comparing mixtures to the best monoculture). Significance was determined 

at p < 0.05.



26

Results

	 Overall, plant performance was highest in all plant performance measures at the green 

roof site in London, Ontario and mixture plantings outperformed the best monoculture planting. 

Noticeably, the London roof experienced no plant death over the experimental period, whereas 

both the Halifax, Nova Scotia and Calgary, Alberta green roofs experienced plant death following 

the first, year 1, winter. The London roof had highest overall canopy density throughout all 

experimental growing seasons and the tallest plant height measures. Green roof performance 

of Calgary and Halifax were at times similar, but mid year 2 and onward, the Calgary roof 

outperformed the Halifax roof (plants were larger and grew faster) although the Calgary roof 

experienced more plant death initially.

Plant health and survival	

	 Over the experimental period, the majority of plants survived. No plants died during the 

year 1 growing season, but plant death occurred over the first winter in Calgary and Halifax. 

In Calgary, five A. canadensis test modules died, three 10 cm and two 15 cm deep. Counting 

the non-test modules included in the treatment block to reduce edge effects, 42 A. canadensis 

and five S. heterolepis modules experienced plant death in Calgary. In Halifax, 11 non-test S. 

heterolepis modules died. In Calgary, for the units where the test modules died, the full unit was 

removed and replaced with a LiveRoof® Sedum mixture and removed from further measurement. 

No plant death occurred in any planted species in London and no further plant death was 

experienced after the first winter. Aside from the noted plant deaths, all subsequent plant health 

measurements rated 2, green stem and green leaves, across all sites throughout the experimental 

measurement points.
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Coverage	

	 By the end of the year 2 growing season when the green roofs were considered to be 

established, 4 out of the 12 site-species/planting treatment combinations achieved the target 80% 

module coverage (Figure 2). Only the S. spurium and mixture modules of Calgary and London 

met and exceeded 80% coverage. The mean coverage in Halifax for S. spurium, A. canadensis and 

mixture treatment were close to the coverage target with mean module coverage of 76.4±5.1%, 

77.4±10.1% and 75.9±10.1% respectively. In no locations did S. heterolepis meet target coverage, 

with coverage 61.3±2.6% in Calgary, 62.3±13.8 in Halifax and 72.6±2.7 in London. A. canadensis 

coverage in Calgary and London was low, 47.3±5.9% and 60.3±3.3% respectively.

Figure 2. Mean canopy cover (%) in August year 2 by green roof location and 
planting type from overhead photographs processed in Image J. Error bars 
represent standard error (+/-).  
A. can-A. canadensis; S. spu-S. spurium; S. het-S. heterolepis, Mix = mixture

Monoculture Planting Treatment	

	 From the repeated measures ANOVA, time components of this experiment were 

significant - both the month and year of sampling by site and by species [p<0.001] (Appendix 

A). Overall, this experiment showed peak canopy densities in June (Figure 3). The experimental 
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Figure 2. Mean canopy cover (%) in August Year 2 by green roof location and planting type from overhead photographs processed in 
Image J. Error bars represent standard error (+/-). A. can = A. canadensis; S. spu = S. spurium; S. het = S. heterolepis; Mix = Mixture 
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Figure 4. Mean canopy 
density by year of sampling. 
Error bars represent 
standard error (+/-). 

Figure 3. Mean canopy density 
aggregated by month over the 
experimental period. Error bars 
represent standard error (+/-). 

year was significant for both site [F(4,180)=50.340, p<0.0001] and species canopy density 

[F(4,180)=6.089, p<0.001]. Canopy density was greatest in year 2, and lowest in year 1 (Figure 

4). Calgary and London overall canopy density increased year upon year, while Halifax canopy 

density increased from year 1 to year 2, and declined year 3. Dividing out by plant species, only 

S. heterolepis canopy density increased year upon year, while both A. canadensis and S. spurium 

increased in canopy density from year 1 to year 2, and declined year 3. Time interaction of 

month-year was also significant [F(3,160)=23.977, p<0.0001].	

	 When data from all sites were available, canopy densities were highest in London. Site 

was a significant factor at all time points [p<0.001] and all sites differed from one another 

[p<0.05] except at initial planting (Appendix B). In August year 1 site was a significant effect 

[F(2,107)=11.836, p<0.001] but Tukey HSD post-hoc comparison found London and Calgary 

performance similar [p=0.201] with site canopy densities of 30.0±2.4 and 26.9±2.4 respectively. 

Meanwhile, Halifax canopy density was significantly lower at 21.4±2.4 than both Calgary 

[p=0.011] and London [p=0.000] (Figure 5). For the next two time points, canopy density in 

Figure 3. Mean monthly canopy density aggregated over 
the whole experimental period. Error bars represent 
standard error (+/-).
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Figure 5. Mean canopy density of monoculture modules by green roof location measured August, 
October 2012, May through August 2013 and 2014. Error bars represent standard error (+/-).
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Halifax was greater than Calgary; by July year 2, Halifax canopy density was lower than Calgary’s 

and remained so throughout year 3 (Figure 5). The London green roof held the greatest canopy 

density. Year 3, London outperformed the other sites significantly throughout the growing season 

[p<0.05].	

Figure 5. Mean canopy density of monoculture modules by green roof 
location measured August, October year 1, May through August year 2 and 3. 
Error bars represent standard error (+/-).

	 Peak canopy density timings differed over the growing seasons by site. While Halifax peak 

canopy density occurred in June both year 2 and year 3, Calgary’s peak density shifted from July 

in year 2 to one month earlier in year 3. Full canopy density measures throughout the growing 

season were missing for London, not allowing for comparison. Measures of canopy density were 

highly variable in Halifax, with canopy density ranging year 2 from 55.8±6.4 to 22.5±3.2 from 

June to July. Meanwhile, canopy density was steadiest across year 3 in London, with a canopy 

density range of 52.1±2.9 to 56.7±2.9.	

	 Plant species was a significant factor in monoculture canopy density measurement at 

every time point [p<0.01] (Appendix B). Across all time points, S. spurium exhibited the highest 

canopy density (Figure 6). From post-hoc analysis, canopy density of S. spurium was significantly 



30

greater than canopy density of S. heterolepis at all time points [p<0.01] and significantly greater 

than A. canadensis measurements at all time points [p<0.05] except July year 2 [p=0.111]. A. 

canadensis performed better than S. heterolepis throughout year 2, significantly so only May 

year 2 [p=0.004] (Figure 6). Year 3, S. heterolepis canopy density was significantly higher than A. 

canadensis canopy density June [p=0.000] and July [p=0.029], but A. canadensis outperformed S. 

heterolepis August year 3 [p=0.011]. 	

Figure 6. Mean canopy density of monoculture modules by plant species 
measured August, October year 1, May through August year 2 and 3. 
Error bars represent standard error (+/-).

Figure 6. Mean canopy density of monoculture modules by plant species measured August, October 
2012, May through August 2013 and 2014. Error bars represent standard error (+/-).
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	 Peak canopy density timings by plant species also differed over the growing season. In year 

2, A. canadensis canopy density was highest in August yet peak A. canadensis canopy density 

moved earlier to May year 3. S. heterolepis peaked in August year 2 and shifted peak density in 

year 3 to July. S. spurium peak canopy density occurred consistently in June both year 2 and 3. 

The range in canopy density was greatest in S. spurium year 2, from a high of 64.9±4.1 to a low 
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of 40.4±2.3. S. heterolepis canopy density measures varied the least, differing over the year 3 

growing season by 9.7 points. 	

	 Site-species interaction was significant May [F(4,97)=6.131, p<0.001], June [F(2, 

63)=7.495, p<0.001] and July year 2 [F(2,62)=4.333, p<0.05] and all time points through the 

year 3 growing season [p<0.001] (Appendix B). In general, all plant species grown in London 

outperformed those in Calgary and Halifax (Figure 7). Post-hoc comparison for May year 2 

showed that London S. spurium outperformed Calgary S. spurium [p=0.017] with canopy density 

of 63.5±2.0 to 49.6±2.2 respectively. At this time point, Halifax S. spurium canopy density was 

statistically similar to S. spurium in London [p=0.830] and to S. spurium in Calgary [p=0.477]. 

May year 2, London A. canadensis outperformed Calgary A. canadensis [p<0.001] and Halifax 

A. canadensis [p<0.001]. Through June and July year 2, where data were missing from the 

London site, Halifax and Calgary canopy densities differed. A. canadensis did not differ in either 

month between the two sites. Calgary S. heterolepis canopy density was significantly higher in 

July, 31.5±5.6, outperforming Halifax, 3.4±1.6, (Figure 7). S. spurium canopy density differed 

significantly between Calgary and Halifax June and July year 2, but higher canopy density was 

not consistent by site during this period. June year 2, Halifax S. spurium canopy density of 

80.0±5.6 outperformed Calgary’s 49.9±4.1 while one month later, Halifax S. spurium dropped 

to 27.5±1.6 and Calgary’s increased to 52.8±2.1 (Figure 7). Throughout year 3, London’s S. 

spurium outperformed both Calgary [p<0.0001] and Halifax S. spurium [p<0.000], and Calgary’s 

S. spurium outperformed Halifax’s S. spurium May [p=0.000], June [p<0.0001] and August 

[p=0.000] year 3. S. spurium of Calgary and Halifax was similar July year 3 [p=0.136].	

	 At all time points, modules of substrate depth 15 cm exhibited higher canopy density than 

10 cm modules (Figure 8). However, substrate depth was an inconsistent factor throughout the 

experiment, significant at four time points: October year 1, June year 2, May year 3 and June year 

3. The greatest difference in canopy density by module depth occurred June year 2, where deep 
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15 cm modules measured canopy density 52.2±4.2 and outperformed shallow modules canopy 

density of 20.3±8.1 [F(1,63)=7.311, p<0.01]. 	

	 From the four time points where depth was significant, three were also significant for a 

site-depth interaction: June year 2; May and June year 3. From post-hoc analysis June year 2, 

Halifax 10 cm modules performed such that they were statistically similar to the 15 cm modules 

of Calgary [p=0.125] and Halifax [p=0.995]. In year 3, both May and June found all site-depth 

combinations significant, except for within-site for Halifax and London, where 15 cm and 10 cm 

deep modules had similar canopy densities.	

	 A depth-species interaction was fleetingly significant, only in July year 2 where 15 cm S. 

spurium outperformed 15 cm S. heterolepis, 10 cm A. canadensis and 10 cm S. heterolepis. The 

three-way interaction between site, depth and species in monoculture module analysis was 

significant only year 2 June. 

Figure 8. Mean canopy density of monoculture modules by depth measuresd 
August, October year 1, May through August year 2 and 3. Error bars represent 
standard error (+/-). Asterisks (*) indicate significant differences.
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Monoculture versus Mixture Planting Treatment	

	 From the repeated measures ANOVA, time components of both month and month-year 

interaction were significant for mixture and best monoculture canopy density performance 

[p<0.001] (Appendix C). Canopy density was highest in June, and in year 2.	

	 Of the three monoculture species plantings in this experiment, the best performing 

monoculture in canopy density was determined to be S. spurium. However, in comparing this 

monoculture to mixture plantings, mixtures consistently provided greater canopy density than 

S. spurium through the experimental period. Planting treatment (monoculture versus mixture) 

significantly affected canopy density October year 1 [F(1,82)=4.944, p=0.029] and throughout 

year 3 [p<0.01] (Appendix D). In October year 1, mixture planting canopy density outperformed 

S. spurium monoculture canopy density by 4.6 points, 32.9±2.4 to 28.3±1.1 respectively 

[p=0.020] (Figure 9). Throughout year 3, the difference in canopy density between mixture and 

monoculture modules ranged from 5.7 to 16.4 points, with the largest gap in July where mixture 

canopy density measured 63.1±7.2 and monoculture 46.7±1.8 [p<0.0001]. In year 3, both 
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Figure 9. Mean canopy density of planting treatments mixture and S. spurium 
modules measured August, October year 1, May through August year 2 and 3. 
Error bars represent standard error (+/-).
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mixture and monoculture canopy density peaked in June, with mixture planting canopy density 

of 63.2±5.3 outperforming S. spurium at 54.8±2.2 [p<0.0001] (Figure 9).	

	 As with monoculture canopy densities, site was a significant factor through all eligible time 

points [p<0.01]. In year 3, all sites differed significantly from one another with canopy density 

highest in London, then Calgary and Halifax respectively.	

	 Site-treatment interaction was significant in year 3, in May [F(2,75)=4.177, p=0.019], 

June [F(2,75)=9.574, p<0.001] and July [F(2,75)=35.968, p<0.0001]. However, post-hoc 

analysis found that through these time periods, mixture modules in Halifax and Calgary did not 

outperform the monoculture modules at their own site, only mixtures in London outperformed 

the monoculture plantings. Module depth was not a significant factor between S. spurium 

monoculture and mixture planting treatments early in the experiment, showing significance only 

in June year 2 [F(1,54)=7.429, p=0.009], and May through to July year 3 (p<0.01). Site-depth 

interaction was inconsistent, significant in June year 2 [F(1,54)=9.435, p=0.003], July year 2 

[F(1,55)=6.712, p=0.012], May year 3 [F(2,75)=3.266, p=0.044] and July year 3 [F(2,75)=3.798, 

p=0.027]. Halifax module canopy density did not significantly differ between 10 cm and 15 cm 

modules at any time point, although 10 cm modules did hold greater canopy density at four time 

points: May year 2, and May, June, July year 3. In London, 10 cm modules outperformed 15 cm 

modules June and July year 3. In Calgary, 15 cm modules for the most part held greater canopy 

density (Figure 10), but was significantly outperformed August year 3 by 10 cm modules. In July 

year 3, Calgary 10 and 15 cm depths were similar. 	

	 An interaction between treatment and depth only arose in year 3, for June and July 

measurements. 15 cm mixture modules outperformed 10 and 15 cm S. spurium modules, and the 

10 cm mixture modules.	

	 For mixture versus monoculture plantings, three-way interaction between site, treatment 

and module depth on canopy density only was significant June and August year 2 and July year 3.
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Plant Height	

	 Month of sampling was a significant effect on plant height [F(1,110)=1172.373, p<0.0001) 

and  significantly affected site, species and depth differences in planting heights from repeated 

measures ANOVA (Appendix E).	

	 Plant heights exhibited a similar trend as canopy density by site hierarchy. Site was a 

significant factor in plant height throughout the year 3 season [p<0.0001] (Appendix F). London 

plants exhibited the greatest heights, followed generally by Calgary and then Halifax (Figure 11). 

However, from post-hoc comparison, June plant height in Halifax (6.5±0.4 cm) significantly 

surpassed that of Calgary (5.3±0.4 cm) [p=0.001]. In Halifax and London, plant heights 

from June through to August were relatively steady, with a range of 1.7 cm and 0.6 cm by site 
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Figure 10. Mean canopy density of mixture and S. spurium modules by site 
and module depth measured August, October year 1, May through August 
year 2 and 3. 
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respectively (Figure 11). Plant height in Calgary had a wider range June through August, moving 

from a June height of 5.3±0.4 cm, to July height 11.3±0.7 cm and August height 13.0±0.6 cm.	

	 Plant height by planting treatment significantly differed through over time [p<0.0001]. 

Both mixture plantings and S. heterolepis monocultures consistently exhibited significantly taller 

heights than S. spurium (Figure 12) [p<0.001]. S. heterolepis height increased steadily through the 

season, peaking in August at 17.5±1.5 cm (Figure 12). A. canadensis height peaked in June with 

height 12.6±1.8 cm with height range not varying much for the season. S. spurium monoculture 

height was lowest in May (4.3±0.3 cm), but grew to 9.2±0.5 cm for June measurement and 

gradually reached peak height in August at 12.1±0.4 cm. Mixture plantings follow a similar 

profile to the grass S. heterolepis, but instead of continued gains in height in August as S. 

heterolepis did, mixture plantings plateaued in July and August. 	

	 While depth was a significant effect on plant height only in August [F(1,102)=6.366, 

p=0.013], with 15 cm modules generating taller heights than 10 cm modules (13.3±0.5 cm to 

Figure 11. Mean plant height by location measured May through August 2014. Error bars represent 
standard error (+/-).
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Figure 11. Mean plant height by green roof location measured May 
through August year 3. Error bars represent standard error (+/-).
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Figure 12. Mean plant height by species measured May through August 2014. Error bars represent 
standard error (+/-).

Table 1

A. canadensis S. heterolepis S. spurium Mixture

M 10.8 7.1 4.3 7.3

J 12.6 11.3 9.2 11.5
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12.9±1.0 cm), a site-depth interaction was significant through the growing period [p<0.01]. 

London plant heights were similar between 15 cm and 10 cm modules and both London depths 

outperformed plant heights of 15 and 10 cm deep Calgary and Halifax modules [p=0.000]. 

Calgary 15 cm modules achieved significantly greater plant heights than 10 cm Calgary modules 

[p<0.01] except for measurement in May where they were similar [p=0.676], yet Halifax 

modules showed no difference in plant height between 10 cm and 15 cm modules through year 

3. A depth-species interaction was significant in June [F(3,107)=5.798, p=0.001] and August 

[F(3,102)=3.328, p=0.022]. During these time points, 10 cm and 15 cm A. canadensis did 

not differ from one another; nor did 10 cm and 15 cm S. spurium modules. At the June time 

point, S. heterolepis 10 cm and 15 cm had similar heights, but in August, deep 15 cm modules 

Figure 12. Mean plant height by species measured May through August year 3. 
Error bars represent standard error (+/-).
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Figure 13. Mean plant height by module depth and species measures 
May through August year 3. Error bars represent standard error (+/-).

exhibited significantly greater heights (Figure 13). Overall, deep 15 cm mixture modules held 

greater heights than those in 10 cm modules (Figure 13). Site-species interaction was significant 

through the growing season [p<0.0001], while a three way interaction was significant June 

[F(6,107)=3.511, p=0.003]. 

Establishment & Persistence	

	 Establishment rate was considered the year 1 to year 2 growth rate and was significantly 

influenced by green roof site [F(2,124)=10.189, p<0.0001] and plant species [F(3,124)=4.442, 

p=0.005] (Appendix G) for all plantings (monoculture and mixture). London held the greatest 
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Figure 15. Year 1 to 2 growth rate (establishment) and Year 2 to 3 growth rate (persistence) by plant 
species as measured over a year time period. Error bars represent standard error (+/-).
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A. canadensis 17.6 -5.7 5.4 4.6
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Figure 15. Year 1 to 2 growth rate (establishment) and Year 2 to 3 growth 
rate (persistence) by plant species as measured over a year time period. 
Error bars represent standard error (+/-).

Figure 14. Year 1 to 2 growth rate (establishment) and Year 2 to 3 growth rate (persistence) by location 
as measured over a year time period. Error bars represent standard error (+/-).

Year 1 to 2 Growth 
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Rate

SE EST SE PST
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Halifax 1.7 -5.0 1.2 1.4
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Figure 14. Year 1 to 2 growth rate (establishment) and Year 2 to 3 growth 
rate (persistence) by green roof location as measured over a year time 
period. Error bars represent standard error (+/-).

year 1-2 growth rate of 17.3±3.8 canopy points, outperforming Calgary year 1-2 growth rate of 

6.9±1.5 canopy points [p=0.010] and Halifax of 1.7±1.2 canopy points [p<0.0001] (Figure 14). 

Statistically, the year 1-2 growth rates in Calgary and Halifax were similar [p=0.342]. Between 

plant species, A. canadensis held the largest year 1-2 growth rate at 17.6±5.4 while S. spurium 

held the lowest rate at 5.0±1.9 canopy points (Figure 15). Establishment of S. spurium was 
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significantly lower than both A. canadensis [p=0.035] and S. heterolepis [p=0.038] (Figure 15). 

Significant interactions in year 1-2 growth rates were site-species interaction [F(6,124)=2.823, 

p=0.013] where London A. canadensis outperformed Calgary A. canadensis [p=0.0133] and 

London S. heterolepis outperformed Halifax S. heterolepis [p=0.0216], as well as a three way 

site-depth-species interaction [F(6,124)=2.200, p=0.047]. Ten out of the 12 significant site-

species interactions were reflections of London’s higher establishment rates over Calgary and 

Halifax. The two others indicated that London S. spurium was outperformed by both London A. 

canadensis and London S. heterolepis.	

	 Persistence, year 2-3 growth rate, showed a drop from year 1-2 rates, with negative 

persistence rates in Halifax and London (-5.0±1.4; -1.3±5.4) (Figure 14). Plant species (including 

mixture plantings) was the only significant factor in year 2-3 growth rate [F(3,124)=3.626, 

p=0.015], with S. heterolepis growth rate significantly lower than that of the mixture plantings 

[p=0.009] at rates -13.1±3.3 and 13.2±5.7 respectively (Figure 15). 

Discussion	

	 This study found a single green roof system to have differing performance outputs in 

terms of canopy density, plant height, establishment and persistence stage growth rates across 

multiple locations. I attribute the differentiation in plant performance to the different climate 

profiles experienced in each location. Climate factors and events impact plant performance, and 

microsite conditions can change plant growth rate and plant height-dimension ratios (Gazol and 

Camarero 2012). While I did not directly measure climate events at each green roof location, 

the sites differed over the experimental period in temperature profiles, amount of sunlight 

and precipitation. Climate measures of precipitation, average daily maximum temperature 

and relative humidity for the three green roof locations are described in Sims et al. (2016) and 
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Gebert (2015). Performance was best for all planting types and depths in London, Ontario, 

outperforming the Calgary, Alberta green roof, both of which outperformed the Halifax, Nova 

Scotia roof.	

	 That London performed better across all planting types can potentially be attributed to the 

plant selection for this experiment. While Sedums have proven to be adaptable to green roofs in 

many climates and did perform best across all sites in this study, other green roof plant selection 

for extensive green roofs must share similar plant characteristics such as a suitably shallow 

rooting depth and be drought tolerant while also matching the green roof location’s hardiness 

zone (Dunnett and Nagase 2004, VanWoert et al. 2005, Durhman et al. 2006). Sedums, with their 

shallow rooting systems and drought tolerant adaptations, are well suited to extensive green roof 

applications and have thus become industry standard. In the search for green roof species outside 

of the Sedum genus, native plant species have been suggested as a potential pool for expanding 

the green roof plant palette as native plants are already suited to the existing climate conditions 

(MacIvor and Lundholm 2011, Butler et al. 2012). A. canadensis and S. heterolepis, the test species 

in this experiment, are native to Ontario and performed well at the London green roof location. 

However, while these plant species were in the hardiness range of both Halifax and Calgary, 

these species are not native to Alberta nor Nova Scotia. The Calgary green roof experienced plant 

death, to varying degrees, of both A. canadensis and S. heterolepis. The Halifax green roof also 

experienced plant death of S. heterolepis. The total lack of plant death at the London green roof 

supports arguments regarding native species suitability for green roof conditions.	

	 Climate and microclimate conditions could also have had a role in plant performance 

differences across the green roof locations in survival and canopy density. Both Calgary and 

Halifax experience harsher, colder and longer winters than London and could have contributed 

to the plant death experienced. London has a milder winter and a longer growing season. With 

warm temperatures starting earlier in London, it is likely the London plants left dormancy earlier 
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than the plants at Calgary and Halifax. Therefore, London plants would have had longer to 

develop biomass by first measurement in May, a head start which the other sites perhaps could 

not catch up to through the remainder of the season. The London roof may also have had a better 

microclimate due to the physical parameters of the roof. At the London green roof site, the third 

storey of the adjacent building was at the south end of the green roof site. This building structure 

could have blocked summer winds which predominantly come from the southwest, shielding the 

roof from winds that cause substrate desiccation, thereby allowing greater water availability to the 

plants. Calgary had an additional building structure to the north of the green roof, theoretically 

blocking some winter winds but leaving the green roof exposed to summer wind. Conversely, 

the Halifax green roof was highly exposed and subject to strong winds from all directions with 

only a small mechanical penthouse to the east. That Calgary had similar summer wind exposure 

to Halifax and receives more days with wind than Halifax, it is likely the extremely high rainfall 

profile of Halifax dampened Halifax plant performance. Halifax may have been too cold and/

or too wet for A. canadensis and S. heterolepis. In Calgary, the lower precipitation levels than 

London could be the factor in poorer performance, with the test species finding conditions a 

little dry. Plant selection based not only on the climate conditions but also the microclimate may 

ensure optimal plant growth and performance. 	

	 Target module coverage was set at 80% for this study in accordance to FLL green roof 

guidelines (FLL 2002) developed in Germany and adopted worldwide. Calgary and London 

green roofs achieved the best coverage along with S. spurium and mixture modules. Halifax had 

poorer coverage and canopy density measures than both Calgary and London for most of the 

experimental period. It is possible that Halifax’s poor coverage and overall lower canopy density 

can be attributed to, in addition to the climate conditions, the establishment methodology, 

being the only location where modules were plugs planted on site instead of at the nursery. The 

longer available time to set root and establish in Calgary and London due to the establishment 

methodology was reflected in the initial canopy density measurements. While London and 
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Calgary canopy densities were statistically similar at initial planting, Halifax initial canopy 

density was significantly lower than both. Ideally there would have equivalency between all sites 

at initial planting allowing all subsequent differences in plant performance to be attributed to 

plant species or climate. Coverage differences could have also been impacted by differences in 

growth forms and planting densities. Better coverage by S. spurium in this study, already planted 

at a higher density, could have been additionally augmented by its creeping mat growth form that 

is suited to creating coverage. Both S. spurium monocultures and mixture modules contained 

5 plugs per module and for the most part achieved 80% coverage whereas A. canadensis and S. 

heterolepis modules were planted at three and one plug(s) per module respectively and these 

species held lower percent coverage. Mixture modules coverage could also have been enhanced, 

as Naeem et al. (1994) reported greater coverage is achieved through diverse community 

architectures.	

	 In this study, mixture plantings canopy density performance varied little throughout the 

growing seasons, were able to achieve better coverage than both A. canadensis and S. heterolepis 

monocultures and held taller heights through a season. Mixtures for the most part performed 

significantly better than the best performing monoculture, S. spurium. However, mixture results 

in Halifax were dampened, statistically similar to the monoculture planting, again possibly due to 

the wet and/or cold climate. Across sites, mixture planting potentially helped buffer against plant 

death. No plugs/plantings of any species died when incorporated in a mixture module, even in 

locations where plant death had occurred in test and non-test monoculture modules. Mixtures 

have been shown to aid in survival and visual interest under green roof drought conditions 

(Nagase and Dunnett 2010, Butler and Orians 2011). Naeem et al. (1994) and Spehn et al. (2000) 

conclude that diverse plant species/community architecture allows for complimentary resource 

use.	

	 By combining best performing species of target green roof benefits, Lundholm et al. 
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(2010) suggests mixtures incorporating the best performers are capable of outperforming a 

best monoculture species in meeting multiple green roof functions. Lundhom et al.’s (2010) 

multifunctional approach showed mixtures of forb, grass and Sedum to best perform stormwater 

capture and thermal cooling. In this study, the mixture planting capitalized on the best 

performing plant species with regard to height. S. heterolepis monoculture planting heights were 

greater than those of A. canadensis and S. spurium monocultures, due to its growth form. Plant 

height is a potential indicator of green roof thermal cooling and stormwater capture performance 

(Nagase and Dunnett 2012, Theodosiou 2003) and mixtures could increase service provision by 

incorporating taller plant species. 	

	 Plants were generally taller in 15 cm deep modules compared with the 10 cm modules. 

This was not the case for Halifax, where the two depths had similar heights. Halifax’s plant 

heights were shortest from the three sites, potentially a stress response to the climate conditions. 

Interestingly, peak plant heights did not occur at the same sampling time point as peak canopy 

density by city or by species.	

	 Timing of peak canopy density varied from year to year, and by species. In year 3, where 

data existed through the growing season for all sites, peak overall canopy density occurred in 

May for London and in June for Halifax and Calgary. These peaks did not correspond to any 

one monoculture species. Each plant species peak densities differed between sites. In year 3, 

London saw A. canadensis peak in May, S. spurium peak in June, S. heterolepis in July. Calgary 

had S. heterolepis peak in May, A. canadensis in July, S. spurium in August. Halifax peaks were 

S. spurium in June, S. heterolepis and A. canadensis in August. With measurement taking place 

in the third week of the month, it is possible I missed the true peaks of each green roof and 

plant species. More differentiation and effect from climate would have been seen with a finer 

measurement scale. However, the overall shifts and differences indicate an influence from climate 

upon peak overall green roof growth performance as well as an effect on individual plant species.	
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	 Within each plant phenology, I noted that plants looked less vigorous following flowering, 

especially in S. spurium modules. In S. spurium monocultures, canopy density measures 

dropped and leaves were smaller in size (researcher observation) in the month after flowering. 

The most drastic drop in S. spurium canopy density occurred year 2 in Halifax where canopy 

density went from 80.0±5.6 in June during flowering to 27.5±1.6 in July, post-flowering. While 

S. spurium canopy density measures were generally high and consistent, with less than two-fold 

difference in measures, modules of A. canadensis and S. heterolepis canopy density ranged greatly, 

measuring almost a four-fold range in canopy densities. In monoculture plantings, periods of 

low canopy density due to die back and dormancy are visually evident. Getter and Rowe (2006) 

suggested that diverse plantings can be utilized to visually buffer against dormancy periods. 

In this study, mixture modules had a two-fold range in canopy density, remaining relatively 

consistent throughout the growing season. I propose that the consistency in mixture planting 

canopy density is due in part to differing phenologies of the species incorporated. With staggered 

phenologies between species in mixture modules, a post-flowering drop in canopy density in one 

species would be buffered by canopy density by species in active growth periods. 	

	 S. heterolepis and A. canadensis both had greater year 1 to 2 growth rates than S. spurium 

monocultures and mixture plantings. As Sedums are valued by the industry for their ability to 

quickly cover and establish on green roofs, the greater year 1-2 growth rate by S. heterolepis and 

A. canadensis may have been impacted by the planting densities in this project. While S. spurium 

monoculture modules were planted with five plugs, A. canadensis and S. heterolepis were planted 

with three and one plug respectively. The greater available root and canopy space in the modules 

of lower planting density may have allowed the plants to spread more quickly from initial 

planting.	

	 Year 2 to 3 growth rates were negative in both Halifax and London. This marks the 

variability that can occur year to year, most likely due to climate conditions. Mixtures held 
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significantly higher year 2 to 3 gorwth rates than S. heterolepis whose rate was negative. S. 

heterolepis may simply have been unsuitable to the climates at the Calgary and Halifax locations.	

	 Consistent with other studies, deeper substrate in this experiment generated greater 

canopy density in monoculture modules of all locations. However, I note that depth was not 

a significant factor in canopy density of mixture modules. The overall survival and better 

performance of mixtures in shallow modules over other species with high persistence rates 

supports mixtures as being advantageous over monoculture plantings. Aside from greater visual 

interest over Sedum or turf fields (Nagaoka et al. 2003), this study showed that higher canopy 

densities of mixtures are reliable across different climates and green roof conditions.

Conclusion

	 This study evaluated green roof plant performance of three species and a mixture planting 

in an identical green roof system across three cities of Canada. Overall performance was best 

in London, Ontario, followed by Calgary, Alberta and lastly Halifax, Nova Scotia. Sedums 

performed best out of the monoculture species while plant performance of A. canadensis and 

S. heterolepis was variable through the growing seasons and by location. Mixture plantings 

performed well in plant survival, canopy density, plant height and persistence rate in all locations 

and outperformed Sedum monocultures. The findings from this study suggests diverse plantings 

are suitable across different climates and has potential to allow incorporating species perhaps not 

perfectly suited to the climate. Another avenue for optimizing plant performance would be fitting 

plant selection to microclimate conditions of the local green roof.
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APPENDIX

Appendix A. Repeated measures ANOVA for monoculture plantings. 

Between-subject factors
Df Sum Sq Mean Sq F value Pr (>F)

Site 2 58634 29317 135.353 < 2E-16
Species 2 161480 80740 372.770 < 2E-16
Depth 1 1076 1076 4.970 0.028338
Residuals 88 19060 217

Within-subject factors
Month 4 13850 3463 43.830 < 2E-16
Month x Site 8 15661 1958 24.781 < 2E-16
Month x Species 8 23073 2884 36.507 < 2E-16
Month x Depth 4 235 59 0.744 0.56242
Residuals 367 28993 79

Year
Year x Site 4 24574 6144 50.340 < 2E-16
Year x Species 4 2973 743 6.089 0.000128
Year x Depth 2 47 24 0.194 0.823554
Residuals 180 21967 122

Month x Year 3 8043 2680.9 23.977 7.22E-13
Month x Year x Site 4 10615 2653.8 23.735 2.01E-15
Month x Year x Species 6 7829 1304.8 11.670 7.96E-11
Month x Year x Depth 3 114 38.1 0.340 0.7962
Residuals 160 17889 111.8
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Appendix B. ANOVA results of monoculture plantings monthly canopy density measures. 

Df Sum sq Mean Sq F value Pr(>F)
August year 1

site 2 1588 794 11.836 2.27E-05
species 2 20685 10342 154.177 < 2E-16
depth 1 27 27 0.406 0.525
site x species 4 250 63 0.932 0.448
site x depth 2 251 126 1.873 0.159
species x depth 2 61 31 0.456 0.635
site x species x depth 4 487 122 1.815 0.131
Residuals 107 7178 67

October year 1
site 2 1799 900 17.580 2.87E-07
species 2 7307 3653 71.382 < 2E-16
depth 1 279 279 5.444 0.0216
site x species 4 493 123 2.408 0.0543
site x depth 2 8 4 0.074 0.9290
species x depth 2 197 98 1.922 0.1516
site x species x depth 4 111 28 0.541 0.7057
Residuals 100 5118 51
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Df Sum sq Mean sq F value Pr(>F)
May year 2

site 2 7922 3961 25.291 1.45E-09
species 2 44882 22441 143.283 < 2E-16
depth 1 2 2 0.012 0.914767
site x species 4 3841 960 6.131 0.000193
site x depth 2 33 17 0.107 0.899024
species x depth 2 859 429 2.742 0.069468
site x species x depth 3 362 121 0.770 0.513675
Residuals 97 15192 157

June year 2
site 1 6699 6699 22.299 1.35E-05
species 2 47793 23896 79.540 < 2E-16
depth 1 2197 2197 7.311 0.008799
site x species 2 4504 2252 7.495 0.001202
site x depth 1 3898 3898 12.974 0.000623
species x depth 2 1347 673 2.241 0.114750
site x species x depth 1 1936 1936 6.443 0.013623
Residuals 63 18927 300

July year 2
site 1 10013 10013 48.350 2.59E-09
species 2 6070 3035 14.656 6.14E-06
depth 1 670 670 3.238 0.0768
site x species 2 1795 897 4.333 0.0173
site x depth 1 34 34 0.164 0.6865
species x depth 2 1478 739 3.568 0.0341
site x species x depth 1 5 5 0.022 0.8821
Residuals 62 12840 207

August year 2
site 2 12311 6156 22.341 8.24E-09
species 2 4153 2076 7.535 0.000875
depth 1 88 88 0.321 0.572119
site x species 4 2351 588 2.133 0.081798
site x depth 2 321 161 0.583 0.560190
species x depth 2 184 92 0.334 0.716769
site x species x depth 3 1088 363 1.316 0.273195
Residuals 105 28931 276
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Df Sum sq Mean sq F value Pr(>F)
May year 3

site 2 39102 19551 696.955 < 2E-16
species 2 17402 8701 310.176 < 2E-16
depth 1 249 249 8.886 0.00369
site x species 4 2138 535 19.054 2.06E-11
site x depth 2 220 110 3.919 0.02330
species x depth 2 59 30 1.053 0.35304
site x species x depth 3 162 54 1.927 0.13079
Residuals 91 2253 28

June year 3
site 2 19017 9509 268.760 < 2E-16
species 2 39796 19898 562.411 < 2E-16
depth 1 370 370 10.454 0.00171
site x species 4 1664 416 11.756 9.68E-08
site x depth 2 329 165 4.652 0.01193
species x depth 2 123 62 1.742 0.18098
site x species x depth 3 239 80 2.256 0.08716
Residuals 91 3220 35

July year 3
site 2 18622 9311 208.270 < 2E-16
species 2 24948 12474 279.026 < 2E-16
depth 1 57 57 1.283 0.26
site x species 4 2711 678 15.161 1.56E-09
site x depth 2 48 24 0.535 0.588
species x depth 2 64 32 0.717 0.491
site x species x depth 3 121 40 0.901 0.444
Residuals 91 4068 45

August year 3
site 2 22258 11129 204.933 < 2E-16
species 2 25779 12890 237.356 < 2E-16
depth 1 0 0 0.004 0.950
site x species 4 5279 1320 24.304 1.07E-13
site x depth 2 81 40 0.745 0.478
species x depth 2 23 11 0.211 0.810
site x species x depth 3 153 51 0.937 0.426
Residuals 91 4942 54
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Appendix C. Repeated Measures ANOVA results of mixture and Sedum spurium monoculture 
planting treatments.

Between-subject factors
Df Sum Sq Mean Sq F value Pr (>F)

Site 2 62035 31018 127.890 < 2E-16
Species 1 7080 7080 29.192 6.28E-07
Depth 1 1132 1132 4.668 0.033655
Residuals 82 19888 243

Within-subject factors
Month 1 12040 12040 103.636 3.29E-16
Month x Site 2 4431 2216 19.071 1.58E-07
Month x Species 1 1 1 0.011 0.91817
Month x Depth 1 11 11 0.093 0.76076
Residuals 81 9526 116

Year
Year x Site 4 50518 12630 92.435 < 2E-16
Year x Species 2 1243 621 4.548 0.01202
Year x Depth 2 356 178 1.304 0.27447
Residuals 157 21451 137

Month x Year 2 14680 7340 68.909 < 2E-16
Month x Year x Site 4 10181 2545 23.895 1.98E-15
Month x Year x Species 2 177 88 0.830 0.4382
Month x Year x Depth 2 96 48 0.450 0.6387
Residuals 156 16616 107
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Appendix D. ANOVA results of mixture and Sedum spurium plantings monthly canopy density 
measures. 

Df Sum Sq Mean Sq F value Pr(>F)
August year 1

site 2 1066 532.8 6.016 0.00354
species 1 6 6.4 0.072 0.78938
depth 1 0 0 0.000 0.99103
site x species 2 430 215.1 2.429 0.09392
site x depth 2 535 267.7 3.023 0.05370
species x depth 1 35 34.7 0.392 0.53300
site x species x depth 2 250 125.2 1.414 0.24869
Residuals 89 7882 88.6

October year 1
site 2 2357 1178.4 17.827 3.73E-07
species 1 327 326.8 4.944 0.0289
depth 1 104 104.4 1.579 0.2125
site x species 2 194 97.1 1.468 0.2363
site x depth 2 221 110.5 1.671 0.1943
species x depth 1 117 116.8 1.767 0.1874
site x species x depth 2 113 56.3 0.852 0.4305
Residuals 82 5420 66.1
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Df Sum Sq Mean Sq F value Pr(>F)
May year 2

site 2 3152 1576.1 8.177 0.000592
species 1 319 318.7 1.654 0.202221
depth 1 25 24.9 0.129 0.720480
site x species 2 116 58.1 0.302 0.740458
site x depth 2 389 194.3 1.008 0.369590
species x depth 1 697 696.6 3.614 0.060932
site x species x depth 2 14 7.0 0.036 0.964440
Residuals 79 15226 192.7

June year 2
site 1 13890 13890 38.371 8.3E-08
species 1 212 212 0.585 0.44774
depth 1 2689 2689 7.429 0.00863
site x species 1 1 1 0.002 0.96770
site x depth 1 3415 3415 9.435 0.00333
species x depth 1 306 306 0.846 0.36164
site x species x depth 1 2913 2913 8.047 0.00640
Residuals 54 19548 362

July year 2
site 1 10846 10846 127.175 6.33E-16
species 1 288 288 3.381 0.0714
depth 1 186 186 2.179 0.1456
site x species 1 58 58 0.683 0.4120
site x depth 1 572 572 6.712 0.0122
species x depth 1 1 1 0.016 0.8989
site x species x depth 1 47 47 0.552 0.4606
Residuals 55 4691 85

August year 2
site 2 5119 2559.4 10.024 0.000119
species 1 306 305.9 1.198 0.276646
depth 1 132 131.5 0.515 0.474789
site x species 2 489 244.6 0.958 0.387554
site x depth 2 529 264.4 1.036 0.359262
species x depth 1 141 141.0 0.552 0.459399
site x species x depth 2 1706 853.0 3.341 0.039910
Residuals 89 22725 255.3
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Df Sum Sq Mean Sq F value Pr(>F)
May year 3

site 2 46583 23291 559.823 < 2E-16
species 1 374 374 8.997 0.00367
depth 1 405 405 9.736 0.00256
site x species 2 348 174 4.177 0.01906
site x depth 2 272 136 3.266 0.04366
species x depth 1 132 132 3.176 0.07878
site x species x depth 2 119 60 1.431 0.24561
Residuals 75 3120 42

June year 3
site 2 27477 13738 320.836 < 2E-16
species 1 1003 1003 23.417 6.81E-06
depth 1 438 438 10.227 0.002028
site x species 2 820 410 9.574 0.000198
site x depth 2 168 84 1.966 0.147164
species x depth 1 176 176 4.116 0.046017
site x species x depth 2 63 32 0.740 0.480536
Residuals 75 3212 43

July year 3

site 2 24001 12000 185.172 < 2E-16
species 1 4106 4106 63.364 1.42E-11

depth 1 754 754 11.629 0.00105

site x species 2 4662 2331 35.968 1.12E-11

site x depth 2 492 246 3.798 0.02685

species x depth 1 754 754 11.632 0.00105

site x species x depth 2 752 376 5.805 0.00453

Residuals 75 4860 65

August year 3

site 2 31450 15725 249.470 < 2E-16
species 1 1289 1289 20.448 2.25E-05

depth 1 74 74 1.167 0.2835

site x species 2 96 48 0.758 0.4719

site x depth 2 363 181 2.877 0.0625

species x depth 1 83 83 1.321 0.2541

site x species x depth 2 81 41 0.643 0.5286

Residuals 75 4728 63
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Appendix E. Repeated measures ANOVA table for plant height by month.

Between-subject factors
Df Sum Sq Mean Sq F value Pr (>F)

Site 2 11440 5720 1061.717 < 2E-16
Species 3 673 224 41.631 < 2E-16
Depth 1 164 164 30.368 2.57E-07
Residuals 105 566 5

Within-subject factors
Month 1 3012.2 3012.2 1172.373 < 2E-16
Month x Site 2 195.5 97.8 38.045 2.77E-13
Month x 
Species

3 333.2 111.1 43.222 < 2E-16

Month x Depth 1 6.5 6.5 2.546 0.1134
Residuals 110 282.6 2.6
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Appendix F. ANOVA results for plant height by sampling month.
Df Sum sq Mean Sq F value Pr(>F)

May year 3
site 2 2288.9 1144.5 704.624 < 2E-16
depth 1 5.7 5.7 3.497 0.06420
species 3 527.6 175.9 108.283 < 2E-16
site x depth 2 16.0 8.0 4.913 0.00909
site x species 6 475.1 79.2 48.752 < 2E-16
depth x species 3 12.7 4.2 2.608 0.05540
site x depth x species 6 6.5 1.1 0.665 0.67841
Residuals 107 173.8 1.6

June year 3
site 2 4842 2420.8 1142.665 < 2E-16
depth 1 1 1.4 0.675 0.413083
species 3 222 74.0 34.909 8.2E-16
site x depth 2 34 17.2 8.130 0.000516
site x species 6 673 112.1 52.918 < 2E-16
depth x species 3 37 12.3 5.798 0.001037
site x depth x species 6 45 7.4 3.511 3285
Residuals 107 227 2.1

July year 3
site 2 2945.7 1472.8 480.976 < 2E-16
depth 1 6.3 6.3 2.062 0.154
species 3 204.3 68.1 22.234 3.03E-11
site x depth 2 95.8 47.9 15.640 1.12E-06
site x species 6 1028.8 171.5 55.996 < 2E-16
depth x species 3 5.1 1.7 0.555 0.646
site x depth x species 6 33.5 5.6 1.824 0.101
Residuals 106 324.6 3.1

August year 3
site 2 2207.0 1103.5 372.218 < 2E-16
depth 1 18.9 18.9 6.366 0.013179
species 3 532.8 177.6 59.911 < 2E-16
site x depth 2 44.2 22.1 7.447 0.000957
site x species 6 393.6 65.6 22.125 < 2E-16
depth x species 3 29.6 9.9 3.328 0.022596
site x depth x species 5 19.4 3.9 1.307 0.266717
Residuals 102 302.4 3.0
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Appendix G. ANOVA tables for year 1 to 2 and year 2 to 3 growth rates.

Df Sum sq Mean Sq F value Pr(>F)
Year 1 to 2 Growth Rate
site 2 6430 3215 10.189 8E-05
depth 1 90 90 0.286 0.59399
species 3 4205 1402 4.442 0.00531
site x depth 2 407 203 0.645 0.52649
site x species 6 5344 891 2.823 0.01309
depth x species 3 37 12 0.039 0.98983
site x depth x species 6 4164 694 2.200 0.04733
Residuals 124 39126 316

Year 2 to 3 Growth Rate
site 2 694 346.9 0.456 0.635
depth 1 522 522.4 0.687 0.409
species 3 8270 2756.8 3.626 0.015
site x depth 2 840 420.1 0.553 0.577
site x species 6 7861 1310.2 1.723 0.121
depth x species 3 2138 712.8 0.938 0.425
site x depth x species 6 4217 702.8 0.924 0.480
Residuals 124 94267 760.2
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Chapter 3:

Predictors of green roof performance by plant traits via vegetation characteristics
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Abstract

	 Green roof services of thermal cooling and stormwater capture reduce building energy 

consumption and reduce strain on downstream hydrological infrastructure. Service provision 

by green rooftops can vary based on the plant species grown. In studies of ecosystem processes, 

plant traits are often used as predictors of services such as water purification and nutrient cycling. 

Here I investigated the use of plant traits as predictors of thermal cooling and stormwater capture 

on a green roof. To determine which traits might predict these green roof services, I analyzed 

correlations between plant and leaf traits, vegetation characteristics and service provision in 21 

monoculture species grown in green roof modules.	

	 Lower green roof surface temperatures were associated with high canopy density and high 

albedo while stormwater capture was negatively correlated to albedo and positively correlated to 

plant height. Albedo was in turn predicted by canopy density while canopy density was predicted 

by plant and leaf-level traits of plant height and specific leaf area. The results indicate that easy to 

measure plant traits can be utilized to select plant species to maximize stormwater capture and/or 

thermal cooling services on green roof systems.

Keywords: Extensive green roofs, plant traits, stormwater retention, thermal cooling
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Introduction

	 Green rooftops are artificial ecosystems consisting of various engineered layers and 

vegetation. They provide services of stormwater management, summer cooling, mitigation of 

the urban heat island and habitat provision (Oberndorfer et al. 2007) with the ability to provide 

energy savings at the building level and changes to microclimates at larger urban scales. Green 

roof services derive from structural and functional attributes of both the living and engineered 

components. For example, green rooftops perform stormwater capture by retaining precipitation 

in the substrate and through uptake by the vegetation. This retention and uptake reduces the rate 

and volume of runoff from the building that then enters urban waterways. Stormwater runoff 

reduction by green rooftops is influenced by physical factors such as roof slope (VanWoert 

et al. 2005, Getter et al. 2007), substrate depth (Mentens et al. 2006, Berndtsson 2010), and 

climatic factors such as rainfall intensity and duration (Berndtsson 2010). While performance of 

stormwater retention is largely determined by substrate composition and depth, capture amount 

is also influenced by green roof vegetation (Dunnett et al. 2008, Wolf and Lundholm 2008, 

Lundholm et al. 2010, MacIvor and Lundholm 2011, MacIvor et al. 2011). Thermal services are 

provided through increased insulation, a higher thermal mass and plant canopy shading of the 

roof surface (Del Barrio 1998, Liu and Baskaran 2003, Getter and Rowe 2006). Heat flux through 

the roof is reduced by green rooftops through factors involving substrate depth, moisture 

content, and vegetation canopy and leaf area index (Del Barrio 1998). The role of vegetation 

in thermal cooling is through shading the substrate surface (DeNardo et al. 2005), increasing 

albedo (Gaffin et al. 2005), and transpirative cooling processes (Jim and Tsang 2011).

	 As vegetation has an effect on green roof services, the choice of green roof plants is 

important. The green roof industry has relied upon Sedum species for their drought tolerance 

and ability to withstand extensive green roof conditions, however, Sedums do not necessarily 

provide the best service provision. Dvorak and Volder (2010) found herbaceous plants to better 
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capture stormwater than Sedums while Blanusa et al. (2013) found an herbaceous plant species 

to better perform thermal cooling. Some push has been made to include native species on green 

rooftops to varying success (Butler et al. 2012) while Lundholm (2006) suggested potential 

green roof plant species could be found in habitats with similar growing conditions as green 

rooftops and has seen success with some such species (Lundholm et al. 2010, MacIvor and 

Lundholm 2011). An approach by Farrell et al. (2013) looked to physiological traits to identify 

plant species which could optimize green roof hydrological functions and found that the best 

plants for water capture had high plasticity between high water use and drought tolerance and 

some form of root, leaf or stem succulence. Rayner et al. (2016) identified leaf succulence as 

a key trait for survival in extreme hot and dry green roof conditions. Plant traits are a way of 

understanding and organizing plant species, based not on taxonomy but rather on functional 

grounds of plant morphology, physiology and phenology. Traits are averaged measurements 

from multiple specimens of a species and therefore characterize the entire plant species. Two 

paradigms through which to view plant traits is either how they impact ecosystem function at 

the community level and/or how they respond to environmental conditions. Ecologists use these 

plant traits to probe biodiversity and ecosystem function (Gross et al. 2008, Lavorel and Grigulis 

2012), with trait distributions providing clues to the relationship between trait and ecosystem 

function (Fry et al. 2013). While traits are useful in probing the trait-function relationship, I 

propose there exists a step between the trait at the leaf or plant level and ecosystem function. 

The mediating step arises when a plant species is aggregated in a stand and traits with similar 

or related processes occur concurrently and the overall impact can be measured. With regards 

to green rooftops, Cook-Patton and Bauerle (2012) define functional plant traits as “traits 

that contribute to a green roof ’s ability to provide services to an urban area.” In this chapter, 

I investigate the potential to use plant traits as predictors of green roof thermal cooling and 

stormwater retention services. 

	 Cornelissen et al. (2003) suggest a number of functional traits which are relatively easy to 
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measure and strongly predict or are influential in ecosystem processes. Some traits are already 

suggested to have linkages to green roof services. Plant height is a trait found to be positively 

correlated with higher stormwater capture in empirical studies (e.g. Nagase and Dunnett 2012) 

and modeled to be negatively correlated with substrate temperatures (Sailor 2008). It is reasoned 

that taller plants have higher overall transpiration rates and provide greater shading of the soil 

surface, thereby reducing surface temperatures (Theodosiou 2003, Wong et al. 2003). Plant 

height also affects rainfall interception (Crockford and Richardson 2000) with taller plants 

capturing greater stormwater amounts (Nagase and Dunnett 2012). It is proposed here that leaf 

area (LA) may act in a similar fashion as plant height, with larger LAs better intercepting rainfall 

and providing greater shading benefits. Specific leaf area (SLA), calculated as one-sided leaf area 

divided by leaf dry weight (mm2/mg), is a measure that often acts as a marker of plant strategy 

in the leaf economics spectrum (Vendramini et al. 2002). Both SLA and LA show strong positive 

correlations with evapotranspiration rates (Reich et al. 1999, Westoby et al. 2002) which would 

theoretically impact green roof service provision since removal of soil moisture results in greater 

retention capacity (Wolf and Lundholm 2008, Lundholm et al. 2010). Leaf dry matter content 

(LDMC) is a measure of leaf dry weight over leaf fresh weight (mg/g) and is also a marker of 

plant strategy along the leaf economics spectrum resource axis which spans from quick to slow 

return on nutrient investment (Wilson et al. 1999, Wright et al. 2004). Lower LDMC values are 

typically found in productive and/or disturbed environments, and correspond with a quicker 

return on investment.

	 I considered vegetation characteristics of albedo, canopy density, water loss and 

canopy growth rate. While plant traits are measured from specimens growing in their natural 

environment and generalized to characterize a whole species, vegetation characteristics 

are measured on the green roof system and are indicative of that system only. Vegetation 

characteristics are measured on the same system as ecosystem services. Albedo, as a vegetation 

characteristic is involved in green roof thermal cooling by increasing reflectance of solar 
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radiation thereby reducing heat absorption (Sailor 2008). Canopy density may play an additional 

role in thermal cooling through shading and influence stormwater capture as stormwater capture 

may increase with canopy architecture complexity (Rixen and Mulder 2005). Evapotranspiration 

is linked to stormwater capture as the rate at which water is removed from the substrate will 

dictate how much pore space is available to capture water when it rains (Berndtsson 2010). 

Canopy growth rate is similar to relative growth rate (RGR), with which SLA scales (Poorter et 

al. 2009). Related to other traits, canopy growth rate may be related to canopy features that play a 

role in stormwater and thermal benefits.

	 Since ecosystem functions are influenced by the functional traits of plants, I propose that 

traits can be utilized to model green rooftop ecosystem service provision. The purpose of this 

study was to identify which traits, if any, can be used to explain the processes of, and later predict, 

green roof services of stormwater capture and thermal cooling.

	 To determine whether traits can be utilized to model green roof thermal cooling and 

stormwater capture, I measured plant traits of 21 plant species and measured their corresponding 

green roof performance of these services. For each test species, plant traits were obtained from 

specimens growing in natural habitats. The test species were grown in a modular green roof 

system in monoculture plantings. From these modules, green roof services of stormwater capture 

and thermal cooling were measured, along with vegetation characteristics of albedo, canopy 

density, water loss and canopy growth rate. Correlations between traits and service provision 

via vegetation characteristics were evaluated by multiple linear regression. From the significant 

relationships, a path diagram was generated to explain and visualize the linkage between traits to 

service provision.
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Methods

Green Roof Site

	 The green roof testing facility was located atop the Patrick Power Library of Saint Mary’s 

University in Halifax, Nova Scotia, Canada. Halifax, NS experiences a cold, humid climate and 

receives high precipitation amounts (Table 1) (Environment Canada, 2015). The green roof site 

is approximately five meters above ground level and circumscribed by buildings one to three 

stories higher on all sides. The Patrick Power Library rooftop had an in-ground green roof 

system installed circa 1972. The in-ground green roof consists of lawn grass and wildflowers over 

45 – 60 cm of clay soil. The soil is separated from underlying concrete slabs by a waterproofing 

membrane. Experimental modules were placed atop the in-ground green roof separated by a 

weed barrier fabric (Quest Plastics Ltd., Mississauga, ON, Canada). The weed barrier fabric acted 

to prevent any interaction between the experimental module’s plant roots and the pre-existing 

green roof. 

2008 2009 2010

Daily maximum temperature range (°C) 13.1 - 25.8 11.5 - 25.1 13.3 - 25.1

Daily minimum temperature range (°C) 4.7 - 15.3 2.3 - 14.6 5.0 - 15.0

Monthly precipitation range (mm) 69.1 - 299.4 71.0 - 179.6 48.0 - 153.6

Table 1. Climate measures of Halifax, Nova Scotia from May to October, 2008 to 2010.  

Green Roof Modules	

	 Modules (Botanical Nursery LLC, Wayland, MA, USA) measured 40 cm x 40 cm along 

the interior edge. Each module contained, from the bottom upwards, a geocomposite nonwoven 

water retention layer (Huesker Inc., Charlotte, NC, USA), a filter layer, an Enkamat drainage 

layer (Colbond Inc., Enka, NC, USA), and 6 cm of substrate. 	
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	 The substrate for green roof modules planted in 2007 was Sopraflor X green roof 

substrate (Soprema Inc., Drummondville, QC, Canada). Sopraflor X is comprised of crushed 

brick, blond peat, perlite, sand and vegetable compost. Its pH measured 7.6 and has physical 

properties of 60-70% total porosity, bulk density 1150 – 1250 kg/m3 and 5-10% organic matter 

(dry content).  Modules planted in 2009 were comprised of a 1:4 mix of Pro-Mix potting soil 

(Premier Tech, Rivière-du-Loup QC, Canada) and Sopraflor X growing medium (Soprema Inc., 

Drummondville, QC, Canada). 

Green Roof Monoculture Modules	

	 Twenty-one plant species were propagated as plugs from seeds and cuttings in the Saint 

Mary’s University greenhouse in Pro-Mix potting soil (Premier Horticulture, Rivière-du-Loup, 

QC, Canada). Some plants were collected and propagated starting from summer 2006 and 

planted in spring 2007 while the rest were propagated starting fall 2008 and planted in spring 

2009 (Table 2). Four plant species were propagated over both periods.

	 Seeds and cuttings used for propagation were collected from around Halifax and Chebucto 

Head, a coastal barrens environment approximately 25 km outside Halifax, NS. One special 

case in propagation was Arctostaphylos uva-ursi, collected in 2009 as cuttings from Chebucto 

Head. The cuttings were passed to M2 Horticulture in Truro, Nova Scotia who used a misting 

system to stimulate root growth. Due to poor propagation success in 2006 – 2007 of Gaultheria 

procumbens, Vaccinium vitis-idaea and Poa compressa, extra plants of these species were collected 

from Chebucto Head and Polly’s Cove (approximately 45 km southwest of Halifax). These plants 

were potted into plugs using the same Pro-Mix potting soil used for propagation and allowed to 

establish for two weeks prior to planting into modules.

	 The 21 test plant species included three non-native, proven green roof suitable plants 
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(Sedum acre, Sedum spurium, and P. compressa) and 19 indigenous species selected by the habitat 

template approach proposed by Lundhom (2006). The 21 plant species belong to five life-form 

groups: graminoids, subshrub/creeping shrubs, tall forbs, ground-covering forbs, and succulents 

(Table 2). Of the 13 species propagated in 2006-07, Lundholm et al. (2010) found that green roof 

performance differed within each life-form group.

Table 2. List of native and non-native plant species grown in modules in monoculture. Non-
native plant species are indicated by an asterisk (*). 	

Plant Species Common Name Life Form 2007 2008
Arctostaphylos uva-urvi Bearberry Creeping shrub x

Aster novae-belgii New York aster Tall forb x
Campanula rotundifolia Harebell Tall forb x

Carex argyranthra Hay sedge Graminoid x
Carex nigra Black sedge Graminoid x x

Danthonia spicata Wire grass Graminoid x x
Deschampsia flexuosa Crinkled hair grass Graminoid x x

Empetrum nigrum Black crowberry Creeping shrub x x
Festuca Rubra Red fescue Graminoid x

Gaultheria procumbens Wintergreen Subshrub x
Plantago maritima Seaside plantain Tall forb x

Poa compressa* Canada bluegrass Graminoid x

Sagina procumbens Birdseye Ground-covering 
forb x

Sedum acre* Mossy stonecrop Succulent x
Sedum rosea Roseroot Succulent x

Sedum spurium* Garden stonecrop Succulent x

Sibbaldiopsis tridentata Three-toothed 
cinquefoil Creeping shrub x

Solidago bicolor White goldenrod Tall forb x x
Solidago puberula Downy goldenrod Tall forb x

Vaccinium macrocarpon Large cranberry Creeping shrub x
Vaccinium vitis-idaea Mountain cranberry Subshrub x
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	 Plugs were planted as monocultures in modules, comprised as a mix of larger and smaller 

plugs. Plants started in 2006 were planted into green roof modules in spring 2007 at a planting 

density of 21 plugs per module. Plants propagated in 2008 were planted into modules spring 

2009. The number of plugs planted in 2009 varied per species, aiming to achieve 100% coverage 

of the module upon maturation. Maximum planting density was 21 plugs per module but varied 

based on growth form predictions of mature plant canopy size. Aster novae-belgii received the 

lowest density planting at 8 plugs per module.	

	 Following planting, modules received water only from natural precipitation events 

and the once monthly artificial rain events created to measure stormwater capture. To retain 

monocultures, modules were weeded once to twice a month to remove any non-target species 

that arrived or germinated. Plantings of both 2007 and 2009 were considered to have reached 

maturity and maximum size by the end of the 2010 growing season.

Green Roof Performance

	 Stormwater capture and substrate temperatures were measured once monthly from June 

to August 2010. Gravimetric soil moisture was measured utilizing a PX-Series Checkweighing 

bench scale (ATRON Systems Inc., West Caldwell, NJ, USA). Modules were tested for stormwater 

capture once a month during the second week of each month within one hour of solar noon 

on a sunny day. Modules were weighed and then watered with 1.3 kg of water, simulating an 

intermediate rain event for Halifax, NS. The artificial rain event size was based on the per day 

average rainfall for Halifax between May and October 2008, amounting to a 10 mm rain event 

(Fogarty 2009). The modules were then reweighed ten minutes, 24 hours, and 48 hours after 

the simulated rain event. If a natural rain event occurred over the 48 hour weighing period, 

the data were discarded. Stormwater capture was defined as the difference in module weight 
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before watering and the weight 10 minutes after watering (Lundholm et al. 2010, MacIvor and 

Lundholm 2011). For use in analysis, a stormwater capture index was created by dividing the 

capture amount of a module by the average capture of the unplanted control modules of the 

corresponding period. Measurements were averaged across all dates by plant species.	

	 Substrate surface temperatures were measured once per month between June and August 

within one hour of solar noon on a sunny day using a Taylor 9878 Slim-Line Pocket Digital 

Thermometer (Commercial Solutions Inc., Edmonton, AB, Canada). Taking measurements 

around solar noon should capture maximal differences across plant species in substrate cooling. 

Measurements were made at the centre of each module within the top 1 cm of substrate 

media. An index of surface temperature was generated by dividing each module temperature 

measurement by the average temperature of the unplanted control modules on the corresponding 

date. Measurements were then averaged over each sampling date. The temperature index was 

multiplied by -1 to generate a cooling index whereby higher index values indicate a lower 

temperature relative to the control.

Vegetation Characteristics

	 To measure canopy albedo, modules were taken and isolated on a grey-coloured weed 

barrier fabric (Quest Plastics Ltd., Mississauga, ON, Canada). A single LI-COR pyranometer 

sensor and LI-250A light meter (LI-COR Biosciences, Lincoln, NE, USA) was affixed to a retort 

stand with the sensor and light meter 35 cm above the module (MacIvor and Lundholm 2011). 

Under clear sky conditions and within one hour of solar noon, when incoming solar radiation is 

most constant, incoming and reflected solar radiation was measured for each module. Incoming 

radiation (W/m2) was measured by directing the pyranometer sensor towards the sky (180° away 

from the module), and reflected solar radiation was measured by rotating the sensor toward the 
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module. Measurements were taken once a month between June and August 2010. Measurements 

made in July had the greatest spread of albedo among species and only these measures were used 

for statistical analysis.

	 Canopy density, an estimate of above-ground biomass by the point-interception method 

(Floyd and Anderson 1987) was determined using the Ranalli box (Domenico Ranalli, Regina, 

SK, Canada). The Ranalli box is a 36 cm three-dimensional cube with 16 equally spaced, 6 mm 

diameter rods (or points). The box was placed above each module and the number of contacts 

made between the plant structure and the rods was counted. Measurements began at initial 

planting and continued monthly over the following growing seasons (May to September). 

Among an evenly spaced grid pattern, biomass is strongly correlated to total number of contacts 

between points and plant matter (Jonasson 1988). For use in statistical analysis, canopy density 

measurements from August 2010 were used.

	 Canopy growth rate was calculated as the change in canopy density over the first year 

of growth. Canopy density measurements used to determine canopy growth rate were from 

August of the first year after planting and the following August. Growth rate was calculated as 

ln(density at t2) - ln(density at t1) / number of days between t1 and t2. Therefore, for plants started 

in 2007, canopy growth rate was determined from canopy density measures in August 2007 

and August 2008. Similarly, for plants started in 2008, canopy growth rate was determined from 

measurements August 2008 and August 2009. These growth rates provide general estimates of 

early growth rates in the green roof environment.

	 Net water loss was designated as the difference in module weight between 10 minutes and 

24 hours after the simulated rain events made June - August 2010. Similar to measurements of 

stormwater capture, monthly measurements were averaged together and an index created by 

dividing by the averaged control modules stormwater capture performance. 
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Plant Traits	

	 Plant traits of plant height, leaf area (LA), specific leaf area (SLA), and leaf dry matter 

content (LDMC) were determined for all test 21 species.

	 The traits of plant height, LA, SLA, LDMC were determined using measurements taken 

from five specimens of each test species. Leaf samples were obtained from different individuals 

found growing in their natural environments at Chebucto Head, Point Pleasant Park, and around 

Saint Mary’s University, NS, Canada. Healthy leaves from well developed plants were selected 

whereas damaged or senescent leaves were omitted from collection and measurement.

	 Leaf length, width and thickness were obtained at the collection site using a ruler and an 

ABSOLUTE Digimatic caliper (Mitutoyo, Cole Harbour, NS, Canada). Corresponding plant 

height was recorded. Leaf fresh weight was measured using a Mettler Toledo analytical balance 

(Mettler Toledo, Mississauga, ON, Canada) and the leaf scanned. Leaves were then dried at 50°C 

for 48 hours and dry weight measured. Measurements for plant traits were averaged over the 

samples (Cornelissen et al. 2003).	

	 Plant height was considered the height in cm from the base of the plant to the top 

vegetative height. LA measured the one-sided surface area in mm2 of a single leaf was calculated 

using Image J software (Image Processing and Analysis in Java, NIH, USA). SLA was calculated 

as one-sided leaf area divided by its oven-dried leaf mass, mm2/mg. Lower SLA values are 

generated from denser leaf tissues as more biomass is invested in an area unit. LDMC is the 

measure of dry leaf weight (mg) divided by fresh leaf weight (g). High LDMC values correspond 

to leaves with lower water content when fresh.
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Statistical Analysis

	 Prior to analysis, I averaged measurements for each ecosystem service, vegetation 

characteristic and plant trait by the plant species to generate one indicator value per service/

characteristic/trait per species. Stormwater capture and thermal cooling were indexed by the 

corresponding performance by the control, substrate only, modules. Variables were transformed 

to improve homogeneity of variance where necessary (Table 3) and standardized to Z-scores 

prior to analysis.

Table 3. Transformations applied to leaf traits, plant traits and 
vegetation characteristics.

Variable Transformation
Canopy Density x1/2

Canopy Growth Rate ln(x+0.1)
Net Water Loss none
Albedo none
Plant Height x1/2

Leaf Area ln(x)
Specific Leaf Area ln(x+1)
Leaf Dry Matter Content none

	 A hypothetical model of traits (Figure 1), via vegetation characteristics, driving green roof 

services of stormwater capture and thermal cooling was generated based on existing knowledge. 

These predicted relationships were tested using Akaike Information Criterion (AIC) to indentify 

the best model. In instances where no vegetation characteristics were found to drive the green 

roof service, new models were generated to test for direct influence by plant traits. 
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Figure 1: Hypothetical model linking traits to green roof services via vegetation characteristics.
Dashed line indicates a predicted inverse relationship.

canopy density

substrate cooling

canopy growth rate

net water loss

albedo

stormwater capture
plant height

leaf area

specific leaf area

leaf dry matter 
content

	 From AIC, the best models were considered those with low delta weights (≤7). When 

multiple models had delta weights below 7, it was determined that no one best model existed. 

As no best model was found, model averaging was used to generate standardized regression 

coefficients, with the β coefficient indicating the strength of the relationship. The models 

generated from AIC are identified in Table 4, along with the results from model averaging. Three 

models from AIC analysis for stormwater capture, with delta weight ≤7, had 95% confidence 

intervals that did not include 0 when model averaging was applied (Table 4). From model 

averaging, predictors whose 95% confidence interval did not overlap zero were considered 

significant. A path diagram (Figure 2) was constructed including only these predictors. Model 

selection and model averaging was conducted using the MuMIn R-package (Bartoń 2015).
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Variable Predictor Model 
Averaged β 
coefficient

95% CI 
lower 
bound

95% CI 
upper 
bound

Stormwater Capture
model 1 Albedo -0.53 -0.92 -0.17

Canopy Density 0.27 -0.17 0.72
Canopy Growth Rate 0.32 -0.08 0.73
Net Water Loss 0.04 -0.35 0.41

model 2 Plant Height 0.40 0.02 0.78
Specific Leaf Area -0.21 -0.61 0.17
Leaf Area 0.14 -0.31 0.60
Leaf Dry Matter 
Content

0.37 -0.01 0.75

model 3 Albedo -0.53 -0.86 -0.20
Plant Height 0.50 0.17 0.83
Canopy Density -0.05 -0.51 0.54
Canopy Growth Rate 0.01 -0.34 0.61
Net Water Loss 0.14 -0.37 0.26

Substrate Cooling Albedo 0.40 0.17 0.63
Canopy Density 0.60 0.36 0.85
Canopy Growth Rate -0.08 -0.32 0.17
Net Water Loss 0.06 -0.15 0.26

Table 4. Linear regression model results from model averaging. Predictors in 
bold indicate those whose confidence interval (CI) does not overlap zero.
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Variable Predictor Model 
Averaged β 
coefficient

95% CI 
lower 
bound

95% CI 
upper 
bound

Albedo Canopy Density 0.48 0.06 0.91
Plant Height -0.19 -0.67 0.29
Specific Leaf Area 0.36 -0.03 0.76
Leaf Area 0.01 -0.39 0.41
Leaf Dry Matter 
Content

-0.10 -0.49 0.27

Canopy Growth Rate 0.36 -0.04 0.78

Canopy Density Plant Height 0.50 0.17 0.83
Specific Leaf Area 0.51 0.22 0.79
Leaf Area -0.02 -0.39 0.35
Leaf Dry Matter 
Content

-0.06 -0.41 0.28

Canopy Growth Rate 0.35 -0.01 0.72

Canopy Growth Rate Plant Height 0.61 0.26 0.96
Specific Leaf Area 0.15 -0.19 0.50
Leaf Area 0.04 -0.41 0.49
Leaf Dry Matter 
Content

-0.28 -0.61 0.06

Net Water Loss Canopy Density -0.08 -0.56 0.31
Canopy Growth Rate -0.13 -0.58 0.40
Plant Height 0.21 -0.25 0.68
Specific Leaf Area 0.19 -0.24 0.62
Leaf Area 0.24 -0.17 0.65

Table 4 continued. Linear regression model results from model averaging. Predictors 
in bold indicate those whose confidence interval (CI) does not overlap zero.
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Results

Path Diagram

 	 From our AICc analysis to predict drivers of green roof services and vegetation 

characteristics, no one model was demonstrably stronger than another. As such, model averaging 

was used in all cases. From model averaging, green roof service of stormwater capture waas 

positively predicted by plant height and negatively correlated to albedo (Table 4). Thermal 

cooling was positively correlated to both canopy density and albedo. Vegetation characteristic 

albedo was positively predicted by canopy density while canopy density was positively correlated 

to traits plant height and specific leaf area measures (Figure 2). 

Plant 
Height

Albedo

Canopy Density

Specific Leaf 
Area

Stormwater Capture

Substrate Cooling

0.51

0.50

0.50

0.48

-0.53

0.40

0.60

Figure 2: Path diagram linking whole plant and leaf level traits to green roof performance 
measures via vegetation characteristics.
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Plant and Leaf Traits

		  Average plant height measured in the field ranged from under 2 cm to 66 cm. 

Graminoid life forms dominated the tallest plant heights, but were variable in their average 

heights. Creeping forbs and shrubs were consistently short, while succulents were relatively short 

but highly variable. Two of the shortest plant species were succulents Sedum acre and Sedum 

spurium. Tall forb species were similar to graminoids with relatively tall yet variable heights.

	 Leaf area (LA) measurement ranged from 4.6±0.36 mm2 to 1662.0±465.03 mm2 , spanning 

three orders of magnitude (Table 5). The largest LA values were possessed by graminoid life 

forms, highest in sod-forming graminoids but variable. Forb and succulent growth forms held 

the smallest leaf areas but were also variable in their range.	

	 Specific leaf area (SLA) generally showed no trends with respect to growth form, being 

highly variable within a group. The highest SLA belonged to Sagina procumbens, a creeping forb, 

while the lowest SLA value belonged to Arctostaphylos uva-ursi, a creeping shrub. SLA ranged 

from 5.9±0.5 to 92.4±23.3 mm2/g.

	 Leaf dry matter content (LDMC) ranged from 85.4±4.88 mg/g to 582.6±17.15 mg/g, a 

seven-fold difference (Table 5). A succulent, Sedum rosea, held the lowest value while Vaccinium 

macrocarpon, a creeping shrub, held the greatest value. Succulents all held low LDMC values, 

along with Empetrum nigrum, Plantago maritima, and S. procumbens, all from distinct growth 

form groups.

Vegetation Characteristics

	 Albedo values for succulents were highly varied, with succulent growth forms exhibiting 

both the highest and lowest values. S. acre had the highest reflectivity at 26% while S. rosea 
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measured 16% reflectivity. Variability in albedo was lower for all other growth forms, ranging 

between 16% and 19% reflectivity (Table 5).

	 Canopy density ranged from zero to 243 contacts/0.07 m3. Graminoids tended to have 

relatively high canopy densities with Festuca rubra exhibiting the highest canopy density of 

all species tested. Creeping shrubs all had low canopy density values while tall forbs were 

intermediate in canopy density. All growth form groups had moderate variation in their values.

	 Canopy growth rates were negative for seven species: Gaultheria procumbens, S. 

procumbens, S. rosea, S. spurium, Sibbaldiopsis tridentata, V. macrocarpon and Vaccinium 

vitis-idaea. These species belong to creeping shrub and forbs, and succulent growth forms. 

However, succulent S. acre had a relatively high growth rate. Graminoids and tall forbs both held 

consistently high canopy growth rates.

	 Water loss amounts did not follow any trends related to growth forms and ranged from 

16% less to 22% more water loss than unplanted control modules (Table 5). S. spurium modules 

lost the least amount of water and Symphotrichum novi-belgii the most. 

Green Roof Services

	 Stormwater capture was affected by vegetation with F. rubra capturing 11% more than 

unplanted control modules. Several species captured less than the unplanted controls with all 

succulents performing stormwater capture poorly. S. acre absorbed the least, retaining 87% of the 

unplanted control capture amount. Tall forbs generally performed stormwater capture well while 

creeping forb species exhibited both high and low water use.

 	 Thermal cooling was best performed by P. compressa and S. acre, lowering substrate 

temperatures by 26% below unplanted controls (Table 5). While S. acre was one of the best 
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performers, succulents were highly variable in thermal cooling. Creeping shrubs tended to cool 

the substrate the least, with A. uva-ursi, V. macrocarpon and V. vitis-idaea performance similar 

to control modules. Tall forbs were also poor performers while graminoids were variable in their 

cooling ability.

Discussion

	 Plant traits are generalized measures for a species and affect ecosystem processes through 

vegetation characteristics (Guha and Reddy 2012, Yan et al. 2012, Fry et al. 2013). In this study, I 

found predictors of green roof services in plant traits. Traits measured from specimens found in 

naturally occurring populations were found to drive green roof vegetation characteristics which 

in turn were related to ecosystem services.

	 Thermal cooling was related to vegetation characteristics of canopy density and albedo, 

replicating findings from others studies (Takebayashi and Moriyama 2007, Lundholm 2010). 

Canopy density in this study reflected the living leaf and stem biomass in a green roof module. 

Canopy density may have reduced surface temperatures by shading the substrate surface 

(Theodosiou 2003) or by containing a cooler air pocket above the surface layer (Dimoudi and 

Nikolopoulou 2003). Greater canopy density covers and shields more substrate from solar 

radiation and better traps air. Highest canopy density in this study was found in sod-forming 

graminoids yet substrate temperatures were best reduced by Sedum acre, which did not exhibit 

the highest canopy density. Likewise, succulent Sedum spurium lowered temperatures more 

than some sod-forming graminoids that had greater canopy density. This suggests that another 

process aside from canopy shading is involved in substrate cooling. This study found surface 

cooling also positively correlated to albedo. Albedo acts in the process of cooling by reflecting 

more solar radiation. Consequently, less solar radiation is absorbed and translated into heat 
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energy on the roof (Taha 1997). S. acre exhibited the greatest albedo out of the species tested and 

reduced surface temperature by 26%.

 	 In this study, albedo was predicted only by canopy density. Albedo values are raised by 

greater canopy density through a greater provided area for reflection and by the higher albedo 

of vegetation over substrate albedo (Oke 1978). No plant trait measured in this study was 

predictive of albedo values although Ollinger (2011) identified traits of leaf nitrogen content, 

leaf and canopy water content and lateral spread as some of the traits to drive optical reflectivity. 

Albedo and reflectance characteristics are also influenced by canopy density factors including 

leaf architecture, branching intensity, leaf orientation and lateral spread (Sandmeier et al. 1998, 

Kumar et al. 2001, Ollinger 2011). In this study, creeping shrubs had low canopy density and 

low albedo values and performed thermal cooling the poorest. No growth form group held 

simultaneously high albedo and canopy density values although sod-forming graminoids and 

succulents made up the best performers of thermal cooling.

	 In accordance with other studies, I found stormwater capture to be little improved by 

vegetation. Others studies have concluded that increasing substrate depth is the easiest and most 

effective way to increase stormwater retention (VanWoert et al. 2005). However, this study found 

plant species type to be able to alter the capture amount, with sod-forming graminoid Festuca 

rubra retaining 10% more than control modules. Stormwater capture was negatively correlated 

to albedo and positively related to plant height. F. rubra was one of the taller specimens, with 

the highest canopy density. Sailor (2008) found a relationship between albedo and green roof 

substrate moisture levels where saturated green roof substrate was less reflective and drier 

substrate more reflective. From Sailor’s findings, the logical conclusion would be that with 

increased albedo indicative of a drier substrate, a greater albedo green roof system would be 

more capable of water uptake as drier antecedent substrate conditions retain more. I believe 

that the negative relationship generated in this study between albedo and stormwater capture 
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was influenced by the performance of succulents S. acre and S. spurium. These species were the 

most reflective out of the test species and captured the least amount of water. Sedums are known 

to be drought-tolerant, having low water requirements, and poor performers of water capture 

(VanWoert et al. 2005, Dunnett et al. 2008). Low capture in these species may be a function of 

both reduced transpiration from the plants and reduced evaporation from the substrate. It is also 

possible that albedo influences direct evaporation from the soil surface. With more shade from 

higher albedo, in part influenced by canopy density, less evaporation from the soil surface is 

possible leading to wetter antecedent conditions which reduces future possible capture.

	 Plant species that are relatively tall in their natural environments predicted greater 

stormwater capture, corroborating findings by Nagase and Dunnett (2012). Ecologically, greater 

plant height is typically an indicator of high resource users from resource rich environments 

where high growth rates and tall plant heights are competitive factors in reaching resources. 

Conversely, short heights are often considered a drought tolerance feature, a condition often 

found in resource-poor environments (Gross et al. 2008). While I found tall plants to better 

perform water capture, it is important to note that the species in this study all originate from 

low resource habitats. Plants adapted to low resource environments are relatively shorter than 

plants of resource rich environments (Gross et al. 2008). As the plants in this study were from 

low resource environments, tall plants in the study were the tallest of a short group. In this light, 

the tall plants performed well in terms of survival and storm water capture. It is necessary to note 

that tall plants from richer environments would have higher water needs and therefore be more 

susceptible to drought in green roof systems. Tall plants may have other resource requirements 

for long-term success that may demand additional fertilization, maintenance or irrigation which 

may limit incorporation of truly tall species on green roofs.

 	 Plant height was also correlated with greater canopy density in this study. This agrees with 

findings by Axmanová et al. (2012) where biomass was best modelled by canopy coverage and 
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median height. Again, as taller plants are indicative of a life strategy of high resource use and 

quick return on resources, it follows that resource allocation into biomass would include canopy 

density serving as light capturing structures.	

	 Canopy density was positively correlated with specific leaf area (SLA). SLA is another 

indicator of plant strategy (Wilson et al. 1999) where plants with higher SLA exhibit quick 

growth and return on resources (Wright and Sutton-Grier 2012). Typically plants with higher 

SLA values are found in resource-rich environments, thus high SLA values indicate a plant 

strategy that allows quicker formation of biomass and light intercepting structures. Similar to 

plant height, these traits are necessary in environments where fast growth and resource uptake 

are competitive strategies. Again, the test species are naturally found in coastal barrens and 

rock outcrops, harsh environments with relatively low resource availability. As such, high SLA 

species of this study would be found in the most fertile spaces of these harsh environments. SLA 

is also strongly positively correlated to photosynthesis and transpiration rates (Reich et al. 1999, 

Westoby et al. 2002), processes that translate to development of canopy structures.

	 There were a number of measured traits at all scales that were not predicted or predictive 

in my analysis. I expected stormwater capture to be driven by water loss measures as other 

studies find water loss and antecedent moisture conditions predictors of storm water capture 

performance (Berndtsson 2010, Jim and Peng 2012). In this study, water loss reflected water 

lost from the module between 10 minutes and 24 hours after the simulated rain event. These 

water loss measurements register the total change in weight from both evaporation from the 

substrate and transpiration by the plants, but only in the first 24 hours. A link between water loss 

and stormwater capture may have been found along with species differentiation in performance 

had the measurement period been longer, lasting from rain event to rain event. I also expected 

water loss to be linked to thermal cooling as Takakura et al. (2000) estimated transpiration 

to contribute up to 30% of cooling benefits. Plant transpiration works to create a green roof 
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microclimate by cooling the air boundary layer over the substrate surface (Kolb and Schwarz 

1986, Theodosiou 2013). Meng and Hu (2005) attributed surface temperature reductions of 

25°C to evaporative cooling and Takebayashi and Moriyama (2007) noted that in summer 

months, vegetated green rooftops were significantly cooler due to plant transpiration. Conversely, 

in winter when plants were not active, green roofs exhibited similar temperatures as control 

unplanted green roofs.

	 The lack of a relationship between canopy density and water loss may also be due to the 

measurement method. Water loss partly consists of consumption by plants and this water loss 

should be correlated with canopy biomass (Lawlor 2002, Morgan et al. 2004, Knapp et al. 2008). 

However, uptake amounts by biomass is also counteracted by canopy shading of the surface. 

Shading of the soil surface through canopy coverage and creation of a larger air boundary layer 

size reduces evaporation and evapotranspiration (van Bavel and Hillel 1976, Lohr and Pearson-

Mims 2001, Wolf and Lundholm 2008, Butler and Orians 2011, Tabares-Velasco and Srebric 

2012). I note that in this study, Gaultheria procumbens and Vaccinium vitis-idaea had canopy 

densities of zero, due to extremely low growth forms such that their leaves did not reach the 

sampling frame, yet exhibited high water loss rates. I suspect that due to the lack of canopy 

biomass, evaporation from the soil surface was unhindered, however when these species were 

omitted from analysis, a relationship between canopy density and water loss still failed to emerge.

 	 Canopy growth rate wasn’t predictive of either green roof ecosystem function measured. I 

supposed that canopy growth rate would have predicted green roof services as plant growth, and 

therefore a non-zero or non-negative growth rate, would have water requirements that would be 

reflected in its stormwater capture ability. Growth would involve evapotranspiration that would 

influence surface cooling. Canopy growth rate could have been interpreted as a possible indicator 

of plant strategy, with close to 0 or negative rates indicating plants that respond to environmental 

stress or drought by growing little after initial planting or losing biomass. However, interpretation 
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of these poor canopy growth rate values may be problematic as plants with 0 or negative rates 

could either simply be unsuited to green roof conditions, or conversely, highly stress tolerant. 

An alternative way to probe canopy growth rate could have been to measure carbon assimilation 

rates, or nutrient uptake rates, however these measurements are less easy to obtain.

	 Traits of leaf area (LA) and leaf dry matter content (LDMC) were not predictive of any 

vegetation characteristic. While LDMC is another indicator of plant strategy along the resource-

axis, although most studies have coalesced around SLA as the key trait to consider (Westoby 

1998, Wilson et al. 1999). Leaf area could have been related as high stress environments (drought, 

extreme cold or heat, high-radiation) select for smaller leaf areas (Cornelissen et al. 2003). As 

such, high water capture may have been predicted by larger leaf areas. 

	 While I measured traits from naturally occurring populations, it may be satisfactory 

to measure traits from plants grown in a green roof system. Mokany and Ash (2008) found 

that some traits are consistent between natural populations and pot-grown species grown in 

controlled conditions. SLA is one trait which transfers well whereas whole plant traits weren’t as 

consistent, perhaps requiring more time to resemble natural communities. However, when trait 

measurements were different in Monkany and Ash (2008), species rankings still held between 

field and pot-grown plants. This could expand the ability to measure traits if flora trait databases 

are lacking and using rankings to select green roof plant species.

Conclusion

	 This study used whole-plant and leaf traits measured from an average of five specimens 

found growing in naturally occurring populations. Green roof ecosystem services and vegetation 

characteristics were measured on the roof, averaged from replicate modules of the same species. 

Some traits were highly variable within a species, but a predictive model was constructed. 
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This study demonstrates that easy to measure leaf traits and canopy traits can predict green 

roof service provision. Greater service provision of stormwater capture and surface cooling 

were provided by plants with tall plant heights and greater specific leaf area. While the indices 

generated are relevant to this green roof study alone, traits can be used to screen potential plants 

for maximizing green roof service provision. From using traits available in flora databases, 

researchers and industry could vastly expand the plant palette for green rooftops while 

maximizing functional requirements.
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Chapter 4

Synthesis: Climate and plant traits as influences on green roof performance
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	 The goals of this thesis were twofold: first to quantify the growth performance of 

monoculture and mixture plantings in different climates of Canada; second to elucidate the 

relationship between plant traits and green roof services through vegetation characteristics. In 

chapter two, there were significant differences in plant survival and performance across sites 

with identical green roof systems. In chapter three, green roof services of stormwater capture 

and thermal cooling were linked to two vegetation characteristics, with stormwater capture 

also directly linked to plant height. The path analysis we generated describes the functional 

relationship from plant traits to green roof services.

 	 While each chapter probes different aspects of green roof performance, the results indicate 

how plant species and trait value can impact green roof function. Results from this study furthers 

understanding of green roof performance and present additional methodology for optimization.

Green Roof Plant Performance Across Three Climate Contexts of Canada

	 Overall plant performance was best at the London, Ontario green roof site. The London 

green roof experienced no plant death, had stable coverage and the largest canopy density. 

The better plant performance at the London green roof could be linked to the climate and/

or the better suitability of the plant species to the London climate. London experiences more 

temperate conditions than both Calgary and Halifax, and our non-Sedum plant species, Aquilegia 

canadensis and Sporobolus heterolepis, are both native to Ontario and therefore adapted to the 

local conditions in London. The confluence of these two factors was clearly exhibited in better 

plant survival and greater canopy density. Plant death of A. canadensis and S. heterolepis occurred 

in Calgary, while only S. heterolepis died on the Halifax roof. As both Calgary and Halifax 

undergo longer and colder winters than London, and the plant deaths were observed following 

the first overwintering, we observe the effect of climate on plant survival. Regarding native 
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species, even London’s worst performing modules had equivalent or greater canopy density than 

the best modules in Calgary and Halifax, which lends support to the habitat template approach 

(Lundholm 2006). Even while shallow modules generated less canopy density, London’s shallow 

modules performed as well as, or better than, the deep modules in Calgary and Halifax. 		

	 Although Sedum spurium is not native to any of our green roof locations, S. spurium 

was included in this study to provide a marker of industry requirements in terms of coverage 

and overall performance. No death of S. spurium occurred, while the other species did at some 

locations, and S. spurium outperformed A. canadensis and S. heterolepis in all performance 

measures. Sedums are considered to be a reliable green roof plant due to their drought-tolerance 

and wide climate suitability. Although Sedums have done well in many climates, they too are 

susceptible, like our test species, to climate conditions, having been shown to perform poorly in 

extreme hot and extreme cold conditions (Boivin 2001, Livingston et al. 2004).

	 Overall, our mixture planting treatment outperformed the best monoculture, S. spurium. 

Similar to other studies that showed better survival in mixture plantings (Nagase and Dunnet 

2010, Butler and Orians 2011), no S. heterolepis or A. canadensis plugs died within a mixture 

module at any location. Mixture plantings were able to resource share and capitalize upon the 

best aspects of each species to generate greater canopy density and height.	

	 From the finding that climate influences canopy density and plant survival, it follows that 

it would be beneficial to have tactics that maximize plant survival and best create canopy density 

within a climate condition. As canopy density influences green roof services of stormwater 

capture and thermal cooling. From my investigations, plant and leaf traits can serve as indicators 

of canopy density, generating a methodology for identifying potential strong service performers 

without needing to trial in-situ each and every plant species.
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Predictors of Green Roof Performance by Plant Traits via Vegetation Characteristics

	 Green roof service provision of stormwater capture and thermal cooling were predicted by 

plant traits via vegetation characteristics. Our predictive traits were plant height and specific leaf 

area (SLA). Taller plants are typically found in resource-rich environments and are an indicator 

of competitive growth strategy. Environments with high water availability tend to have plants 

with tall canopies and deep roots with short root lengths. Specific leaf area is a marker of the rate 

of resource uptake and transformation into light-capturing structures. In my path analysis, these 

two traits were linked to storm water capture and thermal cooling, either directly or indirectly. 

Both traits were positively related to canopy density measures, where greater ability to quickly 

utilize resources into sunlight capturing structures manifested in above-ground biomass. In 

turn, canopy density was related to albedo measures, with higher reflectivity arising from greater 

canopy biomass. Oke (1978) found that plant biomass generally has higher reflectivity than soil, 

so with more above-ground biomass, more of the lower reflectivity substrate was covered and 

therefore overall reflectivity heightened. Canopy density also drove thermal cooling whereby 

greater canopy density better reduced/lowered substrate temperatures. It is reasoned that canopy 

reduces substrate temperatures through shading the surface and evaporative cooling processes. 

Albedo also reduced substrate temperatures, by reflecting solar radiation and preventing it from 

being absorbed by the substrate. Albedo was also negatively correlated with stormwater capture.	

	 Surprisingly, not more traits were predictive in this study. I had predicted that LDMC 

would be linked to measures of water loss and stormwater capture as LDMC indicates how much 

water is being stored in the plant leaf. Wilson et al. (1999) advocated for LDMC as a useful plant 

measure and good substitute for SLA, arguing that LDMC is an indicator of the same resource-

axis as SLA, tending to scale with 1/SLA, and has less inherent variability in its measurement. 

Cornelissen et al. (2003), however, only suggests LDMC as a viable substitute for SLA when leaf 

area is difficult to measure. I also predicted that leaf area, as it is related to leaf energy and water 
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balance, would be related to green roof services, however SLA is a better indicator of the resource 

allocation and most research tends to coalesce around SLA as the key trait, showing stronger 

relationships than other traits to ecosystem function.

	 While we found that plant traits did not necessarily link to life form groups, traits rooted 

in morphology did tend to cluster more by growth form than leaf dry matter content (LDMC) 

or specific leaf area (SLA) which are not based on morphology. However, some growth forms 

showed some generalities and could, if needed, be used in lieu of traits for plant selection. 

Graminoid growth forms overall exhibited taller heights and greater leaf areas. Tall forms were 

generally tall as their name suggests, while creeping shrubs and creeping forms were consistently 

short. Forbs were generally small in leaf area. LDMC values were low in succulents, while SLA 

did not trend with any growth form.

Synthesis

	 From the findings of this research, we could adjust the path analysis linking leaf and 

whole-plant traits to green roof services with another layer of relationship where each of the 

traits driving green roof ecosystem services are in turn determined by a climate trait. While 

climate is a composite of factors and events and can not be assigned a single value, we know 

that climate impacts each of our trait drivers. From our chapter 2 work, we showed that climate 

influences canopy density growth within a growing season and from year to year. In chapter 3, 

that canopy density was shown to influence green roof albedo, stormwater capture and substrate 

cooling. Similarly, plant growth is significantly impacted by the amount, and also the timing, 

of precipitation (Knapp et al. 2002, Heisler and Weltzin, 2006, Heisler-White et al. 2009), and 

SLA affected by the soil water content (Albert et al. 2012). Thereby our canopy density, plant 

height and SLA traits were all influenced by the precipitation characteristics, and even more 



103

so influenced by temperature (Moles et al. 2014). So while traits provide a useful framework 

through which we can study ecosystem function/green roof services, it is insufficient to consider 

traits without considering the context of the green roof system inclusive of climate. 

	 From the results of this work, our suggestion is to overlay plant trait information over 

existing approaches to green roof planting. From a successful green roof, trait values could 

be obtained and with the habitat template approach, applied to select native plant species of 

another location. Those plant species would be climate adapted, and the similar trait values could 

potentially drive services as well as the original roof. This approach could better guide plant 

choices among untested species, as well as allow plants declared unsuccessful in other locations 

to be reconsidered, for a climate where the species may be better suited. Trait information could 

also be used to guide mixture planting to ensure niche differentiation. Catalano et al. (2016) 

found green roof plant composition to drastically change over time in life growth forms and 

life strategies due to empty niches in the original plant composition. Even in a green roof with a 

phylogenetic approach of having plant species with greater shared evolution to ensure one goal or 

service (MacIvor et al. 2016), plants could be selected within those parameters for as much trait 

variability as possible to best provide niche differentiation, resource sharing and performance of 

other green roof services. Through niche differentiation, plant communities could remain more 

stable over time, potentially lowering maintence cost related to upkeep and removing volunteer 

plant species.

	  Suggested future research would involve more test species and an extended list of traits 

and services. A fuller exploration into traits driving canopy density could be investigated, 

as canopy density is related to aesthetic as well as functional services and what provides the 

green portion of the name. Green roof water uptake could be influenced by the photosynthetic 

pathways and specific root length of a plant species. Flammability (a liability on green roofs) 

could be investigated in traits of twig dry matter content and bark thickness and quality. 



104

Extending this methodology of linking plant traits to green roof services could help identify the 

best performers and aid in optimizing desired green roof function. Green roof services could 

become more tailored to the needs of each location - be it storm water capture in cities with large 

rainfall amounts or limited sewer capacity, or thermal cooling in hot climates.

Conclusion

	 With incentive programs or bylaw requirements for green roof installation in urban 

centres, green rooftops are often created with the lowest input of cost and/or maintenance. This 

has encouraged the ubiquitous use of Sedum on green rooftops, often in monoculture planting. 

However, visual preference is for diverse plantings, which studies show also functionally perform 

better. This study showed mixtures to perform better than monocultures in terms of plant 

survival and canopy density across different climates. This study also found plant traits of plant 

height and specific leaf area markers of canopy density, and through canopy density, predictive 

of green roofs services of stormwater capture and thermal cooling. This research contributes to 

knowledge aiming to optimize green roof function through plant selection and highlights the 

impact climate has upon each factor of green roof performance. Climate determined traits can be 

used to guide green roof plant selection for desired green roof services.
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